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ABSTRACT

This paper is concerned with the control of systems composed of multiple coupled
subsystems. In such architectures, communication between different local controllers
is desired in order to achieve a better overall control performance. Any resultant
improvement in control performance needs, however, to be significant enough to
warrant the additional design complexity and higher energy consumption and costs
associated with introducing communication channels between controllers. A prac-
tical distributed control design aims, therefore, to achieve an acceptable balance
between minimizing the use of communication between controllers and maximizing
the system-wide performance. In this article, a new approach to the problem of syn-
thesizing stabilizing distributed control laws for discrete-time linear systems that
balances performance and communication is presented. The approach employs a su-
pervisory agent that, periodically albeit not necessarily at every sampling instant,
solves an optimization problem in order to synthesize a stabilizing state feedback
control law for the system. The online optimization problem, which maximizes spar-
sity of the control law while minimizing an infinite-horizon performance cost, is
formulated as a bilinear matrix inequality (BMI) problem; subsequently, it is then
relaxed to a linear matrix inequality (LMI) problem, and (i) convergence to a so-
lution as well as (ii) that early termination guarantees a feasible (but suboptimal)
control law are proved. Stability of the closed-loop system under what is a switched
control law is guaranteed by the inclusion of dwell-time constraints in the LMI
problem. Finally, the efficacy of the approach is demonstrated through numerical
simulation examples.
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1. Introduction

D
ecentralized control has attracted attention since the 1960s (Lunze, 1992). In
non-centralized architectures each subsystem is equipped with a local controller

that may or may not share information with the other local controllers. Distribut-
ing the control actions brings different advantages, for instance it allows to decrease
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the weight of a system and also provides an increase in its modularity. Addressing
this control challenge has been done with multiple techniques , most of them assume
that the control system architecture is known a priori. Therefore, the first problem to
tackle is often to find the control system architecture (Scattolini, 2009). This task is a
complex problem in itself and can be achieved by minimizing the dynamical couplings
between subsystems (Bristol, 1966; Guicherd, Trodden, Mills, & Kadirkamanathan,
2017; Kariwala, Forbes, & Meadows, 2003). Another common technique consists of
finding the input and output pairs with the highest sensitivity (Manousiouthakis,
Savage, & Arkun, 1986). In the case of distributed control architectures, a communi-
cation scheme has to be selected and implemented (Gross & Stursberg, 2016; Maestre,
Muñoz de la Peña, & Camacho, 2009). Simply broadcasting the states between all the
local controllers at every time step will increase the overall performance of the con-
trol system but this will be achieved at a high communication cost (Ye, Heidemann,
& Estrin, 2002). Consequently, efficient communication strategies can prove vital to
preserve the battery life of wireless sensors and actuators. This problem has been ad-
dressed with a coalitional communication scheme based on game theory, for systems
coupled through their inputs, after the system partitioning is performed (Maestre,
Muñoz de la Peña, Jiménez Losada, Algaba, & Camacho, 2014). In this framework,
control laws with distinct topologies are computed offline, based on structural con-
straints added to the Riccati equation solutions. Online, the control algorithm selects
the most appropriate control mode, providing the best combined control and communi-
cation cost. Even though the number of controller topologies is finite, the computation
of the control gains adapted to the system dynamics and performance can only be
conducted as a function of the current system states. Hence, the combined topology
and control design has to be the result of an online synthesis. Another shortcoming
of the offline computation approaches comes from the large amount of control gains,
growing combinatorially with the system size, that have to be computed, stored and
then compared. One of the major challenges for distributed control systems is to solve
online the joint optimization problem of balancing the communication effort between
local subsystem controllers along with system-wide performance. This combined opti-
mization of control gains and communication topologies requires the use of structured
control synthesis methods as well as sparsity inducing techniques.

Structured control synthesis methods have emerged to tackle the co-design of
control architecture and control law. Some structurally constrained control synthe-
sis approaches have focused on the implementation of fully decentralized controllers
(Bakule, 2008; Šiljak, 1991). The synthesis of decentralized control laws has become an
important research topic, especially for large-scale systems (Lunze, 1992). Decentral-
ized control systems answer the needs for decreasing the shared information between
the subsystems, and therefore the number of communication links between local con-
trollers. This guarantees that the subsystems do not broadcast their states, but it
does not account for potential dynamic couplings between them. Following the work
on decentralized control design, more research works have addressed the problem of
structurally constrained control law synthesis. Modifying the sparsity structure of con-
trol laws directly affects the use of subsystem to subsystem communication, actuator
or sensor usage.

It is well known that in most cases, the computation of structurally constrained con-
trollers is a difficult problem, only some particular systems complying with a quadratic
invariance condition are tractable and can be formulated as convex optimization prob-
lems (Rotkowitz & Lall, 2006). Some approaches have performed the optimal design of
partially decentralized controller in a framework such that the feedback gain obtained
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is as sparse as possible, while keeping acceptable H∞ performance (Schuler, Münz,
& Allgöwer, 2014), or H2 performance (Babazadeh & Nobakhti, 2017), when com-
pared with centralized controllers. These works have studied offline control synthesis,
without considering the direct impact on system performance based on current state
variables. Most of them are based on compressed sensing techniques developed to
deal with sparsity (Candès & Tao, 2005). For instance, common convex relaxations of
the l0-norm, such as the l1-norm (Candès, 2008), or reweighed l1-norm are frequently
implemented as sparsity inducing costs (Candès, Wakin, & Boyd, 2008). Other ap-
proaches have focused on row or column sparsity, in order to minimize respectively the
number of sensors and actuators in use (Polyak, Khlebnikov, & Shcherbakov, 2013),
whilst others have managed to induce a desired block structure on the feedback gain
using sufficient constraint conditions (Crusius & Trofino, 1999). Finally, other works
have considered a path-following technique in order to solve the bilinear matrix in-
equality (BMI) problems resulting from the synthesis of structured or low-authority
control laws (Hassibi, How, & Boyd, 1999a, 1999b), once again adopting an offline de-
sign strategy. The joint optimization of control law and communication topology has
only been implemented based on control laws or communication topologies designed
offline. To the best of the authors’ knowledge this work presents the first approach to
the joint online control law and communication topology optimization.

This paper provides a solution to the joint online control problem of communica-
tion and performance optimization. A control technique where a supervisory agent
recomputes online a state feedback control law in order to minimize a cost combining
the infinite-horizon control cost with a subsystem to subsystem communication met-
ric is proposed. The control law is updated online based on the values of the state
variables, and then broadcast to the local controllers for implementation. The novelty
of this approach resides in optimizing online both the distributed control law gains
and the communication topology, in a single tractable problem. While this is achieved
using standard techniques, it does result in a bilinear matrix inequality problem that
is challenging to solve and a time and structure varying control law that poses dif-
ficulties for establishing stability. Such an online control strategy offers a trade-off
between the system predicted performance and the use of subsystem to subsystem
communication. Thus, the main application of this type of control method would be
to provide steady-state disturbance rejection relying on communication channels only
to tackle efficiently the disturbances.

The work presented in this paper shows how to compute a new linear state feedback
gain optimally with regards to the predicted control performance cost as well as a
communication metric. The optimization problem is formulated as a semi-definite
programming (SDP) problem including a bilinear matrix equality. This optimization
problem is then relaxed using an alternate convex search method, also convergence
of such a technique for this type of problem is proved. A feasible stable solution can
always be computed, even after early termination of the algorithm. In addition, the
stability of the closed-loop system is guaranteed based on a dwell time requirements for
switching between the different control modes generated. Finally, recursive feasibility
of the supervised control algorithm is demonstrated.

The paper is organized as follows, section 2 states the problem and section 3 in-
troduces the required notations for the constraints and objective function. Section 4
demonstrates the stability and recursive feasibility of the distributed control technique.
In section 5, the control algorithm is presented along with a proof of its convergence
with the possibility of generating a feasible solution even after early termination, and
sufficient conditions to include system constraints. In order to illustrate the efficacy
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of the control algorithm section 6 includes numerical examples. Finally, section 7
concludes the paper.

Notation: For (a, b) ∈ N
2 such that a < b, the set Ja, bK defines the set containing

the integers from a to b included. The operator |·| is used to denote the magnitude
of a complex number. The operator ‖·‖p with p ∈ {0, 1, 2} defines the lp-norm for
real vectors and matrices. For a set N, the notation N

∗ defines N \ {0}. R and R+

respectively denotes the set of real and non-negative real numbers. The superscript
⊤ represents the transpose of a vector or matrix. A matrix B ∈ R

n×m will be noted
(bij)(i,j)∈J1,nK×J1,mK and (Bkl)(k,l)∈J1,NK×J1,MK, respectively for the element and block no-
tations, with N row blocks and M column blocks. The operator vec(·) denotes the
vectorization for matrices, and the notation diag(·) denotes the block diagonal matrix
formed from the arguments. The sets of symmetric positive semi-definite and sym-
metric positive definite matrices of size n ∈ N

∗ will be noted S
n
+ and S

n
++ respectively.

For conciseness, the zero matrix of appropriate size will simply be noted 0, and the
symbol ∗ will denote the symmetric matrix block when used in a symmetric matrix.
For n ∈ N

∗, the matrix In represents the identity matrix of dimension n. The general-
ized order on the positive semi-definite cone will be denoted by ≻ and �, respectively
for the strict and non-strict inequalities. For all (A,B) ∈ (Rn×m)2, the notation A ◦B
defines the Hadamard product of A and B.

2. Problem Statement

2.1. Distributed System Dynamics

Consider a discrete time, linear, time invariant system (1a), it is assumed throughout
this paper that a decomposition of this system into subsystems exists. Such a decom-
position could be achieved using relative gain array techniques (Bristol, 1966), other
interactions based system partitioning approaches (Guicherd et al., 2017; Kariwala
et al., 2003) or is readily available when the system is built as a concatenation of
stabilizable subsystems. Therefore, there exists an integer N ∈ N

∗ representing the
number of subsystems composing the system (1a), such that, for all p ∈ J1, NK the
subsystem indexed by p is modelled as per equation (1b).

x
+ = Ax+Bu (1a)

x
+
p = Appxp +Bppup +

N
∑

j=1
j 6=p

{

Apjxj +Bpjuj

}

(1b)

with, for all p ∈ J1, NK, xp ∈ R
np and up ∈ R

mp . The vectors x+ and x
+
p respectively

denote the successor system and subsystem state variables. Apj and Bpj as well as App

and Bpp are matrices of appropriate dimensions, such that
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N
∑

p=1

np ≥ n (2a)

N
∑

p=1

mp = m (2b)

where, n ∈ N
∗ and m ∈ N

∗. The variables x ∈ R
n and u ∈ R

m are respectively the
state and input variables of the system (1a) with A and B matrices of appropriate
dimensions. Dynamic couplings are permitted to exist between the different subsytems
and are represented by the right-hand side sum in equation (1b). The equation (2a)
defines a possible overlapping condition for the subsystem state variables, whereas the
equation (2b) denotes a non-overlapping condition for the subsystem input variables.
In other words, a state variable and an input can respectively be shared by multiple
subsystems or belongs to a unique subsystem. The following assumption is made with
regards to the system (1a) and the subsystems defined as per equation (1b),

Assumption 1. The system (A,B) as well as, for all p ∈ J1, NK the subsystems

(App, Bpp) are stabilizable.

Assumption 1 implies the existence of a linear stabilizing state feedback controller
F ∈ R

m×n. Also, this assumption guarantees that there exists a controller Fpp stabi-
lizing for the subsystem (App, Bpp), for any value of subsystem index p. However, this
does not imply that the block diagonal controller F = diag(F11, . . . , FNN ) stabilizes
the system (A,B) for every stabilizing choice (Fpp)p∈J1,NK.

2.2. Control Problem

The aim of this paper is to synthesize a state feedback control law u(k) = f(x(k)),
minimizing simultaneously the classical linear quadratic regulator (LQR) cost for the
system as well as a subsystem to subsystem communication metric, defined within the
next section. Without loss of generality, the system model (1a) can be decomposed
into subsystem models using the following block decomposition, A = (Aij)(i,j)∈J1,NK

2

and B = (Bij)(i,j)∈J1,NK
2 where the blocks correspond to the subsystem models given

in equation (1b). This decomposition is always achievable throughout the reorganiza-
tion of the system state and input variables. When the control law is linear defined by
u(k) = Fx(k), then the block matrices composing the matrix F represent linear feed-
back gains between a subsystem state variable and a subsystem input variable. More
specifically, diagonal blocks represent feedback gains within a subsystem, whereas
off-diagonal blocks represent gains between two distinct subsystems. Hence, the spar-
sity structure of F defines the system communication topology. Similarly, F can be
decomposed into N

2 block matrices as follows,

∀(i, j) ∈ J1, NK2, Fij ∈ R
mi×nj , F = (Fij)(i,j)∈J1,NK

2 . (3)

The simplest distributed system architecture is a system composed of two subsys-
tems. This simple case is presented in Figure 1, it illustrates that the control law F
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Supervisory Unit

F

Subsystem 1
(x1, u1)

x1
Subsystem 2

(x2, u2)
x2System

Figure 1. Representation of the information exchanged between the subsystems of a system composed of two

subsystems and a supervisory unit.

not only defines the performance of the system, but also the communication struc-
ture between the subsystems. Indeed, decomposing F into four block matrices as per
equation (3) yields the following relations,

{

u1 = F11x1 + F12x2

u2 = F21x1 + F22x2,
(4)

where the system state and input variables are decomposed into two simple subsys-
tems, respectively with x

⊤ =
[

x
⊤
1 x

⊤
2

]

and u
⊤ =

[

u
⊤
1 u

⊤
2

]

. Subsequently, the block
matrices F21 and F12 respectively represents the need for communication from the
subsystem 1 to the subsystem 2 and from the subsystem 2 to the subsystem 1. More
generally, if the block matrix Fij is different from the zero matrix, it implies commu-
nication from the subsystem j to the subsystem i. The next section formulates the
communication metric as well as the approach taken.

3. Proposed Approach

The cost function formulated in this section includes a part linked to the predicted
control performance, representing the effort to steer the states to a reference using a
linear control law F , as well as a penalty on the states discrepancy. The second part
of the cost function is a metric associated with the number of subsystem to subsystem
communication links in use within the control law F .

3.1. Control Cost

The infinite-horizon control quadratic cost is given by an infinite sum on the state and
control input variables (5). In the linear time invariant case, when u(k) = Fx(k), the
control cost only depends on the initial state, the state space model and the control
law (Zhou, Doyle, & Glover, 1996).

Jctrl =

+∞
∑

k=0

{

x
⊤
k Qxk + u

⊤
k Ruk

}

= x
⊤
0 Px0 (5)
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where (Q,R) ∈ S
n
+×S

m
++, such that the pair (Q

1

2 , A) is detectable. The matrices Q and
R represent the weighting matrices used in order to penalize adequately, respectively
the state and input discrepancies. The vectors xk and uk represent the system state
and input variables at time step k, and the matrix P ∈ S

n
++ is the unique positive

definite solution of the discrete time Lyapunov equation

(A+BF )⊤P (A+BF )− P +Q+ F
⊤
RF = 0. (6)

In particular, when the control law is designed as the optimal LQR gain F that
minimizes the cost (5), F is then state invariant and fully centralized in general. The
system (1a) in closed-loop control is represented as follows,

x
+ = (A+BF )x. (7)

3.2. Communication Cost

The cost linked to the communication is associated to the sparseness of the off-diagonal
blocks of the state feedback gain F . The corresponding entries of the feedback gain
matrix rely on subsystem communication. However, this communication metric does
not evaluate the communication exchange information rate and only represents the
need for a communication link. Previously, a study of the effect of the bit rate allo-
cation has been performed (Xiao, Johansson, Hindi, Boyd, & Goldsmith, 2003). The
communication cost promoting sparsity employs the l0-norm of the vectorized form
of the feedback gain such that

Jcomm =
∥

∥ vec(W ◦ F )
∥

∥

0
(8)

where W ∈ R
m×n is a binary matrix used to select the entries of F to penalize. Sparse-

ness of a vector or a matrix is penalized using the l0-norm which associates a binary
element to each of the entries based on their value. The l0-norm corresponds to the
number of non-zero entries in a matrix or vector. Finding sparse solutions represents a
combinatorial problem and is in general NP-hard, usually requiring exhaustive search
with exponential complexity (Blondel & Tsitsiklis, 1997). Since the l0-norm does not
comply with all the norm properties (Hurley & Rickard, 2009), and is therefore not a
true norm, a common convex relaxation is to use the l1-norm. Indeed, the l1-norm is
a well known sparsity promoting penalty. This heuristic has been used in the past in
different fields such as optimal control, compressed sensing and signal reconstruction
(Candès & Tao, 2005). Necessary and sufficient conditions have been established for
this convex relaxation to be tight (Candès, 2008). Therefore, as it has been done in
previous research works, sparsity is promoted using the following l1-norm as a convex
relaxation.

Jcomm =
∥

∥ vec(W ◦ F )
∥

∥

1
(9)

The next subsection presents the optimization problem to be solved recursively
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in order to determine what communication links are needed based on the system
predicted performance.

3.3. Minimization of the Control and Communication Costs

In this subsection, the optimization problem dealing with the infinite-horizon control
cost and the communication cost is formulated using linear matrix inequality (LMI)
constraints as well as a bilinear matrix equality. The objective is to minimize the
convex performance index taking into account both the control and communication
costs given in (10).

J = λJctrl + (1− λ)Jcomm (10a)

⇔ J = λx
⊤
0 Px0 + (1− λ)

∥

∥ vec(W ◦ F )
∥

∥

1
(10b)

where λ ∈ (0, 1] is a design tuning parameter implemented in order to balance the
control (5) and communication (9) objectives. The constraints formulated for the op-
timization problem are LMI constraints as per the optimization problem (11). These
constraints are equivalent to the discrete time algebraic Riccati equation and are used
to minimize an upper bound on the infinite-horizon control cost (Kothare, Balakrish-
nan, & Morari, 1996). A bilinear matrix equality is added to the LMI constraint set
so that the sparsity promoting objective can be expressed within the cost function.
The optimization problem (11) presented below articulates the trade-off between the
control and communication costs.

minimize
ρ,F,X,K

λρ+ (1− λ)
∥

∥ vec(W ◦ F )
∥

∥

1
(11)

subject to









X ∗ ∗ ∗
AX +BK X ∗ ∗

Q
1

2X 0 ρIn ∗

R
1

2K 0 0 ρIm









� 0

[

1 x
⊤
0

x0 X

]

� 0

FX = K

Remark 1. Strictly speaking the optimization variables should be indexed with the
control mode index to emphasize the fact that these modes are recomputed online
and periodically. However, for the sake of conciseness, these indices are used only for
the asymptotic stability and recursive feasibility proofs.

Note that the optimization problem presented in (11) is biconvex. Fixing respec-
tively the variable F or X renders a convex optimization problem. With the given
parametrization, the Lyapunov solution P and the feedback gain F are expressed as
follows:
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P = ρX
−1 (12a)

F = KX
−1
. (12b)

3.4. Time-varying Control Modes

When the parameter λ is set to 1, the standard LQR feedback gain is returned by
the optimization as the global optimum. Consequently, the optimization problem (11)
without the sparsity promoting objective is state invariant. The minimum is reached
for the solution of the discrete algebraic Riccati equation. In the case of (11), differ-
ent degrees of sparsity for F will affect the infinite-horizon control cost throughout
the subsystem dynamic couplings. The time-varying nature of the control technique is
demonstrated with numerical examples later within this paper. In the literature differ-
ent techniques have been used in order to solve these types of optimization problems.
For instance, one approach implemented a sequential method where a penalty on the
bilinear equality gap is added to the objective (Doelman & Verhaegen, 2016). A con-
vergence guarantee has been proven, however there is no assurance that the optimum
reached will be the global optimum. Another technique called the alternate convex
search uses iterative convex relaxations of the biconvex problem (Gorski, Pfeuffer, &
Klamroth, 2007). The alternate convex search also known as alternate SDPs method
(Fukuda & Kojima, 2001), works by alternately fixing one of the variables in the bilin-
ear matrix constraint. The two convex optimization problems are solved alternately
until a stopping criteria is met. Other techniques, relying on a branch-and-cut strategy
have been developed in order to reach the global optimum value for a bilinear matrix
inequality optimization problem (Fukuda & Kojima, 2001; Goh, Safonov, & Papavas-
silopoulos, 1995). However, the technique mentioned above requires a lot of time and
computational power. The next section introduces a new set of convex constraints to
ensure global stability of the switched closed-loop control system. Also, the recursive
feasibility of the distributed controller is demonstrated.

4. Stability and Feasibility of the Distributed Controller

4.1. Controller Stability

Since, the distributed controller minimizes not only the infinite-horizon control cost
but also the communication effort, and that no constraints are added to ensure the
stability of the switched system, instability can become an issue. It is a well known
fact that switching between two stabilizable controllers can trigger plant instability.
For example, the system presented in (13) is stable and can be stabilized by any of the
two feedback control laws given in (14). Also, the two closed-loop systems obtained by
implementing the controller F0 and F1 comply with the constraints of the optimization
problem (11), as stabilizing control laws. Nonetheless, instability can be triggered by
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a rapid switching between the two control laws F0 and F1.

A =

[

−1
2 0
0 1

2

]

, B =

[

0 1
1 0

]

(13)

F0 =

[

2 0
0 −1

2

]

, F1 =

[

1
2 0
0 −2

]

(14)

The instability question can be tackled by a dwell time constraint. Every time a new
feedback gain is broadcast to the plant subsystems, the plant becomes a switched sys-
tem (Liberzon, 2003). Consequently, it is important to ensure that switching between
two consecutive feedback gains is done so that one can guarantee global asymptotic
stability of the closed-loop system (Geromel & Colaneri, 2006). In order to prevent
any unstable behaviour from happening, an extra LMI constraint is added to the
optimization problem (11) enforcing switched asymptotic system stability by design.
This stability constraint is formulated using the previous Lyapunov solution as well
as the previous control law combined with a dwell time design parameter ∆, thus
leading to the formulation given in (17). The control mode dwell time ∆, with ∆ ∈ N

∗

guarantees that instability will not be triggered during control mode switching, if the
switching is performed at least after ∆ time steps. Also, the dwell time constraint al-
lows enough time to perform the online optimization. The Lemma 4.1 proves that the
extra constraint added in (17) enforces system stability and the recursive feasibility
of the control algorithm is proved in Lemma 4.3.

Lemma 4.1. Consecutive feasible solutions of the distributed control optimization

problem (17) are globally asymptotically stabilizing for the switched closed-loop system.

Proof. The constraint added to the problem (17) corresponds to a stable switch
from the previous mode l to the next mode l + 1, after ∆ time steps. This is shown
in (17) by applying the Schur complement to the extra constraint, with the previous
parametrization (12a) of the optimization problem (i.e. Pl+1 = ρX

−1).





ρPl ρ(A+BFl)
∆⊤

ερIn
ρ(A+BFl)

∆
X 0

ερIn 0 ερIn



 � 0 (15a)

⇔











ερ ≥ 0

X � 0

ρPl − (A+BFl)
∆⊤

ρ
2
X

−1(A+BFl)
∆ � ερIn

(15b)

⇔











ερ ≥ 0

X � 0

(A+BFl)
∆⊤

Pl+1(A+BFl)
∆ − Pl � −εIn

(15c)

The constraint (15) added to the optimization (17) yields the following relation when

pre- and post-multiplied by respectively x
⊤
k and xk
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x
⊤
k

[

(A+BFl)
∆⊤

Pl+1(A+BFl)
∆ − Pl

]

xk < 0 (16a)

⇔
[

(A+BFl)
∆
xk

]⊤
Pl+1(A+BFl)

∆
xk < x

⊤
k Plxk (16b)

⇔ x
⊤
k+∆Pl+1xk+∆ < x

⊤
k Plxk (16c)

where xk is the system full state vector at time step k, distinct from the zero vector.
Therefore, this ensures a strict decrease of the Lyapunov function for the closed-loop
switched system, implying global asymptotic stability.

minimize
ρ,F,X,K

λρ+ (1− λ)
∥

∥ vec(W ◦ F )
∥

∥

1
(17)

subject to









X ∗ ∗ ∗
AX +BK X ∗ ∗

Q
1

2X 0 ρIn ∗

R
1

2K 0 0 ρIm









� 0





ρPl ∗ ∗

ρ(A+BFl)
∆

X ∗
ερIn 0 ερIn



 � 0

[

1 x
⊤
0

x0 X

]

� 0

FX = K

Remark 2. In order to guarantee a strict decrease of the switched system Lyapunov
functions after ∆ time steps, the equations (15) must be strict inequalities. How-
ever, for a practical numerical implementation, the strict inequality is replaced by
an inequality with a given ε precision, where ε ∈ R

∗
+ is a small but strictly positive

constant.

Proposition 4.2. For a given stable control mode l ∈ N, the set

Π∆
l =

{

(ρ,X)

∣

∣

∣

∣

[

ρPl ρ(A+BFl)
∆⊤

ρ(A+BFl)
∆

X

]

≻ 0

}

is non-decreasing with ∆ ∈ N
∗
, in the set inclusion sense, i.e. Π∆

l ⊆ Π∆+1
l .

Proof. For a given stable control mode l ∈ N defined by a feedback gain Fl as well
as a Lyapunov function Pl, the following set inclusion arises

∀∆ ∈ N
∗
,

(ρ,X) ∈ Π∆
l ⇔ (A+BFl)

∆⊤
Pl+1(A+BFl)

∆ ≺ Pl

(ρ,X) ∈ Π∆
l ⇒

[

(A+BFl)
∆+1

]⊤
Pl+1(A+BFl)

∆+1 � (A+BFl)
⊤
Pl(A+BFl)

(ρ,X) ∈ Π∆
l ⇒

[

(A+BFl)
∆+1

]⊤
Pl+1(A+BFl)

∆+1 ≺ Pl

(ρ,X) ∈ Π∆
l ⇒ (ρ,X) ∈ Π∆+1

l .
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Therefore, for all ∆ ∈ N
∗ and for all stable control mode l ∈ N, the set of stable

control laws under switching is non-decreasing with ∆, Π∆
l ⊆ Π∆+1

l .

The dwell time ∆ is a designer tuning parameter. It will condition the time allo-
cated to the optimization algorithm as well as the maximum control feedback gain
refreshing rate. Therefore, if a solution exists it will make the closed-loop system
globally asymptotically stable. Subsequently, the next logical step is to prove that the
optimization problem stays recursively feasible. The recursive feasibility property of
the control algorithm is presented in the next subsection.

4.2. Controller Feasibility

The global asymptomatic stability of the controller is given by the previous LMI con-
straint in (11). Therefore, it is important to make sure that this new set of constraints
will not trigger infeasibility of the optimization problem (17).

Lemma 4.3. If there exists an initial asymptotically stabilizing control law for the

system (1) then the optimization problem (17) is recursively feasible.

Proof. Consider the system given by the state space model (1). Due to system sta-
bilizability, an initial stabilizing state feedback controller F0 can be designed. This
initial control mode can be computed by solving the discrete algebraic Riccati equa-
tion. In this case, F0 is obtained by minimizing the infinite-horizon quadratic cost.
Consequently, there exists at least one feasible asymptotically stabilizing mode Fl,
with l ∈ N, for the system (1). Therefore, the control mode l must be feasible for
the optimization time step l+ 1 with the lowest possible dwell time of 1. The control
law Fl along with the Lyapunov solution Pl are feasible candidate solutions for the
next optimization time step. Thus, even if the control mode Fl is not optimal for the
optimization step l+1, it still constitutes a feasible solution. Hence, by induction, the
optimization problem (17) remains recursively feasible.

The Theorem 4.4 summarizes the previous results about the optimization problem
(17) when applied to system (1).

Theorem 4.4. If there exists an initial asymptotically stabilizing control law for the

system (1), then the optimization problem (17) is recursively feasible and its con-

secutive solutions are globally asymptotically stabilizing for the switched closed-loop

system.

Proof. The proof is straight forward, and follows from Lemma 4.1 and Lemma 4.3.

Following the discussions on the stability and recursive feasibility of the distributed
controller, the control system algorithm will be presented. The next section will explain
how the algorithm proceeds and presents a sufficient way to include physical system
constraints. Also, a proof of convergence of the control algorithm is given.
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5. Supervised-distributed Control Algorithm

5.1. Unconstrained Supervised-distributed Controller

The optimization problem (17) yielding the distributed control laws is non-convex.
Therefore, it is difficult to find a global optimum or even to verify that a certain value is
a global optimum. However, since the problem is biconvex, including a bilinear matrix
equality, known techniques exist to reach a partial local optimum (Wendell & Hurter,
1976). For instance, the alternate convex search technique is used to relax the problem
into two well defined convex optimization sub-problems (Boyd & Vandenberghe, 2010).
This technique is applied to the optimization problem (17) in Algorithm 1. According
to Theorem 5.1, the biconvex structure of this optimization problem, makes it possible
to ensure convergence of the alternate convex search.

Theorem 5.1. The sequence of solutions generated by Algorithm 1 converges mono-

tonically to a stationary point that is a partial local minimum of problem (17).

Proof. According to Lemma 4.3, the optimization problem (17) is recursively feasible,
thus, feasible in the sets of decision variables (ρ, F ) and (ρ,X). The optimization
problems obtained with these sets of decision variables are convex and the objective
function is positive as a convex combination of two positive objectives. Finally, the
sequence of solutions obtained by solving the optimization problem (17) whilst fixing
alternately the variables X and F is monotonically non-increasing. Subsequently, the
sequence of solutions converges monotonically to a stationary point that constitutes a
partial local optimum of the optimization problem (17) (Gorski et al., 2007; Wendell
& Hurter, 1976).

The optimization problem (17) is denoted by Px0,X
(ρ, F ) and Px0,F

(ρ,X) respec-
tively when (i) (ρ, F ) are decision variables and (x0, X) are fixed parameters, (ii) (ρ,X)
are decision variables and (x0, F ) are fixed parameters. The supervised-distributed
controller (SDC) in Algorithm 1, relies on the predicted state variables after ∆ time
steps under the previous control mode, in order to generate the next control mode by
alternate convex search.

One can notice that the order of the alternate convex search can be changed, which
means thatXq can be fixed first, before performing the optimization with Fq+1. Indeed,
the control mode l has been shown to be a suboptimal but feasible solution of the
succeeding optimization problem, at time step l + 1. Therefore, any of the previous
decision variables can be used to start the alternate convex search.

As presented in Figure 2, at time step k the control law Fl is received by the
subsystems and used for the next ∆ time steps. In exchange, the subsystems broadcast
their state variables so the optimization can be performed in order to compute the
next control mode Fl+1. The optimization problem is solved based on the current
control mode as well as a prediction of the system state xk+∆|k after ∆ time steps.
The next control law is obtained when one of the convergence stopping criteria is met.
Although, the optimization can be terminated if the alternate convex search had not
converged within the allocated time, yielding a feasible but suboptimal solution. The
next step is to broadcast the solution to the subsystems so that the control law Fl+1

can be implemented for the following ∆ time steps. Then, this process is repeated in
a receding horizon fashion.

Corollary 5.2. A feasible asymptotically stabilizable solution of problem (17) can be
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Algorithm 1: SDC algorithm

Inputs : xk, Fl, Pl

Outputs : Fl+1, Pl+1

Parameters : ∆, εF , εX
Initialization: q = 0, F0 = Fl

Compute state prediction: xk+∆|k = (A+BFl)
∆
xk

while ‖Fq+1 − Fq‖2 > εF or ‖Xq+1 −Xq‖2 > εX
do

Solve optimization problem: Pxk+∆|k,Fq
(ρ,X),

(ρ,Xq+1) = argmin(Pxk+∆|k,Fq
(ρ,X)).

Solve optimization problem: Pxk+∆|k,Xq+1
(ρ, F ),

(ρ, Fq+1) = argmin(Pxk+∆|k,Xq+1
(ρ, F )).

q = q + 1
end

return

Fl+1 = Fq

Pl+1 = ρX
−1
q

Fl

k k + 1 k + 2

Fl+1

k +∆

Unit

Supervisory

k

xk

k + 1 k + 2 k +∆

xk+∆ Subsystems

SDC (xk, Fl, Pl)

Control law Fl

Figure 2. Supervised-distributed controller time line.
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obtained by terminating Algorithm 1 after any iteration.

Proof. According to Theorem 4.4, the optimization problem (17) stays recursively
feasible and a suboptimal solution (F0, X0) is known at every time step from the pre-
vious optimization solution. Subsequently, for all q ∈ N, Algorithm 1 uses a feasible
solution (Fq, Xq) in order to solve alternately the two following convex SDP prob-
lems, Px0,Fq

(ρ,X) which then generates (Fq, Xq+1) and Px0,Xq+1
(ρ, F ) which generates

(Fq+1, Xq+1). Hence, by induction the Algorithm 1 produces a new feasible solution
after every iteration, which concludes the proof.

The next subsection presents a way to introduce sufficient conditions in order for
the control laws to comply with given physical system constraints.

5.2. Constrained Supervised-distributed Controller

Without changing the results presented previously, it is possible to introduce con-
straints on the states, the outputs as well as the inputs within the optimization prob-
lem (17). The input vector can be constrained in two ways, using sufficient LMI
constraints. First, the Euclidean norm of the input vector can be bounded (19) and
secondly the maximum magnitude of each input variable can be constrained (21). This
technique has been studied previously (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994;
Kothare et al., 1996).

[

u
2
maxIm K

K
⊤

X

]

� 0 (18)

Adding the constraint (18) to the optimization problem (17) is a sufficient condition
to provide the following peak constraint,

∀k ∈ N
∗
, ‖uk‖2 ≤ umax. (19)

A peak value constraint can be implemented on each of the input vector components
with the inequality (20).

[

U
max

K

K
⊤

X

]

� 0 (20)

where for all j ∈ J1,mK, Umax
jj ≤ u

2
j,max. Therefore providing the following peak com-

ponent constraints,

∀k ∈ N
∗
, ∀j ∈ J1,mK,

∣

∣uj,k

∣

∣ ≤ uj,max. (21)

In a similar fashion, sufficient LMI conditions can be used to bound the Euclidean
norm of the state or output vectors as presented in (22).
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[

X (AX +BK)⊤C⊤

C(AX +BK) x
2
maxIn

]

� 0 (22)

where C represents either the identity matrix or the output matrix for respectively
a bound on the Euclidean norm of the states or the outputs. Similarly, by using
only the appropriate row of C, sufficient conditions can be established to bound the
magnitude of a single state or output variable. Hence, the following constraints can
be implemented on the vector peak magnitude,

∀k ∈ N
∗
, ‖xk‖2 ≤ xmax (23a)

∀k ∈ N
∗
, ‖yk‖2 ≤ ymax. (23b)

The next section will provide numerical examples to demonstrate the efficacy of
Algorithm 1.

6. Numerical Examples

Two examples have been used to demonstrate the trade-off offered by the optimal
distributed state feedback control. These numerical examples have been solved using
YALMIP (Löfberg, 2004) along with the SeDuMi solver (Sturm, 1999).

6.1. First Example

This example is a second-order plant (24), where the subsystem interactions come
from both the state and input matrices. All the simulations start from the initial
state x

⊤
0 =

[

1 −1
]

and include multiple additive disturbances added at time steps
24, 26, 32 and 34 only to the state variable x2.

x
+ =

[

1 1
−1 1

]

x+

[

1 1
2

1
2 1

]

u (24)

This first example has been used as a proof of concept to demonstrate two main
aspects of the control technique developed within this paper. First of all, three simu-
lations are conducted to highlight the trade-off provided between the fully connected
or centralized architecture and the decentralized architecture. Secondly, changing the
trade-off parameter λ shows that a Pareto front is obtained between the control and
communication objectives considered, providing a tuning capability to the control
engineer.

6.1.1. Control Methods Comparison

The weighting matrices Q and R used to design the control laws as well as to evaluate
the control systems performance are taken equal to the identity matrices of appro-
priate dimensions. The system is partitioned into two subsystems each including the
state and input having the same index. In order to compare the performance of the
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distributed controller, two benchmark controllers are designed FC and FD respectively
the fully connected or centralized controller and the decentralized controller.

FC =

[

−0.8708 −0.6210
0.6069 −0.5330

]

(25a)

FD =

[

−0.7551 0
0 −0.9078

]

(25b)

The spectral radii of the autonomous plants with these two controllers are respec-
tively equal to 0.4012 and 0.8803.
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Figure 3. Supervised-distributed controller applied to the small-scale system (24).

Figure 3 shows the behaviour of the plant when the supervised-distributed controller
is implemented. The supervisory unit computes a trade-off between the communica-
tion and the system performance infinite-horizon cost. In this example, a dwell time
parameter of five has been implemented, the parameter lambda has been set to 0.99
and the maximum number of iterations has been limited to ten. Therefore, every five
time steps, a new control law is computed and sent to the local controllers in order to
be implemented for the next five time steps. The supervisory unit is initialized with
the centralized controller and as soon as the predicted system performance change,
the supervisory unit switches off communication channels accordingly. This translates
directly by the broadcast of an updated state feedback controller, composed of new
gain entries and topology. However, when some disturbance pushes the system out of
its steady state value, the cost balance changes and the next control laws computed
become centralized again. As it can be seen in Table 1, the structure of the control law
is optimized in real time and allows to rely on communication only to improve the dis-
turbance rejection performance. However, because of the precision of the SDP solver,
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the values of the off-diagonal elements are not strictly zero, therefore some threshold
has to be applied before a communication channel can be completely switched off.

Table 1. State feedback gains computed by the supervised-distributed controller in Figure 3.

State feedback gains

vec(F1)
⊤ [

−0.8708 +0.6069 −0.6210 −0.5330
]

vec(F2)
⊤ [

−0.8083 +0.0374 +0.0000 −0.9484
]

vec(F3)
⊤ [

−0.7551 +0.0000 +0.0000 −0.9078
]

vec(F4)
⊤ [

−0.7551 +0.0000 +0.0000 −0.9078
]

vec(F5)
⊤ [

−0.7551 +0.0000 +0.0000 −0.9078
]

vec(F6)
⊤ [

−0.7551 +0.0000 +0.0000 −0.9078
]

vec(F7)
⊤ [

−0.8687 +0.6015 −0.6170 −0.5348
]

vec(F8)
⊤ [

−0.8108 +0.0397 −0.0008 −0.9497
]

vec(F9)
⊤ [

−0.8028 +0.3953 +0.4510 −0.6194
]

vec(F10)
⊤ [

−0.7551 +0.0000 +0.0000 −0.9078
]
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Figure 4. Centralized or fully connected controller applied to the small-scale system (24).

Figure 4 presents the response to the second-order system controlled with the cen-
tralized state feedback controller FC . This control law relies on all the available system
communication, however it offers the best system performance and disturbance rejec-
tion characteristics as it can be seen in Table 2.

Finally, Figure 5 shows the response of the system when the decentralized control
law FD is implemented. This automatic control system does not rely on communication
but offers the worst performance and disturbance rejection capabilities when compared
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Table 2. Comparison of the cumulative control and communication costs for the different control methods applied

to the system (24).

Costs C-LQR SDC D-LQR

Control 23.1 58.8 110.9
Communication 61.4 16.8 0

Total 84.5 75.6 110.9
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Figure 5. Decentralized controller applied to the small-scale system (24).
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to the two other system behaviours. The cumulative costs regarding the control and
communication metrics for the different control techniques are gathered in Table 2.

6.1.2. Control and Communication Trade-off
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Figure 6. Trade-off between control performance and communication cost for the small-scale system (24).

The supervised-distributed controller offers a trade-off between the system control
performance and the communication costs and performs better with regards to these
combined objectives. The trade-off between the communication and control objectives
is achieved via the parameter λ. When λ is set to one, the fully centralized control
is yielded as a solution, when λ is close to zero, more decentralized solutions are
obtained. Figure 6 presents the trade-off curve when the parameter λ is changed from
0.85 to 1, using the same parameters as previously, without any disturbance. For this
example, the control laws will be fully decentralized on the left of the graph, with
partial communication in the middle of the graph and fully centralized on the right.

6.2. Second Example

The example used within this subsection is inspired by the benchmark system used for
robust control design (Wie & Bernstein, 1992). This mechanical system is composed of
three carts where each cart is linked to the next one by a spring as presented in Figure
7. The states of the system are the position and velocity of each cart and the inputs
are the forces applied to them. Each subsystem consists of a cart, the subsystem state
variables are the cart position and velocity and the subsystem input variable is the
force applied on the cart. The system is discretized using Euler’s first-order approx-
imation for the derivatives with a sample time of 0.1s. The masses of the carts and
the spring constants K are equal to 0.1 and 1 respectively with the appropriate units,
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the discrete-time linear state space model is given in equation (26). The simulations
conducted aims at steering the carts to the origin. The design of the control laws has
been completed with the weighting matrices Q = diag(10, 1, 10, 1, 10, 1) and R = I3.
The parameters used for the supervised-distributed controller are a dwell time of five
time steps, a lambda value of 1−10−4 and a maximum number of five iterations. This
example has been used to show the impact of different disturbance magnitudes on the
system as well as to study the effect of varying the system model dynamics.

m1 m2 m3

K K

x1 x3 x5

u1 u2 u3

Figure 7. Three-mass-spring system.
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u (26)

6.2.1. Impact of Disturbance Magnitude

Each cart can transmit its position and velocity to one of the other two carts, therefore,
the total number of possible communication topologies is 212 = 4096. More generally,

a similar mechanical system with N carts will have a number of 22N(N−1) distinct com-
munication topologies. Therefore, any offline strategy will have to synthesize, store and
compare the control laws for such a combinatorial set. The simulation is conducted
from the initial state x

⊤
0 =

[

10 1 10 1 10 1
]

and an additive disturbance is
injected at time step 50 in cart 1 velocity. The Figure 8 presents the amount of com-
munications in use within the control modes computed by the supervised-distributed
controller for different disturbance values. The main trend is that an increase in distur-
bance magnitude also increases the total number of subsystem communications used
throughout the simulation. In general, the disturbance takes some time to propagate
from cart 1 to cart 3 using the springs. Consequently, the communication channels
are switched on after an extra delay of ∆ time steps for small enough disturbances.
Under a certain threshold, the impact of the disturbance on the system performance
is too small to trigger any subsystem communication and the disturbance is directly
tackled by the decentralized controller. The communication links between the differ-
ent carts are indexed from 1 to 12, where the odd indices represent the position of
a cart and the even indices the velocity, as displayed in Figure 9. The evolution of
the communication topology for different values of the disturbance is represented in
Figure 10. Figure 9 and 10 combined show the set of communication links used for a
particular control mode, this highlights the importance of transmitting the velocity
state variables for this mechanical system. The distributed controller then uses the
cart speed differences in order to compute the control actions. In addition, it can be
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seen that communication between carts mechanically linked by a spring has a greater
impact on the system performance, and is triggered by the supervised-distributed con-
troller for larger disturbance values. Consequently, the supervised-distributed control
algorithm could also be used to understand the most important communication links
of a distributed system.
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Figure 8. Use of communication in the control modes for different values of velocity disturbance applied to cart

1 in the system (26).
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Figure 9. Communication link indices between the three carts of the system (26).

6.2.2. Impact of Model Dynamics

A change in the system parameters used for the cart masses or the spring constants
modifies both the communication channels used as well as their usage frequencies. The
system model used in the previous experiment has been modified to conduct two series
of simulations. In the first set of three simulations, the mass of one cart is increased to
0.5, whilst the other masses are kept at 0.1, and both spring constants are set to 0.5.

22



12 13 14 15 16
0

2

4

6

8

10

12

Control mode index

C
om

m
u
n
ic
at
io
n
li
n
k
in
d
ex

Disturbance 50
Disturbance 30
Disturbance 15

Figure 10. Evolution of the communication topology for different disturbance magnitudes applied to the system

(26).

The second set varies the values of the spring constants, one spring constant is set to
0.01, while the other is set to 1 and vice versa. In both sets of simulations a disturbance
of magnitude 30 is injected in cart 2 velocity at time step 50. The communication
results are presented in Figure 11 for the variation of masses, and in Figure 12 for the
modulation of spring constants. These figures display the total number and type of
communication links used within the control modes designed online, using the same
indexation as presented previously in Figure 9. The set of experiments varying the
cart masses highlights that a heavy cart will communicate its position and velocity
more to its neighbours to achieve good overall system performance, more specifically,
a heavy cart communicates its position to direct neighbours and its speed to indirect
neighbours. As it was observed in the initial simulations conducted for the study of
the disturbance magnitude impact, the cart velocity has a great impact on the system
performance.
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Figure 11. Comparison of the communication links usage for an increase in cart mass applied to carts 1, 2 and

3, from the left to the right graphs respectively, for the system (26).
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Varying the values of the spring constants between the carts directly affects the dy-
namical coupling between the subsystems. Consequently, the supervised-distributed
controller reacts by increasing the amount of communications between highly coupled
subsystems. The two carts coupled with the spring having the highest constant com-
municate more, sharing more position and velocity states during the simulation. Once
again, the velocity states are more important for the system-wide performance, and
subsequently are communicated more often between all the subsystems.
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Figure 12. Comparison of the communication links usage for different spring constants applied to the system

(26), the left graph has a higher K12 spring constant and the right graph has a higher K23 spring constant.

7. Conclusion

The supervised-distributed control scheme presented within this paper provides a
strategy to the online optimization of distributed control laws. This optimal control
technique minimizes a trade-off cost function, online and periodically, that includes
the predicted infinite-horizon system performance, as well as a subsystem to subsys-
tem communication metric. This paper has shown that this optimal control problem
can be formulated as a biconvex optimization problem, thus solvable using an alter-
nate convex search technique. The particular structure of the optimization problem
employed provides a guarantee on the convergence of the control algorithm. Also,
the supervised-distributed control technique is globally asymptotically stabilizing for
the closed-loop system under control mode switching due to dwell time constraints.
Finally, the recursive feasibility property of the supervised-distributed optimization
problem was established; and it has been proven that terminating the algorithm after
any number of iterations yields a feasible solution. The control strategy developed in
this paper determines not only when communication between subsystems is required,
but more importantly, which state variables to communicate, as well as the set of
recipient subsystems and the control gains to apply. The dependency of both the
control law gains and communication topology on the system state variables makes
any offline control methods impractical. Numerical examples were used in order to
demonstrate the efficacy of the control approach, highlighting the trade-off offered,
as well as the improved system performance when communication is included as an
objective. Future research directions shall explore the challenge of tuning the perfor-
mance and communication trade-off parameter, using a game theoretical approach.
Other investigation directions could look at conditions required to obtain a convex
optimization problem, ensuring that the global optimal solution is reached.
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