
This is a repository copy of Liger : a cross-platform open-source integrated optimization
and decision-making environment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/168219/

Version: Published Version

Article:

Duro, J.A., Yan, Y., Giagkiozis, I. et al. (9 more authors) (2021) Liger : a cross-platform
open-source integrated optimization and decision-making environment. Applied Soft
Computing, 98. 106851. ISSN 1568-4946

https://doi.org/10.1016/j.asoc.2020.106851

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Please cite this article as: J.A. Duro, Y. Yan, I. Giagkiozis et al., Liger: A cross-platform open-source integrated optimization and decision-making environment, Applied Soft
Computing Journal (2020) 106851, https://doi.org/10.1016/j.asoc.2020.106851.

Applied Soft Computing Journal xxx (xxxx) xxx

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Liger: A cross-platform open-source integrated optimization and
decision-making environment

João A. Duro a,∗, Yiming Yan a, Ioannis Giagkiozis a, Stefanos Giagkiozis a, Shaul Salomon a,b,
Daniel C. Oara a, Ambuj K. Sriwastava a, Jacqui Morison c, Claire M. Freeman c,
Robert J. Lygoe d, Robin C. Purshouse a, Peter J. Fleming a

a Department of Automatic Control and Systems Engineering, The University of Sheffield, UK
b Department of Mechanical Engineering, Ort Braude College of Engineering, Karmiel, Israel
c Jaguar Land Rover Limited, UK
d Product Development Europe, Dunton Technical Centre, Ford Motor Co. Ltd, UK

a r t i c l e i n f o

Article history:

Received 6 January 2020

Received in revised form11 September 2020

Accepted 22 October 2020

Available online xxxx

Keywords:

Software engineering

Multi-objective optimization

Multi-criteria decision-making

Evolutionary algorithms

Metaheuristics

a b s t r a c t

Real-world optimization problems involving multiple conflicting objectives are commonly best solved
using multi-objective optimization as this provides decision-makers with a family of trade-off so-
lutions. However, the complexity of using multi-objective optimization algorithms often impedes
the optimization process. Knowing which optimization algorithm is the most suitable for the given
problem, or even which setup parameters to pick, requires someone to be an optimization specialist.
The lack of supporting software that is readily available, easy to use and transparent can lead to
increased design times and increased cost. To address these challenges, Liger is presented. Liger
has been designed for ease of use in industry by non-specialists in optimization. The user interacts
with Liger via a visual programming language to create an optimization workflow, enabling the user
to solve an optimization problem. Liger contains a novel optimization library known as Tigon. The
library utilizes the concept of design patterns to enable the composition of optimization algorithms
by making use of simple reusable operator nodes. The library offers a varied range of multi-objective
evolutionary algorithms which cover different paradigms in evolutionary computation; and supports
a wide variety of problem types, including support for using more than one programming language at
a time to implement the optimization model. Additionally, Liger functionality can be easily extended
by plugins that provide access to state-of-the-art visualization tools and are responsible for managing
the graphical user interface. Lastly, new user-driven interactive capabilities are shown to facilitate the
decision-making process and are demonstrated on a control engineering optimization problem.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For a company to remain at the competitive edge of the indus-
try in which it is involved, its products and services need to ac-
count for as many performance objectives as possible, which may
include reduced cost, improved safety, higher quality, amongst
others. When two or more conflicting objectives are involved
in an optimization problem the task is to find multiple optimal

∗ Corresponding author.

E-mail addresses: j.a.duro@sheffield.ac.uk (J.A. Duro),

yiming.yan@outlook.com (Y. Yan), i.giagkiozis@protonmail.com (I. Giagkiozis),

stevegiagkiozis@gmail.com (S. Giagkiozis), shaulsal@braude.ac.il (S. Salomon),

dcoara1@sheffield.ac.uk (D.C. Oara), a.k.sriwastava@sheffield.ac.uk

(A.K. Sriwastava), jmoriso1@jaguarlandrover.com (J. Morison),

cfreem48@jaguarlandrover.com (C.M. Freeman), blygoe@ford.com (R.J. Lygoe),

r.purshouse@sheffield.ac.uk (R.C. Purshouse), p.fleming@sheffield.ac.uk

(P.J. Fleming).

trade-off solutions, where no solution is said to be better with
respect to all objectives. Given that classical optimization meth-
ods are only capable of finding one single optimized solution in a
single optimization run, the alternative is to rely on evolutionary
algorithms since their population-based approach is capable of
finding multiple optimal solutions in its final population [1].
Multi-objective Evolutionary Algorithms (MOEAs) have advanced
with great pace over the last 30 years in many respects, and are
immensely valuable for real-world applications [2].

However, a general problem facing any non-expert in op-
timization could well be which optimization algorithm is best
suited for dealing with the optimization problem at hand. To
make matters worse, most optimizers require their parameters to
be tweaked, and may also require some other form of setup such
as which constraint handling approach to use [3]. It is therefore
not surprising to find practitioners making poor decisions and us-
ing inappropriate methods for dealing with their problems, which

https://doi.org/10.1016/j.asoc.2020.106851

1568-4946/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2020.106851
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://creativecommons.org/licenses/by/4.0/
mailto:j.a.duro@sheffield.ac.uk
mailto:yiming.yan@outlook.com
mailto:i.giagkiozis@protonmail.com
mailto:stevegiagkiozis@gmail.com
mailto:shaulsal@braude.ac.il
mailto:dcoara1@sheffield.ac.uk
mailto:a.k.sriwastava@sheffield.ac.uk
mailto:jmoriso1@jaguarlandrover.com
mailto:cfreem48@jaguarlandrover.com
mailto:blygoe@ford.com
mailto:r.purshouse@sheffield.ac.uk
mailto:p.fleming@sheffield.ac.uk
https://doi.org/10.1016/j.asoc.2020.106851
http://creativecommons.org/licenses/by/4.0/

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

could be because they are not familiar with anything better.
Another aspect concerns those MOEAs that elicit the Decision-
Maker’s (DM’s) preferences, a-priori or progressively, in order
to guide the search towards the most preferred solution by the
DM [4–6]. These algorithms are often known in the literature as
Multiple Criteria Decision-Making (MCDM) based MOEAs [7,8].
One of the major advantages of these algorithms is that it may
be only required to find a crowded set of solutions near the
most preferred solution by the DM as opposed to the complete
Pareto-optimal Front (POF); however, it is also the case that their
applicability may be impaired owning to the subjectivity and
cognitive limitation of the DM [7]. To counter these issues, our
argument is that there is a need for an optimization software with
an intuitive Graphical User Interface (GUI) that:

1. offers an interface that is simple and straightforward to use
by the non-expert in optimization;

2. accommodates the needs of researchers by providing an
open, flexible, reusable and sustainable optimization envi-
ronment, and;

3. that incorporates decision-making support tools which
could enable the DMs to articulate their preferences more
rationally, and to assist in the process of identifying the
most preferred solution.

To address the above, the Liger software has been designed
and developed. Liger is a cross-platform open-source optimiza-
tion and decision-making support software written in C++. The
intent behind the development of Liger is to create an easy-to-
use optimization software while at the same time providing a
versatile optimization framework. The aim is for an extensible
piece of software to be used ‘‘out of the box’’. It is built upon
a visual programming language that is used to create what we
call an ‘‘optimization workflow’’. A workflow contains a set of
operator nodes connected in a way that resembles the optimiza-
tion process. There are different operators to choose from and a
workflow can be created via a simple drag-and-drop functionality
that is provided by the GUI. Some of the tasks performed by
the operators are for instance: to load the optimization problem,
initialize a population of solutions, run an optimizer, and display
the obtained solutions in a graphical plot. For this, Liger provides
access to a diversified list of MOEAs, offers a rich set of (visual-
ization) tools that provide an interactive decision-making support
experience, and its functionality can be easily extended via a plu-
gin system. Liger was first introduced to the community at GECCO
2013 [9] and its key points are a design that is extensible, easy to
use by the non-expert in industry, and an application built around
a visual programming language on which optimization workflows
can be created. This version of Liger has been demonstrated on
an industry–led case study involving the calibration of a diesel
engine [10], where it was shown that Liger is able to support the
analyst and DM throughout the process of obtaining an optimized
engine calibration that complies with performance and regula-
tory requirements. Following our involvement on other projects
that required using Liger to solve other real-world optimization
problems, many of those suggested by our industrial partners
(e.g. Ford and Jaguar Land Rover), several enhancements and new
advancements have been made, and in that, a new version has
been released1 and its distinctive contribution when compared
with the old version relates to:

(I) A new optimization library, namely Tigon. The version
in [9] relied on the jMetal library as the underlying opti-
mization library. However, the fact that jMetal is imple-
mented in Java makes it less suitable for intensive com-
puting tasks in general due to lower run-time performance

1 Liger is released under the LGPL licence and its source code is hosted in

GitHub, https://github.com/ligerdev/liger.

when compared with other libraries that can run directly
on the computer’s processor (e.g. C and C++). The new
library provides a modular and flexible approach towards
the design of optimization algorithms.

(II) Simplified workflow interface. Previously in [9] the order
of execution within an optimization workflow bears some
resemblance to the Simulink engine,2 implying that the
nodes in the workflow had to be connected in a feedback
loop. However, this can be confusing for those users that
are not familiar with the concept of feedback loop, or that
have no experience with the Simulink engine. In the new
version the nodes are all connected in series without the
need for a feedback loop. The new interface is therefore
more intuitive and simpler to use.

(III) Enhanced interactive decision-making. In [9]
decision-making could only take place at the end of the op-
timization run, where a DM could select the most desirable
solution from amongst the available options by making
use of the Liger visualization tools (e.g. interaction with a
parallel coordinates plot). In the new version:

(a) The user is able to inspect the obtained solutions at
any point during the optimization run by pausing the
optimization engine before a termination criterion
is satisfied (e.g. before the number of iterations is
exhausted).

(b) There is support for progressive articulation of the
DM’s preferences during the optimization run when
using Pareto-based MOEAs. For this the DM can spec-
ify a goal vector in objective space to steer the search
towards the most desirable solution. This relies on
the preferability relation concept defined in [4] that
is used to induce an order between the solutions
based on the provided goals. The goal vector can be
defined before the optimization run starts, and can
be modified after the user pauses the optimization
run and inspects the existing solutions.

(c) Real-time visualization of the obtained solutions dur-
ing the optimization run in the Liger visualization
tools. The user is able to specify the update rate,
either with respect to iterations or time in seconds.

The rest of this paper is organized as follows. Following the
above short introduction to Liger, we discuss the pros and cons
of other optimization libraries in Section 2. The general con-
cept behind Liger and its architecture is described in Section 3,
and the Tigon optimization library is described in Section 4.
Section 5 explains how to compose an optimization algorithm
by using the Tigon operators. Section 6 describes the GUI, pro-
vides a short tutorial on how to create, setup and run a simple
optimization workflow, and also demonstrates the interactive
decision-making capabilities of Liger on a control engineering
optimization problem. The paper concludes with a summary in
Section 7.

2. Related work

A large number of MOEAs are found in the literature [11]
but several factors prevent researchers and other optimization
practitioners from using them. For instance, the authors of such
optimizers often do not provide access to the source code, and
even if they do, several steps need to be taken before a user is
able to start the optimization process. To facilitate this, several
software libraries have been proposed over the past 20 years.

2 Simulink is a graphical block diagramming programming environment

developed by MathWorks.

2

https://github.com/ligerdev/liger

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

In the following, we will focus on libraries with an open-source
licence.

One example is known as PISA [12], a modular framework
that contains a library of MOEAs, optimization problems, and
also performance assessment tools. The framework relies on a
text-based interface implemented in C that splits an optimization
process into two modules. The first module contains parts specific
to the optimization problem, and the second module deals with
other parts that are independent from the optimization problem
(mainly related to the selection process of the MOEA). However,
the communication between modules relies on text files, imply-
ing that the time required to complete the optimization process
is mostly spent waiting for the completion of hard drive input–
output operations. This makes PISA not so suitable for intensive
computing tasks when compared with other libraries that do not
rely on the hard drive and take advantage of faster memories,
such as the Random Access Memory (RAM). Another example
is ParadisEO-MOEO [13], an object-oriented framework imple-
mented in C++ specifically dedicated to the design of MOEAs,
which is an extended version of the Evolving Objects (EO) li-
brary [14]. The EO library provides a set of generic components
that are used to build flexible evolutionary strategies. The aim is
to facilitate maximum code reuse, adding, extending, and adapt-
ing existing features. Despite its promise, EO is mostly intended
for advanced users as mentioned by their authors, and both PISA
and ParadisEO-MOEO do not provide a graphical user interface. A
further example, HeuristicLab (HL) [15] is a framework for heuris-
tic and evolutionary algorithms. HL has a modular architecture
built around a plugin-based system, which allows for extensions
to be added to the tool; its design philosophy is sound in terms
of software engineering, and it provides a comprehensive graph-
ical user interface. However, HL only provides a classical MOEA,
namely NSGA-II, which is to some extent, not suitable for dealing
with multi-objective problems with four or more objectives [16].
This is because the primary selection mechanism used by NSGA-
II relies on Pareto-dominance which becomes less effective at
selecting solutions as the number of objectives increases. An-
other problem with HL is the fact that it is implemented in C#
which is dependent on software patents owned by Microsoft.
Although there are free implementations of C# (e.g. Portable.NET)
that allow the software to be ported to different platforms, the
issue relates to the fact that Microsoft could decide to enforce
its software patents and force all free implementations of C#
underground.3

In terms of programming language, a number of libraries
have been implemented in Java, and examples are: ECJ [17],
Opt4J [18], EvA2 [19], JCLEC-MOEA [20], MOEA Framework [21],
and jMetal [22,23]. One of the main advantages of Java is its
portability to different operating systems. However, given their
reliance on a Java virtual machine they can be deemed less
suitable for intensive computing tasks in general, due to lower
runtime performance when compared with other libraries that
can run directly on the computer’s processor (e.g. C and C++).
From the mentioned libraries, ECJ, JCLEC-MOEA, and jMetal do
not provide a graphical user interface. Moreover, ECJ capabili-
ties in evolutionary multi-objective optimization are somehow
limited since it only offers two classical Pareto-based MOEAs,
namely NSGA-II and SPEA2. More recently, a library known as
PlatEMO [24] has been developed for the Matlab platform. This
however makes it dependent on a user having to pay a licence
to use it, since Matlab is not free software and there is currently
no evidence, to the best of authors’ knowledge, that this library
could be used with free programming languages that offer some
degree of compatibility with Matlab (e.g. GNU Octave).

3 The development of free open source software with C# is currently discour-

aged by the free software foundation due to the potential threat by Microsoft

to enforce its software patents as argued in https://www.fsf.org/news/dont-

depend-on-mono.

3. Liger: the concept and architecture

Liger is an optimization software that makes use of open-
source libraries, runs on different operating systems, and provides
an easy to use environment with interactive decision-making
capabilities. It includes a library of algorithms, operators and
optimization data management utilities that are easily verifiable
due to its open-source nature and allow for rapid algorithm
prototyping. The software is mostly implemented in C++ and fol-
lows an objective-oriented paradigm with an emphasis on design
principles that make the software design more understandable,
flexible and maintainable. In summary the features of Liger are:

1. Diversified list of MOEAs that covers different paradigms in
evolutionary optimization: a non-elitist and elitist Pareto-
based MOEA, respectively, MOGA [4] and NSGA-II [25];
a decomposition-based MOEA, namely MOEA/D [26]; an
indicator-based MOEA, namely SMS-EMOA [27]; and a sur-
rogate based MOEA, namely ParEGO [28]. Two variants
of the previous MOEAs are NSGA-II-PSA [29] a variant of
NSGA-II, and sParEGO [30] a variant of ParEGO.

2. Rapid algorithm prototyping with an easy to use interface
where an algorithm is simply a composite of different op-
erators and new algorithms can be created by introducing
new operators and/or recombining existing ones;

3. Performance assessment metrics for conducting a compari-
son between the performance of MOEAs (e.g. Hypervolume
indicator [31]);

4. Interface for loading optimization problems from a num-
ber of programming languages, including support for us-
ing more than one programming language at a time in
the implementation of the optimization model. Available
programming languages are C++, Matlab and Python;

5. Support for the specification of different problem types:
problems whose variables are a mix of different types
(e.g. continuous and discrete), and problems with uncer-
tainty.

6. Support for parallel evaluations. It is possible to take ad-
vantage of multi-core systems to speed up the optimization
process.

7. Provision for advance visualization and data exploration
tools that are suitable for dealing with high-dimensional
datasets. In this context, the data corresponds to the solu-
tions of optimization problems;

8. Support for real-time interactive decision-making, and pro-
gressive articulation of user preferences;

9. Plugin architecture for easy extensibility. The plugins pro-
vide a flexible and modular approach to control the func-
tionality of Liger;

10. Suite of tests that demonstrate the code operation. For this,
we employ a continuous integration server4 that runs the
tests following each request to change the code in our
GitHub repository.

One of the key aspects of Liger is the optimization work-
flow. A workflow contains a sequence of operators that are to
be executed in a sequence. Each operator is responsible for a
particular task that is related to the optimization and decision-
making process. This includes loading the optimization problem,
initializing a population of solutions, running an optimizer, and
displaying the obtained solutions in a plot. Due to its modular and
flexible nature, a workflow does not need to be constructed with
the sole aim of conducting an optimization run, since it can also

4 Travis CI (https://travis-ci.org/) is our continuous integration server that

offers a good integration with GitHub.

3

https://www.fsf.org/news/dont-depend-on-mono
https://www.fsf.org/news/dont-depend-on-mono
https://travis-ci.org/

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 1. Block diagram of the high-level architecture in Liger.

be used for other purposes, such as exploring the data generated
by a previous optimization run, meaning that the workflow only
needs to load the existing solutions from a file into the Liger
environment.

In terms of architecture, the two main components of Liger are
the Tigon optimization library and the GUI. These two are shown
in the block diagram in Fig. 1, where each small block corresponds
to a more specialized component, responsible for a particular
functionality of the software. This diagram highlights some of the
hierarchical dependencies between different components, in that
each component depends on the component below and to the left
of itself within each row. For example, Distributions is the most
fundamental component in Tigon, and all other components de-
pend on it; Engine is the most high-level component and depends
on all other components. There are no dependencies between
the components of Tigon and the GUI. This means that the Tigon
library is not an integral part of the GUI, and can be replaced by a
different optimization library if it is desirable. Also, the separation
between Tigon and the GUI is made so that it is possible to
create different front-ends for Tigon. Currently the Tigon front-
end is based on the Qt toolkit, but if desirable, other GUIs could
be developed using different toolkits for creating graphical user
interfaces (e.g. GTK+5).

The architecture of the GUI is based on a subset of QtCre-
ator, the integrated development environment created by The Qt
Company.6 The main reason for this choice has been expediency,
as a large number of low-level utilities are already in place in
QtCreator and have been extensively tested by the community
over several years. For this reason, Liger shares several features
with the architecture of QtCreator, most importantly, the plugin
loader feature. In that, QtCreator consists of a plugin loader that
loads and runs a set of plugins, and the incorporation of this
concept into Liger allows for the existing functionality to be
extended in a flexible manner, including complete control during
the run-time of Liger. Moreover, the main plugins that exist in
Liger are:

1. Core User Interface (UI). The main plugin, upon which all
other extensions depend. The Core plugin provides the nec-
essary interfaces for fundamental tasks, such as communi-
cation, file input–output operations, handling of settings as
well as classes implementing the main frame of the GUI.
The Core UI is customized from QtCreator’s CoreUI.

5 GTK+ https://www.gtk.org/.
6 The Qt Company https://www.qt.io/.

2. Designer. The plugin that defines a visual workflow com-
poser, built-upon the Core UI. Note that the designer plugin
only shares its name with QtCreator’s designer.

3. Tigon UI. A plugin that implements the UI components
in Designer and integrates the Tigon library with the user
interface.

4. Visualization. The visualization plugin gives access to
graphical plots for representing datasets generated by an
optimization run for a given optimization problem. These
plots facilitate data exploration, and provide a visual inter-
face that supports preference elicitation to drive the search
towards the most preferred solution by the DM. All plots
are rendered by the Qt WebEngine web browsing module
and their implementation is taken from the D3 library [32].

The interaction between the GUI and the Tigon optimization
library is depicted in Fig. 2. The user interacts with the GUI to
construct a workflow and once this is done he/she is in control
of when to initiate the optimization process. During a typical
start of the optimization process, the GUI communicates with
the optimization library by sending the workflow via the Tigon
UI plugin. After receiving the workflow, the optimization library
invokes its own Engine to process the workflow operators, and
following each iteration of the optimization algorithm, it commu-
nicates back to the Tigon UI, any generated results. This enables
the Visualization plugin to update the plots in real-time during
the optimization process.

4. Tigon optimization library

The design of Tigon is component-based, with a focus on
flexibility and re-usability. It provides the user with a set of
base classes, which can be used to interface complex problem
structures, implement new operators, design/compose new algo-
rithms, and to realize a complex optimization workflow. Tigon
library is implemented in C++ and the code follows an object-
oriented paradigm. Some of the dependencies of the Tigon library
have already been shown in Fig. 1, this includes shared libraries
such as the Boost library and the XML Module, and as well the
standard C++ library. However, although the core functionality
of the Tigon library is not dependent on the Qt Framework, the
Tigon test suite currently is. We are working towards making
Tigon less dependent on external libraries.

One of the key aspects of Tigon is the usage of the Dec-

orator design pattern [33] to form a workflow. The decorator
design pattern is a structural pattern that enables adding new
functionality (to decorate) an existing object dynamically at run-
time. This design principle results in a new design paradigm for
evolutionary algorithms, which views operators as decorators. The
use of this pattern also provides the flexibility to easily compose
and alter a workflow. A useful property of the decorator design
pattern is that it enforces the Single Responsibility Principle [34].
This principle states that a class should only have a single re-
sponsibility, to prevent having more than one reason for the class
to change, in case the requirements change. To facilitate this
process, each individual task conducted during the optimization
process is the sole responsibility of a single operator.

More details about the Tigon library are provided in the fol-
lowing sections. This includes: the representation and evaluation
of a solution for a given optimization problem in Section 4.1;
the implementation of the decorator design pattern that forms
the optimization architecture is described in Section 4.2; how to
implement an optimization workflow is shown in Section 4.3; and
the mechanism used to handle the information flow during the
optimization process is described in Section 4.4.

4

https://www.gtk.org/
https://www.qt.io/

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 2. Interactions between the GUI and the Tigon optimization library.

4.1. Representation and evaluation of a solution

The components of Tigon mentioned in this section are shown
in a class diagram as depicted in Fig. 3. This type of diagram
is used because Tigon implementation adopts an object oriented
paradigm. Each class in the diagram is divided into three parts:
the name on top, the attributes in the middle (their names often
start with the m_ prefix), and the operations (or methods) on the
bottom. The lines connecting the classes represent two types of
relations: association and realization. Association is depicted by a
line without an arrow at the end, and is used to indicate if a class
holds an instance (or object) of the other. For instance, the class
ISet can have zero or more instances of the class IMapping, and in
this case, these instances are stored inside the vectorm_mappings.
Realization is represented by a line with an arrow and it is used to
indicate that one of the two related classes (the subclass) realizes
(or implements) the other class (the superclass). For instance, the
class IDistribution (a superclass) is meant to provide a generic
interface that is common for all types of probability distributions,
and all classes that provide an implementation for this interface
are consider to be subclasses, such as NormalDistribution. In fact
it can be said that NormalDistribution is a more specialized form
of the class IDistribution.

The remainder of this section is organized as follows: handling
different data types in Tigon is discussed in Section 4.1.1, the rep-
resentation of a solution, problem and population are described
in Section 4.1.2, and the way uncertainty is represented within
Tigon is described in Section 4.1.3.

4.1.1. A unified interface for handling data types

A unified interface for handling data types is provided by
the IElement class. IElements can be used as opposed to more
simple types of variables, such as ints and doubles. The main
characteristics are:

1. Support for cross-type operations, meaning that it handles
arithmetic operations and relational operations between
different types of variables;

2. Support for the specification of more specialized types,
including automatic conversion from basic types;

3. The ability to define a variable as uncertain.

The data types currently supported are continuous and two
discrete types, namely integer and nominal. The continuous type
can take any value within an interval, the integer type is re-
stricted to integer values, and the nominal type takes values from
a set of categories without ordering relations being defined. The
cross-type operations between IElements of different types, and
also between an IElement and basic types such as int and dou-
ble, includes: arithmetic operations such as addition, subtraction,
multiplication and division, and also relational operations such
as greater than and less than. The two main outcomes from this
are: (i) that the operators are able to decouple their functionality,
meaning that a separate routine can be created for handling each
data type; and (ii) it is possible to specify optimization problems
where the variables are a mix of different types.

Besides being defined by one of the three types above, an
IElement can also be categorized as uncertain as opposed to de-
terministic. An uncertain IElement can be thought of as a random
variable which may take a range of numerical outcomes, and
the probability of sampling each outcome is defined by the un-
derlying probability distribution. This is useful for the definition
of optimization problems that have uncertainties. Section 4.1.3
provides more details about uncertainty specification in Tigon.

4.1.2. The solution, problem and population

This section describes the representation used in Tigon for
a solution, the corresponding optimization problem, and also
a population of solutions. These are represented in the class
diagram in Fig. 3 and correspond respectively to the classes IMap-
ping, Problem, and ISet. Since these classes are also dependent on
others that are also depicted in Fig. 3, we start by describing the
class IFunction.

The class IFunction represents any function (or a map) be-
tween a given number of inputs and a set of outputs. The imple-
mentation of the optimization model is conducted by a class that
derives from IFunction, and due to its generic nature it can also be
used for other purposes, such as to construct the surrogate of an
hypothetical function based on a dataset (e.g. KrigingSurrogate),
and there are even extensions to this class that enable the usage
of other programming languages other than C++ in the function
implementation (e.g. PythonFunction and MatlabFunction).

An example of a class that derives from IFunction is the
class DTLZ1 that corresponds to a benchmark problem taken
from the literature with the same name [35]. The implementa-
tion for this problem is conducted in C++, but if desirable, this
could be done instead in Python or Matlab, via PythonFunction
and MatlabFunction, respectively. This feature is useful for those
users that are not familiar with C++ and wish to use a different
programming language to implement their optimization models.
Besides, it is then possible to access libraries and other modules
that are not necessarily available in C++ (e.g. Simulink in Matlab,
or scikit-learn in Python), which might be a requirement of the
optimization model. evaluate() is a method from IFunction that
is used to evaluate a function, meaning that a set of inputs are
passed to the function for evaluation and the outputs are then
generated. This method is able to evaluate only one set of inputs
for each function call, but it is possible to evaluate multiple
sets of inputs in one go by using the batchEvaluate() method.
This is useful for functions that rely on external applications,
such as Matlab, since the number of times that it is required
to open and close a connection to the software can be severely
reduced, besides it is also possible to speed up the function
evaluation by making use of vectorization.7 Another important
feature of IFunction is its support for parallel evaluations. This
takes advantage of multi-core systems by allowing solutions to be
evaluated in parallel. Any function can be defined as parallelisable
and the current implementation of this feature makes use of

7 Vectorization is a programming technique that uses vector operations

instead of element-by-element loop-based operations.

5

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 3. The relationships between the classes in Tigon that represent the optimization problem (Problem), the corresponding solution (IMapping), and a population

(ISet).

multi-threading capabilities of the C++ standard library. The term
function will be used throughout this section to refer to any class,
or function implementation, that derives from the IFunction class.

The Problem class is used to define all aspects of an opti-
mization problem. This includes, and it is not limited to: bounds
for decision variables, variable types, thresholds for constraints,
and uncertainties in the problem model (more details about un-
certainty are provided in Section 4.1.3). It is possible to use
more than one function simultaneously in the problem model
implementation, albeit that each function would contribute to
the problem model with a separate set of objectives (and/or
constraints). Although it is common practice to use only one func-
tion to implement the problem model8 since a single function
supports the specification of multiple inputs and outputs, there
are situations where using multiple functions might be desirable:

1. The implementation can be divided into several files or
modules, each implementing a different component of the
optimization model. This is useful for the design of models
that are too complex, such as multi-disciplinary optimiza-
tion problems where it is a good practice to have a separate
function for each discipline or engineering branch, which
allows for different teams to work on them separately.

2. To take advantage of more than one programming language
in the same optimization model. It is not possible to mix
programming languages in the same function, therefore if
the intention is to use libraries from, say C++ and Python
programming languages together, then one function needs
to be implemented in C++ and the other in Python.

The IMapping class represents a solution for an optimization
problem. The name refers to the relationship that maps the model
inputs (decision variables and parameters) to the outputs (con-
straints, objectives and unused outputs). The values of all inputs
and outputs are stored in the instance of the IMappingPrivate
class (namely d), and these are all of type IElement. Any instance
of IMapping also keeps a reference to the optimization problem
(m_problem), which is used to initialize many of the solution

8 The problem model of all benchmark test problems currently in the Tigon

library are implemented using a single function.

attributes (e.g. the number of inputs and their types), and allows
access to the evaluation function of the optimization problem.
Other attributes that form part of the IMapping class includes in-
formation about the solution feasibility, its evaluation status and
whether or not it satisfies any user-defined preferences (e.g. goals
in objective space), a weight vector that can be used by decom-
position based optimizers, and also a fitness score which is useful
for selection purposes. The method evaluate() in IMapping is used
to call the evaluation function of the optimization problem. The
procedure provides the inputs to the evaluation function and
updates the outputs. Both the inputs and outputs can be either
deterministic or uncertain. The deterministic values are stored in
the attribute m_value of IElement, and can be obtained by calling
the value() method. The uncertain values are obtained by calling
the sample() method (more details about this are provided in
Section 4.1.3).

The ISet class is a container of IMappings and therefore it can
be used to represent a population of solutions. The IMappings
are stored inside an ISet as pointers, and as a result, the same
IMappings can co-exist in different sets at the same time. During
the optimization process an evolutionary algorithm often evolves
a population of solutions, and we refer to this population as the
main optimization set. However, it is also possible for an opti-
mizer to create more than one population during the optimization
process. This is useful in particular for organizing the solutions
(e.g. different dominance ranks) or even to define different type
of structures (e.g. to define neighbourhoods depending on the
distance between solutions). To facilitate the identification of a
particular ISet (e.g. an ISet that contains only evaluated solutions)
Tigon makes use of tags. The tags are nothing but simple unique
strings that can be added to an ISet and they are essential for
the information flow coordination during an optimization run. A
more detailed explanation on the utility and usage of the tags in
Tigon will be provided in Section 4.4.

4.1.3. Uncertainty

Tigon supports the specification of various sources of uncer-
tainty, such as production variations, changing environmental
conditions and model–method combination errors. The uncer-
tainties in the inputs of the model (either tolerances in the design
or changes in the environmental parameters) are described by

6

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

a probability distribution. Let X and P be random variables that

follow a certain distribution for decision variables and parame-

ters, respectively. When a candidate solution with its inherent

uncertainties is evaluated, all uncertainty factors for both X and

P are sampled from their distributions, and the sampled values

are processed by the evaluation function. The outcome of such

evaluation, for each realization of the uncertainty, is a single per-

formance (or constraint) vector z. The left side of Fig. 4 illustrates

this procedure.

When models are used to simulate a physical phenomena,

accuracy errors are likely to occur. This is handled by adding

another layer of uncertainty as illustrated in the right side of

Fig. 4. This is accommodated by requesting a domain expert to

elicit the uncertainty of a simulation outcome z as a random

variable Z. For every model evaluation, instead of using the raw

evaluation z, a sample z′ from the distribution Z is used.

As said before, an important feature of IElement is its abil-

ity to generate a sample according to a distribution. For this,

the attribute m_variate of type IDistribution is able to store a

probability distribution. IDistribution itself is an interface for all

univariate distributions, either discrete or continuous. Examples

of probability distributions that implement this interface are the

normal distribution, uniform distribution, and Chi-squared distri-

bution. Once the distribution has been defined, a sample can be

generated by the sample() method.

Given that the inputs and outputs of the model are of type

IElement, it is possible to define a probability distribution for

each one of them, and treat them as random variables. The

values that are sampled from the distributions are used during

the evaluation process of a candidate solution as described in

the first two paragraphs of this section. This process is straight-

forward for inputs of the model that are defined as parameters

(e.g. environmental parameters), since all the samples can be

generated directly from the probability distribution defined in

IElement, that is, it is only required to invoke the sample()method

each time to generate a new value. For design variables and

model outputs we also need to take into account their nominal

values, given that it is general practice to define the uncertainty

as a function of the current design choices and their output

values. This is achieved by letting the statistical parameters of

the probability distribution be a function of the nominal values.

This process is implemented in the UncertaintyMapping class

where the evaluateUncertainty(IElement*) method modifies the

statistical parameters of the IElement provided as input. The

class Problem stores a reference to the UncertaintyMappings in

the attributes m_dvecUncertainties (for decision variables) and

m_fOutUncertainties (for model outputs).

4.2. Optimization architecture

We now describe the Tigon components that are involved

in coordinating the optimization process, that jointly form the

optimization architecture. These components are depicted in the

class diagram shown in Fig. 5. Fundamentally, IPSetPrivate and

IPSet are the two base classes (or interfaces) from which all

other classes are derived. IPSetPrivate keeps track of multiple

populations of solutions that are used during the optimization

process, and also keeps a reference to the current optimization

problem. IPSet contains an instance of IPSetPrivate and it provides

an interface for processing (or evaluating) the optimization oper-

ators. More details about these components, and others that they

depend on, are provided in the following subsections.

4.2.1. IOperator
Operators in Tigon are what constitute an algorithm and the

optimization workflow. All operators operate on sets of Mappings
(or solutions), and their operation may involve creating, reading,
modifying, or even deleting any existing set, and their solutions.
(For more information concerning the way Tigon coordinates
the way operators process the sets, please refer to Section 4.4).
Moreover, operators often expose properties that the user can
modify based on the functionality of each operator (e.g. probabil-
ity of solution crossover in SBX Crossover). There are five types
of operators currently implemented in Tigon:

1. Initialization. All initialization operators derive from the
IInitialisation interface. An initialization operator is essen-
tially used to generate the initial population for an algo-
rithm. For a population-based algorithm, it can represent
a Design of Experiment (DoE) operation, Latin Hypercube
Sampling (LHSInit), Hypercube Grid Sampling (Hypergri-
dInit), Uniform Sampling (RandomInit), for example.

2. Evaluator. Evaluators are designed to perform function eval-
uations. Essentially they manage when and how to call the
evaluate() method in the Mappings and perform a sanity
check of the outputs.

3. Genetic. These are operators used by evolutionary algo-
rithms, such as mutation, filtration, non-dominated rank-
ing, elite selection, etc.

4. Formulation. This operator manages the optimization prob-
lem formulation. It loads either a predefined optimization
problem from the Tigon library or processes user-defined
problems. The ProblemGenerator is a concrete implemen-
tation of this class.

5. Convergence. Performance metrics to evaluate the quality of
a solution set. The scope is not limited to metrics that mea-
sure the convergence to the POF, and also includes those
metrics that measure the distribution across the POF. One
existing performance metric that can be used to estimate
the convergence and distribution of the solution set is the
hypervolume indicator [31].

New operator types can be easily added and incorporated in
the current collection in a straightforward manner, since they
would inherit from the IOperator class.

4.2.2. IAlgorithm
An algorithm contains a sequence of operators. Although ini-

tialization, formulation and evaluation operators can be part of
an algorithm, they are usually defined outside the algorithm.
This is done in order to simplify the workflow that is exposed
to the user, since the initialization, formulation, and evaluation
operators are always required to exist in any optimization al-
gorithm workflow. So, in general, the algorithms implemented
in Tigon contain genetic operators. That being said, it is also
possible to add, for example, another evaluation operator into
the workflow of an algorithm and, in fact, more than one if the
need arises. All the algorithm classes derive from the IAlgorithm
interface. Similar to an operator, the algorithm also exposes a set
of properties that the user is able to modify. The user can simply
add operators by appending them in the order of operation by
using the appendOperator() method.

4.2.3. IPSet
The IPSet (Interface for Population Set) is a fundamental class

in the architecture of Tigon. It is an abstraction for the data struc-
ture of an optimization process. All the information related to an
optimization process, such as solution sets,9 problem definition,

9 The solutions generated during the optimization process are stored in the

instance of IPSetPrivate, namely d.

7

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 4. Types of uncertainty and its propagation during the evaluation of a candidate solution. Random variables are marked with larger arrows.

Fig. 5. The Tigon components that form the optimization architecture shown in a class diagram.

termination criteria etc., are encapsulated in the IPSet class. The
derived classes from IPSet access and modify the data by using
a protected interface. Certain aspects of this interface include
the possibility for the user to specify the access policy of each
operator to the existing sets. For instance, an operator might be
only allowed to access sets that have a particular tag. More details
about the mechanism that allows operators to access the sets is
provided in Section 4.4.

IPSet contains the evaluate() method, which is implemented
by the two derived classes, namely PSetBase and IPSetDecora-
tor. This provides the control mechanism behind the decorator
design pattern, and it is therefore responsible for coordinating
how the operators access the data, and also in which sequence
this happens. More details about this implementation will be
provided in Section 4.2.5. The actual procedure conducted by
the operators that are derived from IPSet is implemented in
the method evaluateNode(). Note that this method is declared
in the IPSetDecorator class as virtual, and each operator needs
to provide its own implementation. This allows the operators to
perform completely different actions on the sets.

4.2.4. PSetBase

The PSetBase class provides a concrete implementation of the
evaluate method in IPSet. It does not perform any associated
computation, that is, the evaluate() method is an empty function.
It can be considered as the mark of the start of a workflow.

4.2.5. IPSetDecorator

As already mentioned, Tigon utilizes the Decorator design
pattern to form a workflow, which can be used to setup the

building blocks of an optimization algorithm. Alternatively, it
is also possible to select a set of operators to conduct other
tasks, such as load a population of solutions for visualization in
a graphical front-end, generate a set of solutions based on some
DoE approach, or to conduct post-optimization tasks (e.g. extract
the non-dominated solutions from a population). A workflow in
this context is composed of operators and each operator is used to
decorate the instance (or object) that hold the workflow. The core
implementation of this design pattern lies in the IPSetDecorator
class, which is considered to be the base for all decorators. More
details about the IPSetDecorator class are described as follows.

The IPSetDecorator class, like PSetBase, also provides an imple-
mentation to the evaluate() method from IPSet. This implemen-
tation makes use of recursive composition to produce a custom
workflow based on a set of operators. The operators involved in
a workflow are placed on a given order for execution, which is
defined recursively, without the need to define this order by using
a static approach.10

We now discuss some details about the implementation of the
decorator design pattern and how this influences the construction
of a workflow. To build a workflow, an order of execution for
the operators needs to be defined. To define this order, we make
use of the constructor of each operator, which can take an IPSet
instance as an argument. Fig. 6 shows an excerpt from the code
where a set of operators, and their order, is chained together by
using their constructors.

10 A static approach of composing a workflow in this context would require all

possible combinations between the operators to be defined prior to compilation

time, which can be impractical for a large number of operators.

8

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 6. An illustration of operator evaluation calls.

The first operator is PSetBase and this indicates the base, and
also the first execution point of our workflow. The following
operators, that is, ProblemGenerator, RandomInit and Evaluator,
execute a set of instructions in this particular order. First the
optimization problem is loaded, then a set of solutions is ini-
tialized, and finally the objectives and constraint functions of all
solutions are evaluated. To achieve this behaviour we make use
of the IPSet instance (m_ipset) and the evaluate() method, both
found in IPSetDecorator. What follows is a recursive composition
to allow operators to be added to the IPSet instance and the
implementation is shown in Fig. 7.

In Fig. 6 the Evaluator operator invokes the evaluate() method.
This creates a chain of events as illustrated in the sequence
diagram shown in Fig. 8. Note that when the evaluate method
of the evaluator is called, it backtracks all the way to the evalu-
ate method in the base, which does nothing. After the evaluate
method completes, control is passed to the ProblemGenerator
operator, which invokes its own evaluateNode() method. Fol-
lowing this, both RandomInit and Evaluator also invoke their
evaluateNode() methods in this particular order.

4.2.6. TigonEngine and OptimizationLinearFlow

The two top classes in Fig. 5 are TigonEngine and Optimiza-
tionLinearFlow. These two classes provide an interface to interact
with the Tigon library, in a very simple way, since only the
methods necessary to operate a workflow are exposed.

The OptimizationLinearFlow keeps track of a vector of op-
erators that together form a workflow. The function evaluate()

will automatically invoke the evaluate() function from the last
operator added to the workflow, starting a chain of events,
such as those described in Fig. 8. The TigonEngine class fol-
lows a Singleton design pattern [33], which defines a unique
instance that holds the Tigon execution engine. This means that
only one engine instance is allowed to exist during run-time.
However, this does not prevent the user from adding multiple
workflows to the same engine, by using the function append-

Flow(OptimizationLinearFlow*). Subsequently any workflow can
be evaluated by calling the function evaluateFlow(int) where the
input argument corresponds to the workflow index inside the
engine.

4.3. Optimization workflow

An optimization procedure, including the problem definition
and algorithm in Tigon, is described as a workflow. An opti-
mization workflow is represented as a chain of operators. A
complete workflow must contain a base set (PSetBase), a problem
formulation operator, an initialization operator, an algorithm, and
an evaluator. The base set marks the start of the workflow. The
excerpt from the code in Fig. 9 shows a minimal workflow and
its execution.

When a user runs an optimization algorithm, the operators are
processed in a sequence and the existing sets are modified in a

Fig. 7. Implementation of the evaluate() method in IPSetDecorator.

process that resembles an optimization task, where a population
of solutions is evolved iteratively. Any solution during the opti-
mization process is either created or modified by an operator. For
instance, the set that contains the randomly initialized solutions
is created by the RandomInit operator. It is then possible for other
operators that search for this particular set to create sets based
on the initial population and/or to directly modify the solutions
of the set.

Knowing that multiple sets co-exist during the optimization
process at the same time, it is important for the operators to
be able to identify which sets they are supposed to operate
on. To support the operators in identifying the required sets, a
mechanism based on the usage of tags is implemented in Tigon.
More details about this mechanism is provided in the following
section.

4.4. Information flow

Each operator in Tigon contains tags, and these are used to
help the operators to find the sets that they need to operate on.
From the perspective of an operator the sets are categorized as
either input or output sets. The input sets are read-only, meaning
that they will not be modified, and the operators will only use
them to access the information stored in their solutions, often to
create or modify other sets. The output sets provide an indication
to the operator that they can be modified, or in some cases they
are even created directly by the operator itself. The way this is
achieved is by assigning input and output tags to the operators.
An operator will then search for those sets that contain the tags
that it is looking for. The tags that are currently implemented
in Tigon are used in a way that describes the operation with
which the operator is associated and the operation that needs
to be performed on a set. The tags are added to the operators
before the start of the optimization process. When an operator is
initialized it will be assigned with tags that are appropriate for
its functionality. For example, the RandomInit operator creates
a set that corresponds to the initial population of solutions, and
tags this set with the tag Main Optimization Set. This is an output
set for RandomInit because this set has been created by the
operator. Other operators will be able to identify this set during
the optimization process if they use the tag Main Optimization Set.

It is possible to add more than one tag to a set. For instance,
the RandomInit operator, besides tagging the initial population

9

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 8. An illustration of the chain of execution for example in Fig. 6.

Fig. 9. Source code for defining a minimal workflow in Tigon.

set with the Main Optimization Set tag, also adds the tag For

Evaluation. This provides an indication that the solutions in this

set have not been evaluated yet, and other operators, for instance

those that derive from IEvaluation, are now able to identify this

set in case it exists. Moreover, when searching for a set with a

given tag, the operators make a distinction between an input tag

and an output tag, that is:

1. If the tags in a set correspond to all input tags of an

operator, the set is referred to as an input set, and the

operator reads the solutions of the set but never modifies

them.

2. Conversely, if the tags in a set correspond to all output tags

of an operator, the set is referred to as an output set, and

the operator can read and modify the solutions in the set.

In general, the operators have at least one output tag, and in

some cases there are no input tags. For instance, the RandomInit

operator only contains output tags and no input tags, since it does

not need to read information from other sets in order to create

the initial population. The following is a list of commonly used

tags in Tigon operators and algorithms:

1. Main Optimization Set: The population-based optimization

algorithms often have one population of solutions that is

processed in every iteration (or generation); the set that

contains such solutions is identified with this tag.

2. For Evaluation: This tag indicates that the solutions in the

set need to be evaluated. This means that it is required to

evaluate the objective functions (also constraints, if any).

The operator Evaluator contains For Evaluation as an output

tag.

3. Fitness: Some operators attribute fitness to the solutions,

often in the form of a score, by using a performance crite-

rion. This tag indicates that fitness has been added to the

solutions in the set. One operator that attributes fitness to

the solutions is NonDominance Ranking, and uses Fitness as

an output tag.

4. For Selection: A set of solutions is tagged for selection to

indicate that those solutions can undergo selection based

on some criterion. This often means that the solutions in

the set already have fitness, and it is now possible to select

the best solutions. One example of a selection operator is

the NSGA-II Elite Selection, which contains the output tag

For Selection.

Consider the three operators and the respective tags shown in

Fig. 10. The figure also shows the corresponding code that is re-

quired for implementing the desirable information flow between

the operators in Tigon.11 The operator at the top is always the

first one to operate, which in this case corresponds to Random

Initialization. This operator creates a population of solutions and

the set that contains this population is initially tagged with Main

11 Please note that many of the tags mentioned in Fig. 10 exist by default

inside the operators and are only shown for illustration purposes. Hence, in

most cases it is not required to add them while composing a workflow.

10

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 10. An example showing three operators with their tags on the left, and the corresponding excerpt from the code in Tigon is on the right.

Optimization Set and For Evaluation tags. The circle shown below
the Random Initialization and NonDominance Ranking operators
in Fig. 10 indicates that new sets are created by the operators.
That is:

1. The Random Initialization operator creates the main opti-
mization set and attributes the tags Main Optimization Set

and For Evaluation.
2. The Non-Dominance Ranking operator creates multiple

sets, and each set is tagged with Fitness and For Selection.

Note that the Evaluator operator does not create any sets, since
it only operates on existing solutions. Once the solutions in the
main optimization set are evaluated, it is now possible to add
fitness to the solutions by using some fitness operator, such
as Non-Dominance Ranking. This operator reads from the main
optimization set and divides the solutions into sets based on their
dominance rank. Moreover, the tags added by the NonDominance
Ranking operator lead to the following:

1. Fitness: the solutions have gained fitness by using the
non-dominance principle as the fitness criterion.

2. For Selection: this tag indicates that selection operations
can be applied to the solutions in the set. Knowing that
fitness is now added to the solutions, it is now possible
for other operators to conduct selection operations. In this
case, the solution can be selected based on its rank in terms
of the non-dominance principle.

The sets created by the NonDominance Ranking operator con-
tain the mappings that were originally created by the Random
Initialization operator. These mappings that form the main op-
timization set have been simply rearranged into different sets
according to their dominance rank. However, the sets only store
pointers to the mappings, and not the mappings itself. This means
that the mappings in the sets created by the NonDominance
Ranking operator also exist in the main optimization set. Hence,
any modification to any mapping in the main optimization set is
also reflected on the sets created by the NonDominance Ranking
operator, and vice-versa.

5. Composing an optimization algorithm

Tigon is designed such that it is straightforward to compose
new algorithms from existing operators. In this section, we take
NSGA-II [25] as an example to illustrate how to compose a new
algorithm by using the Tigon operators together with the concept
of tags. NSGA-II is a popular elitist MOEA that relies on Pareto-
dominance for selection and crowding distance for maintaining
a diverse set of solutions in the population. The steps of NSGA-II
are as follows:

1. Initialization: The first step of NSGA-II is to initialize a
population of solutions. This is often done by using a to-
tally random approach, but any other more sophisticated
DoE approach could be used instead (e.g. Latin hypercube
sampling).

2. Evaluation: The initial population is then evaluated, which
consists of evaluating all the objective functions, and con-
straints if any.

3. Fitness: It is now possible to apply some criterion to rank
the solutions. The criterion adopted by NSGA-II is to rely
on Pareto-dominance to induce an order between the so-
lutions. The solutions are then organized into ranks, where
rank 1 solutions are considered to be better than rank 2,
etc. The ranks are also sorted based on crowding distance
where the least crowded solutions appear first, and the
more crowded ones appear later.

4. Selection: The next step is to select the elite population, and
the criterion is to select the solutions starting from rank 1,
and then 2 and so on, until at least half of the population
is selected. The other half of the population is discarded.

5. Filtration with Tournament: The aim of this step is to select
solutions from the elite population. The first iteration of the
selection process is as follows. First, four unique solutions
are chosen randomly from the population. Then, the first
two and the last two solutions are paired together, and
sent for tournament.12 Finally, the selected solutions are
those that win the tournament. This process is repeated
until the number of selected solutions is equal to the elite
population size.

6. Recombination and Perturbation: The selected solutions from
the previous step are first paired together. Each pair is
now recombined by using the SBX crossover, and in each
case, two new solutions are generated. A perturbation
operation is then applied to each new solution, often by
polynomial mutation. Note that it is not expected for all
solutions to undergo perturbation since this depends on
some user-defined probability.

7. Merge the population: the new solutions are now combined
with the elite population to generate the final population.
Following this, one iteration (or generation) takes place.
This process repeats itself by going back to step 2, and
stops when some stopping criterion is satisfied (e.g. until a
user-defined maximum number of iterations is exceeded).

12 Consider two solutions, say solution a and b, and the tournament selection

is as follows. Solution a wins the tournament if a dominates b or the crowding

distance of a is higher than the crowding distance of b (meaning a is less

crowded than b), otherwise b wins the tournament. In case the solutions are

non-dominated (meaning that neither a dominates b nor b dominates a) and

they both have the same crowding distance, then the solution that wins the

tournament is picked randomly.

11

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 11. NSGA-II operators and tags diagram (on the left) and corresponding code in Tigon (on the right).

The operators and tags used to compose NSGA-II are shown

in Fig. 11. The figure also shows the corresponding code in Tigon

to implement this example. The Initialization step is represented

by the Initialization operator, which is responsible for initializing

a population of solutions. This operator is just an interface and

it will be replaced by other operator that implements it (e.g.

RandomInit which initializes the solutions randomly). Notice that

this operator is a set creator, and the new set is tagged with tags

(in red) Main Optimization Set and For Evaluation. The Evaluation

step is represented by the Evaluator operator, and the main opti-

mization set is evaluated and treated as an output set. The Fitness

step is represented by two operators, namely NonDominance

Ranking and NSGA-II Crowding. The first is a set creator operator,

and each new set corresponds to a different rank of solutions.

Crowding distance then sorts the solutions inside each set. Since

the solutions now have fitness, it is now possible to use selection

operators, hence, the tags (in blue) Fitness and For Selection. The

Selection step is conducted by NSGA-II Elite Selection operator,

that reads from the sets created by the NonDominance Ranking

operator. This operator is also a set creator since the elite popu-

lation is created at this stage. The tags (in green) used in this case

are as follows:

1. Knowing that the elite population will be selected into the

next iteration, the set is therefore tagged with the tag For

Next Iteration.

2. In order for TournamentFiltrationForDirection operator to

pick only the elite population, and avoid the sets that have

a lower rank, the tag For Modification is added to the elite

set.

3. Given that the tag For Selection is an input tag of Tourna-

ment Filtration for Direction, we then need to add this tag

to the elite set.

Moreover, the Filtration step with tournament is conducted by

the operator Tournament Filtration for Direction. This operator

creates multiple sets, where each set contains only two solutions

taken from the elite population. The new sets are tagged (in

orange) by the tags For Direction, For Perturbation, and For Next

Iteration. The first ensures that the sets are found by the SBX

CrossOver operator, the second does the same for Polynomial

Mutation, and the third ensures that the new solutions are found

by the Merge For Next Iteration operator. The recombination

and perturbation step is then conducted by the SBX CrossOver

and Polynomial Mutation operators, respectively. Finally, the new

solutions are combined with the elite set by the Merge For Next

Iteration operator, and the new final population replaces all solu-

tions from the main optimization set. This process now completes

one iteration, and this can be repeated again by using the new

main optimization set in the next iteration. Note that the Initial-

ization operator only operates during the first iteration, since it

only generates new solutions in case these have not been created.

6. Graphical user interface

The GUI of Liger has been constructed by using the Qt toolkit

and its architecture shares some features with the QTCreator

software, most notably the plugins system. In this section we first

describe the plugins that are responsible for the behaviour of the

GUI in Section 6.1, how to create and run a simple optimization

12

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

workflow is described in Section 6.2, and the interactive decision-
making capability of Liger are demonstrated on a real-world
optimization problem in Section 6.3.

6.1. Plugins

The Liger plugin system is based on the plugin loader feature
from the QtCreator software, which provides an interface for im-
plementing functional modules to extend the capabilities of Liger.
As previously mentioned in Section 3, some important plugins
are: Core User Interface, Designer, Tigon User Interface, and Visu-
alization. The Core User Interface is customized from QtCreator’s
CoreUI and provides interfaces for several fundamental tasks,
including communication, file input–output operations, handling
settings, and several others. The other plugins are described as
follows.

6.1.1. Designer and Tigon user interface plugins
Designer defines a generic framework of a visual programming

environment. Note that the Designer plugin is devised to be
generic and is not coupled to any specific optimization library.
Changes in the optimization library do not result in a change
in the designer. In addition, this design decision enables the
possibility of working with multiple optimization engines within
a single structure. In software engineering practice, low coupling
between libraries, or other software components, helps generate
a well-structured software system and a good design, which in
turn improves readability and maintainability.

The fundamental component of the Designer is the process
node. Every process node extends the IProcessNode abstract class,
which provides the necessary functionalities to allow the user
to view or modify the properties of the underlying operators. A
process node is comprised of zero or one input port and zero
or one output port. Each process node holds a pointer to the
underlying operator and has access to all of its properties. An
optimization workflow consists of a list of process nodes and
the associated links. Each workflow starts at the Master Start
Node (MSN) and ends at the Master End Node (MEN). These two
nodes are unique per design and provide a frame of reference for
the start and end of an optimization loop. It is possible to add
multiple process nodes between the MSN and MEN.

The IEngine within Designer is the part that coordinates the
order of execution within an optimization workflow. Once the
workflow is fully configured, the engine invokes evaluate()
method to pass the workflow to the underlying optimizer and
start the optimization process. Since the run time of the op-
timization process can take hours, or even days, to finish, to
prevent the optimization from blocking the main application and
for the sake of performance, evaluate() method will instantiate
a new thread and execute the workflow on this thread. The
communication between the optimization thread and the main
application, i.e. the GUI, is accomplished via signals. When the
optimization process starts, the engine will emit signals to inform
the Designer so that no modification of the operators will be ac-
cepted. The optimizer performs its execution until either an error
occurs or the termination criteria are satisfied. Upon termination,
the engine emits signals to the Designer and sends data to the
visualization plugin. Note that the IEngine in Designer defines
fundamental methods to launch an optimizer. Any realization of
the IEngine has to follow the interface defined in IEngine in order
to be compatible with the rest of the GUI.

The Tigon User Interface plugin is a realization of the Designer
plugin. It provides:

1. Process node implementations derived from IProcessNode,
which exposes operators or algorithms from Tigon to the
Designer. These process nodes enable the user to create or
modify Tigon operators from the user interface.

2. Engine implementation derived from IEngine, which estab-
lishes the link between the GUI and the Tigon Engine. It
passes the fully configured workflow to the engine and
manages the evaluation of the workflow.

6.1.2. Visualization plugin

This section shares details about the visualization plugin which
provides a set of graphical plots capable of visualizing solutions
from an optimization problem. The graphical plots are accessible
via process (visualization) nodes that can be drag and drop by
the user into the Liger optimization workflow. One of the main
difficulties in the development of this plugin has been the fact
that a high-level C++ visualization library is not available under
an open source licence that fits with the philosophy of Liger. This
is why the visualization plugin of Liger uses a combination of
the QtWebEngine and D3. D3 is a JavaScript based visualization
library that creates scalable vector graphics and allows for user
interaction. The performance of the library, so far, suits the re-
quirements of Liger, although cannot be compared to a native C++
library that would make use of specialized hardware (graphics
cards).

A class diagram in Fig. 12 provides an illustration of the
visualization plugin architecture. There are currently three types
of graphical plots available in Liger and they are implemented
simply as process nodes. They are all derived from the QVizNode
class, which, in turn, is derived from IProcessNode. This means
that the plots are part of the workflow and they operate as a
process node. It also makes each individual plot type, such as scat-
ter plot, matrix scatter plot and parallel coordinates plot contain
the same base functionality. This base functionality provides the
capability to export the data (i.e. solutions shown in the graphical
plots) to different formats, including in the form of an image
(e.g. PNG, JPEG), or save the data in text human-readable formats,
such as JSON13 (short for JavaScript Object Notation). The base
functionality also provides capabilities to handle information flow
in both ways between the graphical plots and the optimization
library Tigon. Thus, when the user interacts with some of the
features of a plot they are fed back to the optimizer. Existing
features that take advantage of this capability are:

1. Real-time update: the user is able to visualize changes
being made to the population of solutions during the opti-
mization run;

2. Interactive decision-making: a DM is able to provide his/her
preferences (e.g. goals or target levels with respect to
objectives) by interactively brushing the preferred region
in the objective space directly in the graphical plots as a
way to guide the optimization process towards the most
preferred solution;

3. Data filtering: check boxes exist in the GUI that toggle
between showing all solutions or just showing only those
that are non-dominated, feasible (satisfy all constraints), or
pertinent (satisfy all goals).

6.2. How to create, setup, and run a simple optimization workflow

This section demonstrates how to create a simple optimiza-
tion workflow with a benchmark optimization problem, namely
DTLZ1, and a multi-objective optimization algorithm, in this case
NSGA-II is chosen. The optimizer is run for a number of iterations
and the obtained results are shown in the visualization nodes.

The first step is to create an empty project by clicking on File,
New, and then select ‘‘Liger Optimization Workflow’’. The process

13 JSON is an open-standard file format that is language-independent and it

is supported by many applications, including the existence of built-in functions

in Matlab and Python for dealing with JSON files.

13

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 12. Liger visualization plugin architecture.

nodes can now be added to the workflow by drag and drop from
the left panel to the area in the middle as shown in Fig. 13. All
nodes shown in the figure are then connected in series by having
MSN (Green) as the first node, and MEN (Red) as the last one. The
other nodes are as follows: Prob, loads the optimization problem;
RInit, initializes a population of solutions randomly; Eval, eval-
uates the optimization model; NSGA-II, runs the optimizer; and
the last three are visualization nodes corresponding to parallel
coordinates plot, scatter plot, and matrix scatter plot.

The next step is to configure the process nodes, and in this
example we only need to consider the problem formulation,
random initialization, and MEN. The configuration of each node
is presented in a window when a user double clicks the node as
shown in Fig. 14. Consider the following:

1. In the problem formulation, DTLZ1 is loaded as a function
with five input variables and three objectives. Given that
DTLZ1 is an internal problem of Liger, it is accessible with-
out the need for the user to provide an implementation of
the problem model.

2. In the random initialization window the OptimizationSet-
Size property is set to 100. This means that the initial
population will be initialized with a total of 100 solutions.

3. In the MEN we define the termination criterion for the op-
timization run. For this the maximum number of iterations
property is set to 100.

Once the workflow has been configured, an optimization run
is initiated by clicking on the green button (▶) shown in the
bottom left corner of the Liger GUI. It is possible to stop at
any time the optimization run by clicking on the red button (■)
just below. Fig. 15 shows the graphical plots of the visualization
nodes obtained at the end of the optimization run, in that: (i)
the scatter plot (top-right) shows the solutions represented in
the objective space for the first two objectives, although it is
possible to select any other dimensions to be represented; (ii)
the matrix scatter plot (bottom-left) shows a grid of scatter plots
with all possible combinations between the objectives, it is also
possible to extend this to the decision space; and (iii) the parallel
coordinates plot (bottom-right) shows the solutions represented
as connecting lines across all objectives, and decision variables.
Objectives can be in total or partial conflict with each other,
and this can be identified in a parallel coordinates plot, where
conflict corresponds to regions where lines cross. For instance,

in Fig. 15 the second objective is shown to be in conflict with

the other two since most lines are shown crossing. Below the

parallel coordinates plot there is a table that shows the values

of the objectives and decision variables for all solutions. The data

shown in the plots can now be saved as figures (e.g. PNG or JPEG)

or exported into JSON format.

6.3. Demonstration of interactive decision-making on a real-world

optimization problem

This section demonstrates the interactive decision-making ca-

pabilities of Liger on a real-world optimization problem. The

problem model is implemented in Matlab. The term interactive

decision-making has been mentioned in Section 6.1.2 as one of

the features of the visualization plugin, where a DM can interact

directly with the graphical plots to provide his/her preferences.

The preferences take the form of goals with respect to the ob-

jectives, and an optimizer is tasked with finding solutions that

satisfy them. For this, the optimizer uses an implementation

of the preferability relation defined in [4] to induce an order

between the solutions based on the provided goals. This feature

is available in Liger for Pareto-based MOEAs such as NSGA-II and

MOGA.

We consider a simplified control engineering problem where

the aim is to design a digital feedback control system for a

plant.14 The problem model is available as one of the examples

provided by the Liger software.15 As is common in industrial

control problems, the design engineer has the task of tuning

a so-called Proportional–Integral (PI) controller. The tuning task

involves selecting the values of the controller’s two parameters—

known as the proportional gain, Kp and the integral gain, Ki. There

are nine performance criteria for the controller to meet:

1. Stability criteria (representing the extent to which the con-

trol system exhibits stable behaviour—these criteria are

important for safety considerations):

14 More details about the system model of the plant can be found in [36]

page 265.
15 Depending on where Liger has been installed (assuming to be in $LIGER),

the model of the control system problem can found in the following folder

$LIGER/share/liger/examples/matlab/Ogata/.

14

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 13. Liger workflow.

Fig. 14. Liger nodes configuration.

Fig. 15. Liger visualization nodes.

15

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Table 1

Chief Engineer preferences for the digital control system.

Criterion Direction Goal Priority

Largest closed-loop pole Minimize <1 Hard constraint

Gain margin Maximize 10 dB High

Phase margin Range ≥30◦ & ≤ 60◦ High

Rise time Minimize 2 s Moderate

Peak time Minimize 10 s Low

Maximum overshoot Minimize 10% Moderate

Maximum undershoot Minimize 8% Low

Settling time Minimize 20 s Low

Steady-state error Minimize 1% Moderate

(i) Magnitude of largest pole in the closed-loop transfer

function (for a digital system, the pole magnitude

must not exceed unity);

(ii) Gain margin;

(iii) Phase margin;

2. Transient criteria (relating to how satisfactorily the control

system responds in the short-term to changes in demand):

(iv) Rise time (from 10% to 90% of the demanded value);

(v) Peak time;

(vi) Maximum overshoot;

(vii) Maximum undershoot;

(viii) Settling time (within 2% of the demanded value);

3. Steady-state criteria (relating to how satisfactorily the con-

trol system responds in the longer-term to changes in

demand):

(ix) Steady-state error.

Note that the precise meanings of these criteria are not essen-

tial to the example—however the interested reader can find more

details in [36]. The criteria are provided by the function evalu-

ateControlSystem which takes a pair of controller gains (KP , KI) as

input. The intention is to identify a set of controller gains that

will meet the preferences of a Chief Engineer in relation to the

performance criteria. These preferences are outlined in Table 1.

The Chief Engineer is allowed to change the preferences during

the optimization run based on any evidence presented to him/her

that suggests, for instance, that these are unlikely to be satisfied,

following which the Chief Engineer could make a decision about

either relaxing or tightening the existing goals.

Fig. 16 shows a Liger workflow with the control engineering

problem setup. The workflow is very similar to the one in Fig. 13,

and the only difference is that instead of the node Eval there

is BEval. The latter sends a batch of solutions to the evaluation

function all at once, as opposed to calling the evaluation func-

tion several times, once for each solution. This is advantageous

when interfacing with external programs like Matlab since it is

faster to evaluate solutions in a batch as opposed to having to

call the evaluation function several times. NSGA-II is chosen as

the optimizer. This may come as a surprise given the earlier

statement in Section 2 where NSGA-II, to some extent, is not

suitable for dealing with multi-objective problems with four or

more objectives. The main reason for this relates to the inefficacy

of Pareto-dominance based primary selection, where all solutions

can become non-dominated, leading to poor selection pressure

for convergence to the POF. However, this difficulty is countered

by exploiting, via inclusion of the preferability component, the

preference order over the non-dominated solutions induced by

the Chief Engineer’s preferences.

The problem formulation in Fig. 16 shows the controller gains

defined as variables, and each controller gain has been set to

take any value from the interval [0.0001, 10] (defined on a loga-
rithmic scale). The outputs of the problem function are defined
as objectives, the only exception being the largest closed-loop
pole (labelled in the workflow as CloseLoopStability) which is
defined as a constraint. One of the current limitations of the
problem formulation in Liger is that only one goal (or thresh-
old) can be defined per output (either goals for objectives, or
threshold for constraints). To address this issue, and knowing that
the Chief Engineer wishes to restrict the phase margin criterion
by a given range, we have exposed the phase margin output
twice in the problem model, and we set one for minimization
(PhaseMarginMin) and the other for maximization (PhaseMargin-
Max). Moreover, in the MEN the number of iterations to run the
optimizer is set to 300, and in the tab Pause we have set two
intervention points corresponding respectively to iterations 100
and 200. During each intervention point the obtained results are
shown to the Chief Engineer, and a decision will be made if a
change to the existing preferences is deemed desirable.

The results obtained after each intervention point, and also at
the end of the optimization run, are shown in Fig. 17. For the
first 100 iterations no goals have been set for the objectives to
allow the optimization algorithm to explore all potential trade-
offs, and all solutions obtained are shown in Fig. 17a. Considering
the objectives with a high priority, namely gain margin and phase
margin:

1. The upper bound on the phase margin restricts the max-
imum gain margin, where the maximum value found is
around 8.6 dB. This means that it is expected to be difficult
to satisfy simultaneously the upper bound of the phase
margin and the 10 dB goal for the gain margin. This is
shown in Fig. 17b.

2. Increasing gain margin beyond 10 dB is in conflict with
minimizing rise time, peak time, and settling time, while
both overshoot and undershoot are zero. On the other
hand, satisfying the bounds for phase margin provides
lower values for rise time, peak time and settling time,
while overshoot and undershoot have higher than zero
values both closer to their corresponding goals.

Given that relaxing the gain margin is likely to lead to so-
lutions with values closer to the goals of rise time, peak time,
and settling time, the decision is to relax the gain margin goal
from 10 to 6 dB. The goals for the objectives with high pri-
ority are now set,16 and the solutions found at iteration 200
are shown in Fig. 17c. Considering now the objectives with a
moderate priority, namely rise time, overshoot, and steady-state
error. Most solutions found satisfy the goals for overshoot and
steady-state error. However, the lowest value for rise time is
around 2.95 s which is higher than the goal of 2 s. There are
also many solutions found that satisfy the goals for overshoot
and steady-state error, and at same time deliver a gain margin
close to 7 dB. The decision is to relax the rise time goal from 2
to 3 s, and to tighten the goal of gain margin from 6 to 7 dB. The
goals for the objectives with a moderate priority are now set, and
the solutions found at iteration 300 are shown in Fig. 17d. All
solutions found satisfy the goals for peak time, undershoot and
settling time. A decision is now made about which solution to
pick given that the range of possible values is quite restricted:
[0.2589, 0.2724] and [0.2457, 0.2557] for Kp and Ki respectively.
Given that the gain margin has a high priority, we now assume
that the Chief Engineer chooses the solution with the highest gain

16 The goals for the objectives can be set directly in the parallel coordinates

plot by brushing the objectives as shown in Fig. 17b, where the upper bound

(for minimization) or lower bound (for maximization) of the brushed area is set

as the current goal.

16

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 16. Setup of the control engineering problem in Liger.

margin, which corresponds to controller gains Kp = 0.2623 and
Ki = 0.2473, and delivers the following outputs: a gain margin of
7.362 dB, a rise time of 3 s, a peak time of 8 s, an overshoot of
7.959, a settling time of 10.23 s, and a steady state-error close to
zero.

This example has shown a very important aspect of the in-
teractive decision-making capabilities of Liger, which relates to
how the tasks of optimization and decision-making are con-
ducted. Traditionally in the field of Evolutionary Multi-objective
Optimization (EMO), an MOEA is used to find a set of trade-off
solutions, and then a DM is asked to select from amongst the
available options the most desirable solution. The new paradigm
introduced by the MCDM based MOEAs is to conduct optimization
and decision-making interchangeably, giving more control to a
DM (or multiple DMs) to guide the search to the solution most
preferred by them. This also has the potential to inform the DM
about some aspects of the problem model that he/she was not
previously aware of (e.g. for the example problem, that by having
an upper bound on the phase margin of 60◦ it is not possible to
deliver a gain margin of 10 dB).

7. Summary

This paper marks a new direction in the development of Liger,
extending its capabilities beyond those offered by the previous
version. The new version (v1.0) is released under the LGPL li-
cence and is publicly available as open-source in GitHub. The
development of Liger has been steered by the need to solve real-
world optimization problems found in industrial applications,
many of those suggested by our industrial partners (e.g. Ford
and Jaguar Land Rover). These optimization problems are often
characterized for having constraints, multiple objectives, and a
mix between different types of variables (e.g. continuous and
discrete). There is also a need to account for various sources
of uncertainty such as production variations, changing environ-
mental conditions and model–method combination errors. In this
process, we have learnt that many optimization practitioners

inside different organizations are not necessarily optimization
specialists, and they often use commercial software that cannot
be tailored to their exact needs, or lack transparency about which
optimization methods are being used under the hood. Therefore,
the ideal optimization software for this target audience needs
to be intuitive, easy-to-use and customizable. There is also the
need to accommodate researchers that require an open, flexible,
reusable and sustainable optimization environment to develop
and maintain new algorithms. The previous version of Liger [9]
relied on the jMetal optimization library which could not satisfy
all these requirements, and more work needed to be done on the
GUI to make it more intuitive and simpler to use.

To address the above, one major contribution of this work is a
new optimization library, known as Tigon. The new library pro-
vides a new design paradigm for evolutionary algorithms based
on the decorator design pattern. This allows for rapid algorithm
prototyping where an algorithm is simply a composite of different
operators, and new algorithms can be created by introducing new
operators and/or recombining existing ones. We have shown how
to use this concept to compose a popular elitism MOEA, namely
NSGA-II. The implementation of other types of MOEAs cover-
ing different evolutionary computation paradigms are available
in the Tigon library, and this demonstrates that the decora-
tor design pattern provides a flexible approach for composing
MOEAs. Other features found in the Tigon library include: sup-
port for progressive articulation of user preferences during the
optimization run when using Pareto-based MOEAs; performance
assessment metrics for comparing MOEAs; support for parallel
evaluations to take advantage of multi-core systems to speed up
the optimization process; support for a number of programming
languages to implement the optimization problem; support for
optimization problems with a mix of different types of variables
(e.g. continuous, discrete, and also deterministic and uncertain).

The GUI of Liger offers an intuitive interface where an opti-
mization workflow can be constructed by placing operator nodes
via a simple drag-and-drop functionality. During an optimiza-
tion run, a user is able to inspect the obtained results by using

17

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

Fig. 17. Results of the control engineering problem showcasing the interactive decision-making capabilities of Liger.

18

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

state-of-the-art visualization tools tailored for multi-objective
optimization. To facilitate the process of identifying the most
preferred solution, a DM is able to provide his/her preferences
in a form of a goal vector to express some form of target levels
with respect to the objectives. It is possible to update the goal
vector during an optimization run by interacting directly with
the graphical plots offered by the visualization tools (e.g. via
parallel coordinates plot). The preference articulation feature to-
gether with the existing visualization tools are highly valuable
for dealing with real-world optimization problems since the ini-
tial preferences by a DM may be infeasible. It has been shown
on a control engineering example problem that by conducting
optimization and decision-making interchangeably, not just facil-
itates the search for the most desirable solution by the DM, but
offers the potential to reveal the preference structure embedded
in the optimization models to the DM. This is a new optimization
paradigm promoted by the so called MCDM based MOEAs that
is offered by the Liger software. Moreover, the functionality of
the GUI can be easily extended in a flexible manner via a plugin
system. This gives more freedom to the user to incorporate other
features into Liger, which could be turned on or off on demand,
and without having to modify any of the existing core libraries.

For future work, there are several research directions that are
worth pursuing. For this, the authors endeavour to provide sup-
port for other types of problems. This includes Multidisciplinary
Design Optimization (MDO) [37] problems that are characterized
for having multiple interacting components, where each compo-
nent can have its own (specialized) design task. This requires
the development of new capabilities in Liger to support the
construction of such problems, including the provision of suitable
optimization approaches for dealing with them. Some examples
currently found in the literature make use of bilevel or distributed
approaches as described in [38]. Other features actively being
pursued are:

1. preference articulation and constraint handling strategies
for different types of MOEAs—currently both features are
only available for Pareto-based MOEAs;

2. exploit other approaches to enable parallel evaluations
(and perhaps parallelization at other algorithm levels)—
current approach is to use the multi-threading capabilities
of the C++ standard library but other libraries, such as
OpenMP and MPI, might offer some advantages when used
in modern High Performance Computing (HPC) facilities;
and

3. consider the application of data-mining approaches to re-
veal interesting problem features from the optimization
data that could be used to influence the decision-making
process, for instance, make use of dimensionality reduction
techniques, not just to reduce the problem complexity,
but also to reveal the preference-structure of the objective
functions.

CRediT authorship contribution statement

João A. Duro: Methodology, Software, Investigation, Data cu-
ration, Writing - original draft, Writing - review & editing, Vi-
sualization. Yiming Yan: Methodology, Software, Data curation,
Writing - original draft, Visualization. Ioannis Giagkiozis: Con-
ceptualization, Methodology, Software, Data curation, Writing -
original draft. Stefanos Giagkiozis: Software, Writing - original
draft. Shaul Salomon: Conceptualization, Methodology, Software,
Visualization. Daniel C. Oara: Methodology, Software. Ambuj K.
Sriwastava: Methodology, Software. Jacqui Morison: Conceptu-
alization, Resources, Project administration. Claire M. Freeman:
Conceptualization, Resources, Project administration, Funding ac-
quisition. Robert J. Lygoe: Conceptualization, Resources, Project

administration, Funding acquisition. Robin C. Purshouse: Con-
ceptualization, Writing - review & editing, Supervision, Project
administration, Funding acquisition. Peter J. Fleming: Concep-
tualization, Supervision, Project administration, Funding acquisi-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors would like to acknowledge financial support from
EPSRC, United Kingdom and Jaguar Land Rover as part of the
jointly funded Programme for Simulation Innovation (PSi)
(EP/L025760/1), Innovate UK and Ford Motor Company as part
of the Advanced Propulsion Centre UK project DYNAMO (grant
113130), Marie Curie International Research Staff Exchange
Scheme Fellowship within the 7th European Community Frame-
work Programme (grant agreement 295152), the University of
Sheffield, United Kingdom, and the Institute of Digital Engineer-
ing (IDE), a spoke of the Advanced Propulsion Centre UK (grant
J14921), and Daniel C. Oura acknowledges EPSRC scholarship
support (EP/M508135/1 and EP/M506618/1). We would also like
to acknowledge Samuele De-Guido from IDE for supporting the
open-source release of Liger.

References

[1] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John

Wiley & Sons, Ltd, 2001.

[2] C.C. Coello, G.B. Lamont, D.A. van Veldhuizen, Evolutionary Algorithms for

Solving Multi-Objective Problems, Kluwer Academic Publishers, 2002.

[3] L.C.T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic component-wise de-

sign of multi-objective evolutionary algorithms, IEEE Trans. Evol. Comput.

20 (3) (2016) 403–417, http://dx.doi.org/10.1109/TEVC.2015.2474158.

[4] C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple

constraint handling with evolutionary algorithms—Part I: A unified for-

mulation, IEEE Trans. Syst. Man Cybern. A 28 (1) (1998) 26–37, http:

//dx.doi.org/10.1109/3468.650319.

[5] K. Deb, A. Sinha, P.J. Korhonen, J. Wallenius, An interactive evolutionary

multiobjective optimization method based on progressively approximated

value functions, IEEE Trans. Evol. Comput. 14 (5) (2010) 723–739, http:

//dx.doi.org/10.1109/TEVC.2010.2064323.

[6] R. Wang, R.C. Purshouse, P.J. Fleming, ‘‘Whatever works best for you’’- A

new method for a priori and progressive multi-objective optimisation, in:

Evolutionary Multi-Criterion Optimization: 7th International Conference,

EMO 2013, Sheffield, UK, March 19-22, 2013. Proceedings, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013, pp. 337–351, http://dx.doi.org/10.

1007/978-3-642-37140-0_27.

[7] J.A. Duro, D. Kumar Saxena, K. Deb, Q. Zhang, Machine learning

based decision support for many-objective optimization problems, Neu-

rocomputing 146 (2014) 30–47, http://dx.doi.org/10.1016/j.neucom.2014.

06.076, Bridging Machine learning and Evolutionary Computation (BMLEC)

Computational Collective Intelligence.

[8] J. Branke, in: G. S., E. M., F. J. (Eds.), MCDA and Multiobjective Evolutionary

Algorithms, in: International Series in Operations Research & Management

Science, vol. 233, Springer, 2016, http://dx.doi.org/10.1007/978-1-4939-

3094-4_23, Ch. Multiple Criteria Decision Analysis.

[9] I. Giagkiozis, R.J. Lygoe, P.J. Fleming, Liger: An open source integrated

optimization environment, in: Proceedings of the 15th Annual Conference

Companion on Genetic and Evolutionary Computation, in: GECCO ’13

Companion, ACM, New York, NY, USA, 2013, pp. 1089–1096, http://dx.doi.

org/10.1145/2464576.2466801.

[10] S. Giagkiozis, R.J. Lygoe, I. Giagkiozis, P.J. Fleming, Diesel engine drive-

cycle optimization with liger, in: International Conference on Evolutionary

Multi-Criterion Optimization (EMO), Springer International Publishing,

2015, pp. 328–342, http://dx.doi.org/10.1007/978-3-319-15892-1_22, Part

of the Lecture Notes in Computer Science book series (LNCS, volume 9019).

[11] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective

evolutionary algorithms: A survey of the state of the art, Swarm Evol.

Comput. 1 (1) (2011) 32–49, http://dx.doi.org/10.1016/j.swevo.2011.03.001.

19

http://refhub.elsevier.com/S1568-4946(20)30789-4/sb1
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb1
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb1
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb2
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb2
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb2
http://dx.doi.org/10.1109/TEVC.2015.2474158
http://dx.doi.org/10.1109/3468.650319
http://dx.doi.org/10.1109/3468.650319
http://dx.doi.org/10.1109/3468.650319
http://dx.doi.org/10.1109/TEVC.2010.2064323
http://dx.doi.org/10.1109/TEVC.2010.2064323
http://dx.doi.org/10.1109/TEVC.2010.2064323
http://dx.doi.org/10.1007/978-3-642-37140-0_27
http://dx.doi.org/10.1007/978-3-642-37140-0_27
http://dx.doi.org/10.1007/978-3-642-37140-0_27
http://dx.doi.org/10.1016/j.neucom.2014.06.076
http://dx.doi.org/10.1016/j.neucom.2014.06.076
http://dx.doi.org/10.1016/j.neucom.2014.06.076
http://dx.doi.org/10.1007/978-1-4939-3094-4_23
http://dx.doi.org/10.1007/978-1-4939-3094-4_23
http://dx.doi.org/10.1007/978-1-4939-3094-4_23
http://dx.doi.org/10.1145/2464576.2466801
http://dx.doi.org/10.1145/2464576.2466801
http://dx.doi.org/10.1145/2464576.2466801
http://dx.doi.org/10.1007/978-3-319-15892-1_22
http://dx.doi.org/10.1016/j.swevo.2011.03.001

J.A. Duro, Y. Yan, I. Giagkiozis et al. Applied Soft Computing Journal xxx (xxxx) xxx

[12] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA — A platform and

programming language independent interface for search algorithms, in:

C.M. Fonseca, P.J. Fleming, E. Zitzler, K. Deb, L. Thiele (Eds.), Evolutionary

Multi-Criterion Optimization (EMO 2003), in: Lecture Notes in Computer

Science, Springer, Berlin, 2003, pp. 494–508.

[13] A. Liefooghe, L. Jourdan, E.-G. Talbi, A software framework based on a

conceptual unified model for evolutionary multiobjective optimization:

ParadisEO-MOEO, European J. Oper. Res. 209 (2) (2011) 104–112, http:

//dx.doi.org/10.1016/j.ejor.2010.07.023.

[14] M. Keijzer, J.J.M. Guervós, G. Romero, M. Schoenauer, Evolving objects:

A general purpose evolutionary computation library, in: Selected Papers

from the 5th European Conference on Artificial Evolution, Springer-Verlag,

London, UK, UK, 2002, pp. 231–244.

[15] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug,

E. Pitzer, S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, M. Affenzeller,

Advanced Methods and Applications in Computational Intelligence, in:

Topics in Intelligent Engineering and Informatics, vol. 6, Springer, 2014,

pp. 197–261.

[16] R.C. Purshouse, P.J. Fleming, On the evolutionary optimization of many

conflicting objectives, IEEE Trans. Evol. Comput. 11 (6) (2007) 770–784,

http://dx.doi.org/10.1109/TEVC.2007.910138.

[17] S. Luke, ECJ then and now, in: Proceedings of the Genetic and Evolutionary

Computation Conference Companion, in: GECCO ’17, ACM, New York, NY,

USA, 2017, pp. 1223–1230, http://dx.doi.org/10.1145/3067695.3082467.

[18] M. Lukasiewycz, M. Glaß, F. Reimann, J. Teich, Opt4J: A modular framework

for meta-heuristic optimization, in: Proceedings of the 13th Annual Confer-

ence on Genetic and Evolutionary Computation, in: GECCO ’11, ACM, New

York, NY, USA, 2011, pp. 1723–1730, http://dx.doi.org/10.1145/2001576.

2001808.

[19] M. Kronfeld, H. Planatscher, A. Zell, The EvA2 Optimization framework,

in: Learning and Intelligent Optimization: 4th International Conference,

LION 4, Venice, Italy, January 18-22, 2010. Selected Papers, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010, pp. 247–250, http://dx.doi.org/10.

1007/978-3-642-13800-3_27.

[20] A. Ramírez, J.R. Romero, S. Ventura, An extensible JCLEC-based solution

for the implementation of multi-objective evolutionary algorithms, in:

Proceedings of the Companion Publication of the 2015 Annual Conference

on Genetic and Evolutionary Computation, in: GECCO ’15, ACM, New

York, NY, USA, 2015, pp. 1085–1092, http://dx.doi.org/10.1145/2739482.

2768461.

[21] D. Hadka, MOEA framework: A free and open source Java framework

for multiobjective optimization, 2017, http://moeaframework.org, [Online;

accessed 01-07-2019].

[22] J.J. Durillo, A.J. Nebro, Jmetal: A Java framework for multi-objective op-

timization, Adv. Eng. Softw. 42 (10) (2011) 760–771, http://dx.doi.org/10.

1016/j.advengsoft.2011.05.014.

[23] A.J. Nebro, J.J. Durillo, M. Vergne, Redesigning the jMetal multi-objective

optimization framework, in: Proceedings of the Companion Publication of

the 2015 Annual Conference on Genetic and Evolutionary Computation,

in: GECCO ’15, ACM, New York, NY, USA, 2015, pp. 1093–1100, http:

//dx.doi.org/10.1145/2739482.2768462.

[24] Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: A MATLAB platform for

evolutionary multi-objective optimization, IEEE Comput. Intell. Mag. 12 (4)

(2017) 73–87, http://dx.doi.org/10.1109/MCI.2017.2742868.

[25] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast elitist multi-objective ge-

netic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197,

http://dx.doi.org/10.1109/4235.996017.

[26] Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based

on decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731, http:

//dx.doi.org/10.1109/TEVC.2007.892759.

[27] M. Emmerich, N. Beume, B. Naujoks, An EMO algorithm using the

hypervolume measure as selection criterion, in: C. Coello Coello, A. Hernán-

dez Aguirre, E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization, in:

Lecture Notes in Computer Science, vol. 3410, Springer Berlin / Heidelberg,

2005, pp. 62–76.

[28] J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approxima-

tion for expensive multiobjective optimization problems, IEEE Trans. Evol.

Comput. 10 (1) (2006) 50–66, http://dx.doi.org/10.1109/TEVC.2005.851274.

[29] S. Salomon, C. Domínguez-Medina, G. Avigad, A. Freitas, A. Goldvard, O.

Schütze, H. Trautmann, PSA based multi objective evolutionary algorithms,

in: O. Schuetze, C.A. Coello Coello, A.-A. Tantar, E. Tantar, P. Bouvry, P.D.

Moral, P. Legrand (Eds.), EVOLVE - a Bridge Between Probability, Set Ori-

ented Numerics, and Evolutionary Computation III, Springer International

Publishing, Heidelberg, 2014, pp. 233–259.

[30] J.A. Duro, R.C. Purshouse, S. Salomon, D.C. Oara, V. Kadirkamanathan,

P.J. Fleming, SParEGO – A hybrid optimization algorithm for expensive

uncertain multi-objective optimization problems, in: K. Deb, E. Goodman,

C.A. Coello Coello, K. Klamroth, K. Miettinen, S. Mostaghim, P. Reed

(Eds.), Evolutionary Multi-Criterion Optimization, Springer International

Publishing, 2019, pp. 424–438.

[31] N. Beume, C.M. Fonseca, M. López-Ibáñez, L. Paquete, J. Vahrenhold, On

the complexity of computing the hypervolume indicator, IEEE Trans. Evol.

Comput. 13 (5) (2009) 1075–1082, http://dx.doi.org/10.1109/TEVC.2009.

2015575.

[32] M. Bostock, V. Ogievetsky, J. Heer, D3: Data-driven documents, IEEE Trans.

Vis. Comput. Graphics (Proc. InfoVis) (2011).

[33] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1994.

[34] R.J. Winter, Agile Software Development: Principles, Patterns, and Practices,

Wiley Online Library, 2014.

[35] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolu-

tionary multi-objective optimization, in: A. Abraham, R. Jain, R. Goldberg

(Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and

Applications, Springer, 2005, pp. 105–145.

[36] K. Ogata, Discrete-Time Control Systems, second ed., Prentice-Hall, Inc,

1995.

[37] J.R.R.A. Martins, A.B. Lambe, Multidisciplinary design optimization: a

survey of architectures, AIAA J. 51 (9) (2013) 2049–2075.

[38] K. Klamroth, S. Mostaghim, B. Naujoks, S. Poles, R. Purshouse, G. Rudolph,

S. Ruzika, S. Sayın, M.M. Wiecek, X. Yao, Multiobjective optimization for

interwoven systems, J. Multi-Criteria Decis. Anal. 24 (1–2) (2017) 71–81,

http://dx.doi.org/10.1002/mcda.1598.

20

http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb12
http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://dx.doi.org/10.1016/j.ejor.2010.07.023
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb14
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb15
http://dx.doi.org/10.1109/TEVC.2007.910138
http://dx.doi.org/10.1145/3067695.3082467
http://dx.doi.org/10.1145/2001576.2001808
http://dx.doi.org/10.1145/2001576.2001808
http://dx.doi.org/10.1145/2001576.2001808
http://dx.doi.org/10.1007/978-3-642-13800-3_27
http://dx.doi.org/10.1007/978-3-642-13800-3_27
http://dx.doi.org/10.1007/978-3-642-13800-3_27
http://dx.doi.org/10.1145/2739482.2768461
http://dx.doi.org/10.1145/2739482.2768461
http://dx.doi.org/10.1145/2739482.2768461
http://moeaframework.org
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2007.892759
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb27
http://dx.doi.org/10.1109/TEVC.2005.851274
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb29
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb30
http://dx.doi.org/10.1109/TEVC.2009.2015575
http://dx.doi.org/10.1109/TEVC.2009.2015575
http://dx.doi.org/10.1109/TEVC.2009.2015575
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb32
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb32
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb32
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb33
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb33
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb33
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb34
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb34
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb34
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb35
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb36
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb36
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb36
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb37
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb37
http://refhub.elsevier.com/S1568-4946(20)30789-4/sb37
http://dx.doi.org/10.1002/mcda.1598

	Liger: A cross-platform open-source integrated optimization and decision-making environment
	Introduction
	Related work
	Liger: the concept and architecture
	Tigon optimization library
	Representation and evaluation of a solution
	A unified interface for handling data types
	The solution, problem and population
	Uncertainty

	Optimization architecture
	IOperator
	IAlgorithm
	IPSet
	PSetBase
	IPSetDecorator
	TigonEngine and OptimizationLinearFlow

	Optimization workflow
	Information flow

	Composing an optimization algorithm
	Graphical user interface
	Plugins
	Designer and Tigon user interface plugins
	Visualization plugin

	How to create, setup, and run a simple optimization workflow
	Demonstration of interactive decision-making on a real-world optimization problem

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

