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A B S T R A C T   

A variety of civil engineering applications require the identification of cracks in roads and buildings. In such 
cases, it is frequently helpful for the precise location of cracks to be identified as labelled parts within an image to 
facilitate precision repair for example. CrackIT is known as a crack detection algorithm that allows a user to 
choose between a block-based or a pixel-based approach. The block-based approach is noise-tolerant but is not 
accurate in edge localization while the pixel-based approach gives accurate edge localisation but is not noise- 
tolerant. We propose a new approach that combines both techniques and retains the advantages of each. The 
new method is evaluated on three standard crack image datasets. The method was compared with the CrackIT 
method and three deep learning methods namely, HED, RCF and the FPHB. The new approach outperformed the 
existing arts and reduced the discretisation errors significantly while still being noise-tolerant.   

1. Introduction 

Many civil engineering applications require to precisely locate 
cracks, either to then repair them or to assess the health of the structure. 
In particular, cracks in pavements for roads, airport runways / taxiways 
or other situations can reduce the serviceable life of the pavement 
significantly [1]. For these reasons, pavement crack detection has 
attracted significant attention lately [2–6]. However, most of the effort 
has been dedicated to detection of the presence of cracks [7–10] and less 
to measuring its characteristics. Only few methods exist [11–13] but 
their cost and complexity reduces the frequency of their use and limits 
the applicability to less critical infrastructure. This infrastructure is 
typically under-invested in for maintenance purposes, and therefore 
shows greater defects such as cracks resulting in poorer performance. 

Additionally, the poor localisation of cracks prevents this valuable 
information for being accurately incorporated into asset management 
processes, not least those managed or making use of Building 

Information Modelling (BIM) techniques [14]. Other more accurate 
localisation solutions have been presented in [15–18]. These are mostly 
based on computer vision techniques applied to images. However, these 
systems can be ‘too successful’ in detecting multiple cracks and therefore 
result in multiple false positives. Hence, a cost-effective technique that 
can help to accurately localise cracks and reduce false positives, would 
be of great use. The remainder of the paper will focus on image-based 
crack detection and measurement. 

The literature of image-based crack detection is quite large, there
fore, we will only focus on work done for accurate crack localisation 
(which has also been termed as quantification or discretisation in the 
literature) and we have defined here as the identification of crack pixels 
within an image. 

Crack detection from 2D visual image information can be broadly 
classified into geometric model-based and deep learning approaches. 
The model-based approaches may exploit one or more basic image 
processes such as edge detection, segmentation, morphological 
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operations and texture analysis to extract crack features from the images 
[19]. There have been several attempts, in the model-based approach, to 
improve the reliability of crack detection using image pre-processing 
and different kinds of spatial smoothing. This can reduce image noise 
and hence improve the crack detection results. Pre-processing steps may 
include median filters, opening and closing morphological filters to join 
crack segments [20–23]. 

Cracks on concrete surfaces were quantified in [24–26] with the 
objective of estimating crack width and length rather than the accurate 
localization for a consequent repair task. Cracks were discretized in [27] 
using the minimal path selection concept to improve crack detection 
against the imperfection of incomplete and sparse crack segments. 

Deep learning approaches on the other hand, can learn the process 
from end to end using neural networks trained using hundreds of 
labelled/annotated images [17,28–37] Recent developments in the deep 
learning showed good results through pixelwise segmentation with Unet 

Fig. 1. Zoomed section showing a crack image, block-based and pixel-based (dilated for clarity) crack detection results.  

Fig. 2. The combined method.  

Table 1 
Summary of test datasets.  

Dataset Number of images Resolution Image type 

CrackIT [18] 48 2048 × 1536 PNG 
Crack Forest (CFD) [43] 118 480 × 320 JPG 
CRACK500 [37,38] 200 2560 × 1440 PNG  

Fig. 3. Sample of crack images from the CrackIT database [18] showing pixel-based cracks (dilated for clarity), block-based cracks (block size 75×75 pixels) and the 
combined cracks discretisation. Original image size is 2048 × 1536 pixels and these samples are cropped to 1000× 300 pixels. 
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models [38–40]. Several commercial crack identification systems have 
been tested in the field and reported to have problems with non-crack 
features present on the road surface, including joints, patches, road 
markings, resulting in high number of false positives in the reported 
cracks than those present in the reference data [41]. Since the main issue 
with crack detection is the appearance of noise, and consequently the 
increase of false positives, our research strategy aims to explore ways to 
enhance both the crack detection noise tolerance and accurate 
localisation. 

Oliveira et al. [18] developed the CrackIT algorithm to detect road 
cracks and characterize them into basic types. It has two modes of 
operation: (1) pixel-based that segments the crack but is sensitive to 

noise and, (2) block-based to determine whether the block contains a 
crack or not but whilst it is noise tolerant it does not accurately localise 
cracks. 

In this paper, the benefits of combining crackIT’s two modes of crack 
detection (pixel-based and block-based) are explored to develop a robust 
method that can achieve both accurate localisation and a low level of 
false positives induced by noise. This is the first most critical step to
wards the use of crack information for asset management, leaving the 
image localisation outside the scope of this paper as it requires different 
techniques. 

The paper is structured as follows: the next section describes the 
CrackIT methods and its modes of operation briefly together with the 
proposed combined method. The experiment conditions, metrics and 
comparison with pixel-based method are presented in Section 3 using 
the CrackIT image dataset. The proposed method is then compared with 
three deep learning methods running on three crack image datasets and 
the results are presented in Section 4. The results are discussed in Section 
5 and conclusions are finally drawn in Section 6. 

2. The proposed method 

2.1. The CrackIT method 

The CrackIT algorithm offers two modes: block-based and pixel- 
based. The block-based approach divides the image into a set of non 
overlapping windows and makes use of both the average intensity and 
standard deviation to make a decision if the block contains a crack or 
normal block. This output delivers only the centre of the block with a 
label. The benefit of this approach is that the decision is effective and 
more robust to scattered noise. A zoomed example is shown in Fig. 1. It is 
clear that the block centres (represented by blue X signs) are far from the 
crack real contour centre. The pixel-based approach on the other hand 
tries to segment individual image pixels based on a dual intensity 
threshold automatically computed for each image to discriminate be
tween crack pixels and background pixels. The output pixels are then 

Fig. 4. Average Euclidean errors in pixels for 10 sample crack images for both 
block-based and combined crack detection methods with a block size of 
75×75 pixels. 

Table 2 
Comparison of errors for block-based, pixel-based and combined crack detection 
methods at a block size of 75×75 pixels for 24 crack images (image no. 1–24) of 
the CrackIT dataset [18]. In each image, the combined method has the best 
precision and the lowest error.  

Image 
no. 

Pixel- 
based 
recall 

Pixel- 
based 
precision 

Combined 
method 
precision 

Block-based 
Euclidean 
error, pixels 

Combined 
method 
Euclidean 
error, pixels 

001 0.85 0.85 1 31.77 12.92 
002 0.92 0.78 0.92 65.2 30.17 
003 0.91 0.57 0.88 47.38 21.93 
004 0.96 0.70 0.88 40.68 11.88 
005 1 0.73 0.97 36.0 16.2 
006 0.90 0.85 0.92 38.3 28.8 
007 1 0.68 0.82 43.5 24.6 
008 0.86 0.78 1 44 23.4 
009 0.85 0.77 0.94 43.7 15.4 
010 0.89 0.61 1 41 14.4 
011 0.91 0.72 1 37.7 29.7 
012 0.92 0.76 0.95 56.4 25.20 
013 0.8 0.63 1 47.7 20.6 
014 0.88 0.70 1 48.9 24.8 
015 0.93 0.50 0.9 52.6 22.4 
016 0.90 0.71 1 59.5 20.7 
017 0.78 0.51 0.88 39.6 13.70 
018 0.76 0.76 1 45.1 23.7 
019 0.89 0.80 1 30.3 18.6 
020 0.96 0.69 1 42.9 13.4 
021 0.89 0.75 1 50.1 25.2 
022 0.86 0.68 1 50.6 20.8 
023 0.88 0.61 1 48.0 17.8 
024 0.93 0.729 1 42.4 21.5  

Fig. 5. The Precision recall comparison between the pixel-based and combined 
methods for all 48 images in the CrackIT dataset. 

Table 3 
Summary of performance metrics for 48 images of CrackIT dataset at a 75×75 
block size.  

Metric Pixel-based Combined method 

Recall 0.9072 0.9072 
Precision 0.69 0.952 
F1 score 0.7849 0.9292  
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grouped using a connected component algorithm. Fig. 1 (right) shows 
the pixel-based output image suffering from noisy pixels which repre
sent false positives. 

2.2. The combined approach 

In this paper we explore whether the combination of both block- 
based and pixel-based modes would be beneficial. The overall archi
tecture of the algorithm is shown schematically in Fig. 2a. The concept is 
illustrated schematically in Fig. 2b. Both the pixel-based and block- 
based modes of CrackIT are initiated and the centres of the blocks are 
used as an initial estimate. Then, we take the pixel-based image output 
and compute the distance between the nearest pixel to block centre 
using a distance transform. Distance transforms are used popularly in 
computer vision applications for proximity-based matching [42]. Pixel- 

based output images are searched for the nearest crack point lying 
directly on the crack contour with minimum Euclidean distance to a 
block centre. 

The pseudo code of the new combined method is shown in Algorithm 
1. 

Algorithm 1. Pseudo-code for combining block-based and pixel-based 
crack detection modes.   

Fig. 6. Sample showing effect of block size and the graph showing error changes versus size.  
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3. Experiments 

3.1. Conditions 

The performance of the combined algorithm is tested using three 
standard datasets as summarized in Table 1. The first dataset is CrackIT, 
and the public code implementation in MATLAB is used in our experi
ments [18] with the authors’ permission. The CrackIT database provides 
ground truth only for block-based mode with a coarse block size of 75 ×
75 pixels. Therefore, the images were annotated manually to get the 
ground truth points at equal intervals of 75 pixels between horizontal or 
vertical scan lines. The block size is critical for the accuracy of the results 
and therefore, an investigation into its effect is presented in subsection 
3.4. The ground truth data for the other two datasets are provided from 
sources [38,43]. 

The new method will be compared with three deep learning 
methods, namely Holistically-Nested Edge Detection (HED) [44], Richer 
Convolutional Features (RCF) [45] and the Feature Pyramid and Hier
archical Boosting network (FPHB) [38]. 

3.2. Assessment metrics 

The assessment of crack localisation performance needs a metric that 
can measure the quality of detection and quality of localization. The 
error is thus defined as the average image distance between detected 
pixels and the ground truth pixels on the crack contour as follows Eq [1- 
8]: 

E =
1
N

∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅((
xi − xgt

)2
+
(
yi − ygt

)2
√

(1)  

where N is the number of detected points, (xi,yi) are the coordinates of 
the detected pixels in image and (xgt,ygt)are the coordinates of the 
ground truth pixel. Recall-precision analysis is used together with the F1 
score, mean Intersection over Union (mIoU) and Accuracy metrics, 
defined as follows: 

Recall = Re =
TP

TP + FN
(2)  

Precision = Pr =
TP

TP + FP
(3)  

F1 =
2⋅Pr⋅Re
Pr + Re

(4)  

mIoU =
TP

TP + FP + FN
(5)  

Accuracy = Acc =
TP + TN

TP + TN + FP + FN
(6)  

where TP is true positives, FN is false negatives, TN is true negatives and 
FP is false positives. Two other metrics based on F1 are also adopted in 
the evaluation: the best F1 on the public database for a fixed threshold 
(ODS), and the aggregate F1 on the public database for the best 
threshold in each image (OIS) [38] and defined by 

ODS = max
{

2 × Prt × Ret

Prt + Ret
: t = 0.01, 0.02, ..., 0.99

}

(7)  

OIS =
1

Nimg

∑Nimg

i
max

2 × Pri
t × Rei

t

Pri
t + Rei

t
: t = 0.01, 0.02, ..., 0.99 (8) 

The valuest, i, and Nimg are the threshold, index and the number of 
the images. The parameters Prt, Ret, Prt

i and Ret
i are precision and recall 

based on threshold t and ith image , respectively. 

3.3. Comparison with pixel-based method 

Fig. 3 shows three zoomed sections of sample cracks (numbers 1, 6 
and 13 in the CrackIT database), pixel-based output and block based 
output for 75×75 pixels block size. The block centres are represented by 
blue circles and deviate from the crack contour. The improved perfor
mance of the combined approach is clearly represented by the red circles 
in the figure. 

The ground truth coordinate pixels were annotated in the detected 
pixel-based contour at the test block size intervals. The average distance 

Fig. 7. F1 score comparison when block size is changed for both pixel-based 
and combined crack detection methods. 
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was computed for each image according to Eq. 1 and results are shown in 
Fig. 4. As expected, the error of the combined method is significantly 
lower than the errors for the block-based approach for every test image. 

The results for 24 images of the 48 image dataset are summarized in 
Table 2. The reduction in Euclidean error ranges from around 21% to 
78% with an average of 55.47%. This also shows that the new combined 
method can discretize the crack contour more accurately and can drive 
tools to crack repair or filling. The table also shows the recall and pre
cision computed for pixel-based and combined methods. The precision 
of the combined method is higher than that for the pixel-based for all test 
images. This table confirms that the combined method enjoys better 
noise rejection and the resulting points are much closer to the crack real 
profile, therefore it is better localised. 

Fig. 5 shows the precision-recall comparison between both methods 
as a scatter plot. Each point in the graph summarizes the precision and 

recall values of one test image. It is observed that the precision of the 
combined method is significanly higher than that for the pixel-based 
method. 

The average precision increased for the whole set from 0.695 (pixel- 
based) to 0.95 (combined method) at an average recall of 0.9. This 
corresponds to an F1 score change from 0.78 (pixel-based) to 0.929 
(combined method) at a block size of 75×75 pixels which is an increase 
of 15%. This demonstrates that noise is reduced in the combined 
method. The results for the 48 images’ dataset are summarized in 
Table 3. 

3.4. Effect of block size 

The effect of block size is also investigated by studying the test im
ages for a range of non-overlapping blocks of sizes ranging from 10 

Fig. 8. Crack extraction for sample images from the CrackIT dataset. Colour code, white: true positive, red false positive, cyan: false negative. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Crack extraction for sample images from the CRACK500 dataset. Colour code, white: true positive, red false positive, cyan: false negative. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Crack extraction for sample images from the CRACK500 dataset. Colour code, white: true positive, red false positive, cyan: false negative. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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pixels to 100 pixels at an equal intervals of 10 pixels. The effect of size on 
the quality of combined output is shown in Fig. 6a. It can be observed 
that the smaller block sizes give better results in terms of spatial reso
lution. The difference between the Euclidean errors of crack points 
computed by the combined method and the points computed by block- 
based method are computed and averaged according to Eq. 1. 

Fig. 6 shows these differences and it can be observed that as the block 
size increases, the error increases, as might be expected. Bigger block 
sizes are not desirable since it will reduce the crack disgitisation reso
lution, while smaller block sizes are good to improve resolution. Fig. 6 
also shows the processing time of the algorithm running on a Thinkpad 
T460 with Intel i5-6200U CPU (2.30GHz × 4). 

The processing time increases when the block size is decreased and 
increases significantly for block sizes less than 20 × 20 pixels at which it 
increases several fold of its value at larger block size. The selection of 
block size will be determined mainly from the requirement of spatial 
resolution for a particular application and can be improved by changing 
camera optics or camera sensor or digitizing resolution. 

The change of F1 score when the block size is changed, is shown in 

Fig. 7 and it is observed that F1 for combined method is higher than the 
pixel based method for all block sizes. The F1 score increases when the 
block size is decreased in general for both methods. The combined 
method has a local peak around the size of 70–75 pixels which is the 
recommended size by CrackIT authors [18]. 

4. Comparison with deep learning methods 

The combined method is compared with HED [44], RCF [45] and 
FPHB [38] tested on the CrackIT, CRACK500 and the CFD datasets and 
the complete set of results can be found in https://doi.org/10.5518/937. 
The deep learning methods considered here produce thick lines, and to 
overcome this, thinning provided by Zhang Suen’s method [46] was 
used for Non Maximum Suppression (NMS). Then, the thinned cracks 
were dilated to be of similar thickness as ground truth cracks, similar to 
the approach in [47]. Sample results of the combined method compared 
with the deep learning methods are presented in Fig. 8 from the CrackIT 
dataset. The HED images show false positives and miss several crack 
segments (false negatives). The borders for all deep learning methods 

Fig. 11. Crack extraction for sample images from the Crack Forest (CFD) dataset. Colour code, white: true positive, red false positive, cyan: false negative. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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show false positives. The RCF results are slightly better than the HED in 
terms of fewer false positives but still miss several crack segments. The 
deep learning methods smooth out the spatial details and this becomes 
clear in bends. The combined method results show few false positive 
pixels and well localised cracks. 

We will limit comparison in the two other datasets to the RCF and 
FPHB to display more cases, but they will all be summarized statistically 
later. The sample results for the CRACK500 dataset (only 200 images 
from the test section) are presented in Fig. 9 and Fig. 10. In Fig. 9, both 
FPHB and the combined method can detect the cracks well while RCF 
has more false positives and misses several crack segments. More dif
ferences are shown in cases of Fig. 10, where the left and middle images 
show that the FPHB and RCF miss several crack segments that are 
recovered in the combined method. The right image also shows that 
FPHB and RCF have more false positives compared with the combined 
method. A sample of the results running on CFD is shown in Fig. 11 and 
Fig. 12. The CFD dataset required preprocessing by histogram equal
isation when using the combined method, because the histograms of 
images were quite narrow and thus hard to detect cracks. The RCF has 
several false positives and misses several crack segments. Several crack 
segments are also missing in the FPHB results especially in the Fig. 12 

cases. The combined method can detect cracks in these images with less 
missing crack segments and with good localisation. Both FPHB and the 
combined method are tolerant to the appearance of road lane markings 
as shown in the middle image of Fig. 12. 

The image borders contain several false positives in the deep learning 
method (although the borders were excluded from the metrics calcula
tion process). The deep learning results suffer poor localisation in sud
den bends and junctions or curves as shown in Fig. 13. The images show 
that in several cases the FPHB results deviate from the crack and the 
crack spatial details are smoothed which results in missing the location 
provided by the ground truth as is clear in the junction of the middle 
image and the triangle of the right image. The combined method per
forms better than the FBHB and other deep learning methods and shows 
better crack localisation and better recovery of crack segments. The 
hybrid nature of the combined method is quite useful to improve the 
crack localisation since it searches for precise location on crack contour. 

A precision-recall analysis is made and shown in Fig. 14. The com
bined method outperforms the FPHB method for the three tested data
sets. The graph for FPHB is drawn by varying the threshold value. The 
only parameter that can be varied in the combined method is the block 
size; thus the combined method is represented as a single point in the 

Fig. 12. Crack extraction for sample images from the Crack Forest (CFD) dataset. Colour code, white: true positive, red false positive, cyan: false negative. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 13. Crack extraction for sample images from CRACK500 dataset showing the FPHB results together with ground truth. Red colour: FPHB result, White colour: 
FPHB + Ground truth, Cyan colour: Ground truth only. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 14. The precision-recall comparison between the combined method and the FPHB deep learning method for three datasets. For the combined method, the 
average of the Pr–Re is shown as a single point representing the average value across each dataset. 
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graph which represents the average F1 across each of the datasets. The 
figure shows that RCF outperforms FPHB for two datasets but FPHB 
outperforms RCF for the CRACK500 dataset only. This is attributed to 
the fact that FPHB is trained on the CRACK500 dataset. 

The statistical data is also summarized in Table 4 for each dataset. 
There is a significant increase in all tested metrics of the F1 score, the 
mIoU and the accuracy for the combined method. It can be observed that 
the improvement by the combined method is higher for the CrackIT 
images and is less for the CFD. This implies that the combined method 
works better for high quality images. 

The appearance of stains or foreign objects has been investigated 
from a subset of images provided in the CRACK500 and CFD datasets. 
Sample cases for images with asphalt stains are shown in Fig. 15. The left 
image show asphalt stains which did not affect the result for either FPHB 
or combined methods, but it affects the results of both HED and RCF. The 
right image shows a large stain which appeared in the HED, RCF and 
FPHB results but it did not affect the result of the combined method 
which, in this particular case correctly, showed no cracks in the image. 
The effects on HED and RCF is attributed to the fact that both methods 
are searching for edges. The effect on FPHB depends on the shape of the 
stain. 

The effect of lighting or illumination changes is shown in Fig. 16. The 
three images contain shadows and non uniform illumination which did 
not affect the results of either FPHB or the combined method. Shadows 
do not affect the results because the block-based detection removes 
isolated blocks. The combined method also tolerates the appearance of 
road lanes, since CrackIT has a separate function to identify road lane 
lines [18]. 

5. Discussion 

CrackIT belongs to the category of model-based crack detection 

methods and it is shown here that it can be exploited to obtain good 
crack detection and digitization. The proposed combined method in
herits useful traits from both the pixel-based and block-based modes of 
operation in terms of noise resistance and accurate localisation. The 
combined method aims to get a digitized/discretized crack representa
tion, which is different from the conventional analogue representation. 
The combined method is more suitable, especially when the output is 
required in a discretised form for further action such as driving a robot to 
seal or spray on the cracks, as shown by a crack sealing robot [48] . The 
main limitation of the combined method is when cracks cannot be 
detected especially at the pixel based level, a problem that is less 
prominent in the deep learning methods in general. This may happen in 
particular for some low quality images, such as those in the CFD dataset 
that required image enhancement. Therefore, the method performs 
better when the images are of good quality with distributed histograms 
as expected. It is also preferrable in terms of performance to detect 
cracks with a uniform spatial scale and to set the camera lens parallel to 
the road surface. Regarding sensitivity to foreign object appearance, 
further investigations are still needed to fully analyse the performance of 
the algorithm. 

In a statistical sense, the combined method outperformed FPHB and 
two other tested deep learning methods. The deep learning results suf
fered from the appearance of false positives and missing crack segments. 
In addition, the extracted cracks give relatively poor localisation for 
crack bends and junctions and thus it would be challenging to use for 
further processes for crack repair such as robotic crack sealing. 

The issue for block size selection was explored and found to be 
critical for good performance. The size selection should be based on the 
required spatial resolution in each application, and can be modified 
through control of the imaging optics. 

6. Conclusions 

A novel approach that combines the two modes of CrackIT algorithm 
was proposed for reducing noise in crack detection and improving crack 
localisation. The block-based mode generates noise-tolerant crack re
gions and in which then, the nearest point is found from the pixel-based 
mode result for providing accurate digital crack coordinates (local
isation). The block mode reduces noise through aggregation of pixels. 
The new combined approach enjoys both benefits of the noise robustness 
inherited from the block-based approach with accuracy inherited from 
the search for nearest points from the pixel-based approach on the crack 
contour. The method was tested on three datasets namely the CrackIT, 
the CRACK500 and the Crack Forest dataset (CFD). The results were 
compared with the pixel-based mode as well as three deep learning 
methods, HED, RCF and FPHB. The new method outperformed the 
existing methods for all the datasets and delivered better results espe
cially for accurate localisaton of cracks. The new method has a strong 
potential for civil engineering applications requiring accurate digital 
discretization of cracks. Complete set of results are available at https:// 
doi.org/10.5518/937 
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Table 4 
Summary of performance metrics for three tested datasets.  

Dataset HED RCF FPHB Combined 

CrackIT Re = 0.502 
Pr = 0.638 
F1 = 0.539 
mIoU =
0.3861 Acc 
= 0.9846 
ODS = 0.562 
OIS = 0.5424 

Re = 0.8345 
Pr = 0.7131 
F1 = 0.7635 
mIoU = 0.623 
Acc = 0.9898 
ODS = 0.769 
OIS = 0.7635 

Re = 0.7796 
Pr = 0.714 F1 
= 0.7408 
mIoU =
0.5952 Acc =
0.9893 ODS 
= 0.7455 OIS 
= 0.7418 

Re = 0.907 Pr 
= 0.952 F1 =
0.9274 mIoU =
0.915 Acc =
0.995 ODS =
0.9292 OIS =
0.9274 

CRACK500 Re = 0.515 
Pr = 0.592 
F1 = 0.517 
mIoU =
0.3708 Acc 
= 0.9654 
ODS =
0.5509 OIS 
= 0.5538 

Re = 0.582 
Pr = 0.581 F1 
= 0.556 
mIoU =
0.3999 Acc =
0.9645 ODS 
= 0.5823 OIS 
= 0.6131 

Re = 0.7719 
Pr = 0.589 F1 
= 0.657 
mIoU = 0.497 
Acc = 0.969 
ODS =
0.6683 OIS =
0.661 

Re = 0.718 Pr 
= 0.851 F1 =
0.756 mIoU =
0.656 Acc =
0.976 ODS =
0.7794 OIS =
0.7564 

CFD Re = 0.5687 
Pr = 0.4089 
F1 = 0.432 
mIoU =
0.2976 Acc 
= 0.95 ODS 
= 0.5286 
OIS = 0.50 

Re = 0.6897 
Pr = 0.6577 
F1 = 0.6522 
mIoU =
0.5081 Acc =
0.9756 ODS 
= 0.6733 OIS 
= 0.6542 

Re = 0.625 
Pr = 0.6534 
F1 = 0.6256 
mIoU =
0.4817 Acc =
0.9756 ODS 
= 0.6391 OIS 
= 0.6393 

Re = 0.672 Pr 
= 0.741 F1 =
0.688 mIoU =
0.596 Acc =
0.969 ODS =
0.704 OIS =
0.688  
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Fig. 15. Sample results for pavement stains.  
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