
This is a repository copy of The influence of elastic thickness non-uniformity on 
viscoelastic crustal response to magma emplacement: application to the Kutcharo caldera,
eastern Hokkaido, Japan.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/168200/

Version: Accepted Version

Article:

Yamasaki, T, Takahashi, H, Ohzono, M et al. (2 more authors) (2021) The influence of 
elastic thickness non-uniformity on viscoelastic crustal response to magma emplacement: 
application to the Kutcharo caldera, eastern Hokkaido, Japan. Geophysical Journal 
International, 224 (1). pp. 701-718. ISSN 0956-540X 

https://doi.org/10.1093/gji/ggaa440

© The Author(s) 2020. Published by Oxford University Press on behalf of The Royal 
Astronomical Society. This is an author produced version of a article published 
inGeophysical Journal International. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The influence of elastic thickness non-uniformity on viscoelastic crustal response

to magma emplacement:  Application to the Kutcharo caldera,  eastern Hokkaido,

Japan

Tadashi Yamasaki[1]*, Hiroaki Takahashi[2], Mako Ohzono[2,3], Tim J. Wright[4], and Tomokazu

Kobayashi[5] 

[1]Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan

[2]Institute  of  Seismology  and  Volcanology,  Faculty  of  Science,  Hokkaido  University,

N10W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

[3]Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo

113-0032, Japan

[4]COMET, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United

Kingdom

[5]Geospatial Information Authority of Japan, 1 Kitasato, Tsukuba, Ibaraki 305-0811, Japan

* All correspondence concerning this paper should be addressed to:

Tadashi Yamasaki

Geological Survey of Japan, AIST

1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan

Phone: +81-(0)29-861-3697

Fax: +81-(0)29-856-8725

Email: tadashi.yamasaki@aist.go.jp 

(1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24



SUMMARY

An elastic layer plays an important role in deformation of the crust. At active volcanoes, its

thickness would be effectively thinned by a higher geothermal gradient, particularly in a

region  beneath  which  magmatic  activity  is  relatively  high.  This  study examines  the

influence of elastic thickness non-uniformity on viscoelastic crustal deformation by magma

emplacement. A 3-D linear Maxwell viscoelastic model is employed, in which an elastic

layer underlain by a viscoelastic layer with a spatially uniform viscosity is thinned to be hi in

the volcano centre, compared with hi + Δhh in the peripheral regions, and a sill-like magma

emplacement  occurs  in  the  upper  layer  beneath  the  centre.  It  is  found that  the  post-

emplacement viscoelastic subsidence is diminished or enhanced by the elastic thickness

non-uniformity,  depending  on  whether  or  not  the  horizontal  width  of  the  magma

emplacement (ωs) is greater than the horizontal width (ωe) over which the elastic layer is

thinner. The available signature of the non-uniformity is explored by comparison with a

model that has a spatially uniform elastic thickness of hi. If an apparent viscosity (ηa) of the

uniform elastic thickness model is adjusted so that the difference in post-emplacement

subsidence is  minimised at  the  deformation  centre,  the  non-uniformity  appears  in  the

overall deformation field as a displacement anomaly over the perimeter of the sill in which

viscoelastic subsidence is greater for the non-uniform model. The anomaly is, however, by

no more than the magnitude of ~15 % of the maximal syn-emplacement uplift, though ηa is

necessarily modified to  be ~0.2-10 times the non-uniform model  viscosity (ηc).  If  ωe is

larger than a few times ωs, a weak signature is no longer expected in the deformation field,

and  ηa is not significantly deviated from  ηc.  Since the signature appears so faintly in a

displacement field, the InSAR data in the Kutcharo caldera for a period from 13 August

1993 to 9 June 1998 do not allow us to capture the non-uniformity. However, it can be

(2)

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



concluded  that  if  ωe beneath  the  caldera  is  comparable  with  or  greater  than  the

topographic caldera diameter (ωc) as implied by the spatial variation of the geothermal

gradient, the non-uniformity has no significant influence. Otherwise, if  ωe <  ωc, the non-

uniformity influences the estimation of the crustal viscosity, but does not affect the overall

deformation field. The elastic thickness non-uniformity can be theoretically captured in the

deformation field, but in practice, its influence, particularly on estimating crustal viscosity,

cannot  be  properly  inferred  without  other  geophysical  data  such  as  the  geothermal

gradient in and around the caldera. 

Keywords: Geomechanics,  Transient deformation,  Numerical modelling,  Rheology: crust

and lithosphere, Calderas
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1 INTRODUCTION

Mechanical  heterogeneity  of  the  crust  is  likely  to  be  enhanced  by  magma and/or

hydrothermal systems beneath volcanoes. Such enhanced heterogeneity would affect our

understanding  of  magmatic  activity  in  the  crust  when  the  activity  is  inferred  from

geodetically detected ground displacement through some quantitative model (e.g., Bianchi

et al., 1987; De Natale et al., 1997; Troise et al., 2003; Masterlark, 2007; Currenti et al.,

2008; Currenti et al., 2011; Geyer & Gottsmann, 2010; Bonaccorso et al., 2013; Hickey et

al.,  2016).  It  is,  therefore,  necessary  to  know  how,  and  how  much,  each  kind  of

heterogeneity  would modify volcano deformation.  We here particularly focus on elastic

thickness non-uniformity in the upper crust. 

The mechanical structure may be significantly perturbed by magma. The presence of

magma by itself, and the rocks surrounding it into which magma may be intruded, form a

zone that has rheologically less strength (e.g., Dragoni & Magnanensi, 1989; Newman et

al., 2001; Segall, 2016; 2019). The thermal aspect would exert more widespread influence

on the structure through heat conduction and/or advection (e.g., Del Negro et al., 2009;

Gregg  et  al.,  2013;  Hickey  et  al.,  2016).  Indeed,  geodetic  data  have  revealed  a  low

viscosity zone (LVZ) in the upper to middle crust beneath active volcanoes (e.g., Moore et

al., 2017; Yamasaki & Kobayashi, 2018), where the spatial extent of the LVZ has also been

found to be consistent with geophysical images (e.g., Honda et al., 2011; Hata et al., 2016;

Hata et al., 2018). 

The perturbation of the thermal structure by magma would also influence the depth of

a brittle-ductile transition (e.g.,  Calmant et al., 1990;  ten Brink, 1991; DeNosaquo et al.,

2009; Omuralieva et al., 2012; Jiménez-Díaz et al., 2014; Castaldo et al., 2019). A recent

study by Takahashi et al. (2017) compiled geothermal gradient data from boreholes in and
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around the Kutcharo caldera,  eastern Hokkaido,  Japan (Fig.  1),  and reported that  the

gradient inside the caldera is ~2 times higher than that outside it. The 350 °C isotherm,

which has usually  been identified as the temperature corresponding to  a brittle-ductile

transition (e.g., Chen and Molnar, 1983; Scholz, 1988, 1998; Ranalli, 1995), is found at a

depth of ~4 km at the shallowest inside the caldera, but at a depth of ~10 km outside it.

Similarly, it has been found in other volcanoes that seismic activity occurs at shallower

levels towards the volcano centre (e.g., Mori & Mckee, 1987; Ito, 1993; Bryan et al., 1999;

Prejean et al., 2002).

The depth of the brittle-ductile transition has been shown to broadly correlate to the

lower extent of the effective elastic thickness (EET) of the crust (e.g., Watts, 2001; Pollitz &

Sacks,  2002;  Watts  & Burov,  2003;  Yamasaki  et  al.,  2008).  The transition  depth may

possibly have some variations, depending also on stress state and/or lithologies of the

upper crust (e.g., Tse & Rice, 1986; Sibson, 1986; Burov & Diament, 1995; Bonner et al.,

2003),  but  it is  expected  to  be  shallower  beneath  volcanic  areas,  particularly  where

magmatic activity is high (e.g., Ranalli, 1995). Thus, the geothermal structure constructed

by Takahashi et al. (2017) strongly implies that EET is likely to be thinned beneath the

Kutcharo caldera. Nevertheless, the influence of spatial non-uniformity of EET on volcano

deformation has not yet been examined in a detailed or systematic way. 

A previous study by Yamasaki et al. (2018) showed that the thickness of an elastic

layer plays an important role in viscoelastic deformation rate in response to magmatic

emplacement. The emplacement of magma in the upper crust promotes surface uplift, but

once  its  further  inflation  due  to  continuous  magma  supply  stops,  stress  relaxation  in

viscoelastic substrate turns the ground surface to subsidence, whose rate is dependent on

the elastic thickness. Such model behaviour was adopted in their study to analyse the
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crustal deformation in the Kutcharo caldera, assuming spatially uniform elastic thickness

over  the area.  The study of  Takahashi  et  al.  (2017),  therefore,  requires their  previous

analysis to be revisited with respect to the elastic thickness non-uniformity. 

This study employs a 3D finite element model to examine the effects of the lateral non-

uniformity  of  elastic thickness on crustal  viscoelastic  behaviour in  response to magma

emplacement. A simplified elastic thickness variation is assumed, where an elastic layer,

underlain by a viscoelastic layer with a spatially uniform viscosity, is thinner in the volcano

centre than that in the periphery, and a sill-like body of magma is emplaced beneath the

centre.  The model  behaviour  is  compared to  the InSAR data in  the Kutcharo caldera

reported by Fujiwara et  al.  (2017) to  confirm whether  the non-uniformity  is  able to be

captured  in  the  data  or  not.  For  this  purpose,  the  general  model  behaviour  is  first

described to show how, and how much, the signature of elastic thickness non-uniformity

appears at  a  particular  surface point  and in  the  overall  deformation  field.  The vertical

displacement  is  mainly  focussed  on,  because  the  InSAR  data  used  in  this  study

predominantly  represent  the  vertical  component  of  the  ground  surface  displacement.

However, we also refer to the potential utility of the horizontal displacement component to

reveal the non-uniformity. The outcome of this study has implications for the applicability of

the uniform elastic thickness model and whether it is necessary to re-evaluate the crustal

viscosity estimated by Yamasaki et al. (2018) with respect to the non-uniformity. 

2 MODEL DESCRIPTION

A 3-D finite element model used in this study is schematically shown in Fig. 2. The

response  of  the  linear  Maxwell  viscoelastic  crust  and  mantle  to  a  sill-like  magma

emplacement  in  the  upper  crust  is  solved,  using  a  parallelised  finite  element  code,
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oregano_ve  (e.g.,  Yamasaki  &  Houseman  2012;  Yamasaki  et  al.  2018;  Yamasaki  &

Kobayashi, 2018; Yamasaki et al., 2020). The model is composed of an elastic layer and

an underlain viscoelastic layer, respectively, corresponding to the elastic upper crust and

viscoelastic lower crust and mantle. The setup of the model is basically the same as that in

Yamasaki et al. (2018). Spatially variable elastic thickness is, however, introduced into the

model in this study, where the elastic layer is thinned beneath the centre of the volcano

relative to the peripheral region by higher magmatic activity (e.g., Takahashi et al. 2017),

and the magma emplacement occurs beneath the centre. 

The model has a dimension of XL = 192 km, YL = 192 km, and ZL = 100 km in the x-, y-,

and  z-directions, respectively, which is large enough to avoid the boundary effect.  The

origin of right-handed coordinate system is located at the centre of the top surface. The x-

and  y-directions  indicate  the  north-  and  east-wards,  respectively.  The  z-coordinate

increases with depth, so that positive and negative displacements in the z-direction mean

subsidence and uplift, respectively. We solve the problem only in the domain x ≥ 0 km, for

which the boundary surfaces are constrained by the following conditions: the top surface

has zero traction in any direction, and the surfaces on x = 0 and 96 km, y = ± 96 km, and z

= 100 km have zero normal displacement and zero tangential tractions. The solutions in x

< 0 km are obtained from those in  x > 0 km. The effect of topography is ignored in this

study, assuming that the top surface is originally flat.

The calculation domain is divided into 1,382,400 tetrahedral elements. Each element

has 1 km length and 1 km height in the domain of x < 24 km, |y| < 24 km, and z < 40 km.

In the outer domain, however, the elements have 3 km length for x > 24 km and |y| > 24

km, and 6 km height for z > 40 km. It has been confirmed in Yamasaki et al. (2018) that for
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the adopted element sizes the model predictions sufficiently fit the analytic solutions of

Okada (1985; 1992) and Fukahata & Matsu’ura (2006). 

The elastic layer thickness (h) varies, according to the horizontal distance (r) from the

centre of the model, r = (x2 + y2)1/2:

     h = hi                                              for r ≤ ωe/2

     h = hi + (r – ωe/2)(Δhh/δ)                 for ωe/2 < r < ωe/2 + δ                                    (1)

     h = hi + Δhh                                     for r ≥ ωe/2 + δ 

where hi and hi + Δhh are, respectively, the elastic thicknesses in the central area and in the

periphery, ωe is a total horizontal width over which the elastic layer has a uniform thickness

of hi, δ is a distance interval over which h linearly changes by Δhh. The model with Δhh = 0

has a uniform elastic thickness (UET), and that with  Δhh > 0 non-uniform (NET). In this

study, hi is fixed to be 5 km, in keeping with Takahashi et al. (2017).

The  viscoelastic  layer  has  a  spatially  uniform  viscosity  of  ηc.  The  constant  elastic

properties  of  the  rigidity  (μ =  3×1010 Pa)  and  Poisson’s  ratio  (ν =  0.25)  are  adopted

everywhere in the model. The seismological studies of Katsumata (2010) and Iwasaki et

al. (2013) revealed that the crust has a thickness of 40 km beneath the Kutcharo caldera.

So, a different value of the viscosity may have to be adopted as the mantle viscosity at

greater depths than 40 km in the model. Since this study considers magma emplacement

at  depths  much  shallower  than  the  mid-crust,  however,  the  mantle  viscosity  has

insignificant influence on the viscoelastic ground surface displacement (Yamasaki et al.

2018). Thus, the viscosity ηc effectively corresponds to the lower crustal viscosity. 
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Gravity is omitted in this study. Yamasaki et al. (2018) confirmed that the gravity effect

caused by the vertical movement of the ground surface changes the post-emplacement

viscoelastic displacement by no more than ~1 % for the optimal model that best explains

the  crustal  deformation  in  the  Kutcharo  caldera.  A significant  density  contrast  is  also

expected at  the Moho. However,  its  contrast  is  much smaller  than that  at  the ground

surface.  In  addition,  the  optimal  model  for  the  Kutcharo  caldera  predicts  the  vertical

displacement at a depth of 40 km to be less than ~1 % of the surface uplift due to magma

emplacement. Thus, the gravity effect induced by the density interface at the Moho is also

negligibly small. 

The geometry  of  magma emplacement  is  approximated as a horizontally  elongated

oblate spheroid, where a depth of the equatorial plane is ds, the equatorial radius is ωs/2,

and  the  thickness  at  the  centre  is  sc.  The  emplacement  only  in  the  elastic  layer  is

considered, i.e., ds ≤ hi, and it is always centred on x = y = 0. For ωs > ωe, some or most

part of the emplacement is intruded into the peripheral thickened elastic layer.  For our

experiments where we are exploring the general behaviour of the model, sc is assumed to

become scp instantaneously at t = 0, and it remains constant afterwards (see Fig. 2b). For

the application to the Kutcharo caldera, sc linearly increases with time to have sc = scp at t =

Δht, and maintains  scp for  t >  Δht (see Fig. 2b) The emplacement is implemented into the

code by Yamasaki & Houseman (2012) in terms of the split node method developed by

Melosh & Raefsky (1981), where the sill opening prescribed by the difference in vertical

displacement is converted into equivalent nodal force. 

3 RESULTS

3.1 General model behaviour
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3.1.1 Surface displacement at the centre of the model

Fig. 3 shows vertical displacement (uz) at the centre of the modelled upper surface for

NET models with hi = ds = 5 km, Δhh = 10 km, δ = 5 km, ωs = 20 km, and ωe = 40, 30, 20,

10, 5, and 2 km. It is noted that the subsidence caused by the viscoelastic relaxation is

greater for ds = hi than for ds < hi (Yamasaki et al., 2018). Thus, the investigation here is

based on the model in which the effect of viscoelastic relaxation on the post-emplacement

surface subsidence is maximised. The time t is normalised by the Maxwell relaxation time

τ (= ηc/μ). ζ = uz/uz0 at the model origin is plotted in the figure, instead of uz, where uz0 is an

initial elastic uplift due to an instantaneous sill-like magma emplacement at  t/τ = 0. The

dashed line indicates the normalised vertical displacement (ζu = uzu/uz0) for a UET model

that has a spatially uniform elastic thickness of hi.

The  surface,  instantaneously  uplifted  by  a  sill-like  magma emplacement  at  t/τ =  0,

continuously subsides with time. The models with ωe ≤ 10 km predict ζ to be larger than ζu,

indicating that post-emplacement subsidence is very limited, compared with that for the

UET model. Since the horizontal extent of magma emplacement (ωs) is greater than the

horizontal  width  (ωe)  over  which  the  elastic  layer  is  thinned  (see  Fig.  2a),  the

emplacement-caused elastic strain is distributed more into  the elastic  layer where any

stress  relaxation  is  not  allowed  to  occur.  Thus,  the  available  post-emplacement

subsidence due to viscoelastic relaxation is smaller than that for the UET model. 

The  models  with  ωe ≥  20  km,  on  the  other  hand,  predict  ζ to  be  smaller  than  ζu,

indicating greater post-emplacement subsidence due to viscoelastic relaxation than that

for the UET model. We have confirmed that for these cases, ζ in the final equilibrium state

is not significantly different from ζu. The model with ωe = 20 km, however, predicts ζ in the

equilibrium state to be slightly larger than that for the UET model, because the magma
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emplacement distributes some more initial  strain into the elastic layer. Nevertheless, in

general, the rate of subsidence early in the post-emplacement period is smaller for greater

ωe.  Such  model  behaviour  is  consistent  with  previous  studies  where  the  viscoelastic

surface  displacement  rate  is  greater  for  a  thicker  elastic  layer  (e.g.,  Fukahata  and

Matsu’ura, 2018; Yamasaki et al., 2018).

Fig. 4 shows ζ as a function of time for four different values of ωs, where the difference

of ζ from ζu, i.e., Δhζu = ζ - ζu, is plotted. The other model parameters are the same as those

in Fig. 3. The horizontal dashed line at Δhζu = 0 indicates the behaviour of the UET model.

Δhζu below  the  line  indicates  that  NET  models  predict  greater  post-emplacement

subsidence, and that above the line smaller subsidence. The model behaviour for a given

ωs depends on ωe in the similar way shown in Fig. 3. 

The magnitude of the deviation is dependent on the ratio of  ωe to  ωs. For the models

where Δhζu is predicted to be negative, the deviation becomes smaller for smaller ratios of

ωs/ωe. For models where Δhζu is predicted to be positive, however, the behaviour becomes

slightly  complicated.  The  models  with  ωe =  2  km and  ωs =  8  km show the  greatest

deviation. For smaller  ωs (= 4 km), but keeping  ωe at 2 km, the deviation from the UET

model is less significant. This is because a lesser amount of the initial elastic strain is

distributed into the thicker elastic layer by magma emplacement. For greater ωs (= 20 km),

on the  other  hand,  a  greater  amount  of  the  initial  elastic  strain  is  distributed into  the

viscoelastic layer, resulting in less deviation from the UET model. 

The model with ωs = 40 km predicts Δhζu to be negative early in the post-emplacement

period, but positive later in the period as apparent in the general behaviour for ωs > ωe. ωs

= 40 km is such a large horizontal extent of magma emplacement that the initial elastic

strain distributed into the underlain viscoelastic layer is significantly more than that for
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smaller  ωs.  This  causes  greater  subsidence  early  in  the  post-emplacement  period.

However, later in the period, the lack of stress relaxation in the elastic layer becomes a

dominant effect for characterising the model behaviour. 

We have further explored the model behaviour for other model parameters, including ds,

Δhh, and δ, in Appendix A. It has been confirmed that the model behaviour depends on the

non-uniformity in the same way shown above; the lack of stress relaxation in the elastic

layer  results  in  smaller  post-emplacement  subsidence,  and  the  post-emplacement

viscoelastic subsidence is enhanced by the presence of a thickened elastic layer in the

peripheral region unless ωe is a few times greater than ωs

3.1.2 Overall surface displacement field

We have  described  above  that  if  the  ground  displacement  only  at  the  deformation

centre is considered, ζ is smaller or greater than ζu, depending on the model parameters

that characterise the non-uniformity of elastic thickness. Here we describe the influence of

the non-uniformity on overall vertical surface displacement field. The deviation of ζ from ζu

is calculated at any surface points, for which the difference at the deformation centre is

minimised by applying an apparent viscosity ηa to the UET model. ζa is here defined as a

vertical displacement normalised by an initial elastic uplift for a UET model with η = ηa. 

Fig. 5 shows temporal  ζa (solid blue) at the centre of the modelled upper surface, in

comparison with ζ (solid red) and ζu (dashed blue). ωs, Δhh, and δ are adopted to be 20 km,

10 km, and 5 km, respectively.  ηa is  dependent on a time interval  (tint) over which the

deviation between ζ and ζu is minimised, and on the elastic thickness non-uniformity. For

the models with ωe = 20 km, ζa mimics ζ well. ζu is predicted to be greater than ζ, so that
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ηa/ηc is required to be less than 1. It is also found that ηa/ηc is smaller for greater tint (see

Fig. 5a-d). 

For the models with ωe = 10 km, on the other hand, ζ is predicted to be larger than ζu,

which requires ηa/ηc to be greater than 1. It is also found for this case of ωe that  ηa/ηc is

larger for larger values of tint. In addition, for tint ≥ 5τ, a significant deviation of ζa from ζ is

perceptible, where  ζ is slightly smaller and greater than  ζa earlier and later in the time

interval. 

Fig.  6  summarises  the  ratio  ηa/ηc,  with  which  the  difference  between  ζu and  ζ is

minimised at the deformation centre, as a function of  ωs/ωe.  ηa/ηc varies with  ωs/ωe in a

complex  way,  where  the  available  upper  and lower  values are  greater  for  greater  Δhh

and/or tint. In general, however, the model behaviour described above is clearly reflected in

the distribution of ηa/ηc. When ωs ≤ ωe, i.e., ωs/ωe ≤ 1, the post-emplacement subsidence

for the NET model is greater than that for the UET model, which causes ηa/ηc to be less

than 1. When ωe is a few times greater than ωs, however, the deviation of ηa/ηc from 1 is

insignificant.  On the other hand, since the NET model  predicts less post-emplacement

subsidence for a small ωe relative to ωs (i.e., ωs/ωe > 1), ηa/ηc is greater than 1, where ηa/ηc

increases with ωs/ωe. However, ηa/ηc starts to decrease for greater ωs/ωe, the behaviour of

which is dependent on  ωe.  Indeed, the numerical experiment has shown that the NET

model with a large value of  ωs (= 40 km) predicts greater subsidence early in the post-

emplacement period (see Fig. 4d). It seems that the model behaviour for such a large ωs is

not controlled only by the ratio ωs/ωe, but also by the characteristic of the elastic thickness

non-uniformity itself. This is, however, not the case for the Kutcharo caldera where ωs is

required to be 4 km (Yamasaki et al., 2018). Thus, we do not further examine such an

extreme case in this study. 
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Fig. 7 shows spatial distribution of Δhζa = ζ - ζa at t = 5τ, for which ηa is determined for a

time interval of  tint = 5τ.  hi =  ds = 5 km,  Δhh = 10 km, and  δ = 5 km are adopted. Some

significant difference appears at the deformation centre in some models even though ηa is

obtained  so  that  Δhζa is  minimised  at  the  centre.  This  is  because  the  minimization  is

obtained from the comparison made over the whole time interval  tint = 5τ, not minimised

only at  t = 5τ;  for  example, the NET model  with  ωs >  ωe predicts greater and smaller

subsidence than the UET model with  η =  ηa earlier and later in the period, respectively

(see Fig. 5). 

The models with  ωs = 8 km and ωe ≤ 20 km (Fig. 7a-c) predict a region where Δhζa is

negative (i.e.,  the post-emplacement subsidence is  greater  for  the NET model),  which

appears concentrically  with  respect  to  the  deformation  centre.  The maximum negative

anomaly is found at  r (the distance from the centre of the model) = ~6-7 km, a few km

further than ωs/2. The available magnitude of the negative Δhζa is greater for smaller ωe, but

it is no more than ~0.15; the magnitude is at most only ~15 % of the initial elastic uplift due

to instantaneous magma emplacement. In contrast, the model with ωs = 8 km and ωe = 40

km predicts no significant Δhζa at any distance from the deformation centre (Fig. 7d). 

Similar behaviour is found for the models with  ωs = 20 km (Fig. 7e-g). The negative

anomaly  Δhζa peaks at  r = ~10-11 km, approximately above the perimeter of the sill. The

available magnitude of the anomaly is, however, greater for greater  ωe when  ωe is less

than 20 km. The magnitude of the negative deviation is no greater than ~0.15, which is the

same as that for ωs = 8 km. Δhζa is insignificant when ωe is 40 km (Fig. 7h). 

The dependence of Δhζa on the other model parameters, including tint and Δhh, has been

explored in Appendix B, which shows the same general model behaviour that a region in

which  Δhζa is negative appears; the peak is found over the perimeter of the deformation
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source. It has also been found that the available magnitude of the negative Δhζa is greater

for greater tint and/or greater Δhh, but it is no more than ~15 % of the initial elastic uplift due

to instantaneous magma emplacement.

We  here  describe  the  horizontal  displacement  component.  Fig.  8  shows  spatial

distribution of Δhυa = υ - υa at t = 5τ, where υ is the NET model displacement in y-direction

(uy) normalised by the absolute value of  uz0,  i.e.,  υ =  uy/|uz0|,  and  υa is  the normalised

displacement for the UET model with η = ηa. The model parameters are the same as those

in  Fig.  7.  We  use  |uz0|,  instead  of  uy0 at  some  surface  point,  to  get  the  normalised

displacement.  This  is  because  we  here  aim  to  know the  potential  contribution  of  the

horizontal component to the LOS (line of sight) displacement which will be used for the

application to the Kutcharo caldera. ηa is determined so that Δhζa is minimised at the centre

for a time interval of tint = 5τ. The sign of Δhυa is reversed with respect to y = 0, because uy is

negative for y < 0. For y > 0, the positive and negative values, respectively, mean that the

NET model displacement is larger and smaller than the UET model, but for y < 0 the sense

is opposite. 

Δhυa is zero on y = 0, but it varies with y in a more complex way than Δhζa. In the domain

y >  0,  the  positive  Δhυa peaks  at  y =  ~3-4  km and  ~7-8  km for  ωs =  8  and  20  km,

respectively. Δhυa is negative at further distance, and its peak is found at y = ~10 km and

~15 km for  ωs = 8 and 20 km, respectively. The magnitude of  Δhυa is, however, no more

than ~0.05, i.e., ~5 % of the initial elastic uplift at the centre. Thus, the non-uniform elastic

thicknesses cause only small changes to the horizontal component of surface deformation

compared to the vertical component.

3.2. Application to the Kutcharo caldera

(15)

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344



We here  apply the viscoelastic  model  behaviour  to  analyse the crustal  deformation

observed in the Kutcharo caldera. InSAR data in and around the Kutcharo caldera showed

that the ground surface was uplifted at least since 13 August 1993, with a deformation

centre near the Atosanupuri volcano, but suddenly began to subside around early 1995

(Fujiwara et al., 2017). Fujiwara et al. (2017) explained the uplift by magma emplacement,

and the subsequent subsidence by magma drain back. Yamasaki et al.  (2018), on the

other hand, proposed viscoelastic relaxation for the post-emplacement subsidence. Here

we analyse the InSAR data in terms of viscoelastic relaxation to see whether or not the

signature of elastic thickness non-uniformity can be detected. 

The  viscoelastic  model  behaviour  described  in  the  previous  section  assumed  an

instantaneous magma emplacement. We here first analyse the model behaviour with finite

emplacement period, for which LOS displacement, particularly for the case of the Kutcharo

caldera, is calculated using the line-of-sight vector from the Japanese Earth Resources

Satellite (JERS)-1 to points on the ground surface. For the JERS-1 orbit with an incidence

angle of ~39°, the LOS displacement is calculated by 0.11ux – 0.62uy + 0.78uz, where ux,

uy,  and  uz are  the  northward,  eastward  and  vertical  ground  surface  displacements,

respectively; note that uz is negative for the uplift in this study. The northward component

contributes much less than the other two components. The percentages of the eastward

and vertical components are comparable, although the magnitude of the former is smaller. 

All the model parameters, except elastic thickness non-uniformity, follow the outcome of

Yamasaki et al. (2018). The magma emplacement period Δht is 626 days, from 13 August

1993 to 1 May 1995; see Yamasaki et al. (2018) for the details. The emplacement depth ds

is 4.56 km, the emplaced horizontal width ωs is 4 km, and spatially-uniform viscosity ηk is
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4×1017 Pa s. hi = 5 km and Δhh = 5 km are adopted for the NET model, as suggested by

Takahashi et al. (2017). 

ηk is adopted for the viscosity ηc of the NET model, i.e., ηc = ηk. In fact, the estimation of

ηk was based on the uniform elastic thickness model in Yamasaki et al. (2018). However,

the important point here is to assess the difference between the NET and UET models. We

do not know the actual NET model viscosity to best explain the InSAR data, but what

viscosity is necessary can be inferred from ηa adjusted so that the difference is minimised

at the deformation centre.

Fig. 9 shows the difference in LOS displacement change between the NET model with η

= ηk and UET model with η = ηa in four different stages: (I) 13 August 1993 - 21 April 1995,

(II) 21 April 1995 - 07 April 1996, (III) 07 April 1996 - 25 March 1997, and (IV) 25 March

1997  -  09  June  1998.  ηa is  determined  so  that  the  difference  in  post-emplacement

viscoelastic subsidence is minimised at the deformation centre for a period from 1 May

1995 to 9 June 1998, i.e., tint = 1135 days (Yamasaki et al., 2018). The stage I represents

the  syn-emplacement  period,  and  the  subsequent  three  stages  (II  –  IV)  of  the  post-

emplacement period. Since LOS displacement is the change in distance from a satellite,

ground  surface  uplift  and  subsidence  are  referred  as  negative  and  positive  LOS

displacement change, respectively. The difference at 1 May 1995 is zero at the centre of

the deformation field, because a thickness of sill-like magma emplacement sc is given so

that the predictions are equal to the observation at the deformation centre at the end of the

syn-emplacement period. ηa is required to be ~208 %, ~74 %, ~92 %, and ~100 % of ηk (=

ηc) for ωe = 2, 10, 20, and 40 km, respectively. 

The differences between the NET and UET models appear almost concentrically with

respect to the centre of the LOS displacement field. The deformation centre is shifted only
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by  ~800  m  from  the  centre  of  the  deformation  source.  This  indicates  that  the  LOS

displacement predominantly represents the vertical ground surface displacement, and the

effect of the horizontal displacement is relatively minor. The displacement anomaly at the

deformation centre may possibly be caused by the fact that ηa is determined by minimising

the difference between the NET and UET models over a finite time period of  tint = 1135

days. As described above (see the section 3.1.2), the signature of elastic thickness non-

uniformity would more likely correspond to the anomaly at R (the distance from the LOS

displacement centre) ~  ωs/2 or a few km further away. Indeed, the NET model predicts

greater subsidence than the UET model, except the NET model with  ωe = 40 km. The

difference for ωe = 2 km is up to ~1.5 cm early in the post-emplacement period; < ~8 % of

the maximum LOS displacement magnitude (~19.5 cm) in the syn-emplacement period,

but it is limited to be less than ~0.5 cm later in the period. For the models with greater ωe,

on the other hand, the difference is ~0.5 cm or smaller at any stage in the period.  

Fig. 10 shows the observed and predicted LOS displacement change fields, and the

residuals, during the four different stages. The UET model with ηa (= ηk) = 4 × 1017 Pa s is

adopted for the predictions as this value of ηa was constrained by Yamasaki et al. (2018)

so that the post-emplacement subsidence at the deformation centre is best explained by

the UET model. In the stage II, a region where a greater subsidence is observed appears

only in the distance range from the deformation centre greater than 5 km. However, the

magnitude of the anomaly is a few times to a few tens of times larger in the observation

than in the predictions, depending on the values of ωe (see Fig. 9). In the stages of I, III,

and IV, on the other hand, a region where the observation shows greater subsidence than

the UET model prediction appears at R < ~5 km. The magnitude of the deviation is again

much greater than that predicted in Fig. 9. This indicates that a lot of noise and/or some
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local  phenomena,  which  surpass the  signature  of  elastic  thickness non-uniformity,  are

convolved in the InSAR data. Thus, the InSAR data for the period from 13 August 1993 to

09 June 1998 are not readily explained by elastic layer thickness non-uniformity.

Alternatively,  using the NET models with various  ωe and  Δhh,  we evaluate the fitting

between the predictions and observation in terms of root mean square misfit (ε) in each of

the four different stages:

     ε=√ 1N∑
j=1

N

(ΔuLo− ΔuLp )2                                                                                                  (2)

where  ΔhuLo and  ΔhuLp are  the  observed  and  predicted  LOS  displacement  changes,

respectively, and  N is the number of the surface points at which  ΔhuLp is compared with

ΔhuLo; see Yamasaki & Kobayashi (2018) for the values of N in each time period. Table 1

summarises ε, the averaged ε of the four stages:  ε = (εI +  εII +  εIII +  εIV)/4, for which the

viscosity ηc of the NET model is modified from ηk = 4×1017 Pa s so that the observed post-

emplacement displacement at the deformation centre is best explained. ωs and δ are fixed

to be 4 km and 5 km, respectively. Takahashi et al. (2017) suggests Δhh to be ~5 km for the

case of the Kutcharo caldera, but here we consider greater Δhh (= 10 and 15 km) too.

All the models shown in Table 1 predict almost the same values of ε, ~2.2-2.5 cm. It is

still perceptible that ε  is smaller for greater ωe, but the difference is no more than ~0.3 cm.

However,  ηc is required to be significantly modified from ηk = 4×1017 Pa s, depending on

ωe. Ratio ηc/ηk is smaller than 1 when ωe is 2 km, smaller than ωs (= 4 km), where ηc/ηk is

0.47, 0.21 and 0.13 for Δhh = 5, 10 and 15 km, respectively. For ωe = 6 and 10 km, the ratio

becomes greater than 1, because the effect of thickened elastic layer in the periphery
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appears on post-emplacement viscoelastic subsidence rate. For ωe ≥ 20 km, however, ηc

is insignificantly different from ηk. 

4 DISCUSSION

In this study, we have examined the influence of an elastic thickness that is effectively

thinned in the volcano centre, compared with that in the peripheral region, on viscoelastic

deformation in response to a sill-like magma emplacement beneath the centre. The elastic

thickness non-uniformity has two different effects on viscoelastic surface displacement.

One effect appears when the horizontal width of the magma emplacement (ωs) is greater

than that of the thinner elastic thickness area (ωe), where emplacement-induced elastic

strain  is  distributed  more  into  the  relatively  thicker  elastic  layer.  This  results  in  post-

emplacement viscoelastic displacement being very limited, because any stress relaxation

does not  occur  in  the elastic  layer.  Another  effect  appears when  ωs is  comparable or

smaller than  ωe.  For this case, the viscoelastic deformation rate is higher than that for

models without thickened elastic layer in the periphery, and the difference between NET

and UET models becomes smaller for smaller ratio of ωs/ωe. Each of these effects appears

with different magnitude at different timing, depending on the configuration of the non-

uniformity. 

The  signature  of  the  elastic  thickness  non-uniformity,  if  it  is  inferred  from  ground

displacement at the deformation centre, appears in such a way that the relaxation-caused

ground displacement  is  greater  or  smaller  than that  predicted by models with  uniform

elastic  thickness.  In  practice,  however,  such  a  difference  in  rate  of  relaxation-caused

ground displacement would be explained by applying lower or higher crustal  viscosity.
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Thus, the non-uniformity should not be discussed only in relation to the displacement at a

particular surface point. 

It has been shown in this study that the signature of the non-uniformity can be captured

in the overall deformation field. If the difference in vertical displacement (uz) between the

NET model with η = ηc and UET model with η = ηa is minimised at the deformation centre

by adjusting the value of ηa, a region in which Δhuz is negative appears over the perimeter

of the deformation source (i.e., the NET model predicts greater subsidence than the UET

model). However, the magnitude of the negative deviation is only up to ~15 % of the initial

elastic uplift due to instantaneous magma emplacement, although ηa is possibly required

to be significantly modified from ηc.

The  available  deviation  is  expected  to  be  so  weak  that  the  elastic  thickness  non-

uniformity is detectable only by precise geodetic measurements. The noise and/or some

local phenomena with the magnitudes more than a few cm may prevent us to capture the

non-uniformity in deformation field. Indeed, the application to the Kutcharo caldera has

found  that  the  influence  of  elastic  thickness  non-uniformity  on  the  fitting  to  LOS

displacement field is so minor that the LOS displacement misfit changes by no more than

~0.3 cm for any configuration of the non-uniformity. However, if ωe is less than a few times

ωs, the effective crustal viscosity is required to be modified from the previous estimate of

Yamasaki et al. (2018), and its magnitude depends on the ratio of  ωe to  ωs and on how

much the elastic crust is thickened in the peripheral region of the volcano. If, on the other

hand,  ωe is greater than a few times  ωs,  significant modification of the viscosity is not

necessary. The survey of the geothermal gradient in and around the Kutcharo caldera

showed that the depth of the 350 °C isotherm is ~4-6 km in the caldera, and a significantly

thickened elastic layer is found only outside the caldera (Takahashi et al., 2017), i.e., ωe >
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~20 km (see Fig. 1) compared with ωs = ~4 km. Thus, there seems no need to re-evaluate

the crustal viscosity in a significant way. 

The elastic thickness non-uniformity adopted in this study may be oversimplified. The

non-uniformity may be significantly deviated from axial symmetry. However, the signature

of a negative deviation in vertical displacement should appear in the same way, though it is

expected not to have a symmetric distribution relative to the deformation centre. The same

argument would apply in the case of the elastic thickness gradually increasing towards the

peripheral  region  of  the  volcano.  The  gradient  of  the  thickness  change  modifies  the

effective horizontal width over which the elastic layer is thinned uniformly, by which the

available  signature  may  be  attenuated;  the  deviation  from  the  UET model  behaviour

changes more gradually as the distance from the deformation centre increases, and the

modification of the apparent viscosity would possibly be less. In any case, however, we

cannot  expect  the  anomaly  magnitude  to  be  more  than  ~15  % of  the  maximal  syn-

emplacement uplift. 

Since the NET model has very limited potential to significantly improve the fitting to the

data in  the Kutcharo caldera,  the residual  misfit  of  the UET model  to  the observation

requires  other  deformation  mechanism.  For  this  purpose,  a  spatially  averaged vertical

displacement as a function of distance from the centre of the uplift may provide the clue of

the most likely mechanism to better explain the InSAR data. The topographic effect may

also improve the fitting. Trasatti et al. (2003) showed that the topography has only minor

effect on the surface displacement field, but it is still detectable. So, the misfits (ε) of a few

cm may possibly be diminished by taking it into account.  

This  study also provides general  implications for  other  volcanoes.  If  no knowledge

about the geothermal structure such as the study of Takahashi et al. (2017) is available,
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the  signature  of  the  non-uniformity  only  relies  on  geodetic  data.  The  adoption  of  the

method shown in this study for the data may enable the deviation from the UET model

behaviour  to  be  estimated.  In  most  cases,  however,  where  the  signature  of  the  non-

uniformity is obscured by unavoidable noise and/or local deformation, any non-uniformity

would provide a similar degree of misfit to the data. This in turn indicates that the elastic

thickness non-uniformity does not significantly influence the fitting to the geodetic data. So,

the adoption of a uniform elastic thickness model would be an adequate approximation.

However, we still need to consider that the uncertainty of crustal viscosity due to the non-

uniformity  can be ~0.2-10 times the actual  one (see Fig.  6  and Table 1).  Thus,  if  the

viscosity  is  to  be  constrained  as  precisely  as  possible,  undertaking  a  survey  of  the

geothermal structure in and around the volcano is required.

The ascent and emplacement of magma in the crust is principally controlled by the

rheological layering, in which optimal magma emplacement occurs around the depth of the

brittle-ductile  transition,  roughly  corresponding to  the  bottom of  the  elastic  layer  (e.g.,

Watts, 2001; Watts & Burov, 2003; Yamasaki et al., 2008), and develops further inflation

there  (e.g.,  Rubin,  1993;  Parsons  et  al.,  1992;  Hogan  &  Gilbert,  1995;  Rubin,  1995;

Watanabe et al., 1999; Burov et al., 2003). In this study, for the models with ωs > ωe, the

edge or most part of the magma emplacement is intruded into the peripheral thickened

elastic layer. However, the dynamic behaviour of magma controlled by rheological layering

may effectively limit its emplacement and inflation only within the central area of volcano

beneath which the elastic layer is thinner, unless magma  ascends beneath the peripheral

region. If  that argument applies, the reduction of post-emplacement subsidence due to

elastic thickness non-uniformity may not occur in a significant way. 

This study has particularly considered the role of elastic thickness non-uniformity as a
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mechanical  heterogeneity  in  active  volcanic  regions.  Many  other  kinds  of  mechanical

heterogeneity would be expected to be present within various spatial scales. Yamasaki &

Kobayashi (2018), however, showed that if the spatial dimension of viscosity heterogeneity

is  much  greater  than  that  of  a  deformation  source,  the  effect  of  the  heterogeneity  is

negligible.  Our  present  study has  provided  a  similar  finding  for  elastic  thickness non-

uniformity, where only a heterogeneity with spatial dimension that is smaller than a few

times the magma emplacement width would play an important role in volcano deformation.

Heterogeneity on a much smaller scale could also possibly be present, but such fine-scale

considerations are not the objective of this study. Such small-scale heterogeneities may be

rather random; their unknown origins mean that their effect on deformation at the crustal-

scale is difficult to assess in a systematic way. Moreover, the effect may simply disappear

in a bulk rheological property.

5 CONCLUSIONS

In this study, we have employed a 3-D linear Maxwell viscoelastic model to examine

how,  and  how  much,  elastic  thickness  non-uniformity  influences  post-emplacement

viscoelastic surface deformation. This was examined for a scenario in which an elastic

layer in the volcano centre is uniformly thinned to be  hi over a horizontal width of  ωe,

compared with  hi +  Δhh in  the peripheral  region of  the volcano,  and a sill-like magma

emplacement, whose horizontal width is  ωs, occurs beneath the centre. The influence of

the non-uniformity on the deformation field was evaluated in the comparison of the NET

(non-uniform elastic  thickness)  model  behaviour  with  that  of  the  UET (uniform elastic

thickness) model with an elastic thickness of hi. 
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We have found that the elastic thickness non-uniformity modifies the vertical ground

surface  displacement,  depending  on  whether  or  not  ωs is  greater  than  ωe.  The  non-

uniformity  with  ωs ≤  ωe <  a  few  times  ωs enhances  post-emplacement  viscoelastic

subsidence at the deformation centre. The subsidence at the deformation centre for the

non-uniformity  with  ωe <  ωs is,  on the other  hand,  significantly  diminished.  Such NET

model behaviours are, however, inappropriate to regard as the signature of non-uniformity,

because the difference in viscoelastic subsidence rate can also be explained by adopting a

different crustal viscosity; we cannot distinguish the effects of the elastic thickness non-

uniformity and crustal viscosity 

We have also found that the signature of the elastic thickness non-uniformity can be

captured in  the spatial  variation of the deformation field.  The difference in  the vertical

ground surface displacement field of the NET model from that of the UET model, for which

the difference at the deformation centre is minimised by adopting an apparent viscosity ηa

for  the  UET  model,  reveals  the  non-uniformity  as  a  displacement  anomaly  over  the

perimeter of the deformation source, in which post-emplacement viscoelastic subsidence

is greater for the NET model. The magnitude of the deviated subsidence is no more than

~15 % of the maximal syn-emplacement uplift at the deformation centre, but ηa is required

to be modified significantly from the NET model viscosity. If ωe is greater than a few times

ωs,  however,  even any weak signature cannot be expected,  and  ηa is  not significantly

modified.

The InSAR data for the Kutcharo caldera (Fujiwara et al., 2017) for the period between

13 August 1993 and 9 June 1998 have been analysed on the basis of the general model

behaviour described in this study. The adoption of the UET model with η = ηa for the InSAR

data has brought out no clear signature of elastic thickness non-uniformity, where  ηa =
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4×1017 Pa  s  was  constrained  in  Yamasaki  et  al.  (2018)  so  that  the  UET model  best

explains the observed post-emplacement LOS displacement change at the deformation

centre.  Models with  various non-uniformity  have also been adopted,  but  no significant

difference  in  the  fitting  to  the  displacement  field  has  been  found.  Nevertheless,  the

viscosity  ηc of the NET model is necessarily modified at most by several tens % of the

estimation of Yamasaki et al. (2018). However, the study of Takahashi et al. (2017) on the

spatial  variation of the geothermal gradient implies that the non-uniformity beneath the

Kutcharo caldera has a spatial  scale significantly  greater  than that  of  the deformation

source, i.e.,  ωe is larger than a few times  ωs. Thus, it can be concluded that significant

modification of the crustal viscosity is not required. 

This study has shown that the optimal viscoelastic model with spatially uniform elastic

thickness can be found to sufficiently explain geodetic data at volcanoes. However, an

ambiguity between the viscosity and/or elastic thickness non-uniformity remains. Not only

geodetic data but also other geophysical data are, therefore, required to constrain these

mechanical  properties  in  a  more  robust  way.  Since  magmatic  activity,  particularly  its

dynamic  behaviour,  is  controlled  by  the  mechanical  structure  of  the  crust,  only  an

interdisciplinary study  that  integrates  different  kinds  of  data  set  can  reach  a  better

understanding of volcanic unrest. 
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APPENDIX A: PARAMETER DEPENDENCY OF GROUND SURFACE DISPLACEMENT

AT THE CENTRE OF THE MODEL

We here further explore the dependence on the model parameters. Δhζu = ζ – ζu = uz/uz0 -

uzu/uz0 at the centre of the modelled upper surface in response to instantaneous sill-like

magma emplacement at the time t = 0, where uz and uzu are the vertical displacement for

NET (non-uniform elastic thickness: Δhh > 0) and UET (uniform elastic thickness: Δhh = 0)

models,  respectively,  and  uz0 is  the  initial  elastic  uplift  due  to  the  instantaneous

emplacement. The time t is normalised by the Maxwell relaxation time (τ). hi is fixed to be 5

km. 

Fig. A1 shows the dependence on the emplacement depth (ds), for which Δhh and δ are

fixed to be 10 km and 5 km, respectively. The general model behaviour is the same with

those shown in Fig. 4, where ζ = uz/uz0 is greater and smaller than ζu = uzu/uz0 for ωe < ωs

and ωe ≥ ωs, respectively. The deviation Δhζu = ζ – ζu is greater for models with greater ds.

As described in Yamasaki et al. (2018), magma emplacement at shallower depths in an

elastic layer predicts post-emplacement viscoelastic displacement to be smaller, because

a relatively less amount of elastic strain is distributed into the underlain viscoelastic layer

by the emplacement. 
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Fig. A2 shows Δhζu as a function of t/τ for two different values of Δhh = 5 and 15 km. The

general model behaviour does not change significantly. However, the models with Δhh = 5

km show somewhat different behaviour. In some models where ωe is smaller than ωs, the

post-emplacement Δhζu decreases first, which is different from the general model behaviour

for Δhh = 10 km, but then increases, which is similar as the general behaviour (see also Fig.

4). For smaller Δhh, an amount of the initial elastic strain distributed into viscoelastic layer

by magma emplacement is greater,  which causes larger subsidence early in the post-

emplacement period. The models with Δhh = 15 km, on the other hand, follow the general

behaviour as shown for Δhh = 10 km. 

Fig. A3 shows Δhζu as a function of  t/τ for models with  δ = 0, for which Δhh = 10 km is

adopted. The temporal behaviour itself is generally similar to those with δ = 5 km, except

for the model with  ωs = 4 km and  ωe = 5 km, where  ζ is greater than  ζu later in post-

emplacement period. It is obvious that an amount of the initial elastic strain distributed into

the elastic  layer  by  magma emplacement  is  greater  for  smaller  δ.  The lack  of  stress

relaxation in the elastic layer causes  Δhζu to be positive. However, the effect of a thicker

elastic layer in the peripheral region, by which the relaxation-induced surface displacement

rate  is  enhanced,  appears  early  in  the  post-emplacement  period.  The  lack  of  stress

relaxation in the elastic layer increases the deviation in positive direction and decreases

that in negative direction. 

APPENDIX B: PARAMETER DEPENDENCY OF OVERALL DEFORMATION FIELD

Fig. B1 shows spatial distributions of Δhζa = ζ - ζa = uz/uz0 – uzu/uz0 at t = tint = τ and 10τ for

the viscosity ηa of UET model, where ηa is given so that the difference between NET and

UET model behaviour is minimised at the deformation centre for a time interval of tint. hi =
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ds = 5 km, Δhh = 10 km, δ = 5 km, and ωs = 20 km are adopted for the investigation here,

particularly focussing on the dependency on tint. 

For models with tint = τ and ωe ≤ 20 km, a displacement anomaly in which Δhζa is negative

appears concentrically with respect to the deformation centre. The anomaly peaks at r (the

distance from the centre of the model) ~  ωs/2. The models with  ωe = 40 km, however,

predict no significant signature of elastic thickness non-uniformity. 

Models with tint = 10τ also predict a region where Δhζa is negative, though the signature is

little for ωe = 40 km as similar to those for tint = τ and 5τ. For ωe = 5 and 10 km, the positive

anomaly appears in the deformation centre, because the displacement difference between

NET and UET models is minimised only for the time interval of tint, where ζ is smaller and

greater than ζa earlier and later in post-emplacement period, respectively. 

The magnitude of the negative anomaly for tint = 10τ is greater than that for tint = τ. Since

the signature is basically induced by the viscoelastic relaxation that progresses with time, it

would  be more  significant  later  in  the  relaxation  process.  The anomaly  magnitude is,

however, no more than ~15 % of the initial elastic uplift. 

Fig. B2 shows spatial distribution Δhζa at t = tint = 5τ, showing the dependence on Δhh by

applying Δhh = 5 and 15 km. hi = ds = 5 km, δ = 5 km, and ωs = 20 km are adopted. In any

case, the negative anomaly appears at r  ~ ωs/2, but it becomes insignificant for  ωe = 40

km, regardless of Δhh. The available magnitude of the anomaly for Δhh = 15 km is greater

than that for Δhh = 5 km, but again it is no more than ~15 % of the initial elastic uplift.
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Figure 1. Location map of study area. The rim of the Kutcharo caldera (dashed red line)

follows that in Fujiwara et al. (2017). The black triangle marks the Atosanupuri volcano.

The red cross indicates the centre of the LOS displacement field observed by Fujiwara et

al. (2017). Lower two figures show the topographic relief along the line A - A ' and B - B',

where the inverted triangles with red colour indicate the caldera rim. The SRTM (Shuttle

Radar Topography Mission) data (e.g., Farr et al., 2007) are used for the topography.



Figure 2. (a) Schematic figure of the finite element model used in this study. The modelled domain has

a thickness of ZL = 100 km, and horizontal dimensions in the x- and y-directions of XL = 192 km and YL

= 192 km, respectively. The axial origin (O) is put at the centre of the modelled upper surface. The

computational solution is obtained only in the domain x ≥ 0, for which tractions in any direction are zero

on the top surface (z = 0), and normal displacement and tangential tractions are zero on the boundary

surfaces of x = 0 and 96 km, y = ±96 km, and z = 100 km. The solution in the domain x < 0 is the mirror

image of that in  x > 0. The model is mechanically two-layered, i.e., an elastic layer is underlain by a

viscoelastic layer with a spatially uniform viscosity (ηc). The elastic layer has an axisymmetric structure

with respect to x = y = 0, where the thickness (h) varies with r (a horizontal distance from the model

centre) as follows: h = hi for r ≤ ωe/2, h = hi + (r – ωe/2)(Δhh/δ) for ωe/2 < r < ωe/2 + δ, and h = hi + Δhh for

r ≥ ωe/2 + δ. A sill-like magma emplacement, whose geometry is approximated as an oblate spheroid

with an equatorial radius of ωs/2, occurs at a depth of ds. (b) Temporal change in thickness of magma

emplacement. The emplacement thickness at the centre (sc) linearly increases over a time period of Δht,

and then keeps constant with sc = scp afterwards. 



Figure 3. ζ =  uz/uz0 as a function of time at the centre of the modelled upper surface,

where uz is the vertical displacement for NET (non-uniform elastic thickness, i.e., Δhh > 0)

model, and uz0 is the initial elastic uplift due to instantaneous magma emplacement at t =

0, i.e., Δht = 0. The time t is normalised by the Maxwell relaxation time (τ) defined by ηc/μ,

where ηc is the viscosity and μ (= 3×1010 Pa) is the rigidity. hi = ds = 5 km, Δhh = 10 km, δ =

5 km, and ωs = 20 km.  ωe = (red) 40 km, (blue) 30 km, (green) 20 km, (purple) 10 km,

(orange) 5 km, and (aqua) 2 km. The dashed line indicates the behaviour of UET (uniform

elastic thickness, i.e., Δhh = 0) model: ζu = uzu/uz0, where uzu is the vertical displacement for

UET model.



Figure 4. Δζu = ζ – ζu = ζ – uzu/uz0 as a function of t/τ at the centre of the modelled upper

surface. The magma emplacement occurs at t = 0 instantaneously, i.e., Δt = 0. hi = ds = 5

km, Δh = 10 km, and δ = 5 km. ωs = (a) 4 km, (b) 8 km, (c) 20 km, and (d) 40 km. ωe =

(red) 40 km, (blue) 30 km, (green) 20 km, (purple) 10 km, (orange) 5 km, and (aqua) 2 km.

The dashed line indicates the UET model behaviour. 



Figure 5. ζ as a function of t/τ at the centre of the modelled upper surface for (red) NET

model with η = ηc, (solid blue) UET model with η = ηa, and (dashed blue) UET model with η

= ηc, where ηa is an apparent viscosity with which the UET model best explains the NET

model behaviour.  tint is a period over which UET model is compared with NET model to

derive ηa: tint = (a, e) τ, (b, f) 2τ, (c, g) 5) 5τ, and (d, h) 10τ. ωe = (a, b, c, d) 20 km and (e, f, g) 5,

h) 10 km. hi = ds = 5 km, Δhh = 10 km, δ = 5 km, and ωs = 20 km. 



Figure 6. ηa/ηc as a function of  ωs/ωe, where ηa is a viscosity with which the UET model

best explains the NET model behaviour at the centre of the modelled upper surface for a

period of tint. hi = ds = 5 km and δ = 5 km. Δhh = (a, b, c, d) 5 km, (e, f, g, h) 10 km, and (i, j,

k, l) 15 km. tint = (a, e, i) τ, (b, f, j) 2τ, (c, g, k) 5τ, and (d, h, l) 10τ. ωe = (red) 40 km, (blue)

30 km, (green) 20 km, (purple) 10 km, (orange) 5 km, and (aqua) 2 km. 



Figure 7. Spatial distribution of  Δζa =  ζ -  ζa on the upper surface of the model at  t =  tint,

where ζa is the vertical displacement normalised by uz0 for the UET model with η = ηa, and

ηa is determined so that Δζa is minimised at the deformation centre for the time interval tint

= 5τ. ωe = (a, e) 5 km, (b, f) 10 km, (c, g) 20 km, and (d, h) 40 km. ωs = (a, b, c, d) 8 km

and (e, f, g, h) 20 km. hi = ds = 5 km, Δh = 10 km, and δ = 5 km. The contour interval is

0.025.



Figure 8. Spatial distribution of  Δυa =  υ -  υa on the upper surface of the model at  t =  tint,

where  υ =  uy/|uz0|  is  the  surface  displacement  in  y-direction  (uy)  for  the  NET model

normalised by the initial elastic uplift |uz0| and υa is that for the UET model with η = ηa. ηa is

determined by minimising Δζa at the deformation centre for the time interval tint = 5τ. ωe =

(a, e) 5 km, (b, f) 10 km, (c, g) 20 km, and (d, h) 40 km. ωs = (a, b, c, d) 8 km and (e, f, g,

h) 20 km. hi = ds = 5 km, Δh = 10 km, and δ = 5 km. The contour interval is 0.005.



Figure 9. Difference in LOS displacement change between the NET model with η = ηk and

UET model with η = ηa during the four different stages of (a, e, i, m) 13 August 1993 - 21

April 1995, (b, f, j, n) 21 April 1995 - 07 April 1996, (c, g, k, o) 07 April 1996 - 25 March

1997, and (d, h, l, p) 25 March 1997 - 09 June 1998, for which  ηa of the UET model is

determined so that the difference in post-emplacement LOS displacement change at the

deformation centre is minimised over a period from 1 May 1995 to 09 June 1998.  ηk =

4×1017 Pa s, Δtt = 626 days, ωs = 4 km, and ds = 4.56 km; See Yamasaki et al. (2018) for

the details. hi = 5 km and Δth = 5 km (Takahashi et al., 2017; Yamasaki et al., 2018). ωe =

(a, b, c, d) 2 km, (e, f, g, h) 10 km, (i, j, k, l) 20 km, and (m, n, o, p) 40 km. δ is assumed to

be 5 km. The contour interval is 0.1 cm.



Figure 10. Observed and predicted LOS displacement changes, and the residuals, during

four different stages of (I) 13 August 1993 - 21 April 1995, (II) 21 April 1995 - 07 April 1996,

(III)  07  April  1996  -  25  March  1997,  and  (IV)  25  March  1997  -  09  June  1998.  The

predictions are obtained by the UET model with hi = 5 km, Δhh = 0 km, ηa = ηk = 4 × 1017 Pa

s with which the observed post-emplacement LOS displacement is best-explained at the

deformation centre (cross). ωs = 4 km, ds = 4.56 km, and Δht = 626 days since 13 August

1993 (Yamasaki et al., 2018).  R is the distance from the deformation centre (cross). The

contour interval is 1 cm.



Figure A1. Δζu = ζ – ζu = uz/uz0 – uzu/uz0 as a function of t/τ at the centre of the modelled

upper surface, where uz and uzu are the vertical displacement for NET (non-uniform elastic

thickness, i.e., Δh > 0 km) and UET (uniform elastic thickness, i.e.,  Δh = 0 km ) models,

respectively. t is the time, and τ is the Maxwell relaxation time defined by ηc/μ, where ηc is

the viscosity and μ is the rigidity. uz0 is an initial elastic uplift due to instantaneous magma

emplacement at t = 0 (i.e., Δt = 0). hi = 5 km, Δh = 10 km, and δ = 5 km. ωs = (a, e) 4 km,

(b, f) 8 km, (c, g) 20 km, and (d, h) 40 km. ωe = (red) 40 km, (blue) 30 km, (green) 20 km,

(purple) 10 km, (orange) 5 km, and (aqua) 2 km. ds = (a, b, c, d) 3 km and (e, f, g, h) 1 km. 



Figure A2. Δζu = ζ – ζu = uz/uz0 – uzu/uz0 as a function of t/τ at the centre of the modelled

upper surface for instantaneous magma emplacement at t = 0. hi = ds = 5 km and δ = 5

km. Δh = (a, b, c, d) 5 km and (e, f, g, h) 15 km. ωs = (a, e) 4 km, (b, f) 8 km, (c, g) 20 km,

and (d, h) 40 km. ωe = (red) 40 km, (blue) 30 km, (green) 20 km, (purple) 10 km, (orange)

5 km, and (aqua) 2 km. 



Figure A3. Δζu = ζ – ζu = uz/uz0 – uzu/uz0 as a function of t/τ at the centre of the modelled

upper surface for instantaneous magma emplacement at t = 0. hi = ds = 5 km, Δh = 10 km,

and δ = 0 km. ωs = (a) 4 km, (b) 8 km, (c) 20 km, and (d) 40 km. ωe = (red) 40 km, (blue)

30 km, (green) 20 km, (purple) 10 km, (orange) 5 km, and (aqua) 2 km. 



Figure B1. Spatial distribution of  Δζa =  ζ -  ζa on the top surface of the model at  t =  tint,

where the difference in vertical surface displacement between the NET model with η = ηc

and the UET model with η = ηa is minimised at the deformation centre by adjusting ηa for

the time interval tint = (a, b, c, d) τ and (e, f, g, h) 10τ. ωe = (a, e) 5 km, (b, f) 10 km, (c, g)

20 km, and (d, h) 40 km.  hi =  ds = 5 km,  Δh = 10 km,  δ = 5 km, and  ωs = 20 km. The

contour interval is 0.025.



Figure B2. Spatial distribution of  Δζa =  ζ -  ζa on the top surface of the model at  t = 5τ,

where the difference in vertical surface displacement between the NET model with η = ηc

and the UET model with η = ηa is minimised at the deformation centre by adjusting ηa for

the time interval tint = 5τ. ωe = (a, e) 5 km, (b, f) 10 km, (c, g) 20 km, and (d, h) 40 km. Δh =

(a, b, c, d) 5 km and (e, f, g, h) 15 km. hi =  ds = 5 km, δ = 5 km, and ωs = 20 km. The

contour interval is 0.025.



Table 1: Values of ε (the averaged root mean square misfit the averaged root mean square misfit ε of the four stages) for the crustal 
deformation in the Kutcharo caldera

ω
e
 = 2 km ω

e
 = 6 km ω

e
 = 10 km ω

e
 = 20 km ω

e
 = 30 km ω

e
 = 40 km

Δh = 5 km
2.5 cm

(the averaged root mean square misfit η
c
 = 0.47η

k
)

2.3 cm
(the averaged root mean square misfit η

c
 = 1.48η

k
)

2.3 cm
(the averaged root mean square misfit η

c
 = 1.29η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 1.05η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 0.99η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 0.98η

k
)

Δh = 10 km
2.4 cm

(the averaged root mean square misfit η
c
 = 0.21η

k
)

2.3 cm
(the averaged root mean square misfit η

c
 = 1.48η

k
)

2.3 cm
(the averaged root mean square misfit η

c
 = 1.38η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 1.10η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 1.01η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 0.98η

k
)

Δh = 15 km
2.4 cm

(the averaged root mean square misfit η
c
 = 0.13η

k
)

2.3 cm
(the averaged root mean square misfit η

c
 = 1.35η

k
)

2.3 cm
(the averaged root mean square misfit η

c
 = 1.36η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 1.12η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 1.02η

k
)

2.2 cm
(the averaged root mean square misfit η

c
 = 0.99η

k
)

*η
c
 is the viscosity of NET model. η

k
 = 4×1017 Pa s is the viscosity of UET model and ω

s
 is 4 km 

(the averaged root mean square misfit Yamasaki et al., 2018).
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