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Robust and Long-term Monocular Teach and Repeat Navigation

using a Single-experience Map

Li Sun1∗, Marwan Taher1, Christopher Wild1, Cheng Zhao2, Filip Majer3, Zhi Yan4,

Tomáš Krajnı́k3, Tony Prescott1 and Tom Duckett5

Abstract— This paper presents a robust monocular visual
teach-and-repeat (VT&R) navigation system for long-term op-
eration in outdoor environments. The approach leverages deep-
learned descriptors to deal with the high illumination variance
of the real world. In particular, a tailored self-supervised
descriptor, DarkPoint, is proposed for autonomous navigation in
outdoor environments. We seamlessly integrate the localisation
with control, in which proportional–integral control is used to
eliminate the visual error with the pitfall of the unknown depth.
Consequently, our approach achieves day-to-night navigation
using a single-experience map and is able to repeat complex
and fast manoeuvres. To verify our approach, we performed
a vast array of navigation experiments in various outdoor
environments, where both navigation accuracy and robustness
of the proposed system are investigated. The experimental
results show that our approach is superior to the baseline
method with regards to accuracy and robustness.

I. INTRODUCTION

Vision-based navigation has the potential to be mass

produced utilising the benefits of low-cost cameras, cheap

computation, and novel machine learning paradigms. How-

ever, unlike the commonly used 2D and 3D lidars, cameras

are naturally passive sensors. Thus, camera-based mapping

and localisation systems are prone to illumination changes,

feature deficiency situations, and appearance variations. The

resulting reliability issues mean that using vision to create

detailed, globally consistent maps of large areas can be a very

difficult task. However, several vision-based teach-and-repeat

navigation systems do not rely on global map consistency,

which are capable of reliably following previously-taught

trajectories organised in a topological map [1], [2], [3].

The main challenges in perception and localisation for

vision-based navigation are two-fold. Firstly, the visual fea-

tures need to be robust to deal with the illumination changes

from day to night in order to operate in the long term.

Secondly, the localisation and control should be seamlessly

integrated to eliminate latencies in decision making. Most

of the existing long-term vision-based navigation systems

build a multi-experience map [4], [5], [6] or learn robust

descriptors or representations from multi-experience navi-

gation [7], [8], [9], [10], [11]. Using a monocular sensor

∗ Corresponding Author: li.sun@sheffield.ac.uk
This project is funded by EPSRC FAIR-SPACE Hub (EP/R026092/1),

EU Horizon 2020 ILIAD (No 732737) and CSF/NRF project ToLTATempo
20-27034J.

1 Sheffield Robotics, University of Sheffield, UK
2 Department of Engineering Science, University of Oxford, UK
3 Czech Technical University in Prague, Czech Republic
4 CIAD UMR7533, Univ. Bourgogne Franche-Comté, UTBM, France
5 L-CAS, University of Lincoln, UK

Fig. 1: Our navigation approach is able to operate from day

to night using a map created in a single teaching session.

and a single-experience map to enable the robot to navigate

autonomously from day to night is an open research problem,

which is highly demanded by outdoor robotic applications

such as logistics and transportation (e.g. last-mile delivery),

and environmental exploration (e.g. sample return).

To tackle these challenges, we propose to use a tailored

deep local descriptor to deal with the illumination variance

for long-term navigation. We also propose a seamlessly-

coupled vision-guided control mechanism to rapidly integrate

the localisation error and adapt to environments of various

scales. The main contributions of this paper are:

• Design and implementation of a monocular teach-and-

repeat navigation system using off-the-shelf camera, en-

abling a wheeled robot to repeat complex and dynamic

manoeuvres from day to night using a single-experience

map in outdoor environments;

• Demonstration and evaluation of the integrated sys-

tem with an actual robotic platform, showing real-

time perception-action loop (above 25Hz), accurate path

following and robust localisation in large-scale environ-

ments;

• Open source work, i.e. the developed system, evaluation

toolboxes as well as video demos are all available

on our project website: https://github.com/

FAIRSpace-AdMaLL.

II. RELATED WORK

Unlike active sensor-based SLAM methods, that can di-

rectly recover the environment structure, the visual (es-

pecially monocular) SLAM is affected by the appearance

changes caused by varying illumination. This results in



reliability issues, especially in case the robots have to operate

over extended periods of time [12].

One of the usages of visual SLAM for robot navigation

is teach and repeat, where the robot creates a map during

a teleoperated drive. This map is then used by the robot to

autonomously repeat the taught trajectory later on [13], [1],

[14], [2] and [15]. The principal advantage of teach-and-

repeat systems is that they do not have to rely on globally

consistent 2D or 3D metric maps of the environment as

teach-and-repeat does not require explicit localisation [2],

[15]. Instead, the navigation task in teach-and-repeat systems

can be formulated as visual servoing [16], [2]. For example,

[17], [18], [19] create a visual path, which is a set of

images along the human-guided route, and then employ

visual servoing to guide robots across the locations these

images were captured at. Similarly, [16] represents the path

as consecutive nodes, each containing a set of salient visual

features, and uses local feature tracking to determine the

robot’s steering to guide it to the next node. The authors

of [20] extract salient features from the video feed on the

fly and associate these with different segments of the tele-

operated path. When navigating a given segment, their robot

moves forward and steers left or right based on the positions

of the currently recognised and already mapped features.

The segment end is detected by means of comparing the

mapped segment’s last image with the current view. While

visual teach-and-repeat methods do not rely on globally

consistent metric maps, they can be combined with high-

level topological maps to allow path planning [3].

To cope with appearance variations in long-term de-

ployments, visual teach-and-repeat systems have often been

extended by approaches that were previously aimed at visual

localisation and place recognition in changing environments

such as the multi-experience framework [4], frequency map

enhancement [21], feature selection [22], [23] or feature

training schemes [24]. For example, in [5], [4], [6], multi-

run experiences are leveraged to build a location graph where

multiple appearances are stored for the same location, and

incremental mapping is implemented when the localisation

confidence is low. [11] proposed an adaptive map for day-to-

night operation that automatically selects effective features

given the temporal context, removes obsolete features and

adds new ones. In [9], [10], evolutionary methods are used

to select patterns from multi-session experiences for binary

features, thereby enabling their long-term deployment in

cross-seasonal or changing illumination conditions.

Compared to hand-crafted visual features [25], [26],

the emerging deep-learned visual features [27], [28], [29],

[30] show proven effectiveness in dealing with illumination

changes. One of the main challenges in learning local de-

scriptors is to associate pixels from images captured with

different illumination and seasons. In D2-Net [27], graph-

based Structure-from-Motion is used to associate images of

the same place and 3D-to-2D projection is used to build the

pixel-wise correspondence between images. Self-supervised

methods such as SuperPoint [29] leverage photometric and

homographic adaptation that can generate correspondences

from a single image without the need of data association. Su-

perGlue [31] proposed a attentional Graph Neural Network

to learn local feature aggregations and perform end-to-end

matching.

III. METHODOLOGY

In the visual teach-and-repeat problem, given the observa-

tion o during the teaching session, a topological map om and

action event map Em will be built. Specifically, as shown in

Fig. 2, the topological map om contains a sequence of images

with a fixed traversal interval {Iim}N , and the event map

consists of a number of velocity events {veldl , vel
d
a,∆t}K

which represent applying linear and angular velocities at

distance d for a duration of ∆t. The sequence can then

be repeated using dead reckoning to replay the velocity

events. To make the navigation precise and scalable, in

the navigation (i.e. repeat) phase, a visual offset ed can

be estimated between the online observation odt and the

paired map observation odm, then the controller will apply the

velocity compensation vele to minimise the visual offset.

Fig. 2: An example of the topological map used in our

experiment.

A. Topological Mapping

In the teach phase, explicit metric mapping and precise

localisation is not required, instead, an image-based topo-

logical map is used. During this phase, the robot is driven

manually via tele-operation. The wheel encoders i.e. robot

odometry) can be used to estimate the distance traversed and

keyframe images with a fixed translational interval1 are saved

as topological nodes. Similarly to [15], a sequence of tele-

operation events is recorded as the event map (also known as

“path profile”). Unlike [15], we also record the exact duration

of these events to handle complex manoeuvres.

B. DarkPoint: Deep Learned Visual Descriptor

Day-to-night robot navigation requires local descriptors

that are robust to dramatic illumination changes in or-

der to register the paired day and night images. Apart

from this, other desirable properties such as scale-invariance

and rotation-invariance should also be achieved. The self-

supervised learning of descriptors is an appropriate scheme

10.2m is used in this paper.



which leverages photometric and homographic adaptation

to generate correspondences and contrastive loss for de-

scriptor learning. In this paper, we use the VGG-like ar-

chitecture similar with SuperPoint [29] due to its run-

time performance2. Our approach, named DarkPoint, is a

tailored approach for long-term teach-and-repeat navigation.

We particularly strengthen illumination adaptation, in which

non-linear image illumination augmentation approach, i.e.

Gamma transform, is adapted to synthesise realistic images

with extremely high- or low-illumination.

1) Illumination Adaption using Gamma Transform: In the

complex real-world, the lightness changes non-linearly and

this change is only reflected in the lightness channel of

an image. The Gamma transform is a non-linear method

to strengthen low-illumination images. Our intuition is to

apply the Gamma transform on normal (daytime) images to

generate low-illumination (night-time) images. Directly ap-

plying the illumination transform to RGB images introduces

distortions in the colour channels of the correlated image. To

preserve the colour information, we first transform the image

to HSV (Hue, Saturation, Value) space, and a parameter γ

is used to adjust the value of channel Iv (i.e. lightness)

exponentially:

I
′

v = min [δ Iγ
−1

v , δ] (1)

where δ is the margin to cap the maximum lightness values

to improve the non-linearity. The adjusted channel value

together with the original hue and saturation channels will

be converted to a grey image for joint training. Apart

from the Gamma transform, other widely used photometric

augmentations, i.e. additive Gaussian noise, additive speckle

noise, random contrast and additive shade, are randomly

included to form the final illumination adaptation P .

2) Joint Training: We use the base detector in SuperPoint

(i.e. MagicPoint) to annotate key points on training images.

In the joint training step (shown in Fig. 3), we first apply

a random illumination transform P to the original training

image to generate paired images with different illuminations.

Both of them will have other photometric augmentations

and one of them will be warped by applying homographic

transforms. Similar to [29], homographic adaptations P ,

including translation, scale, in-plane rotation and symmetric

perspective distortion, are implemented for generation of

correspondences. Dense pixel-to-pixel correspondences can

be automatically generated using the geometric consistency:

f(I) = H−1f
(

H(P(I))
)

(2)

Similar to [27], [29], the cross-entropy loss is applied

on detection scores to learn the keypoint detector. While in

contrast, we apply triplet loss [32] on uniformly sampled

features for contrastive descriptor learning. Given a local

feature triple that consists of a positive pair (dq, dp) and

a negative pair (dq, dn), we minimise the metric distance

between positive pairs and maximise that between negative

2The on-board computer of our robot platform has a NVIDIA Geoforce
RTX 2070 GPU.

Fig. 3: In each iteration of joint training, we apply the

Gamma transform with random γ and δ to syntheses high-

and low-illumination images.

pairs with margins:

Ld(dq, dp, dn) = [α− dTq dp)]+ + [dTq dn − β]+ (3)

where
dq ∈ f(I), (dp, dn) ∈ H−1f

(

H(P(I))
)

(4)

and ||dq||2 = ||dp||2 = ||dn||2 = 1. (5)

In our implementation, the positive margin α and negative

margin β are set as 1.0 and 0.2 respectively. The COCO

dataset3 is used for joint training, a γ value is randomly sam-

pled between 0.2 and 4, which covers the variety of lightness

and illumination in our application, and δ is between 0.6 and

1.0.

C. Steering Estimation and Control

In the navigation (repeat) phase, the recorded action events

will be replayed, and simultaneously, at each distance d,

the map image odm will be loaded and matched with the

corresponding online image odt captured by the on-board

camera to correct the relative pose. Most monocular SLAM

approaches use RANSAC and scale propagation to estimate

the 6DoF relative pose. However, these methods are not

robust when the feature matching is extremely poor, and the

scale-drifting problem cannot be mitigated.

Given a robot teach-and-repeat navigation model as de-

scribed in [15], from the stereo geometry, the translational

error ty perpendicular to the teach trajectory can be approx-

imated by:

ty ∝ zt e
d
t (o

d
m, odt ), (6)

where et(om, ot) is the disparity (also known as visual offset)

between map and camera images, zt is the distance to the

keypoint. We investigated the use of scale propagation to

3https://cocodataset.org/



estimate the depth of keypoint zt from previous images,

and the estimated scale drifts over time. We also tried to

implement a single image depth prediction network, however,

the run-time performance was not satisfactory due to the

bulky decoder architecture.

In [15], histogram voting method is used to estimate the

visual offset edt and a convergence theorem is provided. In

our approach, we also use histogram voting to estimate the

visual offset without knowing the scale, and we integrate

the visual offset through the time to minimise the steady

state error, thereby accelerating the robot repeat convergence

towards the teaching trajectory. To be more specific, a brute-

force nearest neighbour matching (NN) is used for feature

matching. We calculate the pixel offset in x- and y-direction

for each match. Outliers with large y offset will be rejected

first with the prior that the roll and pitch angle should be

small when the robot traverses the same location. Then, the

histogram voting is applied to the x offsets and the final

inliers can be obtained by calculating the mean x offset value

of the matches falling into the largest bin. Once visual offset

et is estimated, the integral of the latency errors accumulates

to adapt the steering control to difference scales z. The

memorised angular velocity at distance d can be corrected

by adding a visually-guided compensation velgain:

velda
′

= velda + velgain

velgain = Φ(edt + λ

∫ t−1

0

edt dt),
(7)

where the hyper-parameter λ is the weights of latency

error integration. Φ is the weight of vision intervention.

Noting that we tuned these parameters manually according

to practical experience. Then we fuse the recorded teach

events with the vision-guided velocity compensation for a

shared control between memorised experience and vision

corrections. Finally, the robot will actively localise and

incrementally approximate the teaching trajectory over time.

Fig. 4: An example of associated trajectories using sensor

fusion. Note, other sensors, e.g. lidar, are only used for

measuring the navigation error.

IV. EXPERIMENTS

A. The Mobile Platform

In this paper, we use a DrRobot Jaguar 4x4 platform for

the experiments. It is an all-terrain robot, with dimensions

of 62cm× 57cm× 90cm and a weight of 35KG. The robot

is equipped with a ZED2 stereo camera, a 3D Ouster OS1-

64 lidar, a Xsens MTi-G710-GNSS and a Dell G5 laptop.

Utilising a battery bank, the robot with the computational

devices is able to operate for around four hours. Our navi-

gation approach only requires a monocular camera. We use

one of the ZED2 stereo cameras as a standard monocular

camera in our experiments. Lidar-inertial-GPS SLAM and

ICP are used for tracking and association of multi-session

trajectories, to generate the “ground-truth” for the evaluation

of navigation performance (see Fig. 4).

B. Evaluation Metrics

Autonomous vision-based navigation involves an active

localisation process which needs to be accurate and robust.

Two metrics are used to evaluate the navigation accuracy and

navigation robustness:

1) Navigation Accuracy: the absolute trajectory error

(ATE) and the relative pose error (RPE), including

RMSE, mean and median, of the associated relative

pose [33], are used to evaluate the localisation er-

ror. We calculate ATE and RPE between the teach

(mapping) trajectory and repeat (navigation) trajectory.

Small ATE and RPE indicate that the robot can pre-

cisely navigate by following the previously taught path.

2) Navigation Robustness: the number of inliers in feature

matching is used to measure the robustness of locali-

sation. The visual offsets can reflect the stability of lo-

calisation. The number of inliers shows the confidence

of localisation and a large number of inliers reflects

that the robot localisation is robust and confident.

C. The Comparison and Baselines

STROLL [2], [15], multi-experience map [4], [5], [6]

and adaptive feature [10], [11] are the state-of-the-art vi-

sual teach-and-repeat navigation approaches. Among them,

STROLL [15] is served as a baseline for comparison as

it is the only open-sourced4 monocular teach-and-repeat

navigation system, to the best of our knowledge. As the

visual feature matching is a core component of our system,

we also assess the advances of the proposed DarkPoint

descriptor. We integrated the following visual localisers with

our system:

• STROLL-AGAST+BRIEF+NN: AGAST keypoint de-

tector [34] and BRIEF descriptor [26] with nearest

neighbour matching. This approach is widely used in

state-of-the-art V-T&R methods [2], [15] or as base

model of adaptive visual features [10], [11]. In our im-

plementation, we use a maximum of 500 keypoints and

a targeted number of 200 keypoints for the experiments.

4Different implementations of the same algorithm may cause unobjective
performance comparisons.



(a) Performed at 16:33. (b) Performed at 16.40.

(c) Performed at 17:56. (d) Performed at 18:07.

(e) Performed at 18:18. (f) Performed at 18:33.

(g) STROLL performed at 18:56. Ours performed at 19:01. (h) Church Test. Performed at 22:00.

Fig. 5: (a)-(g) are results of parking lot day-to-night experiments. Local sunset time when performing the experiment was

17:47. (h) is the result of the church experiment and local sunset was 18:51.

• Ours-DarkPoint+NN: DarkPoint with nearest neighbour

matching. A maximum number of 500 keypoints, a

detection threshold of 0.005 and a Non-Maximum Sup-

pression radius of 4 pixels are used.

• Ours-SuperPoint+NN: SuperPoint with nearest neigh-

bour matching. We use the pre-trained model from

Magic Leap. The same settings are used with DarkPoint.

• Ours-SuperGlue: SuperPoint with Graph Neural Net-

work matcher[31]. We use the pre-trained model from

Magic Leap and the outdoor model is used.

Before running the long-term navigation experiments, we

designed a multi-run experiments to verify the navigation

repeatability of our system as well as the baseline system. We

repeat the same trajectory for five times in constant lightness

conditions. Both STROLL and ours are able to reproduce the

quasi-identical navigation provided no significant change of

the environment. The navigation trajectories and quantitative

results are presented in Fig. 7 and Table II.

D. Day-to-Night Experiments (Parking-lot)

The aim of these experiments is to verify the robust-

ness and advances of our V-T&R in terms of illumination

changes and the impact of these changes on robot navigation

accuracy. The experimental site was located at a parking-

lot near Sheffield Robotics Centre, and the total navigation

path was 86 m. In our experiments, we created the map at

16:00 (daytime) and evaluated the repeat navigation every

10 to 30 minutes for six rounds. We compare our system

with the STROLL baseline [15]. The navigation robustness

(i.e. feature matching) performance is illustrated in Fig. 5,

the navigation trajectories are shown in Fig. 6 and the

quantitative results are given in Table I.

From Fig. 5, it can be seen that our method and STROLL

produced similar amount of inliers in the teaching session.

However, during the sunset, the inliers number of STROLL

decreased dynamically and failed in the sixth repeat. In

contrast, the number of inliers generated by our method are

much more stable and remained at a relatively high level



(1) Performed at 16:40. (2) Performed at 17:56.

(3) Performed at 18:07. (4) Performed at 18:18.

(5) Performed at 18:33. (6) STROLL performed at 18:56.
Ours-DarkPoint performed at
19:01.

Fig. 6: Parking lot day-to-night experiments. Local sunset

time when performing the experiment was 17:47.

(above 50%) even after sunset. As shown in Table I and

Fig. 6, the navigation accuracy of STROLL falls along with

the decreasing feature matching robustness, but our system

can navigate at night as accurate as STROLL in the daytime.

E. Slow Driving Experiment - Church

In this experiment, we investigate navigation performance

at night using a daytime map by repeating a long trajectory

under low illumination condition. This test was located at St.

George’s Church at the campus of the University of Sheffield,

and the navigation route was 221 m with an average speed

of 0.76m/s (shown in Fig. 8). The map was created in the

afternoon at 15:00 and we tested the navigation at 22:00.

In this experiment, we compared the navigation accuracy of

our system with STROLL. STROLL failed in this experiment

due to day-night illumination changes. The ATE and RPE are

shown in Table I.

In particular, we also evaluated the navigation robustness

(shown in Fig. 5), and compared to pretrained SuperPoint

model, our tailored deep descriptor DarkPoint achieves ap-

proximately 1.7 times more inliers during the navigation.

Hence the tailored DarkPoint shows better navigation robust-

ness, compared to SuperPoint.

Fig. 7: The navigation repeatability experiments.

F. Long and Fast Navigation Experiment - Courtyard

In this experiment, we performed another day-to-night

navigation experiment where the teaching phase took place

in the afternoon and the repeat process took place in the

evening with a path containing a mix of poorly lit segments

and well artificially illuminated sections. The performance

of STROLL, Ours-DarkPoint and Ours-SuperGlue was eval-

uated on a 434 m long trajectory, with an average speed

of 1.47 m/s. As shown in Fig. 9, STROLL only managed

to follow the trajectory for about a quarter of the trajectory

then went off-road and the robot was manually forced to stop

to avoid collisions. However our DarkPoint and SuperGlue

methods successfully repeated the path. As shown by the data

in table I. DarkPoint outperformed SuperGlue with about



Exp Method ATE(RMSE) ATE(mean) ATE(median) RPE(RMSE) RPE(mean) RPE(median) Result

Parking Lot 1 STROLL[15] 0.083 0.072 0.063 2.25 1.49 0.85 success
Parking Lot 2 STROLL[15] 0.074 0.064 0.054 2.06 1.43 0.93 success
Parking Lot 3 STROLL[15] 0.078 0.068 0.060 2.90 1.94 1.20 success
Parking Lot 4 STROLL[15] 0.148 0.130 0.115 3.36 2.36 1.52 success
Parking Lot 5 STROLL[15] 0.233 0.207 0.181 4.29 2.94 1.90 success
Parking Lot 6 STROLL[15] 0.830 0.671 0.530 13.58 6.36 1.82 fail
Parking Lot 6 Ours-DarkPoint 0.088 0.075 0.064 2.93 1.99 1.30 success

Church STROLL[15] 1.07 1.01 0.93 19.05 10.00 2.30 fail
Church Ours-DarkPoint 0.29 0.26 0.25 3.36 2.57 1.91 success

Courtyard STROLL[15] 0.703 0.624 0.624 4.18 2.63 1.65 fail
Courtyard Ours-DarkPoint 0.258 0.199 0.160 2.18 1.61 1.15 success
Courtyard Ours-SuperGlue 0.391 0.302 0.236 4.50 3.02 1.90 success

TABLE I: Day-to-night navigation experiments. The unit of ATEs is in meters and unit of RPEs is in degrees.

Exp Method ATE(RMSE) ATE(mean) ATE(median) RPE(RMSE) RPE(mean) RPE(median) Result

Run #1 STROLL[15] 0.048 0.042 0.038 2.38 1.69 1.03 success
Run #2 STROLL[15] 0.056 0.051 0.048 3.05 2.14 1.34 success
Run #3 STROLL[15] 0.057 0.053 0.052 2.20 1.59 0.96 success
Run #4 STROLL[15] 0.042 0.034 0.028 3.44 2.43 1.60 success
Run #5 STROLL[15] 0.046 0.040 0.036 1.68 1.29 0.92 success

Run #6 Ours-DarkPoint 0.052 0.048 0.046 1.40 1.01 0.80 success
Run #7 Ours-DarkPoint 0.057 0.053 0.049 1.28 1.00 0.71 success
Run #8 Ours-DarkPoint 0.057 0.051 0.049 1.46 1.13 0.86 success
Run #9 Ours-DarkPoint 0.054 0.051 0.052 1.32 1.06 0.79 success
Run #10 Ours-DarkPoint 0.067 0.057 0.052 2.05 1.37 0.87 success

TABLE II: Multiple runs of each method under the same lighting conditions to measure performance consistency. The unit

of ATEs is in meters and unit of RPEs is in degrees.

Fig. 8: The trajectory error in the church experiment.

half mean RPE and a lower mean ATE, demonstrating Dark-

Point’s lower drift over long-distance high-speed navigation.

SuperGlue is the state-of-the-art end-to-end matcher that

uses SuperPoint as a front-end. The GNN can aggregate

local features hence improve the matching performance.

However, the bulky end-to-end matching lowers down the

run-time performance to around 9-11Hz. V-T&R navigation

requires a timely decision-making especially for repeating

complex trajectories in high speed. This will be a trade-off

between accuracy and efficiency. From our experience, the

autonomous navigation is likely to fail when the localisation-

control loop frequency drops lower than 7Hz. Hence, we can

conclude that our system with DarkPoint and NN matching

is superior than all comparison methods.
Fig. 9: Trajectories in the courtyard experiments.



V. CONCLUSION

In this paper, we proposed a robust monocular teach-and-

repeat navigation system, where deep-learned descriptors are

utilised to address the challenges of domain variance in

long-term navigation. Specifically, the proposed approach is

elastic and calibration free, and does not rely on precise

metric mapping and explicit localisation. By fully leveraging

advanced illumination adaptation in the local descriptor

learning, our navigation system demonstrated day-to-night

autonomous navigation using a single daytime map.

The experimental results show that the proposed naviga-

tion system is able to conduct a long-distance navigation

task (more than 440 m, at an average speed of 1.47 m/s)

in outdoor environments at night using a map created in

the daytime with a very small trajectory error (0.25 m,

2.18◦) achieved. The system is sufficiently robust to deal

with high-speed manoeuvres and paths of complex shapes.

Our system is open source and fully-integrated with ROS

and the perception-action loop runs at 25-30Hz.
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[11] L. Halodová, E. Dvořráková, F. Majer, T. Vintr, O. M. Mozos,
F. Dayoub, and T. Krajnı́k, “Predictive and adaptive maps for long-
term visual navigation in changing environments,” in IROS. IEEE,
2019, pp. 7033–7039.

[12] L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajnı́k,
“Artificial intelligence for long-term robot autonomy: A survey,” IEEE

Robotics and Automation Letters, vol. 3, no. 4, pp. 4023–4030, 2018.

[13] K. Kidono, J. Miura, and Y. Shirai, “Autonomous visual navigation
of a mobile robot using a human-guided experience,” Robotics and

Autonomous Systems, vol. 40, no. 2-3, pp. 121–130, 2002.

[14] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest, “Monocular
vision for mobile robot localization and autonomous navigation,”
International Journal of Computer Vision, vol. 74, no. 3, pp. 237–
260, 2007.

[15] T. Krajnı́k, F. Majer, L. Halodová, and T. Vintr, “Navigation without
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