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Abstract—Emotion recognition is critical for everyday living
and is essential for meaningful interaction. If we are to progress
towards human and machine interaction that is engaging the hu-
man user, the machine should be able to recognise the emotional
state of the user. Deep Convolutional Neural Networks (CNN)
have proven to be efficient in emotion recognition problems.
The good degree of performance achieved by these classifiers
can be attributed to their ability to self-learn a down-sampled
feature vector that retains spatial information through filter
kernels in Convolutional layers. Given the view that randomized
initialization of weights can lead to convergence in non-optimal
local minima, in this paper we explore the impact of training the
initial weights in an unsupervised manner. We study the effect
of pre-training a Deep CNN as a Stacked Convolutional Auto-
Encoder (SCAE) in a greedy layer-wise unsupervised fashion for
emotion recognition using facial expression images. When trained
with randomly initialized weights, our CNN emotion recognition
model achieves a performance rate of 91.16% on the Karolinska
Directed Emotional Faces (KDEF) dataset. In contrast, when each
layer of the model, including the hidden layer, is pre-trained as an
Auto-Encoder, the performance increases to 92.52%. Pre-training
our CNN as a SCAE also reduces training time marginally. The
emotion recognition model developed in this work will form the
basis of real-time empathic robot system.

I. INTRODUCTION

Emotion recognition usually involves analizing a person’s

facial expressions, body language, or speech signals and

classifying them as a specific emotion. It has been stated

that emotion recognition is critical for everyday living and

is essential for interaction with others [1], [2]. If we are to

progress towards human and machine interaction, such as the

interaction with a social robot, in a manner that is engaging

for the human, the machine should be able to recognise and

respond to the emotional state of the user [3].

In the work discussed in this paper, we compare the perfor-

mance of a Deep Convolution Network when trained with a

randomly initialized set of weights and when pre-trained as a

Stacked Convolutional Auto-Encoder to classify facial expres-

sion images from the KDEF [4] dataset. Emotion recognition

is performed through facial expressions images due the evident

advantage offered over other forms of emotion recognition:

in unconstrained environments, it can be difficult to isolate

the speech signals from a particular subject, especially in a

crowed environment. Similarly, the difficulty of capturing body

language can be greater compared to obtaining an image of

someone’s face.

Compared to traditional feed forward networks, CNN have

the ability to autonomously create a feature vector of salient

features while retaining spatial information, such as shapes,

through filter kernels. In the case of emotion recognition this

is particularly important considering that classification of a

given emotion depends predominately upon the shape of facial

features such as the eyes, mouth, and eyebrows. However,

due to the high complexity of facial expression images, CNN

models often require a high number of Convolutional layers

in order to extract a good set of features that best represent

the data. The disadvantage of increased network depth is the

complexity of the network and training time which can grow

significantly with each additional layer. Moreover, increased

network complexity often leads to a failure in finding the

optimum network configuration, and such limitation might not

allow the best possible emotion recognition capability.

Finding the right initialization parameters for deep networks

in supervised learning is always challenging and requires a

large number of attempts to move towards the best possible

recognition performance. In the case of deep networks, in-

cluding Deep CNN, this is very inefficient due to the lengthy

training time required for each trial. Bengio [5] suggests that

random initialization of a network can lead to convergence on

local minima, and thus result in poor classification. To avoid

this difficulty associated with random initialization, one can

employ Auto-Encoders to pre-train each layer of a CNN in

a greedy layer-wise unsupervised manner. This allows for an

initialization of filter kernels in a CNN close to a good local

minimum [5], which leads to improved feature extraction and

classification performance.

In this work we look at the development of an emotion

recognition model with the right trade-off balance between

depth and classification performance. Since very deep net-

works are often not suitable for applications in which response

delay has to be kept to a minimum, for example when a

robot is interacting with a user the robot needs to avoid

delayed responses to maintain interaction, we attempt to build

an emotion recognition model with a reduced number of

Deep Learning (DL) layers that produces similar classification

performance to very deep networks. Taking into account that



this model is intended to be incorporated within a social

robot for real-time emotion recognition, we study the effect

of reducing the number of Convolutional layers and the effect

of pre-training a CNN as a Stacked Convolutional Auto-

Encoder (SCAE). Furthermore, we analyse the effect of batch

normalization [6] on Convolutional and fully connected layers

during pre-training and fine-tuning. These criteria are applied

to a Deep CNN with four Convolutional layers.

The structure of this paper is as follows: Section II intro-

duces existing state-of-the-art emotion recognition approaches

based on DL and literature on Auto-Encoders used as a

pre-training method. Section III describes the dataset used

in our experiments along with a detailed description of our

experiments. Section IV presents results and a discussion

of these. Section V describes future direction of our work

followed by a list of references

II. PREVIOUS WORK

Due to the inherent non-linearity of deep networks, em-

pirical training methods such as Stochastic Gradient Decent

(SGD) may fail if the parameters are not initialized appro-

priately or if the network topology is not ideal. Imprecise

network configurations can lead to large or small gradients

and problems obtaining a set of weights that provide optimal

generalization of the training data. Where the topology or

parameters of the network are not ideal it often requires a

lengthy training process, particularly for very deep models.

Random weight initialization is often the preferred choice

amongst researchers and is intended to provide the network

with a weight distribution that does not favor any particular

class. However, recent studies [5], [7] show that random

initialization of weights can lead to convergence in local

minima that are far away from an optimal global solution. As

a result, a number of initialization methods targeting this issue

have been devised in recent years. This exploration of previous

research discusses prominent initialization methods including

pre-training of networks and methods designed to eliminate

the need of fixed initialization, such as batch normalization.

Furthermore, this section explores existing emotion recogni-

tion models which employ deep learning for feature extraction

and classification.

A. Weight Initialization Methods

Initializing a network with the right set of weights can lead

to good generalization of the training data. However, it is often

difficult to find this optimal initial set of weights and so this is

an area of interest with regards to DL networks. Krähenbühl et

al. [8] have introduced a data-dependent initialization method

for CNN which forces all the weights within a layer to train

at a similar rate. According to the authors, when combined

with pre-training methods, their data-dependent initialization

method outperforms existing methods and avoids vanishing

or exploding gradients. Remero et al. [9] proposed using a

trained teacher network to train a student network that has

greater depth but is thinner and has less parameters. This

approach uses the intermediate representations learned by the

teacher network to improve training of the student network,

which outperforms the teacher network and generalizes faster.

Romero et al. refer to this approach as FitNets and essentially

consists of compressing a deep and wide network into a deeper

but thinner one.

Srivastava et al. [10] have introduced the concept of High-

way Networks which allows the training of very deep networks

with hundreds of layers using SGD. Highway networks are

inspired by Long Short Term Memory of recurrent networks

and regulate information flow through gating units, allowing

information flow across layers without debilitation. Although

the authors propose a novel way to efficiently train very deep

architectures, the application of very deep networks to real-life

problems seems unpromising considering the lengthy training

process and computational power required for each network.

Mishkin and Matas [11] propose an initialization method,

which they refer to as layer-sequential unit-variance (LSUV),

consisting of initializing Convolution layers with orthonormal

matrices and then normalizing the variance of the output of

each layer in the network, including non-Convolutional layers,

to be equal to one. The authors argue that LSUV outperforms

more complex methods such as Highway networks and FitNets

and has an advantage of working with a number of activation

functions

B. Deep CNN Normalization

Since Glorot et al. [12] showed that rectifying neurons can

be used to train networks and obtain similar or better results

than deep models that employ unsupervised pre-training meth-

ods. Rectified Linear Unit (ReLU) layers, along with Max

Pooling, have become essential components of Convolutional

networks. Most, if not all, recent Deep CNN architectures

use rectifier neurons to normalize the output of Convolutional

layers. Variations of ReLU layers have been proposed by: He

et al. [13], in the form of the Parametric Rectified Linear Unit

(PReLU); Maas et al. [14] who introduced leaky ReLU; and

Xu et al. [15] who proposed the Randomized leaky ReLU.

Further improvements to Convolutional networks were pro-

posed by Krizhevsky et al. [16] who introduced the Local

Response Normalization (LRN) layers for CNN using ReLU

layers in order to allow the detection of high-frequency fea-

tures with big neuron responses. Other optimization methods

include the use of Dropout, Learning Decay, along with Weight

Decay. In the work presented in this paper, we use Learning

Decay as discussed in Section III.

One of the most recent improvements to deep networks

is Batch Normalization (BN) which normalises the distribu-

tion of each input feature at every layer [6]. BN is rapidly

becoming the main approach in deep networks to accelerate

training and improve classification performance given that it

significantly improves training time and in some instances

boosts classification performance. Furthermore, according to

Ioffe and Szegedy [6], BN eliminates the need for Local

Response Normalization and Dropout. The main advantage

of BN seems to be faster training times which also lead to

larger learning rates and faster learning rate decays. Given the



benefits offered, our SCAE emotion recognizer incorporates

BN for both Convolutional and fully connected layers as

explained in Section III.

C. Unsupervised Pre-Training

According to Erhan et al. [17] pre-training deep networks

in an unsupervised fashion guides the learning towards better

minima and results in better generalization of training data.

Restricted Boltzmann Machines (RBM) have often been used

to pre-train Deep Belief [18] and CNN models [19]. Norouzi et

al. [20] introduced a novel extension of RBMs which they refer

to as Convolutional Restricted Boltzmann Machines (CRBM).

Compared to traditional RBMs, this variation preserves spatial

structure of images. Abdel-Hamid et al. [19] take a similar ap-

proach and use stacks of CRBMs to pre-train a CNN designed

for speech recognition. The authors found improvements in

performance when pre-training with the CRBMs proposed by

[20]. Other popular methods prior to the use of Auto-Encoders

include the use of PCA [21][22] and ICA [23].

The improvements in performance provided by initialization

of weights through RBMs comes with added complexity,

which leads to increased difficulty in finding the optimum net-

work topology, particularly for very deep networks. Moreover,

training with randomized weights often proved to not give the

optimal weight distribution and thus a need for better initial-

ization methods. Auto-Encoders are seen as an alternative for

data-dependent feature extraction methods. Auto-encoders are

a special kind of feed forward artificial neural networks that

learn to reconstruct the input data at the output layer [23].

Auto-Encoders are used for data dimensionality reduction,

are trained in an unsupervised greedy layer-wise manner

and learn to encode the input vector into a down-sampled

representation of the input. Masci et al. [24] showed that

initializing CNN with filters of a SCAE significantly improves

the performance of CNN. In this paper we follow a similar

approach and use SCAE to pre-train a CNN for emotion

recognition. Moreover, we incorporate the findings by Ioffe et.

al [6] by incorporating BN during training and pre-training.

D. Emotion Recognition Using CNN

Convolutional networks have an ability to self-learn im-

portant features necessary for classification while preserving

spatial information. This unique ability portrayed by CNN

make them an appealing choice for computer vision problems

and has led them to become a common choice for classification

problems in which spatial information plays an important role

in the classification. In the field of emotion recognition, where

classification depends upon the shape of facial features, CNN

have already set state-of-the-art classification benchmarks.

Burkert et al. [25] have devised an emotion recognition model,

which they refer to as DeXpression, consisting of a pair of

parallel feature extraction blocks consisting of Convolutional,

Pooling, and ReLU layers. The authors achieve an average

99.6% accuracy rate on the CKP dataset after a 10-fold cross-

validation.

Other approaches include using pre-trained networks, or net-

works trained for different classification problems, to initialize

the weights of new networks [26]. Ouellet [27] presented a

model which relies on a deep CNN, originally trained with

1.2 million images from ImageNet, for feature extraction and

a Support Vector Machine for classification. The author reports

a recognition rate of 94.4% on the CK+ dataset after training

with a 10-fold cross-validation method.

A similar approach was followed by Levi and Hassner [28]

who use Local Binary Pattern features as input to a number

of CNN ensembles to obtain a performance of 54.56% on the

Static Facial Expression in the Wild dataset. This network was

then use by Duncan et al. [29] who transfered the weights onto

a new CNN model consisting of five Convolutional layers and

also designed for emotion recognition. The authors train their

model on a variety of datasets: a dataset created by the authors

and the CK+ and Jaffe datasets, and obtain an accuracy rate

of 57.1% and a peak performance of 90.7% during training.

Raghuvanshi and Choksi [30] proposed two CNN models

trained on the Kaggle Facial Expression Recognition Chal-

lenge dataset which consists of images taken in unconstrained

environments. The networks achieved an accuracy rate of 48%.

III. METHODOLOGY AND EXPERIMENTAL DESIGN

Emotion recognition continues to be an area of interest in

the research community. Despite a vast number of emotion

recognition models being developed, a model that offers a

good degree of performance with fast training while being

quick enough for real-time recognition is yet to be developed.

In this work we try to find the right balance between classifi-

cation performance and prediction time. We develop a SCAE

for Emotion Recognition and compare this with a conventional

CNN with BN for emotional recognition. Moreover, we incor-

porate the findings by [6] and make use of batch normalization

to speed up training and improve classification performance.

This section of the report outlines our methodology employed.

A. Facial Expression Corpus

This work uses the Karolinska Directed Emotional Faces

database (KDEF) [4] due to the high number of participants

it contains and taking into consideration that it was created

to be particularly suitable for perception, attention, emotion,

memory and backward masking experiments [4]. The KDEF

database contains a set with 70 individuals: 35 males and 35

females between 20 and 30 years old and each displaying

seven different emotional expressions: sad, surprised, neutral,

happy, fear, disgust, and angry. Faces are centred within the

image and moth and eyes are fixed in specific coordinates.

We use a subset of 980 front angle images split into our

training and testing sets. In our experiments 70% of this

subset is used for training, and pre-training of the SCAE,

and the remaining 30% for testing. Each class has the same

number of samples in both testing and training sets. Faces are

extracted from the original image and grey-scaled in order to

reduce dimensionality. Figure 1 illustrates sample face images

obtained from the KDEF database.



Fig. 1. Sample extracted face images from the KDEF database. Subject F05
displaying seven emotions: angry, disgust, fear, happy, neutral, sad, surprise.

B. Convolutional Neural Networks with Batch Normalization

The first network described here for real-time emotion

recognition departs from empirical CNN models with very

large depth and built a model with it only having four

Convolutional layers. This approach also adapts the empirical

CNN by making use of BN for both, Convolutional and

fully connected layers. Essentially, our CNN is composed of

Convolutional, BN, ReLU, and Max Pooling layers, except for

the last block which does not have a Max Pooling layer. The

Convolutional layers contain 20, 40, 60, and 80 planes. The

first two Convolutional layers use kernels of 5 × 5 with zero

padding of 1 and 2 over width and height dimensions. The last

two Convolutional layers use kernels of size 3 × 3 with zero

padding of 2. First two Max Pooling layers use zero padding

of size 1 whereas the last one uses zero padding of size 2.

The last block is connected to a fully connected layer which

in effect is a Multilayer Perceptron (MLP) with 100 neurons,

also with BN and ReLU layers. The output of Convolutional

layers is defined by:

C(Xu;v) = (x+a)n =

n
2
∑

i=−
n
2

m
2
∑

j=−
m
2

fk(i, j)xu− i, u− j (1)

where fk is the filter with a kernel size m× n, applied to the

input x.

This CNN emotion recognition model is initially trained

using mini-batch SGD for 500 epochs as follows: weights are

randomly initialized, each mini-batch contains 49 randomly

selected training samples, momentum was set to 0.6, the

learning rate was set to 0.1 and dynamically adjusted down

with a decay of 0.01. Let λ represent the initial learning rate,

θ represent the learning rate decay, and ω the current epoch,

the learning rate LR is adjusted according to:

LR =
λ

1 + ω × θ
(2)

During training, the output of the network is shaped by a

SoftMax operator and the cross-entropy loss y is defined by:

y = −
∑

ij

(

xijc − log

D
∑

d=1

expxijd

)

(3)

C. Stacked Auto-Encoders

In an attempt to improve training time and classification

performance of our CNN emotion recognition model, we

decided to pre-train as a SCAE Essentially, each Convolutional

layer and its subsequent layers: BN, ReLU, and Max Pooling,

are treated as a single block and an Auto-Encoder is created

First Stage

(Reduce image reconstruction error.)

Second Stage

(1. Initialize CNN and MLP with Encoder weights.

2. Fine-tune CNN and MLP.)

Fig. 2. Illustration of the SCAE architecture. First stage shows training of
SCAE which learns to reconstruct the input image and associate the MLP with
a corresponding label. Second stage shows CNN with hidden and classification
layers. MLP has ReLU and BN layers. Face image corresponding to subject
F07 from the KDEF dataset.

for each one of these blocks. However, since compared to tra-

ditional Auto-Encoders composed of one dimensional layers,

MLPs, Convolutional Auto-Encoders are more difficult to train

due to the Max Pooling applied to the output of Convolutional

layers and therefore each block of layers is used as the encoder

component of the Auto-Encoder and a new block of layers

which replaces Max Pooling with Upsampling layers is used

as the decoder component. Refer to Figure 2 for a pictorial

representation of the SCAE model.

Upsampling is done using the nearest neighbour approach

with a scale of 2. Let u and v represent image coordinates of

the input image, α the scale, then upsampling f is defined as:

f(u, v) = ⌊
u− 1

α
⌋+ 1, ⌊

v − 1

α
⌋+ 1 (4)

In the SCAE emotion recognition model, the first Auto-

Encoder learns to reconstruct raw pixel data. The second Auto-

Encoder learns to reconstruct the output of the first encoder:

raw pixel data passed through the first encoder component of

the first auto-encoder, and so on. Finally, because the network

uses a fully connected layer with 100 hidden units, this layer is

trained to encode the output of the last Convolutional encoder

and instead of reconstructing it, it learns to associate it with

its corresponding label.

All individual Auto-Encoders are trained for only ten epochs

using mini-batch SGD. Mini-batches are of size 49 and in the

case of the Convolutional Auto-Encoders the loss is measured

using a mean absolute value criterion. In the case of the fully

connected layer the loss between input x and out y is measured

by the cross-entropy criterion referred by equation 3.

Once all the Auto-Encoders are trained, the weights corre-

sponding to each one of the encoders are used as a Stacked

Convolutional Auto-Encoder. This SCAE is then fine-tuned

as a single unit for only 20 epochs also using SGD and

a SoftMax cross-entropy criterion. When trained for higher



Fig. 3. Sample output of first Convolutional layer of the emotion recognition model pre-trained as a SCAE and fine tuned as a CNN. Left to right, subject
F05 of the KDEF [4] dataset illustrating: fear, sad, and happy emotions.

number of epochs the performance of the network dropped

or remained the same. Learning rate for fine-tuning was set

to 0.1 and decayed by a factor of 0.001, whereas momentum

was initialized to 0.6.

The encoder is a function f that maps the input xǫRdx to

a hidden representation h(x)ǫRdx . It has the form:

h = f(x) = sf
(

Wx+ bh
)

(5)

where sf is a ReLU activation function. The decoder function

g maps the hidden representation h back to a reconstruction

y:

y = g(h) = sg
(

W ′h+ by
)

(6)

where sg is the decoder’s activation function. The decoder’s

parameters are a bias vector byǫR
dx , and matrix W ′. Training

consists in finding parameters θ = W, bh, by that minimize the

reconstruction error on a training set of exampled Dn, which

corresponds to minimizing the following objective function:

JAE(θ) =
∑

xǫDn

L

(

x, g
(

f(x)
)

)

(7)

where L is the reconstruction error [31].

IV. RESULTS AND DISCUSSION

The CNN with BN and the SCAE emotion recognisers

are trained and tested using the KDEF [4] dataset. When

trained from scratch for 500 epochs and with a random weight

initialization, the deep CNN model with BN produces an

accuracy rate of 100% on the training set and a peak per-

formance of 91% on the testing set. Further training seems to

cause overfitting whereas smaller number of epochs decreases

accuracy rate. The training set consisted of 98 randomly

selected images per class whereas the testing set consisted

of 42 images per class, also randomly selected.

In an attempt to improve recognition performance while re-

ducing training time, we investigated the effect of pre-training

our model as an Auto-Encoder to learn to reconstruct the input

image. To accomplish this, we treated each Convolutional

layer, and its subsequent layers, as the encoder component of

an Auto-Encoder. We used a similar configuration as the corre-

sponding decoder component except we replaced max pooling

layers with spatial nearest neighbour upsampling layers. The

encoders were trained individually and then stacked and fine-

tuned as a SCAE for 20 epochs. Applying this pre-training

technique increased our model’s performance to 92.52% and

dramatically reduced the training time. Table 1 illustrates the

confusion matrix of this model when pre-trained as a SCAE.

As it can be observed in Table 1 our CNN emotion recog-

nition model performs well on the emotions Happy, Neutral,

Sad, and Surprised and only misclassifies them once or twice.

The worst performance is on the emotion Fear which often

tends to be confused with other emotions such as Sad. We

observed Fear to always be the most misclassified class when

training with different network configurations and parameters.

Moreover, we previously observed fear to be one of the

most misclassified classes in [32]. A similar correlation was

observed with the classes happy and neutral always being the

most correctly classified.

The misclassification of images belonging to the class fear

can be attributed to their similarity to sad images, notice that

sad images were only confused with fear ones: the shape of

facial features, particularly of the eyes and eyebrows tend to be

very alike. Figure 3 above illustrates the representations learnt

by the first Convolutional layer of the CNN which are passed

down to lower layers in the network. The left most image

is labelled as fear, the middle image as sad, and the right

image as happy. It can be observed that the representations

learnt for the sad and fear images are relatively identical,

whereas the representation learnt for a happy image is very

different, particularly the area around the eyes. In effect, this

explains the misclassification of such images and exposes the

challenge faced by models intended for real-time emotion

recognition: since people express emotions in a number of

ways, particularly if ethnic backgrounds are different, it can

be difficult to create a model that can efficiently differentiate

emotions that are expressed in similar ways.

Figure 3 above also allows us to observe that the filters

learnt by the first Convolutional layer resemble those produced



TABLE I
SCAE CONFUSION MATRIX: LEFT TO RIGHT; ANGRY, DISGUST, FEAR,

HAPPY, NEUTRAL, SAD, SURPRISE. RIGHT MOST COLUM DENOTES

AVERAGE ACURACY RATE PER CLASS AND TOTAL AVERAGE.

Label An Di Fe Ha Ne Sa Su total

An 38 1 0 0 1 2 0 90.48

Di 1 38 0 0 0 3 0 90.48

Fe 1 0 35 0 0 4 2 83.33

Ha 0 0 0 41 1 0 0 97.62

Ne 0 0 1 1 40 0 0 95.24

Sa 0 0 2 0 0 40 0 95.24

Su 0 0 1 0 0 1 40 95.24

92.52

by a bank of Gabor filters which are often used for edge

detection. Nevertheless, Convolutional layers have the added

advantage of being able to learn to extract these salient features

necessary for emotion recognition instead of extracting fixed

features. One of the main issues we observed when using

Stacked Auto-Encoders as means of pre-training was that if

the loss for the first Auto-Encoder becomes too small, then

the network fails to learn a model that generalizes the training

data. We speculate this this is due to overfitting in the first

layer, which is passed down to lower layers in the model

and the deeper the layer the higher the error. However, during

training this is difficult to detect since the error continues to

decrease but the deeper layers are only learning to replicate

the bad representation learnt by the first layer. Furthermore,

the error for the lower layers tends to decrease much slower

than for the first layers. We speculate that training lower layers

with higher learning rates and or for longer periods of time

could solve this issue. This will be explored in future work.

We have attributed performance and training time improve-

ments to the use of SCAE, though much of this improvement

was only possible due to the use of Batch Normalization within

our network. By employing BN, we were able to set much

higher learning rates and train our initial model, before the

use of SCAEs, for only 500 epochs. Before incorporating BN

our model produced an average peak performance rate of 86%

when trained for the same number of epochs. Moreover, when

training without BN the initial learning rate had to be set to

0.0001. In addition to this, when using BN for the Convolu-

tional layers only, classification performance decreases about

2% on average, though this might be due to the higher learning

rate used.

The state-of-the-art performance achieved by our SCAE

emotion recognition model is comparable to emotion recog-

nition models using deep learning [25], [27], [29]. Moreover,

our model achieves similar performance to the model proposed

by [33] which uses Gabor filters for feature extraction. The

SCAE proposed in this work self-learns Gabor-like filters with

the first Convolutional layer and improves the feature vector

through lower Convolutional layers. Furthermore, although we

cannot compare our model directly to those proposed by [25],

[27], [29] due to the different datasets used, we believe that

our model has a slight advantage given that it only has four

Convolutional layers and was trained for only 70 epochs in

total, pre-training and fine-tuning, compared to the model used

by [27] which was originally trained with 1.2 million images.

To the best of our knowledge we are the first ones to

propose the use of SCAE in conjunction with BN for emo-

tion recognition through facial expression images. The only

emotion recognition models that use SCAE, and that we are

aware of, perform recognition through speech instead of facial

expressions [34]. Another model which makes use of Auto-

Encoders, although not stacked, is presented in [35]. However,

the model proposed by the authors of [35] only pre-trains one

Convolutional layer and keeps its weights fixed during fine-

tuning. This approach is often employed due to the added

complexity of training SCAE: Since the number of output

planes of Convolutional layers is typically high, 20 or more,

reconstructing these many planes in the second layer tends to

be difficult. Moreover, it is easy for the gradients to vanish if

the parameters are not initialized appropriately or the network

topology is not ideal.

Our SCAE emotion recognition provides state-of-the-art

classification performance and has an added advantage of

learning relatively fast compared to traditional CNN models.

With these observations and results we conclude that Batch

Normalization and Stacked Auto-Encoders can efficiently im-

prove emotion recognition models that use deep learning for

feature extraction and classification.

V. CONCLUSIONS AND FUTURE WORK

In this work we have proposed two CNN models: A CNN

model that combines BN and fewer layers than an empirical

CNN and a SCAE that pre-trains the weights to the CNN

element using Auto-Encoders. Both methods provide state-

of-the-art classification performance with the SCAE being

relatively faster to train. With the evident advantage portrayed

by SCAE, future work will look at ways to improve this model.

Moreover, we also plan to explore the effect of pre-training

Auto-Encoders as a single unit rather than layer by layer.

This method has proven to be efficient by Zhou et al. [36]

who found that training deep Auto-Ancoders can also be done

jointly instead of layer-wise.

Despite the state-of-the-art results achieved on the KDEF

[4] data set we are aware that these images used were from

front on and all of the same quality. Given it is our goal to

make use of this SCAE on a robotic system, it is likely that

the images will vary in terms of the angle of the user’s face

and the light conditions. Hence in the future we will explore

the model’s resistance to these situations.

In this work we show that employing SCAE as a pre-training

method for deep CNN improves not only performance but

training time and have a positive impact on the performance

of the recognition rate. Due to the very fast convergence

observed, in part due to the use of BN, we speculate that



our architecture would perform better if trained with bigger

datasets. In addition to this, since the network reaches a good

local minimum relatively fast, a deeper network with similar

properties should take advantage of fast learning and could

produce higher accuracy rates.
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