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Abstract

Current and foreseeable automated vehicles are not able to respond appropriately in all cir-

cumstances and require human monitoring. An experimental examination of steering auto-

mation failure shows that response latency, variability and corrective manoeuvring

systematically depend on failure severity and the cognitive load of the driver. The results are

formalised into a probabilistic predictive model of response latencies that accounts for failure

severity, cognitive load and variability within and between drivers. The model predicts high

rates of unsafe outcomes in plausible automation failure scenarios. These findings underline

that understanding variability in failure responses is crucial for understanding outcomes in

automation failures.

Introduction

Automated vehicles (AVs) are developing at a rapid pace, but designing a system that can

safely respond to all scenarios within existing road infrastructure remains a huge challenge.

Consequently, many believe that AVs need to be treated as fallible systems that require a super-

visory (human) driver to take over control when the AV is unable to drive safely.

In many cases, the AV will have an understanding of its inherent system limitations. In

these situations the AV can give advanced warning of a planned transfer of control (i.e a take-

over request) to a human driver in a manner that facilitates successful handovers [1]. However,

there will also be cases where the AV’s ability to drive safely and to monitor its performance, is

impaired. These scenarios can arise because the system has malfunctioned, reached a limita-

tion it is not aware of, or unintentionally misclassifies or fails to classify an object in (or feature

of) the road environment [e.g. the 2016 Tesla crash where the AV failed to identify a truck; [2].

In these cases, the AV may not explicitly notify the driver. In other words, there will be a “silent

failure”, and it will be up to the supervising driver to detect that the AV has failed and then to

respond safely to the conditions. Throughout this manuscript situations where the AV fails

without providing any explicit alert to the driver will be referred to as silent failures (as per [3,

4]). Human detection of these silent failures in automated lane keeping, the resultant steering

responses when regaining control, and how distraction affects these behaviours, will be the

focus of this manuscript.
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Understanding how humans respond to both planned takeover and silent failure conditions

will be crucial to setting safety boundaries of AVs. The considerable research examining

planned takeover requests allows manufacturers and legislators to design systems and regula-

tions that support safe AVs (for reviews see [3, 5, 6]). However, adequate safety boundaries

cannot be established until researchers can predict with confidence how humans respond to

silent failures that could, hypothetically, occur at any point during automated driving.

Silent failures will be unpredictable, and it is, therefore, reasonable to expect that their out-

comes will likely be more critical than those of planned transfers of control. They will require a

driver to act quickly to change the vehicle’s motion. To design safe systems, one needs to be

able to predict human performance in hypothetical scenarios that vary in criticality (i.e. how

much time the driver has to respond before the situation becomes unsafe).

When making predictions based upon hypothetical scenarios, a common approach is to use

mechanistic models (i.e. models that describe how perceptual inputs are related to control) to

simulate driver behaviour and determine the situations that will be the most problematic. Pic-

cinini et al. [7] have had some success at computationally capturing braking reaction times

during silent adaptive cruise control failures. Drivers had longer reaction times than when

manually driving, and also longer reaction times for less critical failures. These trends were

replicated by extending manual braking models—that accumulate perceptual error signals

(e.g. looming; [8]) over time—to automation, by either slowing the rate that perceptual error is

accumulated or by incorporating predictions of the AV behaviour into the accumulation pro-

cess (so ‘expected’ looming is ignored and not accumulated). Both mechanisms (i.e. prediction

and error accumulation) have been suggested to play a role in manual steering corrections [9],

but as yet have not been employed to examine the steering response to silent failures. Dinpar-

astdjadid et al. [10] showed that a popular model of manual steering control, where drivers

generate control outputs based on a weighted combination of angular inputs from a near and

a far point [11], can capture the lane position and orientation profiles of steering recoveries to

silent failures (where the vehicle drifted without warning while the driver was looking towards

a visual distraction task) but crucially fails to describe how the driver moves the steering wheel.

Further development is clearly needed for models to capture the mechanisms underpinning

steering behaviour in silent failures [3, 10].

The lack of model development is partly due to a lack of empirical work on which to base

these models. To the authors’ knowledge, there are very few studies that have examined steer-

ing responses to automation failures without any alert (exceptions being [10, 12–14]), or with

a visual-only alert [which effectively becomes a silent failure when the visual icon is not in the

driver’s current field of view; e.g. [4, 15]. It appears that under laboratory conditions drivers

can respond fairly quickly (in the region of 1-2 s) to silent automation failures when there is a

relatively critical and obvious need for a steering intervention [4, 12, 13], though it may take

considerably longer for the steering response to stabilise [15].

An important influence on driver responses during planned takeovers and silent failures is

the extent to which the driver is engaged in tasks that divert resources from supervising the

AV [16]. In silent failure paradigms, reaction times have been reported to be slower when driv-

ers were engaged in additional non-driving-related-tasks that added to the cognitive load [4,

12], which then appeared to propagate through to other metrics of steering, such as increasing

maximum steering wheel angles by� 15% [12] and leading to more lane excursions [4]. These

findings align with some key findings in the literature on planned takeovers, where drivers

tend to respond more slowly when cognitively loaded [17–21].

Whilst the previous studies indicate that cognitive load is likely to disrupt driver behaviour

during transitions of control, meta-analysis of a wide variety of planned takeover conditions

showed that this is not always the case [5]. Cognitive load does generally slow responses, but
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when the distraction task is purely auditory (i.e. the task does not need visual attention or a

motoric response) there was little difference compared to baseline (non-distracted) conditions

[5]. Furthermore, Gold et al. [22] estimated that increased load should increase minimum

time-to-collision (i.e. safer responses). The counter-intuitive findings of Gold et al. [22] could

be due to drivers overcompensating for potentially delayed responses through more vigorous

steering actions when cognitively loaded (cf. increased maximum steering wheel angle in

[12]). This explanation has support from research into manual driving (for a review see [23]),

in which there have been accounts of cognitive load improving lane keeping (e.g. [24–26]).

Yet, there also exist some counter-examples suggesting that cognitive load reduces steering

corrections, both in manual driving (e.g. [27, 28]), and also in planned takeovers [29]. The

effects of cognitive load on steering behaviour seem to vary depending on the individual and

the specific task [23]. In a review of the evidence in manual driving, Engström et al. [23] pro-

posed that cognitive load selectively impacts non-automatised tasks that require cognitive con-

trol to enhance weak pathways [30], while keeping well-learned tasks (e.g. lane keeping)

unaffected. The influence of cognitive load on steering behaviour during silent failures have

not yet been rigorously examined. In the current study, we investigate steering responses

under increased cognitive load during highly controlled takeover conditions.

A further factor that influences driver responses is the severity of the failure. In planned fail-

ures, drivers take longer to react when the scenario is less critical [19, 31, 32], though the slow-

ing of response does not completely negate the increase in time budget (i.e. drivers respond at

a higher time-to-collision for less urgent planned failures [22]. Louw et al. [4]) also found reac-

tion times to be slower, and more variable, for silent failures on straight roads compared to the

more critical curves. Greater variability for slower takeover times seems to be a consistent find-

ing across a number of studies [5].

Whilst responses to planned takeovers have often been measured using Reaction Times

(RT) there are several limitations to using this metric as a predictor of safety outcomes [33,

34]. Although in most cases an early RT will increase the probability of a safe steering response,

RTs cannot be directly mapped onto safe decision-making, or steering (see [6], for a detailed

discussion), or braking [33]. The safety relevance of a particular RT can only be realised when

placed in context, considering the relationship between the vehicle state (speed, heading, and

yaw-rate), road geometry (e.g. road width) when the response is made. Alternatively, one can

incorporate the road geometry and the vehicle state within the response metric by estimating

how long it would take the vehicle to reach the most relevant safety boundary, in the case of

driver inaction. For example, some studies use metrics derived from the remaining time until

colliding with an obstacle in collision scenarios (e.g. time-to-collision [14, 31, 35]). In a lane

keeping scenario (i.e. the current experiment), the relevant metric is time-to-lane-crossing

(TLC; [20, 36, 37]). The approach of linking response timings to the relative motion between

the vehicle and safety boundaries seems to improve upon RT when predicting safety outcomes,

such as crashes when analysing vehicle braking [38] and the rapidity of steering response dur-

ing AV takeovers [33]. TLC, therefore, is a useful scenario-independent metrics for contextua-

lising the driver’s response and will be used here as the key measure of behaviour.

To develop human-centred AV-systems based on drivers’ responses to AV failures, it is

necessary to consider the distribution of responses rather than simply taking mean values [39,

40]. Means can, of course, be useful for establishing average differences between conditions,

though this method does aggregate a source of information that is potentially useful for model-

ling human responses. Using quantile regression, Dinparastdjadid et al. [39] showed that con-

ditions that have a minimal effect on central tendency can have comparatively large effects on

the tails of reaction time distributions (during planned takeovers). Furthermore, and more

fundamentally, if one is interested in predicting drivers’ abilities to respond in real-world
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failures, they will need to contend with both between-individual and within-individual vari-

ability. Between-individual variability deflects the participant average from the population

mean; Within-individual variability causes single responses to failures to be spread around

each participant’s mean response. Basing predictions on means implicitly aggregates over

human variability, yet human variability is an integral component of any real-world failure so

arguably should be a key component of applied predictions.

This manuscript provides the first structured examination of human detection and steering

response to silent failures. In contrast to previous studies, which examine only a few scenarios

(e.g. [4, 10, 12–15]), we systematically examine behaviour across a wide range of failure criti-

calities in highly controlled takeover conditions. Bayesian hierarchical modelling is employed

to closely examine responses to silent failures under both optimal conditions and during

increased cognitive load. The stringent modelling captures the between-participant and

within-participant variability, leading to applied simulations predicting the safety outcomes of

hypothetical real-world failures.

Results

Experiment

Silent failures of automation can be classified based upon how quickly the driver would leave

the road after the failure in the case of driver inaction (TLCF). The driver is represented by a

single point (i.e. a vehicle chassis was not simulated), which is practically similar to calculating

TLC from when half the vehicle crosses the lane boundary [20]. Measuring human responses

to different criticalities requires several repetitions of the same conditions to gain a reliable

estimate of central tendency and variability. Repeatedly presenting only a limited number of

failure conditions, however, risks introducing response biases, for example, participants may

become highly practiced in responding to a few specific failure types, and the failures them-

selves become predictable. To counteract this issue, a mixed experimental design was used that

combined six repetitions of the same four levels of failure criticality (Repeated) with additional

individual trials across a wider range of criticalities (Non-Repeated). See Fig 1 for a graphical

description of the failures.

In a driving simulator, participants drove a track consisting of a 2 s straight section connect-

ing to a constant curvature bend of 80 m radius. Trials began in automation, implemented by

re-playing the visual scene and wheel movement of a pre-recorded trajectory. Each trial was 15

s long. At a pre-specified amount of time into the trial—the onset time—an offset to yaw-rate

(i.e. a bias to steering angle) was introduced, so that at each timestep the trajectory’s yaw-rate

was offset by a constant amount (Fig 1B). In real driving, this type of silent failure might hap-

pen for example if the automation is unsuccessful at sensing one of the boundaries of the driv-

er’s lane and instead starts following some other marking in the road [41]. After the failure, the

yaw-rate no longer matches the road curvature so the vehicle begins to drift towards the road

edges (at different rates depending on the severity of the failure; see Materials and methods).

The supervising automation task instructions were: “your task as the supervisory driver is to

make sure the vehicle stays within the road edges”. Manual takeover was achieved by pulling a

paddle shifter behind the steering wheel.

An Auditory Continuous Memory Task (ACMT; [42]) was used to introduce cognitive

load without visual demand (over-and-above the demands required to complete the steering

task). Drivers pressed a button (placed on the front of the wheel) whenever they heard target

letters present amongst a stream of distractor items. At the end of each trial they reported how

many of each target they thought they had detected Fig 1D & 1E). Throughout the manuscript,
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the supervising automation task without cognitive load is termed SupAuto, and the supervising

automation task with the ACMT is termed SupAuto+ACMT (see Materials and methods).

Analytical approach

The analysis presented here uses Bayesian hierarchical models to employ two, complementary,

approaches to statistical inference: estimating effect sizes and prediction. The usual inferential

approach in experimental psychology is to establish the size or presence of differences between

the expected average performance of different conditions (i.e. effects). In hierarchical models,

the fixed effect coefficients can be interpreted as the independent contribution of the associ-

ated predictor on the population average (i.e. the regression line).

Using a Bayesian approach, each parameter has an associated posterior probability distribu-

tion that characterises the level of certainty in parameter values, conditioned on the data. Each

parameter’s posterior distribution is described using the mean and the 95% highest density

interval (HDI), which is the span of the posterior distribution within which there is 95%

Fig 1. Simulated failures. (A) The trajectories of the simulated failures across the entire trial, including the different replayed trajectories (automation),

and varied failure onset times. In the figure the road has been straightened out, with the horizontal dashed grey lines indicate the road edges and

negative Lane Position values correspond to understeering. (B) The yaw-rate profiles of the simulated failures. Note that the coloured trajectories, which

are the Repeated failures (6 repetitions of 4 variations, with an identical replayed trajectory and onset time), all follow the same yaw-rate profile until 6 s,

whereupon there is a constant offset to yaw-rate. Solid grey trajectories are the Non-Repeated failures (24 variations), which varied in both replayed

trajectories and onset times. Dots correspond to when the trajectory leaves the road. The failure parameter TLCF is shown in the legend. TLCF

represents the amount of time elapsed between when the failure is introduced and when the driver, represented by a single point, would hit the lane

boundaries in the absence of a steering response. Panels C-E show The Trial Sequence. The locomotor component of each trial was 15 s. A bias was

introduced in every trial, but severity ranged from negligible to requiring rapid action (Fig 1). (C) A sample SupAuto trial (Repeated; TLCF = 4.7 s;

Onset time = 6 s) with the lane position signal overlaid. (D) A sample SupAuto+ACMT trial (Repeated; TLCF = 4.7 s; Onset time = 6 s) showing the

ACMT presentation timings and the participant’s button responses. (C) The trial sequence for SupAuto+ACMT. Two target letters were presented at

the start of each block of trials. Each trial consisted of the supervising automation task (visual scene shown), followed by the participant estimating how

many of each target they had heard. For SupAuto blocks (without the cognitive task), there was a brief blackout at the end of each trial, then the visual

scene was reset. For more information see Materials and methods.

https://doi.org/10.1371/journal.pone.0242825.g001
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probability that the true parameter value will fall, such that values inside the HDI have higher

credibility than those outside the HDI [43]. The reader is encouraged against dichotomous

thinking of assessing the presence of an effect (e.g. by assessing whether a 95% HDI range

excludes zero), and asked instead to use the mean and 95% HDIs as estimates of the certainty

around the influence of the associated independent variable on the predicted behaviour.

Where it is illustrative, we report the percentage of the distribution either side of zero to con-

vey the uncertainty in the model’s estimates.

The population average is limited, however, in that it does not contain the within- and

between-individual variability that are essential components of any real-world observed

takeover. While establishing effects is theoretically useful, population means only exist in an

abstract sense and they are a poor model for applied predictions. Bayesian hierarchical mod-

els are generative, so predictions of future observations can be made that average over

parameter uncertainty [44]. Therefore, throughout the results predictive intervals are

reported, which include the variability inherent in any real-world response. These are the

intervals that the model believes will encompass individual failures for new (untested) driv-

ers. For predictive intervals, we report the average prediction and intervals for one (68.3%)

and two standard deviations (95.5%) away from the mean. Reporting both effect sizes and

predictive intervals mean that the practical importance of the results can be robustly

assessed.

Detecting failures: TLC at takeover

In the Introduction, we argue that metrics that are linked to the unfolding scenario should pro-

vide better indicators of safe takeover than reaction time, so the measure of detection is time-

to-lane-crossing at takeover (TLCT). The timestamp of when the driver pulled the paddle

shifter behind the steering wheel was taken as the takeover moment. Note that in the current

design the failures are specified in terms of TLCF so TLCT can be directly linked to reaction

time (TLCT = TLCF—RT). Trials where the driver takes over control before the failure onsets

were removed (2.5% of trials). One participant was removed due to consistently moving the

wheel during the period of automation. Of the remaining trials, TLCT can only be measured in

trials where drivers took over control before the trial ended (85.6% of trials). For the less severe

combinations of TLCF and onset time, there is a TLC threshold at the end of the trial, beyond

which responses cannot be observed (TLCEnd; Fig 2A).

We found that TLCT could be reasonably approximated by a normal distribution, with vari-

ance increasing as TLCF increases (Fig 2A). The population mean of TLCT, μ, is modelled as a

linear model consisting of an intercept (β0), TLCF (F in Eq 2; the corresponding coefficient

is denoted βF) and Load (L; βL), including an interaction term (βFL). Load is parameterised as

L 2 {0, 1}, where L = 1 means the ACMT is present.

To account for heteroscedasticity, the standard deviation of the response (σ) is indepen-

dently modelled in a manner similar to TLCT, with parameters α0, αF, αL. Since σ cannot be

negative, ln(σ) is predicted. To retain a potential for a linear relationship between TLCF and σ
(cf. [5]), we log-transform TLCF when predicting σ. The resulting model is a multiplicative het-

eroscedastic model [45].

To exploit the repeated measures design and to capture between-participant variability,

these parameters are allowed to vary between participants. For further modelling details see

Materials and methods.

Pooled TLCT for the SupAuto failures are presented in Fig 2A. Drivers performed well at

the supervising task, taking over control within the lane boundaries in every instance. Two

important characteristics of the data appear obvious: there is a strong linear relationship
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between TLCF and TLCT and the variance of TLCT increases as TLCF increases. Note that the

model regression line and predictive intervals capture the data well.

The coefficient posterior means and 95% HDIs are shown in Table 1. The four β parameters

predict μ, the mean TLCT. The intercept, β0, can be interpreted as the limit of how quickly

drivers can respond; the model’s estimate is around.33 s. βF predicts how much TLCT increases

for every single unit of TLCF increase; it is estimated with reasonable certainty to be around.36

s, indicating that 1 s increase in the time budget for a failure translates to approximately.36 s

increase in the remaining safety margin when taking over (which, since TLCT = TLCF—RT in

our setup, means that RTs increased by�.64 s for every 1 s increase in TLCF). βL corresponds

Fig 2. (A) Human failure detection data overlaid on model predictive intervals. The pooled data for SupAuto TLCT is

plotted against TLCF. Smaller values of TLCF indicate more critical failure conditions, whereas, smaller values of TLCF

indicate that the driver took over closer to the lane edge (TLCT). The thick grey solid line is the predicted mean TLCT,

with the grey bands showing predictive intervals for one and two standard deviations away from the mean. Coloured

dots correspond to the Repeated failure conditions and grey dots correspond to Non-Repeated failure conditions. The

TLCEnd values for each tested combination of TLCF and onset time, which limits the observed range of TLCT for the

less severe conditions, are shown using gold horizontal bars. To aid interpretation that the reaction times increase as

TLCF increases, two dashed lines with constant reaction times are shown by dashed grey lines (RT = 0s, which is the

1:1 line, and RT = 1 s). (B) Model Predictive Intervals. Regression lines and predictive bounds for 68.3% and 95.5%

quantiles for SupAuto and SupAuto+ACMT. (C) The variability within the predictions decomposed into within-

participant variability, between-participant variability, and estimation uncertainty, shown as the average contribution

to the coefficient of variation (σpred/μpred) of the predictive distribution. The total (average) coefficient of variation is

the sum of the three components. Posterior median parameter values were used to make predictions without

estimation uncertainty.

https://doi.org/10.1371/journal.pone.0242825.g002
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to a constant increase or decrease of the regression line when ACMT is present. Though βL is

estimated to be small (� -.1 s) it is highly likely that ACMT caused a reliable decrease in TLCT

since 98% of the posterior distribution on βL is below zero. βFL is estimated, with high cer-

tainty, to be close to zero so there is a low likelihood that the presence of ACMT affects the

slope of TLCT to any meaningful degree.

The α parameters in Table 1 predict σ, the standard deviation of TLCT. An increase in

TLCF increases response variability (σ). αF is estimated to be close to one, suggesting that (σ)

increases linearly with TLCF, with a magnitude of approximately 8% of TLCF magnitude (indi-

cated by ea0 in Table 1). From Table 1 note that there is a high likelihood that drivers’ responses

were more variable when engaged in the ACMT. Though the mean of eaL is 1.10 (i.e. ACMT

increases σ by 10%), the 95% HDIs are relatively wide (-2%—22%; 96% of the posterior > 0) so

the magnitude of the proportional increase is uncertain.

One can average over the uncertainty in the posterior distribution when predicting future

observations [44]. Fig 2B shows the predicted average mean and predictive intervals for TLCT.

In Fig 2B, one can see the lower mean TLCT and wider predictive intervals for SupAuto

+ACMT (cf. parameters βL and αL in Table 1). However, it is noteworthy that in Fig 2B the

predictive intervals are mostly overlapping, and appear large compared to the relatively small

effect of ACMT on TLCT.

Since σ is explicitly modelled, we can estimate the relative size of different influences on

TLCT bounds when predicting future observations. The predictions contain three sources of

variability. Two of these are variability by design: within-participant variability (σ) and

between-participant variability (the varying effects in both μ and σ, see Table 1). However, the

model also contains estimation uncertainty represented by the posterior distribution of param-

eters that is taken into account when predicting new observations.

For each condition (a combination of TLCF and presence of ACMT) there is a predictive

distribution, constructed by summing the individual distributions of many simulated drivers

(sampled from the random effects based on the structure given in Eqs 4 & 5 and the estimated

parameters given in Table 1). To show the relative influences on the spread of this distribution,

we use a standardised measure of variability, the coefficient of variation (CV = σpred/μpred) [46].

Though the CV of the predictive distribution increases slightly over the range of TLCF owing

to the fact that σ increases marginally quicker relative to μ, taking the mean CV contribution

will suffice for illustrating the relative contributions of within-participant variability, between-

participant variability, and estimation uncertainty.

The average CV for the predictive distributions are.3 (SD = .04) for SupAuto and.36

(SD = .05) for SupAuto+ACMT. This means that, on average, without ACMT, the magnitude

Table 1. Posterior means and 95% HDIs for parameters predicting the mean and spread of TLCT, and their estimated variation across the population.

Fixed Effects Random Effects

Parameter Description Mean Lower Upper σParameter Mean Lower Upper

β0 μ intercept .33 .24 .42 sb0
.17 .1 .24

βF TLCF effect on μ .36 .32 .41 sbF .10 .07 .14

βL ACMT effect on μ -.10 -.19 -.01 sbL .11 .00 .19

βFL ACMT × TLCF effect on μ -.01 -.05 .03 sbFL .07 .04 .1

α0 ½ea0 � ln(σ) intercept [σ scaling constant] -2.47 [.08] -2.7 [.07] -2.26 [.11] sa0
.33 .08 .59

αF ln(TLCF) effect on ln(σ) [non-linearity of TLCF on σ] .96 .84 1.09 saF .21 .09 .32

αL ½eaL � ACMT additive effect on ln(σ) [ACMT scaling effect on σ] .09 [1.10] -.02 [.98] .24 [1.22] saL .14 .0 .26

For σ, the exponeniated coefficient (that predicts σ rather than ln(σ)) is given in square brackets.

https://doi.org/10.1371/journal.pone.0242825.t001
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of standard deviation is 30% of the magnitude of the mean. The variability breakdown is

shown in Fig 2C. The biggest contributor to predictive uncertainty is the within-participant

variability (explicitly modelled as σ), which accounts for around 61% of the total variability.

The estimated variability between participants in both μ and σ accounts for approximately

35% of the total TLCT variability. Between-participant variability is marginally higher for

SupAuto+ACMT. The model for SupAuto+ACMT effectively has two additional parameters

(βL, αL), which each vary between participants (these parameters are zeroed for SupAuto so

their variation is omitted from predictions). The additional parameters in SupAuto+ACMT

also mean that estimation uncertainty increases (since each parameter brings its estimation

uncertainty), but the increase is negligible due to the comparatively small effect estimation

uncertainty has on the predictive intervals (� 3%).

Responding to failures: Maximum steering wheel angle

The previous section examined the timing of the immediate response of participants when

detecting failure of the automated vehicle. The following analysis examines the nature of the

steering produced.

In general, drivers were able to successfully keep the vehicle inside the lane. Across all par-

ticipants only on 9 occasions (0.25% of trials) did the driver leave the road. However, if one

inspects the median trend lines in Fig 3, one can see that drivers ventured slightly closer to the

road-edges when performing the ACMT (Lane Position; Fig 3A). When responding to more

critical failures, the drivers appeared to turn the wheel more when they were performing the

ACMT (Steering Wheel Angle; S3B Fig), yet steering wheel angle traces are similar for more

gradual failures (Fig 3B). The previous section showed that drivers were slower to react and

achieved a lower safety margin with cognitive load. Further, reaction times positively correlate

with both lane position and steering wheel angle (S2 & S3 Figs). Subsequently, one might

Fig 3. Steering behaviour. Individual A) Steering bias and B) Steering Wheel Angle traces for Repeated conditions for the first 3 seconds after takeover,

with the rolling average (using a .25 s window) median trend line shown for SupAuto and SupAuto+ACMT shown in bold. Panel titles show TLCF,

coloured as per Fig 1.

https://doi.org/10.1371/journal.pone.0242825.g003
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expect slower reaction times in SupAuto+ACMT to propagate through to differences in steer-

ing metrics. This is the case for lane position (S3 Fig), but intriguingly, there do not appear to

be clear global differences between SupAuto and SupAuto+ACMT in terms of steering wheel

angle (S3 Fig). An interesting question is the extent that steering behaviour is driven by indirect
effects (e.g. the ACMT delayed RTs leading to greater criticality at takeover that then translates

into steering), or direct effects (cognitive load directly alters the steering actions).

The steering response characteristically consisted of an initial ‘pulse’ followed by smaller

steering corrections [S3B Fig; [9, 47, 48]. Therefore, in our specific scenario the amount the

driver turned the wheel in the initial steering response (SWAMax) is a robust indicator of steer-

ing ‘aggression’ (or demand), and correlated highly with other measurements that have been

used in the literature to characterise ‘aggression’ of steering response (e.g. Pearson’s R: maxi-

mum steering wheel angle derivative = .87; steering wheel variability = .81). SWAMax was cal-

culated by taking the difference between the steering wheel angle at disengagement and the

maximum steering wheel angle in the 2 s window after takeover (S1 Fig). Trials, where drivers

took over control with less than.25 s of the trial remaining, were excluded as after extensive

inspection of individual steering traces it was judged that.25 s was too early for drivers to finish

the initial steering correction (this removed 19 trials [1.2%], the mean time until SWAMax

was.64 s, SD = .3 s).

The criticality at takeover (TLCT) can be treated as a proxy for steering demand (i.e. how

much steering is required). To examine whether cognitive load directly affects steering behav-

iour (rather than indirectly via slowed reaction times), SWAMax was modelled using both

TLCT (T in Eq 8; coefficient γT) and ACMT (L; γL), including an interaction term (γTL). SWA-

Max is approximately lognormally distributed [cf. [49]), and appears related to TLCT via a

power law (at low TLCT values SWAMax grows exponentially; Fig 4A). Taking the logarithm of

both SWAMax and TLCT results in a strong linear relationship (Fig 4B). It is worth noting that

there are nuances to interpreting the coefficients when the model is fitted in these log-log coor-

dinates. On the arithmetic scale, the coefficients are multiplicative (see Eq 6) so they should be

interpreted in terms of percentage change (see Materials and methods for more details).

The parameter means and 95% HDIs are given in Table 2, as well as the the estimated vari-

ability of the parameters between participants. The negative estimate of γT has the effect that as

TLCT tends towards zero, participants make larger steering adjustments (SWAMax tends

towards infinity), and at large TLCT values, participants steer much less (SWAMax asymptotes

at zero; see also Fig 4A & 4C). There is also a high likelihood that the presence of ACMT alters

steering response. The parameter γL is negative, causing a downward shift of intercept in log-

log coordinates (Fig 4D). This can be interpreted in terms of percentage change on the arith-

metic scale, such that when the ACMT is present steering response is reduced by around 12%

(cf. egL in Table 2). Though there is some uncertainty to the exact magnitude of this dampening

effect (the 95% HDI range varies from 20% to 3% reduction), we can state with confidence

that steering was attenuated when participants were engaged in the ACMT. The interaction

term, γTL is estimated to be close to zero, suggesting the ACMT acts primarily to shift the inter-

cept rather than the slope of the regression line (Fig 4D).

Discussion

This experiment was designed to investigate humans detecting and responding to silent fail-

ures of automated driving that occurred whilst steering around bending roads. The criticality

of silent failures was manipulated to vary the required timing and magnitude of steering

responses by the supervising driver to avoid leaving the road. The results showed that for less

critical failures of automation, the drivers responded more slowly to the failure, but still with a
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higher safety margin (i.e. adopted a higher TLC at takeover), and were more variable in their

timing of responses. Cognitive load was manipulated by adding an auditory task to some trials.

When this additional load was present, drivers showed a small but consistent decrease in their

adopted safety margin (i.e. adopted lower TLC values at takeover), and also displayed an

increase in the variability of the timing of their responses. Whilst the magnitude of steering

responses were scaled to the criticality at takeover, the added cognitive load acted to reduce the

magnitude of steering responses.

The criticality of the failure conditions was varied to determine whether there was any

concomitant adjustment in the timing of driver responses. If participants responded at a

Fig 4. SWAMax. In A) & B) SWAMax is plotted against TLCT for the SupAuto condition, shown in A) raw coordinates

and B) log-log coordinates. The Repeated conditions are coloured in both A) & B) to indicate how the log-log

coordinates transform the data. These data are overlaid on the SupAuto model mean and predictive intervals. The

model regression lines and predictive bounds for 68.3% and 95.5% quantiles for SupAuto and SupAuto+ACMT are

shown in panels C) & D).

https://doi.org/10.1371/journal.pone.0242825.g004

Table 2. Posterior means and 95% highest density intervals for parameters predicting the mean of ln(SWAMax), μ.

Fixed Effects Random Effects

Parameter Description Mean Lower Upper σParameter Mean Lower Upper

γ0 [eg0 ] μ intercept [scaling constant on eμ] 3.57 [35.67] 3.49 [32.67] 3.67 [39.27] sg0 .18 .10 .25

γT ½egT � ln(TLCT) effect on μ [non-linearity of TLCT on eμ] -.85 [.43] -.94 [.39] -.76 [.47] sgT .17 .11 .26

γL ½egL � ACMT additive effect on μ [scaling effect of ACMT] -.13 [.88] -.22 [.80] -.03 [.97] sgL .14 .06 .24

γTL [egTL ] ACMT × TLCT effect on μ [scales the non-linearity when ACMT is present] .01 [1.01] -.06 [.94] .10 [1.10] sgFL .10 .00 .18

The exponentiated parameter for predicting eμ, the geometric mean on the arithmetic scale, are given in square brackets.

https://doi.org/10.1371/journal.pone.0242825.t002
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single TLC, then there would have been no change in TLCT across failure conditions (the

regression line in Fig 2A would have been flat), whereas, if participants responded with con-

sistent reaction time, a slope of 1 would have been expected (dashed lines in Fig 2A). The

actual pattern of responses sat somewhere in-between. The safer response timings for less

critical takeovers is consistent with studies examining planned failures [19, 22, 31, 50]. Fur-

thermore, some automation studies on straight or low curvature highways have observed

slower reaction times for less critical failures [4, 5, 31, 50]. The present findings demonstrate

that this pattern holds for silent failures on bending roads, across a wide range of failure crit-

icalities. The non-unity increase could have implications for the perceptual mechanisms

underpinning how drivers decide when to intervene in silent failures [7]. The perceptual

error at response (quantified by lower TLCT values) decreased with more gradual failures.

Such behaviour could be explained by accounts of drivers responding to the accumulated
perceptual error, equating integration of a small error over a long time with the integration

of a large error over a short time, resulting in responses at smaller absolute error in less

urgent situations (cf. [7, 9, 51]).

Though TLCT increased for less critical failures, TLCT values decreased due to slower

responses when drivers were engaged with the auditory cognitive task. This result extends

findings from previous drift-correction silent failure paradigms that found slower responses

when using visual (watching movie clips compared to manual [12] and visual-motor [4] non-

driving-related tasks. The results also agree with previous work on planned takeovers that

shows reduced TLC [20] or TTC [19, 21, 52, 53] but also see [22]), and generally slower

responses [5, 17–21], across a variety of secondary tasks. Slower responses when performing

the ACMT does contradict Zhang et al. [5] who reported a negligible effect of primarily audi-

tory tasks, but that meta-analysis aggregated across many planned takeover paradigms where a

variety of secondary tasks are used, and drivers could intervene both longitudinally (by brak-

ing) and laterally (by steering). In contrast, the current study uses highly controlled conditions

and many repetitions to precisely examine the effect of auditory cognitive load on steering

behaviour across a wide range of silent failures.

The measures of central tendency we have discussed so far demonstrate broad shifts in the

timing behaviour across conditions but do not indicate how variable responses were or

whether variability changed. The results show that the variability of TLCT increased with

TLCF. An increase in variability for slower/less severe scenarios has been reported previously

[4, 5, 40, 54], however, in the current study, the variability of response timing has been explic-

itly modelled using a hierarchical model. This approach allows the estimation of the relative

contribution of within- and between-person variation. The biggest contributor to the spread

of predicted TLCTs is within-participant variability (61%), rather than between-participant

variability (35%), meaning that trial-by-trial variation within individuals were greater than the

difference in participant averages between individuals. The ACMT increased the spread of the

TLC by�10%, but this increase is small compared with the estimated within- and between-

subject variability. It should be noted that the sample size was relatively small, which can mean

that the variance of random effects may be underestimated [55], or unduly influenced by the

choice of prior [56]. Importantly, the width of the prior did not substantially alter the relative

contributions to variability. Nevertheless, the absolute magnitude of the coefficients of varia-

tion should be taken only as an approximate indicator of scale for providing a useful bench-

mark for any mechanistic model attempting to incorporate stochasticity into predictions.

Future work is needed on bigger samples and using heterogeneous scenarios to assess whether

the estimated variability generalises.

Whilst the timing of driver responses detecting silent AV failures is important, a key aspect

of the current manuscript is the examination of the magnitude of steering response (quantified
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by SWAMax). The results demonstrate that the relationship between SWAMax and TLCT can be

captured using a power law: severe failures SWAMax tended towards large values, and less criti-

cal failures SWAMax tended towards zero. Some aspects of this finding have been previously

discussed in the literature. Steering adjustments have been shown to be log-normally distrib-

uted, providing a rationale for modelling steering as a multiplicative control process [57]. Fur-

thermore, some models of steering have related steering adjustments, specifically to TLC [37,

58]. However, to the authors’ knowledge, the current study represents the first to empirically

capture, with rigorous experimental control, the nature of the scaling relationship between

SWAMax and TLC.

While the current study focuses on lateral control, previous research has linked TLC to

longitudinal control, relating TLC to speed choice both empirically ([59], but see [60]) and

in driver models [61]. Furthermore, models of braking behaviour have modelled brake

strength as a linear function of the inverse of TTC [38, 62, 63], which is similar to the rela-

tionship found in the current study (the exponent of TLCT is estimated to be around -.85; a

linear relationship to the inverse TLCT is equivalent to an exponent of -1). Though the pre-

cise magnitude of the estimated coefficients may be specific to this study (and the driver

model used in simulator etc.), it seems that relating driver behaviour to indicators of

remaining safety margins (e.g. TTC or TLC) is a promising avenue for developing driver

models for silent failures.

The effect of the cognitive task on the timing of response has already been described above,

however, the results also demonstrated that the magnitude of steering response was reduced

when a cognitive load was added. A visually distracting task has been shown to increase SWA-

Max [12] in silent failures. However, they did not control for the possibility that slower reaction

times caused conditions that then necessitated greater steering wheel corrections (see S2 Fig

for the extent to which this applies to our scenario). To avoid this issue with the present data-

set, instead of comparing condition averages of SWAMax, SWAMax is predicted by TLCT, there-

fore accounting for variation in the scenario at takeover. This method confirms that

irrespective of the criticality at the time of response there was a general dampening of SWAMax

due to added cognitive load. This finding would seem to contradict reports of improved lane

keeping with added cognitive load (e.g. [24, 26]) that have been previously explained by cogni-

tive load inducing a fallback to over-learned driving functions [23]. Instead of enhancing steer-

ing corrections, our results agree with reports of subdued steering action when a driver is

cognitively loaded during planned takeovers ([29], note that this study used the same ACMT

task as the current study). However, this apparent discrepancy could be reconciled if one con-

siders that the task of detecting and responding to silent failures (and responding to cued

handovers; [29]) will be a novel experience for most of, if not all, the participants. Therefore,

non-loaded participants may have deployed cognitive control [30] to achieve good perfor-

mance both at detecting failures and quickly reducing steering error. Cognitive load may have

impaired these non-automatised aspects of the task [23], consequently reducing the effort

made to steer quickly away from the road edges, which manifests in a dampened steering

response. The same argument might also explain the delayed timing of response when loaded.

An important outstanding question is how these effects translate to silent failures in real-world

automated vehicles. If the effects of cognitive load are dependent on how well-learned the task

is [23] then we might expect these effects to depend on the level of experience with automated

vehicles (diminishing with increased experience). However, it takes many repetitions for a task

to become automated [64], and AV failures are expected to be infrequent [65], reducing the

opportunity for practice, therefore effects of cognitive load may persist despite growing AV

use.
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Applied relevance

The patterns of behaviour described so far have considered the reliability of effects from an

experimental perspective. One potential challenge could be that while scientifically interesting,

the observed effects may be relatively minor with little real-world significance. One strength of

using hierarchical Bayesian analysis methods is that they can be used to estimate the probabil-

ity of particular consequences (namely the vehicle actually leaving the road) by sampling from

the posterior predictive distribution implied by the estimated within- and between-subject var-

iance (whilst accounting for uncertainty in the fitted parameters). This approach can be used

to simulate regression coefficients for a range of unobserved “hypothetical” drivers. For each

TLCF the simulated driver has a predicted mean and standard deviation of response, and from

which practical safety implications can be derived.

An unambiguous marker for an unsafe takeover is how often the driver is predicted to exit

the lane: P(Exit). Trials with a negative TLCT indicate that the AV has left the road before the

simulated driver takes control. However, this approach does not take into account turning arc

so may miss responses that take over before leaving the road but still poses a real safety risk (in

the current study were 9 instances where drivers exited the road after takeover). Therefore, it is

sensible to include a ‘point of no return’ whereby TLCT is considered too small for the driver

to stay within lane boundaries. It is difficult to be certain what the safety threshold should be,

as it is likely to vary across individuals and the scenario. For example, in the current dataset

the lowest TLCT observed for drivers that stayed within the lane was.46 s, yet there were five

occasions where drivers exited the road despite TLCT >.46s (mean TLCT for lane exits = .56 s,

range = .25 s—.9 s). To avoid adopting a threshold that is too low, and therefore underestimate

P(Exit), we use a value of.5 s as the safety threshold in the applied simulations, but note that

the choice of the threshold will affect P(Exit) (S4 Fig).

Each simulated driver has an associated probability of exiting the road (P(Exit); the propor-

tion of trials with TLCT <.5 s). Therefore, from the posterior predictive distribution, the aver-

age P(Exit) for the population can be estimated. Fig 5A shows the predicted P(Exit) across

different failure states. To provide a useful frame of reference for the applied relevance of these

predictions, vertical lines are included in Fig 5A that represents the TLCF if an AV was to stop

turning and travel straight ahead while on a bend (i.e. an off-tangent failure). The examples

are classed as “rural roads” and “motorways” that adhere to the UK design standards for differ-

ent UK highways [66, 67].

The model shows that P(Exit) rises sharply as TLCF approaches zero (Fig 5A), though fail-

ures of this severity may be infrequent in the real-world since the road would need to be

unusually narrow or tight, or the driver travelling well above the speed limit. Failure rates in

the TLCF region 1.5–3 s (note the examples given in Fig 5A) could occur if, for example, the

vehicle ceased turning and instead drifted along its longitudinal axis; failure rates where TLCF

> 4s are likely to be very low curvature bends, or when the AV drifts very slowly (e.g. following

the wrong line markings). Drivers are predicted to be safer when there is no additional cogni-

tive load: e.g. for gradual failures (TLCF >4 s), only around.5% of failures exit the road (+2σ�
2%) whereas this estimate is around 1.5% (+2σ� 4%) with added cognitive load. For more

critical failures, P(Exit) rises quickly, e.g. at TLCF = 2 s, which could correspond to an off-tan-

gent failure on a bend, P(Exit) for SupAuto is 1.3% (+2σ = 3.8%); for SupAuto+ACMT P(Exit)
is 4.4% (+2σ = 10.2%). A potentially unintuitive aspect of Fig 5 is that P(Exit) does not con-

tinue to fall as failures become more gradual. This behaviour emerges due to modelling the

within-individual variability with both TLCF and ACMT acting as linear predictors. Whilst

this choice provides a good fit of the data, it seems implausible that variability would continue
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to rise in this way. More likely, there is an upper bound on σ, but due to the censored nature of

the data (limited trial length), it was not possible to effectively model this upper bound.

The predictions in Fig 5 help to illustrate the potential benefits of using generative models

for regression analysis in this domain. There are several reasons why drivers may have detected

failures more quickly in the present highly-controlled experiment, compared to noisy real-

world driving conditions: there was no traffic [35], participants experienced many failure repe-

titions [20, 22, 33, 68], and gaze was directed forwards because there were few visual distrac-

tions [34]. Relaxing any of these constraints could increase the predicted P(Exit) (Fig 5B & S4

Fig). It should be noted that it is also possible that detection of AV failure could have been arti-

ficially slowed by the lack of vestibular cues (we used a fixed-based simulator) and no vehicular

sounds (which prevented interference with the ACMT task), both of which can contribute to

successful driving [69] and could provide a signal that there has been AV failure.

A further limitation of applying the model relates to taking TLCT as a direct indicator of

whether the driver is safely in control of the vehicle. Specifically, TLCT only considers the tim-

ing of when the driver takes over control. While we account for changes in the trajectory after
disengagement by applying a delay to TLCT, the method would be improved by explicitly

Fig 5. A) Predicted probability of exiting the road before disengaging the automation when loaded (SupAuto

+ ACMT) and not loaded (SupAuto). Specifically, P(Exit) refers to the proportion of simulated failures with a TLCT of

<.5 s. Solid lines represent the average prediction, and bounds are the 68.3 and 95.5% quantiles. Dashed lines represent

the TLCF for off-tangent failures on typical bends on a single lane carriageway (Radius = 500 m, speed = 60 mph (26.82

ms), lane width = 3.65 m, TLCF = 1.6 s) and a multiple-lane motorway (Radius = 2000 m, speed = 70 mph (26.82 ms),

lane width = 3.65 m, TLCF = 2.7 s). B) How P(Exit) increases when further delays are included in the predictions. The

mean estimates are plotted for the examples shown in panel A: bends on a motorway (dashed line) and rural road

(dotted line). The vertical grey line shows the delay value used for the predictions presented in panel A.

https://doi.org/10.1371/journal.pone.0242825.g005
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including a model of how drivers steer during takeovers, and also by incorporating vehicle

dynamics into the TLC calculation [e.g. vehicle extent and wheel slip; [36]). As yet, adequate

models of this do not exist [3]. It is hoped that the present detailed examination of how drivers

detect and respond to silent failures will usefully inform the development of such models.

Most of the limitations described are likely to increase P(Exit), so the authors caution that

the predictions presented in Fig 5 should be considered as the best-case scenario, and treated

as a lower-bound estimate for the real-world safety risk of silent failures. Further research is

still needed to examine factors that might delay or impair the driver’s corrective manoeuvre to

silent failures. To highlight the importance of these efforts, Fig 5B hypothesises how—based

on the current dataset—additional delay might increase P(Exit). The relationship is non-linear,

with increasing delay corresponding to a rapidly increasing P(Exit), and more pronounced for

more critical failures (i.e. the ‘Rural Road’ compared to the ‘Motorway’). Fig 5B shows that

even a relatively small increased delay for Fig 5 increases P(Exit) to worrying levels (see also S4

Fig). As an example, consider for a moment trying to account for the predictable nature of the

current experiment. Drivers who were faced with unpredictable planned takeovers have been

estimated to be around 1 s slower than drivers who had previously experienced (and therefore

will have some expectation of) a planned takeover [5]. A further 1 s delay (giving a safety

threshold of 1.5 s) would mean more than 75% of AV failures result in lane exits for the speci-

fied scenarios (Fig 5B).

Conclusion

This manuscript examines silent failure detection and steering responses to 28 failure condi-

tions. Driver behaviour is highly dependant on failure criticality. Drivers take over control

with longer response times and higher safety margins for less severe failures, yet they are also

more variable. The magnitude of the steering response is scaled to the criticality. An auditory

secondary task caused drivers to take over later, make more variable responses, and also make

smaller initial steering corrections.

Using bayesian hierarchical models, criticality (TLC) at takeover was ably predicted using a

gaussian distribution where the mean and standard deviation both increased as failure severity

decreased. Furthermore, the magnitude of steering response was related to the criticality at

takeover through a power law, with highly critical takeover producing increasingly large cor-

rections and less critical takeovers tending towards minimal corrections. Hierarchical model-

ling of both the mean and variability of TLC showed that both within- and between-individual

variability should be taken into account when predicting safety boundaries, and also when

developing mechanistic models for virtual testing. These methods allow for applied simula-

tions of hypothetical failures, providing a lower-bound estimate of the probability that a driver

would exit the road before taking over control of an automated vehicle that has failed. The

lower-bound is not negligible (about 1/100 failures, rising quickly for critical failures), and the

probability is expected to rise rapidly when additional sources of delays are incorporated (e.g.

due to traffic, or surprising failures not tested in this manuscript). This modelling should be a

cause for concern when considering the widespread plans to adopt AV systems.

Materials and methods

Open science

The raw data, analysis scripts, and experiment code are freely available on the Open Science

Framework [70], as well as a pre-registration [71]. These data were collected according to the

pre-registration. The preregistration describes the planned analyses both of steering and gaze

data, however, due to the scale of analysis required to thoroughly investigate each set of
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behaviours, we have chosen to report here the findings related to steering responses and create

a separate manuscript to report gaze behaviours.

Participants

Twenty staff and students (7 Females) of the University of Leeds volunteered to participate in

the present study (Mean age = 25.2 years, range = 20-32 years). Participants had normal or cor-

rected to normal, hearing and sight. Most (N = 17) participants had UK driving licences, for

an average of 6 years. Participants were paid £10 for their time (1 hour). The study was

approved by the University of Leeds Research Ethics Committee (Ref: PSC-564) and complied

with the guidelines set out in the declaration of Helsinki. Written informed consent was given.

Driving simulator

The experiment took place in a fixed-based driving simulator, with stimuli back-projected

onto a large projection screen (field of view 89˚ x 58˚) with black surroundings. Participants

sat on a height-adjustable seat with eye position 1.2 m high and 1 m from the display. The

experiment was run on a desktop PC with Intel i7 3770 (3.40 GHz). Display refresh and data

recording rates were synchronized at 60 Hz. The stimuli were generated using Vizard 5

(WorldViz, Santa Barbara, CA), a Python-based software for rendering perspective correct vir-

tual environments. Participants steered using a force-feedback wheel (Logitech G27, Logitech,

Fremont, CA). The road geometry across all conditions began with a straight section of 16 m

length (2 s), followed by a constant curvature bend of 80 m radius (either leftwards or right-

wards). The road width was 3 m. The road was rendered using a semi-transparent grey texture.

The ground plane of the virtual environment was textured with ‘Brownian noise’ (as per [72],

Fig 1E), which has been shown to elicit similar gaze behaviours to on-road driving [72]. Vehi-

cle speed was kept constant at 8 ms−1 (� 18 mph).

Silent failure selection

Repeated trials had the same automated driving trajectory and the failure was introduced into

the simulation at the same time (6 s into the trial; the onset time). The visual stimulus produced

was therefore identical in each repetition. The most rapid (TLCF = 2.23 s) was a ‘tangential’

silent failure (the vehicle continued along its longitudinal axis), whereas the most gradual silent

failure (TLCF = 9.55 s) would not cause the vehicle to leave the road within the period of the

trial. The middle failures severities (TLCF = 4.68 s, 7.12 s) were equally spaced between these

two most extreme failures so that the parameter space of TLCF was explored. The yaw-rate off-

sets for the Repeated failures were 5.73, 1.20, .52, and.30˚/s). To avoid easily detectable step

shifts in yaw-rate the bias was introduced via a smooth step function (over.5 s) that ensured

that the derivative of yaw-rate was smooth.

We complemented repeated trials with non-repeated trials selected from a wider range

of TLCFs (from a range of 2.95 s to 19.51 s). Within the non-repeated trials, we also varied

the automated driving trajectory (from a pool of four pre-recorded trials), the failure onset

time (from a range of 5 s to 9 s), and whether the direction of failure was oversteering or

understeering (set to understeer 70% of the time). The non-repeated trials needed to be

unpredictable and also to adequately explore the space. Therefore, the parameters were

chosen using a 4-dimensional Sobol sequence—a convenient way of generating a quasi-ran-

dom string of values that adequately explores a range of values. In total, there were 28 fail-

ure conditions.
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Cognitive load: Auditory distraction task

During each trial the auditory equivalents of the visual targets were presented amongst a

stream of auditory distractor items, that occurred at a random interval varying between 1.0 s—

1.5 s (in 0.1 s steps; Fig 1D & 1E). The task was designed so that drivers could respond to the

ACMT (using their thumbs) and take over control of the vehicle (using their fingers) without

moving their hands, and use whichever hand they wished for either task, so the ACMT should

have a minimal effect (if any) on takeover timings. The ACMT task continued until the end of

each trial (i.e. through both automated and manual periods). At the end of each trial partici-

pants also reported how many of each target letter they thought they had detected. Reporting

was electronically recorded using the steering wheel, then participants confirmed their selec-

tion by clicking the paddle shifters situated behind the wheel.

All participants did well on the ACMT task (responding appropriate 92.6% of the time,

with a mean reaction time of .75 s), suggesting high engagement. We found little evidence of

trade-offs: while participants, in general, were marginally slower (and less correct) at respond-

ing to the ACMT in SupAuto+ACMT compared to baseline ACMT performance, we did not

find that drivers that performed worse on the ACMT responded substantially more quickly to

automation failures.

Procedure

Participants experienced three 50 s long practice laps on a sinusoidal track with bend radii of

60 m. On the first lap, drivers had manual control. The second and third practice laps began in

automation and the participant was instructed to supervise and take over control by pressing

the gear pads when they were ready to do so. This ensured that participants were familiar with

the simulator dynamics, the automation driving, and the takeover method. Participants also

practiced the ACMT (without driving) until they were comfortable with the instructions.

The SupAuto (supervising automation) task consisted of a series of discrete trials (half

bending leftwards and half rightwards) where an automated vehicle trajectory was simulated

by replaying a pre-recorded trajectory of a well-practiced driver that steered smoothly and

kept close to the midline (Fig 1). During automation, participants kept their hands loosely on

the wheel, which moved in correspondence to the visual scene. The takeover was initiated by

pressing a paddle shifter and was confirmed with a high-pitched (480Hz, 200ms) tone. Control

transfer was immediate. Each trial began with a 2 s pause without vehicle motion, during

which time the wheel was automatically re-centred. The locomotor component of each trial

was 15 s, after which the scene was reset (in SupAuto) or the ACMT task was shown (Fig 1E).

The time taken for participants to submit their estimated counts of targets at the end of each

ACMT trial was unrestricted.

Baseline ACMT measures (without driving) were taken before and after the driving blocks

of trials so that participant trade-offs (between the ACMT and failure detection) could be

assessed. Participants conducted the experiment in four blocks: ACMT only, SupAuto,

SupAuto+ACMT, ACMT only. The SupAuto and SupAuto+ACMT blocks were counterbal-

anced across participants. Within each block conditions were randomly interleaved. Each par-

ticipant completed 192 trials (96 each for SupAuto and SupAuto+ACMT).

Model fitting

Repeated and Non-Repeated trials were pooled into the one model fitting. Both models were

fitted using Hamiltonian Monte Carlo in Stan, using the R package brms [73]. Weakly infor-

mative priors were chosen, but the results for both TLCT and SWAMax were robust to changes

in prior specifications. The final models were arrived at through iterative increases in
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complexity, with model comparisons being made with leave-one-out cross validation [which

aims to counter over-fitting by estimating out-of-sample prediction error, [74]). Additional

terms were only kept if they decreased prediction error and had a clear interpretation.

Modelling TLC at takeover

TLCT cannot be higher than TLCF (the 1:1 line in Fig 2A), or lower than TLCEnd (the gold bars

in Fig 2A). Therefore, TLCT is modelled as a normal distribution, truncated (capped) by TLCF

at one end and censored (i.e. the measurement is limited but the measured distribution can in

theory extend past the censored value) by TLCEnd at the other. The between-participant

covariation of predictors is modelled with a multivariate gaussian specified by covariance

matrices Sβ, Sα. The distributional model for TLCT is given below:

TLCT i � Normalðmi; siÞ ð1Þ

mi ¼ b0j
þ bFjFi þ bLjLi þ bFLjFiLi ð2Þ

ln ðsiÞ ¼ a0j
þ aFj ln ðFiÞ þ aLjLi ð3Þ
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Where i indicates the condition and j indicates the participant. Sβ & Sα are covariance matrices

centred on the population coefficient values. Note that the logarithmic link function on σi
means that the linear predictors are multiplicative:

si ¼ ea0Fi
aF eaL ð6Þ

In exponentiated form the formula takes on a pleasing interpretation [45]. ea0 is a constant

that scales Fi
aF . The exponent αF allows flexible modelling of non-linear trends (the linear case

is αF = 1). When the ACMT task is present eaL acts as another constant that increases or

decreases by a percentage. The scaling of variability (rather than dealing in absolute terms) due

to cognitive load is intuitive and generalisable.
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Modelling maximum steering wheel angle

The distributional model for SWAMax is given below:

ln ðSWAMaxÞi � Normalðmi; sÞ ð7Þ

mi ¼ g0j
þ gTj ln ðTiÞ þ gLjLi þ gTLj ln ðTiÞLi ð8Þ
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Where i indicates the condition, j the participant, and S the covariance matrix that allows coef-

ficients to covary across participants.

As noted in the main text, on the arithmetic scale (i.e. exponentiated form) the coefficients

are multiplicative. Furthermore, in contrast to when a logarithmic link is used (Eq 3), a com-

plete log-transform of SWAMax means that when the model’s predictions are de-transformed

(exponentiated) to be on the arithmetic scale (i.e. the original units) the distribution of errors

is multiplicative rather than additive [75]. Furthermore, the exponent of μi (which is an estima-

tor for 1

N

P
ln ðSWAMaxÞ) corresponds to the geometric mean (which in this case is also the

median value) on the arithmetic scale [76].

These characteristics are potentially useful: steering control has previously been modelled

using multiplicative control inputs [57], and variability in the motor system is considered to be

scaled to the size of the control signal [77, 78], thus both sensory and motor noise have been

modelled as multiplicative when controlling a vehicle (e.g. [9, 79]).

Supporting information

S1 Fig. Sample steering wheel trace and identification of SWAMax. SWAMax is the difference

between the initial steering wheel angle and the maximum steering wheel angle, taken within a

2 s time window.

(EPS)

S2 Fig. Examining the relationship between SWAMax and reaction time. Plotted are the four

Repeated TLCF conditions. In every failure condition, there is a strong positive correlation

between RT and SWAMax. Pearson’s R values range from.53 to.68 (mean = .61). The marginal

means and standard deviations for RT and SWAMax are shown as dots close to their respective

axis. The ACMT (SupAuto+ACMT) consistently slows reaction times. The average difference

between SupAuto+ACMT and SupAuto conditions (averaging across each participant’s mean

difference between median RTs) is.19 s (SD = .37; one sample t-test comparing to zero differ-

ence: t(18) = -2.26, p = .04). Given the strong correlations one might expect this slowing to

translate to SWAMax but in fact the condition averages for SupAuto and SupAuto+ACMT are

approximately equal. The average difference between SWAMax for SupAuto+ACMT and

SupAuto conditions is only.21˚ (SD = 4.0; one sample t-test comparing to zero difference:

t(18) = .22, p = .83).

(EPS)
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S3 Fig. Examining the relationship between lane position and reaction time. Plotted are the

four Repeated TLCF conditions. In every failure condition there is a very strong positive corre-

lation between RT and Lane Position. Pearson’s R values range from.72 to.98 (mean = .87),

and are generally closer to one for more gradual failures. The marginal means (dots) and stan-

dard deviations (lines) for RT and Lane Position are shown close to their respective axis. The

ACMT (SupAuto+ACMT) consistently slows reaction times. The average difference between

SupAuto+ACMT and SupAuto conditions (averaging across each participant’s mean differ-

ence between median RTs) is.19 s (SD = .37; one sample t-test comparing to zero difference:

t(18) = -2.26, p = .04). This appears to propagate into differences in Lane Position, since on

average drivers edged.1 m (SD = .1) closer to the road edge in SupAuto+ACMT (one sample t-

test comparing to zero difference: t(18) = -4.28, p<.001).

(EPS)

S4 Fig. Predicted probability of exiting the road before disengaging the vehicle when

loaded (SupAuto+ACMT) and not loaded (SupAuto) with additional delays, from 0–1 s

(shown in panel labels).

(EPS)
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20. Zeeb K, Härtel M, Buchner A, Schrauf M. Why is steering not the same as braking? The impact of non-

driving related tasks on lateral and longitudinal driver interventions during conditionally automated driv-

ing. Transportation research part F: traffic psychology and behaviour. 2017;50:65–79. https://doi.org/

10.1016/j.trf.2017.07.008

21. Wandtner B, Schömig N, Schmidt G. Effects of non-driving related task modalities on takeover perfor-

mance in highly automated driving. Human factors. 2018; 60(6):870–881. https://doi.org/10.1177/

0018720818768199

22. Gold C, Happee R, Bengler K. Modeling take-over performance in level 3 conditionally automated vehi-

cles. Accident Analysis & Prevention. 2018; 116:3–13. https://doi.org/10.1016/j.aap.2017.11.009

PLOS ONE Predicting takeover response to silent automated vehicle failures

PLOS ONE | https://doi.org/10.1371/journal.pone.0242825 November 30, 2020 22 / 25

https://doi.org/10.1177/0018720819829572
http://www.ncbi.nlm.nih.gov/pubmed/30830804
https://doi.org/10.1016/j.trf.2019.03.020
https://doi.org/10.1016/j.trf.2019.04.020
https://doi.org/10.1177/0018720819829594
https://doi.org/10.1177/0018720819875347
https://doi.org/10.1068/p050437
https://doi.org/10.1007/s00422-017-0743-9
https://doi.org/10.20485/jsaeijae.9.4_208
https://doi.org/10.1068/p5343
https://doi.org/10.1016/j.jsr.2017.02.009
https://doi.org/10.1016/j.jsr.2017.02.009
https://doi.org/10.1016/j.trf.2016.09.007
https://doi.org/10.1016/j.trf.2014.09.005
https://doi.org/10.1049/iet-its.2017.0232
https://doi.org/10.1016/j.trf.2017.01.012
https://doi.org/10.1016/j.trf.2017.01.012
https://doi.org/10.1016/j.trf.2017.02.001
https://doi.org/10.1109/THMS.2018.2844251
https://doi.org/10.1109/THMS.2018.2844251
https://doi.org/10.1016/j.trf.2017.07.008
https://doi.org/10.1016/j.trf.2017.07.008
https://doi.org/10.1177/0018720818768199
https://doi.org/10.1177/0018720818768199
https://doi.org/10.1016/j.aap.2017.11.009
https://doi.org/10.1371/journal.pone.0242825


23. Engström J, Markkula G, Victor T, Merat N. Effects of cognitive load on driving performance: The

cognitive control hypothesis. Human factors. 2017; 59(5):734–764. https://doi.org/10.1177/

0018720817690639

24. He J, McCarley JS, Kramer AF. Lane keeping under cognitive load: performance changes and mecha-

nisms. Human factors. 2014; 56(2):414–426. https://doi.org/10.1177/0018720813485978

25. Medeiros-Ward N, Cooper JM, Strayer DL. Hierarchical control and driving. Journal of Experimental

Psychology: General. 2014; 143(3):953. https://doi.org/10.1037/a0035097

26. Cooper JM, Medeiros-Ward N, Strayer DL. The impact of eye movements and cognitive workload on

lateral position variability in driving. Human factors. 2013; 55(5):1001–1014. https://doi.org/10.1177/

0018720813480177

27. Horrey WJ, Lesch MF, Garabet A. Dissociation between driving performance and drivers’ subjective

estimates of performance and workload in dual-task conditions. Journal of safety research. 2009;

40(1):7–12. https://doi.org/10.1016/j.jsr.2008.10.011

28. Salvucci DD, Beltowska J. Effects of memory rehearsal on driver performance: Experiment and theoret-

ical account. Human factors. 2008; 50(5):834–844. https://doi.org/10.1518/001872008X354200

29. Wilkie R, Mole C, Giles O, Merat N, Romano R, Markkula G. Cognitive load during automation affects

gaze behaviours and transitions to manual steering control. In: The Proceedings of the 10th Interna-

tional Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design;

2019. p. 426–432.

30. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annual review of neuroscience.

2001; 24(1):167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
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