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True Online TD(λ)-Replay

An Efficient Model-free Planning with Full Replay
Abdulrahman Altahhan, Member, IEEE

Abstract—In this paper, we present a new reinforcement
learning prediction method that extends the capabilities of the
true online TD(λ) to allow an agent to efficiently replay all of
its past experience, online in the sequence that they appear with.
We demonstrate that, for problems that benefit from experience
replay, our new method outperforms true online TD(λ), albeit
quadratic in complexity due to its replay capabilities. In addition,
we demonstrate that our method outperforms other methods with
similar quadratic complexity such as Dyna Planning and TD(0)-
Replay algorithms. We showcase the capabilities of our method
on two benchmarking domains, a random walk problem tested
with simple binary features and on a myoelectric domain that
is tested with features that are deeply extracted from sEMG
signals. Experimental results confirm the particular suitability
of this method for a deep architecture over other methods.

Index Terms—TD, TD(λ), true online TD with Replay, full
replay, experience replay.

I. INTRODUCTION

EXPERIENCE replay plays an important role in the

context of reinforcement learning algorithms. In this

paper we tackle the issue of building a robust method that

allows the agent to maximize its experience replay capability

with relatively cheap complexity. We will tackle multi-step

sequential replay algorithm where the agent replays a sequence

of past experience steps in the order they appeared with. This

issue have been partially attempted in [1] where the algorithm

used TD(0) update rules as its basis. In this work, we will

extend the ideas developed in [1] to the true online TD(λ)

updates. In particular, we build a new method based on two

requirements. First, we would like to be able to utilise a multi-

step targets for each replay update instead of the one step target

update of TD(0), this allows the method to choose how deep

its targets are for each replay update. The second requirement

is that the method should be efficiently incremental to allow a

vectorised implementation without being bound to the number

of past steps that will be replayed.

To achieve these goals we first introduce a method, namely

the interim λ-return TD-Replay, that takes experience replay

to its extreme by allowing the agent to replay all of its past

experience online in every time step. Unlike previous work,

this method allows us to utilize the multi-step interim λ-return

targets for each replay update instead of the one-step target of

TD(0). We introduce an online efficient incremental method,

namely the true online TD(λ)-Replay, that is equivalent to

online λ-return TD-Replay, but has a complexity that is not
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related to the time step. Furthermore, we show that the true

online TD method is a special case of the true online TD-

Replay method.

We will deal with Markov Decision Process (S,A, p, r, γ)
to learn a value function vπ(s) for a policy π and state s;

where S is the state space and A is the action space available

for the agent, and r(s, a, ś) is the expected reward signal for

executing action a at state s then transitioning to state ś. We

denote the feature representation of state s as φ(s) and n
as the feature space dimension, i.e. |φ| = n. The feature

representation can be complex. For example, the features can

be obtained from an unsupervised deep architecture such as

an auto-encoder [2] or a set of stacked auto encoders [3] or

other similar architectures [4]. We can then employ whatever

algorithm we have to train on the resultant features [5] [6]. The

two learning modules; the feature extractor learning module

and value-function learning module, are dissected from each

other. The training can be either performed simultaneously

or sequentially. For many problems, this approach is simple,

helps to isolate the intrinsic RL prediction method capabilities

form those of the feature extractor and has the usual theoretical

convergence guarantees (with some technical conditions such

as the independence of the feature’s components and the

learning rate diminishing property [7] [8]). In this paper we

take this approach, and we train the two modules sequentially

and independently. Alternatively, one can take a more end-

to-end learning approach such as in [9] when the domain

is more complex. However, despite the impressive empirical

achievement of such models convergence guarantees do not

apply straight on a non-linear model [7]. The high performance

in the second approach can mainly be attributed to the stability

and agility provided by the replay memory that allowed for

batch updates to be used. The better performance of a random

replay depth can be attributed to the ability to choose a set of

trajectories and to break the strong correlation that can lead

to instability when non-linear function approximation is used.

However, we believe that replaying all the past experience as

a block has its own advantages. In particular, it allows the

agent to integrate and summarise all of its learning in each

time step so that it reduces variability and dependency on

the learning rate to balance out the experience. In effect, this

allows the agent to be robust and to act reliably at different

states. What is more, from a model perspective replaying

seems particularly useful for a deep learning architecture. Our

investigation confirms that an algorithm that employs replay

extensively such as the true TD-Replay is empirically more

suitable than other algorithms for a deep feature extractor

process.
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II. BUNDLED EXPERIENCE REPLAY

Replay can be categorized as sequential with specific fre-

quency (ex. replaying past sequence of 10 steps every other

step), which has been used in [1] and is the topic of this paper,

and non-sequential, for example the one used in [10] [11] [12]

[13] to mean re-evaluating past target updates using what has

been recently learned by the agent, they tagged it as replay and

is done in an on-policy fashion. In this sense their algorithms

redo the same set of past updates, with the same initial learning

weights in each step, using updated targets, in order to benefit

from past experience. In their setting each bundle of updates

always starts from the same initial weight’s values, which is a

key issue. Although this simplifies finding incremental forms

for the learning process, however in that sense their approach

is more of reevaluating the target rather than actually replaying

past experience updates. From our perspective, replaying the

experience requires going through a bundle of past experience

updates and redo them as if the agent went through them again

but with its current set of weights [1]. Our intensive replaying

approach can be looked at as a special case of Combined

Experience Replay (CER) discussed in [14], since we include

all past steps including the latest current step in each bundle

of updates. The difference is that we replay all past steps and

we do not sample. Albeit a special case of replay (because it is

intensive and sequential), our approach for experience replay

resembles the Lin’s approach [15] from the sense of repeating

past updates but contrary to Lin’s approach it is sequential and

intensive to promote learning agility.

From a learning perspective, each time a new online inter-

action takes place between the agent and the environment, the

replay process should allow the model to start with a better

initialization of the weights.

III. TD-REPLAY WITH INTERIM λ-RETURN

Contrary to [1] we use interim λ-return as the target for

each update. Interim λ-returns takes advantage of all past

experience to obtain a more accurate estimate of the targets of

the TD updates. In this section we use the forward view of our

elaborate replay method using interim λ-returns similar to the

way true online TD(λ) was constructed [16]). The forward

true online TD(λ) algorithm is largely kept as is with one

important change. We will run through all past updates and

redo them all as a bundle, using the latest model weights, i.e

without reinitializing them back to their original values. We

assume that in each time step t, the algorithm will go back to

all past step trajectories and replay every single update based

on its latest weights. Index t will be used to represent current

time step, while index k will be used to represent past steps,

where 0 ≤ k ≤ t. For example, the model’s weights at time

step t that are used to replay past step k are denoted θt
k, while

the weights that are the results of replaying past time step k
are denoted θt

k+1. θi
i will be abbreviated as θi; i.e. θi : = θi

i,

for example when we see θt it stands for θt
t. We will devote

our attention in this section to the last layer of the model that

is used to represent the value function V . Each one of the

forward TD replay updates can be written as

θt+1
k+1 = θt+1

k + αk∇θV
(

G
λ|t+1
k − V (s|θt+1

k )
)

(1)

where G
λ|t+1
k is the interim λ-return introduced in [16] and

is defined as:

G
λ|t
k =

t−k−1
∑

i=1

λi−1G
(i)
k + λt−k−1G

(t−k)
k (2)

G
(i)
k = (1− λ)

i
∑

j=1

γj−1Rk+j + γiV (Sk+j |θk+j−1) (3)

Note that when k = t − 1 then G
λ|t
k = G

(1)
t = Rt+1 +

γV (St+1|θt) which is the usual one-step target of TD(0). We

assume that the last layer is linear, hence a linear model is

used to express the value function, V (s|θ) = θ⊤φ(s), where

∇θV = φ(s). This assumption entails some restriction but

it does not prevent us from using a non-linear and complex

layers that come before this last layer in order to build a deep

learning model. Learning can take place in two ways. The

first, is performed by obtaining a good feature representation

through a separate stage (by utilizing an auto-encoder for

example) and then we feed these features into the last layer

to obtain a policy evaluation model. We will adopt the first

approach. Alternatively, model learning can be performed end-

to-end in the model where the error coming from the last layer

is backpropagated to previous layers.

The set of the replay updates (1) can be written as

θt+1
k+1 = θt+1

k + αkφk

(

G
λ|t+1
k −

(

θt+1
k

)⊤
φk

)

(4)

θt+1
k+1 = Akθ

t+1
k + btk (5)

Ak :=
[

In×n − αkφkφ
⊤
k

]

(6)

btk := αkφkG
λ|t+1
k (7)

where Ak is a squared matrix, btk is a vector and n is the

number of weights used to encode the value function. The time

and space complexity of the above algorithm can be made

reasonable and be only related to n. Although each step is

entailing t updates with complexity O(t × n), we shall use

the formalism used by [17] and [16] to make the complexity

O(n2). This is useful for two reasons. First, it allows us to

take advantage of the efficiency of a vectorized incremental

implementation of the updates. Second, it is useful for early

episodes where normally t > n. We will use the same process

performed in developing true online TD, except we will force

each bundle of updates to initialise the first weight with the

weight of the previous bundle of updates. By doing so we will

be replaying all past updates in each time step. It should be

noted that if we fixed the initial weights of a bundle of update

steps, then the algorithm turns into just a revaluation of all

past rules instead of replaying past experience, this is what

algorithms at [14], [17] and [16] are performing, there is no

replay process utilized in them.

Hence, based on our algorithm, the final weights θ4
4 for time

steps 4 can be calculated in terms of the initial weights θ3
3 by

backward substitutions as

θ4=θ
4
4=A3A2A1A0θ

3
3+A3A2A1b

4
0+A3A2b

4
1+A3b

4
2+b43
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Note that we need G
λ|4
k to be able to calculate b4k. It can be

easily proven by induction that

θt+1
t+1 =

(

0
∏

i=t

Ai

)

θt
t +

t
∑

k=0

(

k+1
∏

i=t

Ai

)

bt+1
k (8)

It should be noted that this algorithm is different than the

algorithm that we developed in [1] in two main aspects; first

the basic updates of each replay step is based on true online

TD not on TD(0), i.e. our algorithm uses the interim λ-return

targets, the second difference is that the matrices Ak are

defined differently.

We call the above algorithm the interim λ-return TD-Replay

to emphasise that the algorithm is replaying all past experience

using interim λ-returns. This algorithm has a built in planning

capability due to the link between replaying and planning

which has been already established in [13] and further con-

firmed in other work with model-free structures. Authors in

[18], for example, confirmed that a deep neural network com-

bined with LSTM that uses Q-learning has characteristics that

are normally associated with a model-based RL planner. Our

approach goes even further by making planning built in the

RL method itself and decoupled form the model architecture

(since we use a linear model without an LSTM or a deep

neural network, although we used an autoencoder to study the

suitability of our method for deeply extracted features). Other

researchers have investigated the issue of planning by using

a specific model architecture that enabled planning. [19] for

example created a tree search architecture. Interim λ-return

TD-replay algorithm constitutes the non-incremental. Clearly,

this algorithm is expensive with a complexity of O(n× t) and

in its current form it is impractical. In the next section we

develop a more efficient and incremental algorithm that we

call the true online TD(λ)-replay to perform the same set of

updates.

IV. TRUE ONLINE TD(λ)-REPLAY: AN INCREMENTAL

ONLINE VIEW

To arrive at a correct efficient form for the intensive replay

mechanism presented in the previous section, we need to

extend the mathematical formulation developed in deriving

the incremental forms of the true online TD(λ) to accom-

modate the replay process. This involves some considerable

mathematical derivations that we omit here for simplicity and

brevity. The basic ideas are to obtain a new matrix term Āt

that incorporates the replay process, and to convert the weights

updates into a new eligibility trace ēt update, both of which is

initialised in each episode. Given a set of n weights θ that are

due to the forward interim λ-return TD-replay method shown

earlier, we can obtain exactly θ incrementally according to the

following step updates

At =
[

In×n − αtφtφt
⊤
]

(9)

et = Atγλet−1 + αtφt (10)

ēt = Atēt−1 + et

(

δt + θ⊤
t φt − θ⊤

t−1φt

)

+ αtφtθ
⊤
t φt

(11)

Āt = AtĀt−1 (12)

θt+1 = Ātθt + ēt (13)

The initial conditions as per the definitions are set to Ā−1 =
In×n, Ā−1 = In×n, , e−1 = 0n×1 which yields the TD(0)

update for t = 0. Our true online TD(λ)-Replay method is

defined using the above updates.

V. EFFICIENT TRUE ONLINE TD-REPLAY(λ) ALGORITHM

By substituting At and reorganising the terms so that

we have vector × matrix multiplication and not matrix ×
matrix multiplication we obtain a more efficient form of the

true online TD(λ)-Replay method. Formulating this method

as a learning episodic algorithm for prediction is given in

Algorithm 1.

Algorithm 1 true Online TD(λ)-Replay Learning

Input: α, γ, λ,θinit

Output: θ

obtain initial φ

θ ← θinit

for all episodes do

e← 0, ē← 0, Ā← I, Vold ← 0
while S is not Terminal do

obtain next feature vector φ′ and reward R
V ← θ⊤φ

V ′ ← θ⊤φ′

δ ← R+ γV ′ − V
e← eγλ− αφ(γλe⊤φ− 1)
ē← ē − αφ(ē⊤φ− Vold) + e(δ + V − Vold)
Ā← Ā− αφ(φ⊤Ā)
θ ← Āθ + ē

Vold ← V ′

φ← φ′

end while

end for

It should be noted that the true online TD(λ) can be viewed

as a special case of the true online TD(λ)-Replay by fixing

the weights used in the update rule (13). This is because when

θt = θ0 the true online TD(λ)-Replay algorithm reduces to

the usual linear true online TD(λ). To see how, we define

āt := Ātθ0, rule (13) becomes: θt+1 = āt + ēt. In addition,

Āt can be vectorized into āt by multiplying (12) by θ0 and

substituting by the āt definition: āt = āt−1−αtφt

(

ā⊤
t−1φt

)

.

This equation can be combined with (11) by simple addition of

āt+ ēt and substituting them by θt+1, and substituting At by

its value in (7) we obtain the update rules of the true online

TD(λ) algorithm: θt+1 = θt + et(δt + θ⊤
t φt − θ⊤

t−1φt) −

αtφt(θ
⊤
t φt − θ⊤

t−1φt).

VI. TRUE ONLINE TD(λ)-REPLAY APPLIED ON RANDOM

WALK

In this section we show the prediction performance of our

algorithm on a random walk task for benchmarking. Random

walk is an Markov reward process (MRP) that isolates the

effect of the dynamics of the environment since selecting an

action is randomised based on a fixed probability distribution.
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Fig. 1. The Random walk task used to benchmark our algorithm.

This allows us to examine the prediction capability of an

algorithm. Fig. 1 shows our random walk task. It consists of

17 states, the process starts always form the far left hand side

state and the episodes ends when the process reaches the far

right state. However, we amended this MRP’s rewards scheme,

that is typically used, to activate the planning capabilities of

our algorithm. Unlike the typical MRPs used in the literature

[6] that is rewarded by 1 at the terminal state only, our process

is rewarded by 1/n for moving the current state towards

the right terminal state (but not reaching it), where n is the

number of non terminal states, and it gets a reward of 0

when it moves to the terminal state. While, transitioning to

the left is given a reward of −1/n and staying in the far

left state is given a reward of 0. Both transitions, left and

right have the same probability = 0.5 and no discount is

used, i.e. γ = 1. These settings allowed the RMSE error to

be bounded to 1, and further allowed us to benchmark with

other random walk problems. It can be easily proven that

the value of each state can be analytically calculated to be

V (Si) = i/n; i = 0, ..., n− 1. The features used are simple

basis binary features that represents each state as a vector of

zeros with one active feature at a time.

Our experiments shows that the true online TD(λ)-Replay

method has the least sensitivity to the step size and almost

always guarantees convergence with maximum speed (in terms

of the number steps needed to converge). Fig. 2 shows that

the true online TD(λ)-Replay method outperformed the true

online TD(λ) method for all λ values in this domain. It also

outperformed the TD(0)-Replay algorithm [1] as well as the

linear Dyna Planning algorithm [20] both of which have a

similar quadratic complexity. This shows that our algorithm

clearly outperforms those planning algorithms as well.

VII. TRUE ONLINE TD(λ)-REPLAY APPLIED ON

MYOELECTRIC DOMAIN

In [21] authors have shown how to allow a subject to

control a two-dimension cursor via a set of surface electromyo-

graphic (sEMG) signals obtained from the subject’s forearm

activities. They have used a supervised learning approach.

Fourteen abled-body subjects were studied one of which has a

congenital upper-limb deficiency. Their aim was to study the

effect of arm position and donning/doffing of a textile hose

that they used to obtain a set of sEMG signal readings. In

their experiments, each subject controlled the cursor using a

set of sixteen sEMG sensory signals attached to the subject’s

forearm. In each experiment, a set of sixteen pre-specified

cursor locations were randomly selected to the subject one

after the other and the subject has to move the cursor to

the center of the screen. These tasks were performed in

approximation and sometimes a subject failed to do the task

Fig. 2. Comparison of true online TD(λ)-Replay with true online TD(λ), as
well as TD(0)-Replay and Dyna Planning, on 17-state random walk process,
the RMSE results are averaged over 20 trials for the first 10 episodes, where
binary features are used. This shows the clear edge that our new method have
over other methods despite the simplicity of the problem.

in the allocated time. Each task is repeated for 33 times called

runs. The data set is publicly available [22].

Our aim in this study is to show how to predict the future

position of the cursor based on current raw sEMG arm signals,

hence simplifying and transforming the ways in which such

models are constructed and trained. We will use our algorithm

to predict the next position of the cursor on a screen based

on the sEMG signals. The sEMG signal is packed with noise

with large variations in its shape and intensity between the

subjects which makes the task challenging. This task has been

attempted using deep learning approach as in [23] under a su-

pervised learning settings. We conduct a comparison study to

show that our algorithm’s prediction accuracy can considerably

outperform other widely used reinforcement learning (RL) pre-

diction and planning algorithms such as the true online TD(λ)

and Linear Dyna Planning and as well as similar replaying

algorithm such as TD(0)-Replay. We conducted two sets of

experiments to compare these algorithms’ capabilities. The

first set uses the sEMG readings directly after normalisation,

and the second set uses features that are extracted from an

auto encoder (AE).

In [24] authors showed that TD can predict the next sensor

reading based on previous reading, they call it ‘nexting’. They

have shown that nexting can be performed on a large number

of sensory inputs to predict their next values in parallel. Their

task was a robot circling a pen continuously and their sensors

(lights and ultrasonic) were predicted. In [16] authors have

demonstrated how to predict two degrees of freedom task

that involved the grip force and motor angle signals of a

robotics hand but their data set is not publicly available. In

this context, the sensory input plays the role of a reward. The

point of view that rewards can be used to perform general

prediction has been explored in several settings. For example,

[25] used a variety of stimuli as a reward function to learn
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animal behaviour and to model conditioning.

A. Online Simulation and the Data Set

The data set has been divided into trials each trial consists

10 random episodes that belongs to the same task (starting

position for the cursor), each episodes constitutes a task of

moving the cursor from a start position to the centre of a circle

on the screen using the subject sEMG signal. So the number

of steps of each episodes varies. In order to train a network to

perform a prediction for a task, we have bundled the episodes

related to each task together. The model has been left to

run to the end of each episode without a stop condition to

capture the full experience. The reward signal is taken to be the

normalised difference between current position and the target

position for the X coordinate and the Y coordinate separately.

The results are shown for predicting the X signal for brevity.

All episodes of the six starting positions that have significant

variation along the X axes are considered. All experiments

were performed online (so the states features and the rewards

were fed in a step by step manner without a priory knowledge

of the trajectories) and all arms positions were considered

equally without distinction. Runs 10-21 of each subject’s task

are deemed useful and were utilized in training the algorithm

(calibration runs and donning/doffing runs were corrupted and

were excluded). The maximum number of trials is 66 (11 for

each task for six tasks that vary X considerably) all of which

have been utilised to obtain the RMSE averages (in our settings

a trail is a set of 10 episodes). γ was set to 0.95 and we have

used the same representation across the tasks.

B. True Online TD(λ)-Replay Training with Normalised

sEMG Features

We have conducted a comparison study of true online

TD(λ)-Replay with true online TD(λ) for different λ values 0,

0.4, 0.8, 0.9, 0.95, 0.97, 0.99 and 1 as well as TD(0)-Replay

and Dyna Planning all of which are fed the same normalised

sEMG features that are mentioned in the previous section. No

deep learning feature extractor is employed. Fig. 3 shows that

our algorithm performance exceeds the performance of the true

online TD for any relatively high λ values (≥ 0.8) specifically

at high αvalues ≥ 0.05. The results are averaged for the first

10 episodes over 66 trials with α values that spans 0.0001

to 0.001 with 0.0003 steps. The figure clearly shows that

for high λ values TD(λ)-Replay is more advantageous than

true TD(λ). We note that our algorithm has a wider maximal

area and converges quicker to an optimal performance for a

wider range of learning steps α, making it more reliable and

stable. Note that Dyna Planning has struggled to learn the

predict the next cursor position. On the other hand, TD(0)-

Replay has performed relatively good as expected but could

not outperform true TD(0.9)-Replay onward.

C. Deep Auto Encoder Structure and Pre-Training

To test the suitability of our algorithms with deeply ex-

tracted features we train a deep autoencoder to extract useful

features for the different RL algorithms. The training of the

Fig. 3. RMSE comparison of true online TD(λ)-Replay, true online TD(λ),
TD(0)-Replay and Dyna Planning. The methods are trained to predict the
next position of a screen cursor using the normalised sEMG features. All
results are averaged for the first 10 episodes over 66 trials with α values
that spans 0.001 to 0.1 with 0.005 steps. The figure clearly shows that for
high λ values the true online TD(λ)-Replay is more advantageous than the
true online TD(λ). We note that our algorithm has a wider maximal area and
converges quicker to an optimal performance for a wider range of learning
steps α, making it more reliable and stable. Note that Dyna Planning has
struggled to learn the environment’s dynamics due to deep learning mapping
the sEMG into a more elaborate but sparse space. On the other hand, TD(0)-
Replay has performed relatively good as expected but could not outperform
the true online TD(0.9)-Replay onward.

autoencoder is separate from the training of the RL algorithms.

The structure of the Sparse Auto Encoder is as follows. The

encoder has five layers, the first treats the sEMG input as an

image. The second, is a convolutional neural (CNN) layer that

has 32 filters each of size 3 × 1 with a stride of 2 (yielding

8×32 features). This is fed into a rectified linear unit (ReLU)

activation function which is then followed by another CNN

layer that has a 64 filters each of size 3× 1 with a stride of 2

(yielding an output of 4× 64 = 256). The output of this layer

is fed into a ReLU activation function then flattened into 256

neurons, which is followed by a fully connected layer to a 256

latent variables with sigmoid activation function. No padding

has been applied. The decoder mirrors these layers in the usual

reversed manner (by using a transposed convolutional layers

instead of the convolutional), both deconvolutional CNN layers

have filter sizes of 2 × 1, no cropping has been applied. The

mission of the Sparse AE is to come up with a cleaner and a

sparse decompressed representation of the sEMG signal, i.e.

to map the 16 sEMG readings into 256 = 162 features each

specialised in a range of sEMG values.

We start by training the AE in the usual unsupervised

training fashion to learn the best representation for the sEMG

sensor readings. We used a minibatch size of 512 and the

learning rate is set to 10−3. We have trained our deep learning

feature extractor using all the available data regardless of the

positions and the runs (so all sixteen positions are considered).

The input was normalised by re-scaling for each component

of the 16 sEMG readings. After training the AE, we use the
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encoder to encode all sEMG signals in a 256 features that

corresponds to the number of latent variables. The number of

epochs for training the AE was set to 10 where the loss was

reduced to reach around 0.05.

D. True Online TD(λ)-Replay Training with Deeply Extracted

Features

We have conducted a comparison study of true online

TD(λ)-Replay with true online TD(λ) for different λ values 0,

0.4, 0.8, 0.9, 0.95, 0.97, 0.99 and 1 as well as TD(0)-Replay

and Dyna Planning all of which are fed the same deeply

extracted features. Fig. 4 shows this comparison. Clearly,

the true online TD(λ)-Replay outperforms the true online

TD(λ) for all λ values in this domain. The figure shows that

the differences between our algorithm and other algorithms

is more prominent than in our previous experiments with

normalised sEMG features. There is a clear jump in the

differences of performances between this figure the Fig. 3

demonstrating the suitability of our algorithm to this type

of deep learning extraction. We note that the true online

TD(λ)-Replay converges quicker to an optimal performance

making it agile. Another important property to note, is that

the algorithm starts almost readily with low RMSE levels and

quickly converges to its optimal performance for a small to

intermediate α (learning rate) values . This demonstrates that

our algorithm is suitable for real time and critical applications

that require minimal training and quick response. Note that λ
performed best for 0.9 as is normally expected. Fig. 5 shows

that α values that keep all methods convergent are the range

shown in Fig. 4 over which TD(λ)-Replay outperformed all

other methods. Note that Dyna Planning is included but hardly

can be seen due to its divergence for α values beyond 0.002.

VIII. CONCLUSION

In this paper we have introduced a novel reinforcement

learning method, namely the true online TD(λ)-Replay that

extends the capabilities of the true online TD(λ) method to

allow an agent to replay all of its past experience efficiently.

The parameter λ allows the agent to choose the depth of

its targets as per norm for TD(λ) methods. The cost of the

algorithm is quadratic in the number of weights and the

algorithm is suitable for a built-in planning that is model-free.

This work paves the way to design an algorithm that can scan

the full spectrum between full and partial replaying ability. We

have tested the efficacy of our algorithm on two benchmarking

domains, in one of which we have combined our algorithm

with a sparse autoencoder that utilises multiple CNN layers.

Both domains confirmed the utility and high performance of

our algorithm in comparison to other algorithms. Further, the

results shows that our algorithm constituted a good match for a

deep learning extractor, paving the way for further integration

and investigation in the future. Future work includes showing

that our methods can be used to produce new control methods,

in addition to tackling an end-to-end training of a deep

reinforcement learning model that is based on our method as

well as parametrising the depth of the replay process.

Fig. 4. RMSE comparison of true online TD(λ)-Replay, true online TD(λ),
TD(0)-Replay and Dyna Planning. The methods are trained to predict the next
position of a screen cursor, where 16 normalised sEMG signals are fed into
a sparse auto encoder to extract a more elaborate set of features (162). All
results are averaged for the first 10 episodes and over 66 trials with α values
that spans 10

−4 to 10
−2 with 3×10

−4 increment. The figure clearly shows
that when using deeply learned features true online TD(λ)-Replay outperforms
the true online TD(λ) for all λ values with a considerable margin.

Fig. 5. Same as for Fig. 4 but over a wider range of values of α. It shows that
for this type of features the smaller learning rate α values generates better
results for the different algorithms.
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