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Abstract 

Carpooling as one of demand management measures is effective in reducing highway congestion. 

Recent studies have shown that an appropriate spatial allocation of bottleneck capacity between carpool 

lane and general-purpose lane can lead to peak-spread of the morning commuters' departure time and 

reduce the system's total trip cost. What is not clear however is whether temporal allocation of 

bottleneck capacity can also be effective and if so, what the impact would be, and furthermore what the 

combined effects of temporal-spatial allocation of bottleneck capacity would be. This paper investigates 

the impacts of a temporal allocation of bottleneck capacity, when carpool lane is available only within a 

reserved time window, and a joint temporal-spatial capacity allocation, on morning commute patterns. 

User equilibrium commute patterns are derived for both the temporal-only and the joint temporal-spatial 

capacity allocation schemes, along a highway corridor with two driving modes: solo driving and 

carpooling. The extra costs associated with carpooling are considered alongside of travel time and 

schedule delay costs. We identify three different cases representing the relative barriers and attractions 

of carpooling to commuters, and we show that the optimal capacity allocations are sensitive to the 

accurate estimation of the commuters' extra carpool cost. To assist in evaluating the difference between 

a non-optimal and the optimal temporal-spatial allocation schemes, we derive analytically the upper 

bounds on the efficiency loss and present numerical illustrations on how the upper bounds vary with the 

different operational and behavioral variables. 
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1. Introduction 

Morning commute problem was first introduced in Vickrey (1969) where a population of car 

commuters has to pass a single bottleneck to get to work at a desired time. A queue forms when the 

capacity constraint does not allow all users to pass the bottleneck at their desired time, which forces 

users to make the trade-off between low queuing time and low schedule penalties. Since queuing time 

represents a deadweight loss, completely free competition is a rather inefficient way to allocate the 

scarce bottleneck capacity. The classic remedy to this inefficiency is time-varying congestion pricing 

(Arnott et al., 1990; Hall, 2018). However, due to its many limitations, e.g., bringing new inequity 

between heterogeneous users, congestion pricing has not been implemented widely, and researchers and 

practitioners have turned to other alternatives especially those that do not require any direct payment 

from commuters. One such alternative is carpooling that conceptualizes as an arrangement where two or 

more people share the use of a privately owned car for a trip, and the passengers share the driver's 

expenses (Li et al., 2020). Since the concept of carpooling was first introduced in the 1960s, there has 

been significant body of studies on the commuter behavior towards carpooling, as well as on the 

efficient allocation of road spaces to carpool traffic (Brown, 2020). This paper contributes to the 

discussion on the latter issue, and more specifically on the optimal design of road capacity allocation 

between carpool and general traffic that respond to both temporal and spatial distribution of bottleneck 

congestion.  

As a more efficient and sustainable mode of travel than solo-driving, the take-up of using carpooling 

however has been relatively low (Ferguson, 1997; Huang et al., 2000; Chan and Shaheen, 2012). The 

reasons for this can be classified into physical or psychological barriers, attitudes and perceptions, e.g. 

incompatible work schedules, need of independence and privacy, lack of convenience (Teal, 1987; 

Koppelman et al., 1993; Baldassare et al., 1998; Buliung et al., 2009). Instead, monetary cost savings 

resulting from equal sharing of mileage, fuel costs and parking charges are attractions influencing the 

intention to start carpooling (Yang and Huang, 1999). The barriers and attractions of using carpooling 

work together to make up the (aggregated) extra carpool cost which, depending on their relative 

influence on the commuters, further complicates the commute patterns. By considering the combined 

time-based and distance-based inconvenience cost and the out-of-pocket cost for people sharing a car, 

Liu and Li (2017) derived all possible morning commute patterns with commuters' three roles, i.e., solo 

driver, carpooling driver, and carpooling rider, on the basis of the Vickrey's bottleneck model. They 

found that the arrival order between solo drivers and carpooling participants significantly depends on the 
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relative magnitude of inconvenience cost and out-of-pocket cost. Furthermore, they derived a time-

varying system optimum (SO) toll and a flat carpool price to support a stable equilibrium with minimum 

system cost.  

In addition to combining carpool program with congestion pricing as a way to stimulate carpooling, 

providing exclusive carpool lanes for high occupancy vehicles (HOV) is another popular stimulus 

program to directly improve carpoolers' travel time savings or reliability, and to reduce congestion, air 

pollution and parking supply (Menendez and Daganzo, 2007). Despite their attractiveness, HOV or 

carpool lanes have also drawn criticism over time. Dahlgren (1998) reported that changing a mixed flow 

lane to a HOV lane is more effective only in reducing congestion of HOV lane, whilst significant delay 

remains on the other mixed flow lanes. Guiliano et al. (1990) questioned whether HOV lanes create new 

demand for private car travel or they simply attract people from solo-driving to carpooling. Partly to 

address these concerns, there have been theoretical studies to examine the effects of introducing HOV 

lanes and integrating them with other demand management measures, such as congestion pricing and 

parking availability. For example, at a static user equilibrium (UE) setting, Yang and Huang (1999) 

showed that the optimal toll scheme with the operation of carpool lanes is significantly different from 

that without its operation. Qian and Zhang (2011) analyzed the morning commute patterns involving 

three modes, driving-alone, carpool, and light rail transit, and discussed the effects of changes in transit 

fare, road toll and fuel cost on the system performance. Xiao et al. (2016) derived the multimodal 

morning commute patterns with the consideration of constant extra carpool cost and parking availability, 

and investigated the optimal spatial allocation of bottleneck capacity between a general-purpose (GP) 

lane and a carpool lane. Xiao et al. (2019) further proposed two tradable parking permit schemes for 

managing the morning commute with multiple modes, transit, driving alone and carpool, considering the 

parking space constraint at destination. The four key studies above have all assumed that carpool lanes 

are present along the entire highway connecting the origin to the destination and are in operation during 

the entire (morning) commuting period. This leads to significant under-utilization of the highway 

capacity (Xiao et al., 2016).  

To address this under-utilization issue of carpool lanes, two alternative improvement schemes have 

been proposed and put into practice (Varaiya, 2007). One is converting carpool lanes to high-occupancy 

toll (HOT) lanes which charge solo drivers to use the carpool lanes. This scheme has attracted much 

attention of scholars in economics and transportation research. For example, Konishi and Mun (2010) 

explored the welfare effects of converting carpool lanes to HOT lanes when commuters have different 
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carpool organization costs. Liu et al. (2009) and Lou et al. (2011) investigated the optimal dynamic 

pricing strategies for HOT lanes. Considering a carpool ratio that rises with travel delay, Ma and Zhang 

(2017) analyzed the morning commute problem with dynamic carpool. Zhong et al. (2020) extended the 

work of Ma and Zhang (2017) to model commuters’ mode choice between solo-driving and carpooling 

under the situations without and with a HOV lane, and further discussed the impact of converting the 

HOV lane into a HOT lane on the commute pattern
2
. 

The other approach is to operate carpool lanes on a time-limited basis, i.e. a lane is operated as a 

carpool lane only during part of the commute period (e.g., 7:30-9:30 am and 5:30-7:30 pm in Shenzhen, 

China), while at other times, the lane is operated as a GP lane (Stamos et al., 2012). However, to the best 

of our knowledge, there has been very little analysis on time-limited carpool lanes, with the exception of 

the work by Fosgerau (2011) who proposed a fast and slow lane scheme, where a fast lane is reserved 

for a prioritized group of commuters during part of the morning commute period. The scheme is 

equivalent to a coarse toll and produces a Pareto-improvement. However, in the work of Fosgerau 

(2011), the group of prioritized commuters is assumed to be fixed exogenously and thus morning 

commute patterns do not vary with different extra carpool cost. This is a very strong assumption as it 

ignores the extra carpool cost on determining commuters' mode choice decisions as mentioned before. 

There are many more unanswered questions on the design and performance of time-limited 

carpooling schemes. How much advantage does a time-limited one gain over a full-time one? What 

should be the optimal temporal allocation of bottleneck capacity to carpoolers and solo drivers 

corresponding to different cases of extra carpool cost components? When considering all barriers and 

attractions of using carpooling, the commuters' extra carpool cost may consist of not only constant 

components but also (travel) time-varying ones, and each component may also be positive or negative. 

Could a joint temporal-spatial capacity allocation further improve the morning commute, and if so, how 

to determine the optimal temporal-spatial capacity allocation? Due to various practical reasons, it is 

difficult for the government to accurately estimate the commuters' extra carpool costs and implement the 

                                                 
2 The major differences of Zhong et al. (2020) to this paper are summarized here. Firstly, it is assumed in Zhong et al. (2020) that the HOV 
lane with a fixed capacity is in operation during the entire commute period, and solo drivers may commute on the HOV lane if paying a 
fixed toll. In contrast, a joint temporal-spatial capacity allocation to carpool lane and GP lane is investigated in this paper, and thus solo 
drivers can always commute outside the time interval reserved for carpool purpose without any payment. Secondly, Zhong et al. (2020) 
focused on analyzing one single case that carpoolers pass the bottleneck at the center of the rush hour period and solo drivers commute at 
the two tails, assuming that the inconvenience cost due to carpool increases with the number of riders. In this paper, three typical cases 
representing the relative barriers and attractions of carpooling to commuters are identified, and the upper bounds on the inefficiency arising 
from non-optimal capacity allocations are derived analytically for different cases. The new insight and significance of the differences of 
this paper from Zhong et al. (2020) are that improving the efficiency of the traffic system with HOV lanes needs the government's delicacy 
management, otherwise the benefit from operating HOV lanes may be relatively low. 
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optimal temporal-spatial capacity allocation. Then, how about the upper bound on the inefficiency of 

implemented temporal-spatial capacity allocation schemes compared with the optimal one when only 

limited information about extra carpool cost components, such as range of change, is known a priori? 

This paper fills the gaps in the literature on time-limited carpooling, by addressing some of the above 

questions. More specifically, this paper models an one-to-one highway corridor problem with two 

commute modes, solo driving and carpooling, where the highway capacity is shared by a carpool lane 

and a GP lane. A single Vickrey's bottleneck dynamic setting is employed in order to make the model 

tractable. All commuters are assumed to have identical work schedules and freely choose their commute 

modes for travel. The barriers and attractions of using carpooling are represented by an extra carpool 

cost (in addition to the common travel time and schedule delay costs), and are modeled as consisting of 

a constant component (to represent the distance-based or free-flow time dependent parts for this single 

OD pair case) and a component proportional to the queuing delay. The two cost components can each be 

either positive or negative, to reflect the barriers and attractions of using carpooling. The carpool lane is 

designated to operate within a reserved time window at the center of the rush hour period; at other times, 

the lane is available to all commuters. We examine the relative impact of the barriers and attractions 

(and the associated carpool cost components) on commuters' travel pattern, and on the optimal design of 

temporal-only, and joint temporal-spatial, carpooling schemes. 

The main contribution and the key findings of this paper are summarized as follows. Firstly, when the 

whole highway is operated for GP purpose, we identify three typical cases representing the relative 

barriers and attractions of using carpooling to commuters, i.e., Case 1(a), where carpoolers pass the 

bottleneck at the center of the rush hour period and solo drivers commute at the two tails, Case 2(a), 

where solo drivers pass the bottleneck at the center of the rush hour period and carpoolers commute at 

the two tails, and Case 3(a) where all commuters choose solo driving. 

Secondly, we present analytically the UE solutions of a temporal-only capacity allocation scheme (a 

time-limited carpooling scheme) for each of the above three cases. We show that, the impact of the 

reserved time window on the commute patterns for both Case 1(a) and Case 3(a) is similar to that of the 

single-step coarse toll scheme (Arnott et al., 1990; Laih, 1994; Laih, 2004; Lindsey et al., 2012; Xiao et 

al., 2011, 2012; Nie and Yin, 2013; Liu et al., 2015; Li et al., 2017; Xu et al., 2019), and that two 

important variables are the constant component of extra carpool cost and the queuing time cost for the 

solo drivers just passing the bottleneck at the starting/ending time of the time window: if the latter is 
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larger, it leads to excess queuing delay; whilst if the former is larger, the scheme will lead to excess 

capacity waste. 

Thirdly, we present a joint temporal-spatial capacity allocation scheme, where the system's total trip 

cost is minimal when the full bottleneck capacity is spatially divided into a carpool lane and a GP lane 

and the reserved time window for carpool purpose is optimally set according to an accurate estimation of 

the commuters' extra carpool cost. 

Finally, for non-optimal temporal-spatial allocation schemes, we further derive analytically the upper 

bounds on the inefficiency, and numerical examples are presented to illustrate how the upper bounds 

vary with different operational and behavioral parameters, such as the spatial allocation ratio of highway 

capacity, queuing time cost for the solo drivers just passing the bottleneck at the starting/ending time of 

the time window, number of commuters in a carpooling vehicle and rush hour period on the highway. 

The rest of this paper is organized as follows. The Vickrey's highway bottleneck model is extended 

by incorporating carpooling mode in Section 2. Sections 3 and 4, respectively, introduce a temporal-only 

bottleneck capacity allocation, where the highway is designated for carpool use at the center of the rush 

hour period and a joint temporal-spatial capacity allocation, and investigate their impacts on morning 

commute patterns. Section 5 bounds the inefficiency of non-optimal temporal-spatial allocation schemes 

compared with the optimal one. Numerical examples are presented in Section 6. Section 7 concludes the 

paper. 

 

2. Bottleneck model with carpooling 

In this section, we consider the Vickrey's highway bottleneck model with carpooling. (The main 

variables and notations are summarized in Appendix A.1). Let s  be the capacity of the bottleneck. A 

fixed number of homogeneous commuters, N , travel on the highway and hope to arrive at destination at 

the work starting time or the desired arrival time, *
t . Solo driving and carpooling are two alternative 

modes for the commuters' travel. Let s
N  and c

N  be the number of vehicles traveling on the highway by 

solo driving and carpooling, respectively. Then, the total number of vehicles on the highway
f

N  is: 
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f s c
N N N  , and the travel demand N  is given, s c

N N mN  . Here the constant m  denotes the 

average number of commuters in a carpooling vehicle and 2m  3
. 

The travel time on the highway for commuters departing from home at time t  consists of the free-

flow travel time, f
T , and the queuing time at the bottleneck, ( )v

T t . Without loss of generality, it is 

assumed throughout this paper that 0f
T  . Because the total demand is fixed, the commuters' mode-

choice decisions depend only on the difference between the costs of carpooling and the costs of solo 

driving. Thus, according to the ADL model (Arnott et al., 1990), the trip costs for solo drivers and 

carpoolers departing from home at time t  can be expressed as, respectively
4
 

 ( ) ( ) (time early) (time late)v

s
c t T t     ,  (1) 

 ( ) ( ) (time early) (time late) ( )v

c
c t T t t      , (2) 

where subscripts c  and s  denote carpooling and solo driving,  ,   and   are positive scalars that 

generally satisfy      (Small, 1982). Eq. (1) and Eq. (2) assume the same value of time for solo-

driving and carpooling and keep other carpooling-related cost components in  t . Denote ( )Q t  as the 

length of queue at the bottleneck for vehicles departing from home at time t , and then we have 

( ) ( )v
T t Q t s . 

In Eq. (2), ( )t  is the extra carpool cost that the carpoolers have to encounter besides the common 

queuing time cost and the schedule delay cost. It aggregates the additional cost for individual occupants 

of carpools as compared with the solo drivers. The monetary cost saving (e.g., sharing of parking fees, 

fuel costs and highway tolls) and the barriers (e.g., lack of convenience, independence and privacy) are 

both possibly dependent on the shared travel distance and travel time for the carpoolers. For the 

convenience of analysis, we define ( )t  as a linear function of the shared queuing time ( )v
T t  by putting 

all other factors into its constant component, 1 , including those distance-based or free-flow time 

dependent ones. It follows: 

 1 2( ) ( )v
t T t    . (3) 

                                                 
3 Carpooling occurs when two or more people ride in one car simultaneously. Teal (1987) reported that purely household carpools are 
overwhelmingly composed of two persons whilst external carpools average 2.63 members. For a passenger car with five seats, m  may at 

most take the value of 5. 
4 Carpoolers may have different free-flow travel time from solo drivers due to the pick-up, drop-off and matching friction. The difference 
can be integrated into the constant component of the extra carpool cost, so that the model and analysis still apply. 
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Component coefficients 1  and 2  may be positive or negative, depending on the difference between 

the compensation (monetary cost saving or attractions) and the inconvenience cost (barriers)
5
. Although 

it might be negative in some cases (as will be discussed later), ( )t  is referred to in this paper as "the 

extra carpool cost" for convenience. To better understand the aggregated extra carpool cost, several 

representative determinants for its component coefficients are listed in Table 1. 

 

Table 1. Determinants for the component coefficients of the extra carpool cost. 

Determinants 1  2  

Inconvenience cost 

Pick up and drop off 

Matching friction/efforts 

Positive 

Positive 

-- 

-- 

Independence and privacy Positive Positive 

Compensation 

Sharing of parking fees Negative -- 

Sharing of fuel costs -- Negative 

Sharing of highway tolls Maybe negative Maybe negative 

Social preference for carpooling Maybe negative Maybe negative 

 

The equilibrium condition for commuters' joint choice of departure time and travel mode in the single 

bottleneck model is that no commuter can reduce his/her individual trip cost by changing decisions 

bilaterally. At equilibrium, all commuters must have the identical trip cost, and then we have 

( ) 0
i

dc t dt  , ,i s c . Accordingly, the arrival rates at the bottleneck for solo-driving and carpooling 

vehicles arriving at destination before and after *
t  are given by, respectively 

 1

sr s


 



, 2

sr s


 



, 1 2

2

cr s


 
 


  

, 2 2

2

cr s


 
 


  

 (4) 

To ensure that all arrival rates and the equilibrium trip cost can take positive values and there may exist 

an interior solution, it is assumed in this paper that 2      and 1( )N sm N s     , where 

      .  

                                                 
5 With the consideration of all attractions and barriers, both 1  and 2  may depend on the number of commuters in a carpooling vehicle, 

m . Were we to specify function forms of 1  and 2  with respect to m , e.g., 1 11 12 ( 1)m       and 2 21 22 ( 1)m      , the 

introduction of more parameters would result in a more complex analysis. It is without much loss of generality to assume that both 1  and 

2  are independent of m  since the number of commuters in a carpooling vehicle is assumed to be constant in this paper. 
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Since the arrival order between solo-driving vehicles and carpooling vehicles is determined by the 

trade-off among the schedule delay, queuing delay, and extra carpool cost (if involved), it is natural at 

equilibrium that the group with the higher (lower) arrival rate before (after) *
t  will pass the bottleneck at 

the time slots closer to the desired arrival time. From Eq. (4), the arrival order between solo-driving 

vehicles and carpooling vehicles can be classified by three different cases
6
 (Please refer to Appendix A.2 

for details), as specified in Table 2. 

Case 1: when 10 N s   , (a) if 1

2 2

u      , the carpooling vehicles pass the bottleneck at 

the center of the rush hour period (as Figure 1(i)), or (b) if 1

2 2

u   , all commuters choose solo driving. 

Case 2: when 1( ) 0N sm    , (a) if 1

2 2

l   , the solo-driving vehicles pass the bottleneck at the 

center of the rush hour period (as Figure 1(ii)), or (b) if 1

2 2

l      , all commuters choose 

carpooling. 

Case 3: when 1 0  , (a) if 2 0  , all commuters choose solo driving, or (b) if 2 0     , all 

commuters choose carpooling, or (c) if 2 0  , the departures and arrivals of solo-driving vehicles and 

carpooling vehicles are mixed. 

(i)

o

s
t

o

c
t e

s
t

e

c
t

*
t

1 2
  

1 2
  

1

s
r

1

c
r

2

c
r

2

s
r

o

c
t

o

s
t

e

c
t

e

s
t

*
t

1 2
  

1 2
  

1

s
r

2

c
r

1

c
r

2

s
r

(ii)

fN
fN

Arrival curve for solo-driving vehicles
Arrival curve for carpooling vehicles

Arrival curve for solo-driving vehicles
Arrival curve for carpooling vehicles

 

Fig. 1. Commute patterns for Case 1(a) and Case 2(a). 

The equilibrium solutions for the above three cases, i.e., the equilibrium flow and the trip cost for 

each mode are derived in Appendix A.2. To separate different arrival time intervals, we denote o

i
t  and e

i
t  

as the earliest and the latest arrival time at the bottleneck for role of commuters i , ,i s c . Figure 1 

                                                 
6 The three cases here are similar to those discussed in Liu and Li (2017), where the detailed cost components due to ridesharing are 
defined. However, there is no clear empirical evidence on whether carpoolers tend to commute closer to the peak than solo drivers, or vice 
versa, although Brown (2020) found that people are more likely to share rides during peak periods. 
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shows the morning commute patterns for Case 1(a) and Case 2(a), respectively. The blue line is the 

arrival curve at the bottleneck for solo-driving vehicles, the red curve is that for carpooling vehicles and 

the black line is the departure curve from the bottleneck for all vehicles. At the critical time points, o

c
t  

and e

c
t  in Figure 1(i) or o

s
t  and e

s
t  in Figure 1(ii), the queuing time for both roles is the same, and equals 

to 1 2  (the detailed derivation is presented in Appendix A.2). Using Eq. (3), at the critical time 

points with queuing time 1 2  , the extra carpool cost equals to zero, i.e., ( ) 0t  . Moreover, the 

commuters passing the bottleneck at the two tails endure a queuing time that is always smaller than 

1 2  . Thus, combining this with the conditions for each case, we can easily conclude that the 

commute pattern for carpooling corresponds to the situation with ( ) 0t  , whilst that for solo driving 

corresponds to the situation with ( ) 0t  . 

In this section, the bottleneck-constrained highway is considered just as a GP lane with the fixed 

number of identical individuals for solo driving or carpooling. If 1 0  , for both Case 1 and Case 2, all 

commuters are better off in the presence of carpooling. If 1 0  , it is also clear for Case 3 that all 

commuters are not worse off in the presence of carpooling. In the following sections, we will introduce 

the temporal-only allocation as well as the joint temporal-spatial allocation of highway capacity for GP 

and carpool purposes to further improve the system efficiency for all cases. 

 

Table 2. Cases of the arrival order between solo-driving vehicles and carpooling vehicles. 

Arrival order 

1  

10 N s    1( ) 0N sm     
1 0   

2  

1

2 2

u    Case 1(b): Solo driving   

1

2 2

u     
 

Case 1(a): Both modes and solo 

driving first for 1 0,(1 )
N

s

 


    
 

 
  

1

2 2

l     
Case 2(a): Both modes 
and carpooling first 

 

1

2 2

l        Case 2(b): Carpooling  

2 0     Case 3(a): Solo driving 

2 0     Case 3(c): Mixed traffic 

2 0        Case 3(b): Carpooling 

Note: 1

2 1 ( ) 0u
s N      and  1

2 1 1 ( ) 0l
sm N sm        . 
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3. Temporal-only capacity allocation 

Since not all commuters are worse off in the presence of carpooling in a completely free market 

mentioned above, it is natural to further stimulate carpooling by providing exclusive carpool lanes. 

However, if capacity is designated for carpool purpose at all times (during the peak period), the resultant 

equilibrium trip cost, i.e., 1+ ( )N ms , may be larger than that for Case 1(a) with no designation (See 

Appendix A.2). A possible remedy to such inefficiency is therefore to allocate bottleneck capacity for 

exclusive carpool use by time. That is to say, the entire morning commute period can be divided into a 

carpool period and a GP period. We define such a temporal-only bottleneck capacity allocation scheme 

as follows: 

 

Definition 1. The highway is designated for carpool use within a reserved time window, [ , ]t t
 

, 

according to the queuing time cost for the solo drivers just passing the bottleneck at t
  and t

 , x
 , 

whilst it is available for all commuters outside the time window during the morning commute period. 

 

The temporal-only bottleneck capacity allocation scheme allows a specified time window reserved 

for carpoolers according to x
 , which is the queuing time cost for the solo drivers just passing the 

bottleneck at t
  and t  . The time reservation is applied at t

  before the work starting time and lifted at 

t
  after the work starting time (and its specific settings associated with a particular x

  for different 

cases will be discussed later). Accordingly, the commuters can be divided into three groups: the 

commuters passing the bottleneck before t
  and after t

 , and the carpoolers passing the bottleneck 

inside [ , ]t t
  . Each selection of the parameters ( , )t t

   associated with a particular x
  represents a 

particular temporal-only bottleneck capacity allocation scheme, and would also generate a 

corresponding morning commute pattern. However, it is unclear for each case of the arrival order 

between solo-driving vehicles and carpooling vehicles in Table 2 what the commute pattern will be like 

around the starting and ending points of the reserved time window, since the relationship between x
  

and the commuters' extra carpool cost may be uncertain in practice. 

 

3.1. Commute patterns for Case 1 
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As introduced in Section 2, if there is no time reservation for carpool purpose, the carpoolers pass the 

bottleneck at the center of the rush hour period and the solo drivers commute at the two tails for Case 

1(a); all commuters choose solo driving for Case 1(b). But, once a temporal-only bottleneck capacity 

allocation scheme associated with x
  is implemented, the commute pattern for Case 1(b) would become 

similar to that for Case 1(a). A key question in analyzing the commute patterns under the temporal-only 

allocation scheme is how to deal with the discontinuity that takes place at the boundary of the reserved 

time window. 

This discontinuity forces the commuters who arrive at the boundary of the reserved time window to 

have different travel delays, depending on whether or not they choose carpooling. The first carpooler 

who endures the extra carpool cost and has a lower travel delay must leave home later, in comparison 

with his/her immediate predecessor who escapes the time window by solo-driving. This implies that 

there must be a time period during which the arrival rate at the bottleneck is zero (e.g., the horizontal 

segment 1   for the scenario that 1x
    as shown in Figure 2). In the spirit of the single step coarse 

toll, the discontinuity between the last person who commutes by carpooling and his/her immediate 

successor leads to a separated waiting (SW) behavioral assumption (Laih, 1994; Laih, 2004) about how 

commuters might respond to the temporal capacity allocation scheme. That is, the commuters who arrive 

at the bottleneck at the same time can use different waiting facilities, hence are allowed to have different 

travel delays. 

 

Cumulative arrivals of both groups

Arrival curve for solo-driving vehicles
Arrival curve for carpooling vehicles 

Reserved time window

 

Fig. 2. Commute pattern under temporal-only capacity allocation for 1x
    
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We first consider a special scenario, in which the queuing time cost for the solo drivers just passing 

the bottleneck at t
  and t

  equals to the constant component of the extra carpool cost, i.e., 1x
   , 

such that the first carpoolers endure no queuing delay. Figure 2 depicts the commute pattern for this 

special scenario. Now, let us follow the SW assumption and explain how to deal with the discontinuity 

at the upper boundary of the reserved time window ( , )t t
   associated with 1x

   . At equilibrium, the 

last carpoolers to arrive at the bottleneck before the carpooling reservation is lifted must have the same 

trip cost as the first solo driver to arrive at the bottleneck after the carpooling reservation is lifted. The 

latter must therefore incur the queuing time plus schedule delay costs that are 1  higher than the former. 

This is impossible unless the solo drivers who choose to pass the bottleneck after the reserved time 

window can wait on a set of secondary lanes (on the separate lanes or shoulders, where the solo drivers 

can pull out of the traffic stream) without impeding the carpoolers who do pass the bottleneck in the 

reservation period. 

In most of scenarios, the queuing time cost for the solo drivers just passing the bottleneck at t
  and 

t
  may be not the constant component of the extra carpool cost, which renders the occurrence of a 

specific commute pattern depend on the relative values of x
  and 1  as follows. 

(i) Commute patterns with excess queuing delay for 1x
    

When the reserved period is over-compressed, i.e., the queuing time cost for the solo drivers just 

passing the bottleneck at t
  and t  , =

x
BD , is a little bit larger than 1 , after some arrivals of solo-

driving vehicles there will be a period during which no one arrives at the bottleneck before t
 , but the 

excess queuing delay ( BD BC ), due to the overestimation of the extra carpool cost, will be 

experienced by the first and the last carpoolers, as shown in Figure 3(i). 

(ii) Commute patterns with excess capacity waste for 1x
    

When the reserved time window is longer (over-stretched), i.e., the queuing time cost for the solo 

drivers just passing the bottleneck at t
  and t  , =

x
BD , is less than 1 , then there is a time interval 

during which the bottleneck capacity is not fully utilized. This is referred to as “excess capacity waste”. 

In other words, if the government underestimates the cost of carpooling, i.e., more people are supposed 

to carpool than they actually do, then the reserved time window is too long. Since the solo drivers cannot 

cross the bottleneck during the window, the bottleneck is un-utilized during part of the window. The 



 14 

reserved time window is set in terms of x
 , thus the capacity waste ( BC BD ) occurs not only around 

the starting time but also at the ending point of the reserved time window, as shown in Figure 3(ii). 

We now analyze the equilibrium solutions in Case 1. For any x
 , regardless of commute patterns 

with either excess capacity waste or excess queuing delay at t
  and t  , the rush hour period for arriving 

at the bottleneck can be determined by equalizing the trip costs of the first and last commuters for solo-

driving or carpooling, and the starting time t
  and the ending time t

  can be further determined by x
  

(similar to the analyses in Lindsey et al. (2012) for the single-step coarse toll scheme and Nie and Yin 

(2013) for the travel permit case) as follows: 

 *o x x
s

N m
t t

s m


  

 
    , *e x x

s

N m
t t

s m


  

 
    ,  (5a) 

  1

o o

c s x x
t t        ,  1

e e

c s x x
t t        , (5b) 

 o

s x
t t    , e

s x
t t    ,  (6) 

where 1max{ , }
x x

    . It is easy to observe from Eq. (6) that x
  plays a very similar role to the 

single-step coarse toll in setting the reserved time window, and thus determines the number of solo 

drivers and the total number of vehicles on the carpool lane. The number of carpooling vehicles, the 

number of solo drivers and the equilibrium trip cost can be expressed as follows: 

    e o

c c c x
N t t s N s m    ,    e o

s s s x
N t t s t t s s         (7) 

    r

x x
c N sm m m     , (8) 

which are independent of both   and 2 . Specifically for 1x
   , we easily get 

   1 1 1r

c
c N s N sm m m       from Eq. (8). At then, the first carpoolers passing the 

bottleneck within the reserved time window encounter the scenario with no excess queuing time and no 

capacity waste.  

It should be noticed that, when 1 2x
     , where 1 2 1      due to the assumption that 

2     , the reserved time window is so short that the temporal-only capacity allocation does not 

impact the commuters' travel choice and corresponding commute pattern, and thus Eq. (8) would be 

changed to 1 2( ) ( 1) ( )r
c N ms m m      , which is the equilibrium trip cost with no capacity 

allocation in Case 1 (See Appendix A.2). To make sense of the temporal-only capacity allocation, x
  
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should take values from 1  to 1 2    for the excess queuing delay scenario and from 0 to 1  for the 

excess capacity waste scenario, respectively. 

 

Proposition 1. For Case 1, the optimal temporal-only capacity allocation scheme for minimizing the 

equilibrium trip cost is that with 1x
   , i.e., there is no excess capacity waste and no excess queuing 

delay in the morning commute pattern.  

Proof. See Appendix B.1. 

 

Proposition 1 implies that for Case 1, the optimal temporal-only capacity allocation is very similar to 

the tolling/pricing control (c.f. Xiao et.al, 2011), since they both require determination of the reserved 

time window. If the time window is set inaccurately, the scenarios with excess capacity waste or excess 

queuing delay might occur in the morning commute. 

 

Reserved time window

(i) (ii)

Reserved time window

t *t t 

capacity waste

capacity waste

queue

queue

*t

Cumulative arrivals of both groups
Arrival curve for solo-driving vehicles
Arrival curve for carpooling vehicles

Cumulative arrivals of both groups

Arrival curve for solo-driving vehicles
Arrival curve for carpooling vehicles

 

Fig. 3. Commute patterns under temporal-only capacity allocation for Case 1. 

 

3.2. Commute patterns for Case 2 

For Case 2(a), where 1( ) 0N sm     and 1

2 2

l   , the carpoolers pass the bottleneck at the two 

tails and the solo drivers commute at the center of the rush hour period, if there is no time reservation for 

carpool purpose as introduced in Section 2. Under the temporal-only bottleneck capacity allocation 

scheme associated with x
 , all commuters can be divided into three groups, the commuters passing the 

highway bottleneck before t
  and after t

  by solo driving or carpooling, and the carpoolers commuting 
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inside [ , ]t t
  . Compared with the no time reservation in Section 2, the queue length at the bottleneck 

within the reserved time window [ , ]t t
   will be reduced after the reservation is set, but at the time when 

the reservation starts, there exists only scenario with excess queuing delay (See Figure 4, where 

0BD BC  ). As done in Case 1, in this case we can derive the rush hour period, the starting time t
  

and the ending time t
 , which are presented in Appendix B.2, and the equilibrium trip cost 

     1 1 2 1r

x
c N sm m m         , (9) 

where 
1 2,

x x
         with   1 2 11

x
N s m m         . When 

x x
   , it is equivalent to 

the situation with no capacity allocation in Case 2(a) as analyzed in Section 2; and when 1 2x
     , 

all commuters choose carpooling with others, and thus the commute pattern would be changed to that 

with no capacity allocation in Case 2(b). 
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Fig. 4. Commute pattern under temporal-only capacity allocation for Case 2(a). 

 

Proposition 2. For Case 2(a), the optimal temporal-only capacity allocation scheme for minimizing the 

equilibrium trip cost is that with 1 2x
     , where the time window reserved to the carpoolers is 

just long enough so that no one chooses solo driving.  

Proof. Using Eq. (9) and 1

2 2

l   , we easily get  d d 1 0r

x
c m m    , and thus the minimum trip 

cost can be achieved at 1 2x
     . □ 
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Proposition 2 suggests that with the optimal temporal-only capacity allocation for Case 2(a), all 

commuters would choose carpooling. The solo drivers who pass the bottleneck at t
  or t  would have 

the same queuing time as their immediate carpooling successors/predecessors (see Figure 4 and panel (ii) 

of Figure 1). For Case 2(b), where 1( ) 0N sm     and 1

2 2

l      , all commuters freely 

choose carpooling with others under no time reservation scheme as discussed before. Thus, whether to 

set the reserved time window or not makes no difference to the commute pattern.  

 

3.3. Commute patterns for Case 3 

Since 1 0  , it is easy to see that there is no need to implement the temporal capacity allocation for 

Case 3(b) and Case 3(c). However, for Case 3(a), all commuters would only choose solo driving if no 

temporal capacity allocation. Similar to the discussion as before, the carpool time reservation will be 

applied at t
  before the work starting time and lifted at t

  after the work starting time. Under the 

temporal-only capacity allocation scheme associated with x
 , the commute pattern for Case 3(a) is 

similar to that for Case 1(a) with excess queuing delay (See Figure 3(i)), i.e., the carpoolers pass the 

bottleneck at the center of the reserved time window and the solo drivers travel before t
 or later than t  . 

Then, with the time reservation, for Case 3(a) where 1 0  , the equilibrium trip cost can be expressed 

as follows: 

    1r

x
c N sm m m    , with  0,

x
N s  . (10) 

 

Proposition 3. For Case 3(a), the optimal temporal-only capacity allocation scheme for minimizing the 

equilibrium trip cost, is that 0
x

  , i.e., the full bottleneck capacity is reserved to the carpoolers. 

Proof. From Eq. (10), we easily get  d d 1 0r

x
c m m     with  0,

x
N s  . □ 

 

It can be observed from Propositions 1–3 that the optimal temporal-only capacity allocation scheme 

is to set 1

o

x
    for Case 1, 1 2

o

x
      for Case 2(a) and 0o

x
   for Case 3(a), where superscript o 

denotes the optimal value of x
 . It suggests that, if the constant component of the extra carpool cost is 

positive so that Case 1 occurs, the optimal temporal-only allocation scheme would generate the 

commute pattern with no excess capacity waste and no excess queuing delay at both ends of the reserved 

time window, where the solo drivers still commute outside the time window. By giving commuting 
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priority to the carpoolers during the rush hour period, the competition between solo drivers and 

carpoolers is reduced, and so is queuing delay endured by both carpoolers and trip cost. However, if the 

constant component of the extra carpool cost is non-positive such that Case 2 or Case 3 occurs, all 

commuters choose carpooling under the optimal temporal-only allocation scheme. Thus, the trip cost is 

reduced by squeezing all solo drivers out of market.  

 

4. Joint temporal-spatial capacity allocation 

4.1. Definition 

In addition to re-assigning the peak demand by time on the carpool lane, re-assigning the peak 

demand by space on the highway is also important to the travel demand management. Following 

Definition 1 and the spatial capacity allocation scheme of bottleneck capacity discussed in Xiao et al. 

(2016), we here define a joint temporal-spatial capacity allocation scheme as follows. 

 

Definition 2. The highway is spatially allocated to a GP lane and a carpool lane, where the carpool 

lane is designated for carpool use within a reserved time window, [ , ]t t
 

, according to the queuing time 

cost for the solo drivers who pas the bottleneck at t
  and t

 , x
 , whilst it is available for all commuters 

outside the time window during the morning commute period. 

 

With this definition, we next use a two-lane equilibrium analysis to examine the effects of the 

temporal-spatial capacity allocation on the morning commute patterns for different cases.  

 

4.2. Equilibrium analysis for different cases 

Here, the highway bottleneck capacity is spatially allocated as a GP lane and a carpool lane, and the 

capacities on both GP and carpool lanes are assumed to be given and not endogenously affected by the 

composition of commuters. Superscripts g  and h  denote the GP lane and the carpool lane, respectively, 

and subscript i  denote the specific role of commuters as defined before, solo driving or carpooling. Let 

g

i
N  and h

i
N  be the number of vehicles with role i  ( , )i s c , traveling on the two parallel lanes of the 

highway, respectively, and g g g

s c
N N N  , h h h

s c
N N N  . 
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For simplicity, the capacity of the GP lane is further assumed to be g
s s , thus  1h

s s   is the 

capacity of the carpool lane. Here, the parameter [0,1]  in fact determines the spatial capacity 

allocation of the bottleneck. According to the above assumptions, for a given  , the carpooling time 

reservation would generate the commute patterns on the carpool lane as discussed in Section 3 for 

different cases. Define ( )g g
c N  and ( )h h

c N  as the respective equilibrium trip costs for commuters 

traveling on the GP lane and carpool lane. Clearly, we have ( ) ( )g g h h
c N c N  at two-lane equilibrium. 

Case 1: 10 N s    

According to the derivation of Eq. (7) and Appendix A.2, we easily get the numbers of solo driving 

vehicles on the GP lane and carpool lane in this case as follows: 

 1

2

g

s

s
N





 


,  1h x

s
N s




  ,  (11) 

where  1 20,
x

      determines the time reservation scheme. 

Using  g h g h

s s c c
N N N m N N     and the rush hour period for commuters passing the bottleneck is 

the same for both lanes, i.e.,  g g h h

x x
N s N s     , with 

1max{ , }
x x

    . For the scenario 

that 1x
   , there exists the excess capacity waste during the time interval  1 x

  . Hence, we get 

the numbers of carpooling vehicles on the GP lane and carpool lane and the total vehicles on the 

highway as follows: 

 ˆg g

c f sN N N  ,   ˆ1h h

c f sN N N    and   ( 1) g h

f s sN N m N N m    , (12) 

where   ˆ 1
f f x x

N N s      . 

To make 0g

c
N   hold, it requires 2 1

2 2 1

( (1 ))ˆ( )
(1 )( )

u

f

x x

m
s N

N s m

     
  

  
        

   
 from 

Eqs. (11)–(12) and ˆ
fN N . Then, the equilibrium trip cost for Case 1(a) can be expressed as follows: 

     1

2

ˆ ( 1)
1 1

fr

x x x

N N m
c

s ms m

     
           

,  (13) 

where 1max{ , }
x x

    . Otherwise, 0g

c
N   with 2

2 2

u   . According to Eq. (12), we get 

         ( 1) 1 1 1h

f s x xN N m N m s m              . The equilibrium trip cost for Case 

1(b) can be expressed as follows: 
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  

      1
1

(1 )1

r

x x x

N
c m m

ms m


  


      

  
,  (14) 

which is independent of 2 . 

To sum up, in this section, under the temporal-spatial capacity allocation with given x
  and  , the 

new condition for Case 1(a), where both modes are used on each lane as defined before, is such that 

2

2 2

u      , whilst that for Case 1(b), where only solo drivers commute on the GP lane but both 

modes are used on the carpool lane, is such that 2

2 2

u   . 

 

Proposition 4. Under the temporal-spatial capacity allocation scheme with given x
  and  , for the 

excess queuing scenario with  1 1 2,
x

      , the equilibrium trip cost increases with  , i.e., 

0r
c    . For the excess capacity waste scenario, if m   , the equilibrium trip cost always 

increases with   for Case 1(a), i.e., 0r
c     for  10,

x
   ; otherwise, the equilibrium trip cost 

may only do for #

1,
x x

      , whilst decreasing with   for #0,
x x

   . Here, 

    #

2 11
x

m m        for Case 1(a) and  #

1 1
x

m m N s      for Case 1(b). 

Proof. See Appendix C.1. 

 

Proposition 4 suggests that, the equilibrium trip cost for the excess capacity waste scenario does not 

always increase with the spatial allocation ratio  .  If the reserved time window for carpool use is non-

optimally set, the spatially allocating the full bottleneck capacity to the carpool lane is not necessarily 

optimal and it depends on the condition m   . The implication of the condition can be understood 

from three aspects. Firstly, it is clear that when m  is large, many people per vehicle benefit from the 

carpool lane. Secondly, the arrival rates and corresponding total travel delay for early-arrival commuters 

are both decreasing with    from Eq. (4). This suggests that the commuters also benefit from the 

carpool lane when    is small enough. Thirdly, from the proof of Proposition 4, the condition 

m    together with the model assumption 2      can ensure  2 1m m     and thus 

0r
c     for Case 1(a), even when 0

x
   such that the maximal capacity waste would occur. 

Accordingly with this sufficient condition, at optimum, the full bottleneck capacity should be allocated 
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to the carpool lane for Case 1(a). Otherwise, it would happen only if the reserved time window for 

carpool use is optimally set, i.e., 1x
    from Proposition 1. 

To sum up, it can be concluded from Proposition 4, together with Proposition 1, that the optimal 

temporal-spatial capacity allocation for minimizing the equilibrium trip cost for Case 1 can be achieved 

at 0   and 1x
   . That is, at optimum, the full bottleneck capacity is allocated to the HOV lane and 

there exists no excess capacity waste and no excess queuing delay in the commute pattern. Hence, for 

Case 1, the equilibrium trip cost with the optimal temporal-spatial capacity allocation is 

 *

1( ) ( 1)c N ms m m    .  (15) 

 

Case 2: 1( ) 0N ms     

For Case 2(a), the carpoolers pass the bottleneck at the two tails and the solo drivers commute at the 

center of the rush hour period on the GP lane. Under temporal-spatial bottleneck capacity allocation 

scheme, the numbers of solo driving vehicles, carpooling vehicles and the total vehicles on the highway 

can be derived as given in Appendix C.2. and thus the equilibrium trip cost can be expressed as follows: 

 
         1

1 1 2 1

2

( 1)
1

11

fr

x

N N m
c

s mm s

   
  

 
                  

.  (16) 

where 1 2[ , ]
x x

      , with   1 2 11
x

N s m m         . The new condition for Case 2(a) is 

that       2

2 2 1 11 1 ( 1) 1l

x
m m N s m m                  , to make both modes be used 

on each lane. 

 

Proposition 5. Under the temporal-spatial capacity allocation scheme for Case 2(a), where 

1( ) 0N ms     and 2

2 2

l   , the equilibrium trip cost increases with  , i.e., 0r
c    . 

Proof. See Appendix C.3.  

 

Proposition 5 implies that, the equilibrium trip cost for Case 2(a) increases with the spatial allocation 

ratio   and thus it is optimal to spatially allocate the full bottleneck capacity to the carpool lane. If 

2

2 2

l      , then 0g

s
N   according to Appendix C.2. That is, all commuters choose carpooling on 

the GP lane, which is the commute pattern for Case 2(b). Thus, whether to set the reserved time window 

or not makes no difference to the commute pattern. Together with Propositions 2 and 5, it can be 
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concluded for Case 2 that the optimal temporal-spatial capacity allocation for minimizing the 

equilibrium trip cost can be achieved at 0   and 1 2x
     . Hence, the equilibrium trip cost with 

the optimal temporal-spatial capacity allocation for Case 2 is  *

1c N ms  . 

 

Case 3: 1 0   

For Case 3(a), where 2 0  , the solo driving is a better choice than the carpooling without 

carpooling time reservation, then the number of carpoolers on the GP lane is zero, i.e., 0g

c
N  . Under 

the temporal-spatial capacity allocation, the commute pattern for Case 3(a) is reduced to that for Case 

1(b) with the excess queuing delay (for details in Appendix C.4). Substituting 1 0   into Eq. (14), the 

equilibrium trip cost can be rewritten as follows:  

 
  

 
 

( 1) 1

11

xr
mN

c
mm s


  
  

 
  

,  (17) 

where [0, ]
x

N s  .  

 

Proposition 6. Under the temporal-spatial capacity allocation scheme for Case 3(a), the equilibrium trip 

cost increases with  , i.e., 0r
c    .  

Proof. See Appendix C.5. 

 

Similar to Proposition 5, Proposition 6 suggests that, the equilibrium trip cost for Case 3(a) also 

increases with the spatial allocation ratio   and is optimal to spatially allocate the full bottleneck 

capacity to the carpool lane. For Case 3(b), where 2 0     , all commuters choose carpooling 

with others on the highway. Thus, whether to set the reserved time window or not makes no difference 

to the commute pattern. For Case 3(c), where 2 0  , all commuters are indifferent to the arrival time. 

Although the equilibrium solutions are generally not unique for Case 3(c), it is always optimal to 

implement the temporal-spatial capacity allocation to discourage all solo drivers' travel. Hence, together 

with Proposition 6, it can be concluded for Case 3 that the optimal temporal-spatial capacity allocation 

for minimizing the equilibrium trip cost can be achieved at 0   and 0
x

  , i.e., the full bottleneck 
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capacity is allocated to the HOV lane and the entire peak period is reserved for carpool use. The optimal 

trip cost is * ( )c N ms . 

 

( )N ms
1
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 
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2
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Fig. 5. Optimal temporal-spatial capacity allocation with ( , )o o

x
   for each case with 

6000(person)N  , 3000(veh/h)s  , 6.4($/h)  , 3.9($/h)  , 15.21($/h)  , 2(person/veh)m  , 

0.5   and 1($)
x

  . 

 

Till now, we have derived all required conditions and critical values to distinguish the commute 

patterns for each case, which are summarized in Figure 5 together with the corresponding optimal 

temporal-spatial capacity allocation with ( , )o o

x
  . In the next section, we will focus on bounding the 

inefficiency brought by any non-optimal temporal-spatial allocation for different cases. 

 

5. Bounding the inefficiency of joint temporal-spatial allocation 

Section 4 derives possible morning commute patterns and the optimal allocation, for different 

combinations of 1  and 2 , under a joint temporal-spatial allocation scheme. In practice, it is difficult 

for the government to accurately estimate the commuters' extra carpool cost, and without which the 

implemented temporal-spatial capacity allocations would be non-optimal and inefficient. In this section, 

we derive the upper bounds on the inefficiency when only limited information about extra carpool cost 

components 1  and 2 , such as their ranges for different cases, is known a priori. 
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Lemma 1 shows how the equilibrium trip cost r
c  varies with 1  and 2  for each case discussed in 

Section 4 (Proofs can be found in Appendix D.1), which are useful for analyzing and bounding the 

inefficiency of a temporal-spatial allocation. 

 

Lemma 1. For Case 1 and Case 2(a), the equilibrium trip cost increases with 1  and 2 , i.e., 

2 0r
c    and 

1 0r
c   , whilst for Case 3(a) it is independent of 2 , i.e., 

2 0r
c   . 

  

Compared with the optimal one corresponding to each case, the inefficiency of a temporal-spatial 

allocation scheme can be defined as 

 
*

r
c

c
  , (18) 

where *
c is the equilibrium trip cost under the optimal temporal-spatial capacity allocation scheme. It 

clearly holds that 1  . With the help of Lemma 1, we next analyze when the worst-case equilibrium 

trip costs would happen for different cases with the changes of 1  and 2 , and then derive the 

corresponding upper bounds on the inefficiency arising from the non-optimal allocation,  . 

 

5.1 Specific bound for Case 1 

Substituting Eqs. (13)–(15) into Eq. (18), we easily get 

 

        

   

1

2

1

1 1 1

1

x x xN ms m m

N ms m m

   




 
          

  
, (19) 

for Case 1(a), where 10 N s    and 2

2 2

u      , and 

 
          

    1

1 1 1

1

x x x
N s m m m

N ms m m

   




        


  
,  (20) 

for Case 1(b), where 10 N s    and 2

2 2 0u    . 

Obviously, given a non-optimal temporal-spatial allocation scheme with x
  and  , the inefficiency 

values in Eqs. (19) and (20) both depend on the specific values of 1  and 2 . Since the required 
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conditions of 1  and 2  for Case 1 are known till now, we can derive the upper bounds on the 

inefficiency arising from the non-optimal allocation as given in Proposition 7. 

 

Proposition 7. Under a non-optimal temporal-spatial allocation scheme with given x
  and  , the 

commute pattern can be either with excess queuing delay or with excess capacity waste for Case 1. The 

upper bound on the inefficiency for the excess queuing delay scenario, 

 
 

    2
2 12 , 0

( 1) 1

1
u

xN s m

m N ms

 
 

     

   
 

 
, (21) 

 where [0, ]
x

N s  . For the excess capacity waste scenario, 

 
    

   2
2 12 ,

1 1 1

1
u

x

N s

m N s

m N s

  
 

     

    
 

 
, (22) 

where ˆ[max(0,min( , )), ]
x x

N s N s    , or 

 
  

       2
2 12 ,

1 1

1 1
u

x

x

x

N s m

m N ms m m

 
 

     

   
 

    
,  (23) 

where ˆ[0,max(0,min( , ))]
x x

N s    with 
 
  

1ˆ
1 1

x

m N s

m

 



 

 
 and 2 1

2

1

( (1 ))

(1 )( )

u

x

m

N s m

  
 

  
 

   
. 

Proof. See Appendix D.2. 

 

Eqs. (21)–(23) are all obtained for 2

2 2

u   , through which it just happens that all commuters on the 

GP lane choose to drive alone for both Case 1(a) and Case 1(b). Further, it is required that 
1 0   for 

the excess queuing delay scenario where 1x
   , suggesting that the temporal capacity allocation 

should be optimal at 0
x

  . However, the government estimates a nonzero extra carpool cost, which 

leads to the worst-case equilibrium trip cost,      ( 1) 1 1r

x
c N s m m          , as 

compared with the optimal one, * ( )c N ms . 

For the excess capacity waste scenario where 1x
   , the situation is more complicated. If spatial 

capacity ratio 1 m  , then ˆ 0
x

   holds. Thus, Eq. (22) would work for any [0, ]
x

N s  , and the 

worst-case equilibrium trip cost is associated with 1 N s  , suggesting that there should be no time 
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window reserved for carpool purpose at optimum. Unfortunately, the government actually set a carpool 

time reservation according to x
  although no commuter would like to choose carpooling. If spatial 

capacity ratio (2 1)m m   , thus ˆ
x

N s   holds and Eq. (23) would work for any [0, ]
x

N s  , 

and the worst-case equilibrium trip cost and the optimal one are 

     ( 1) 1 1r

x
c N s m m           and * ( ) ( 1)

x
c N ms m m    , respectively, which are 

both associated with 1 x
   . Otherwise, Eq. (22) happens to work for ˆ[ , ]

x x
N s    whilst Eq. (23) 

does for ˆ[0, ]
x x

   . 

 

Remark 1. All upper bounds in Eqs. (21)–(23) can be calculated once the values of parameters  , 

x
 , m  and N s  are specifically given. They can be relaxed by the expressions only with respect to m , 

if the values of   and x
  chosen by the government are a priori unknown except that the scenario is 

with excess queuing delay or with excess capacity waste. For example, the upper bound on the 

inefficiency for the excess queuing scenario,   in Eq. (21), can be further relaxed by x
  to reach the 

maximum, m , when =
x

N s . It means that the worst-case equilibrium trip cost, here r
c N s , 

happens when there is no time reservation for carpool use (i.e. all commuters have to choose solo 

driving). The reader can refer to Appendix D.2 for details. We will numerically discuss the respective 

impacts of these parameters on the bounds in Section 6.  

 

5.2 Specific bounds for other cases 

For Case 2(a), using Eq. (16) and  *

1c N ms  , we get 
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 
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              

 
, for 2

2 2

l   . (24) 

Given a non-optimal temporal-spatial allocation scheme with x
  and  , the inefficiency value in Eq. 

(24) depends on the specific values of 1  and 2 . We can similarly derive the upper bound on the 

inefficiency arising from the non-optimal allocation according to the required conditions of 1  and 2  

for Case 2(a), which is given in Proposition 8. 
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Proposition 8. Under a non-optimal temporal-spatial allocation scheme with given x
  and  , there 

exists only commute pattern with excess queuing delay for Case 2(a), and thus the upper bound on the 

inefficiency is 

 
2 1, ( )N sm         , for [0, ]

x
N s  , (25) 

Proof. See Appendix D.3. 

 

Proposition 8 shows the worst-case inefficiency arising from the non-optimal temporal-spatial 

allocation tends to be the infinity for Case 2(a). This happens to be a very extreme case, where all 

commuters are unwilling to choose carpooling due to 2 +    and the optimal equilibrium trip cost 

approaches zero since  1 N sm  . 

Recall that the commute pattern for Case 3(a) is similar to that for Case 1(a) with excess queuing 

delay. Thus, substituting 1 0   into Eq. (16), we can easily get the same formulation of the upper 

bound on the inefficiency arising from the non-optimal temporal-spatial allocation as Eq. (21). 

 

6. Numerical examples 

In this section, we adopt the shadow values of common travel time, early arrival time, and late arrival 

time from Arnott et al. (1990), i.e., 6.4   ($/h), 3.9   ($/h), and 15.21   ($/h), and consider the 

situation with 6000N  (person), 3000s   (veh/h), and 2m   (person/veh). This yields  

2 2.5       and 13.10 ( ) 6.21N sm N s         according to the model assumptions, i.e. 

both 1  and 2  can be negative or positive. Here, we limit the values of 1  from -0.5 ($) to 2 ($) and 

the values of 2  from -2 ($/h) to 2 ($/h)
7
. With the input parameters except for those specially 

mentioned, we next numerically discuss the equilibrium trip cost, the inefficiency arising from a joint 

                                                 
7 Values of parameters 1 and 2 can be aggregated by referring to the empirical studies, since they both depend on the difference between 

the compensation (monetary cost saving or attractions) and the inconvenience cost (barriers). For example, Li et al. (2007) reported that the 
typical two-person carpool requires an average of five minutes to form; the average commute time is about 18 minutes according to the 
2001 National Household Transportation Survey (NHTS) (Jacobson and King, 2009); the out-of-pocket cost per mile is estimated to be 
about 0.37$ in 2016 as reported by the American Automobile Association (AAA) (Liu and Li, 2017); Weinberger et al. (2010) reported that 
it would cost 8$ to park at CBD (outside the ParkSmart pilot areas) for a half day in New York City; Lyft rideshare trips were about $2 
cheaper on average compared to regular ride-hail trips (Brown, 2020); Monchambert (2020) found that the value of travel time for a 
carpool driver is on average 13% higher than that when driving alone, and carpool passengers incur a discomfort cost of on average 4.5 
euros per extra passenger in the same vehicle. 



 28 

temporal-spatial capacity allocation and its upper bounds for different cases with the change of 1  and 

2  or that of   and x
 , respectively. 

 

6.1 Equilibrium trip cost 

To illustrate the equilibrium trip cost with the change of   and x
 , we further set 1 1   ($) and 

2 2    ($/h) in Figure 6(i) for Case 1, 1 0.5    ($) and 2 2  ($/h) in Figure 6(ii) for Case 2(a), and 

1 0   ($) and 2 2   ($/h) in Figure 6(iii) for Case 3(a). Clearly, Figure 6 shows that for any given x
 , 

the equilibrium trip costs always increase with the spatial allocation ratio  . This implies that the more 

capacity is allocated to the GP lane, the higher the equilibrium trip cost, for these three cases. For Case 1 

in Figure 6(i), the optimal equilibrium trip cost can be achieved at 1 1
x

     ($) and 0  , which is 

consistent with Proposition 1 and Proposition 4. That is to say, for minimizing the equilibrium trip cost 

for a given combination of 1  and 2 , the full bottleneck capacity should be spatially allocated to the 

HOV lane and the reserved time window for carpooling should be set to lead to the morning pattern with 

no excess queue and no excess capacity waste. As depicted in Figure 6(ii), the equilibrium trip cost for 

Case 3(a) happens to be minimized at 0   and 1 2 1.6
x

       ($) for Case 2(a), which is 

consistent with Proposition 2 and Proposition 5. Figure 6(iii) shows that the optimal equilibrium trip cost 

for Case 3(a) is achieved at 0   and 0
x

   ($), which is consistent with Propositions 3 and 6. 

 

 

Fig. 6. Indifference curves of equilibrium trip cost with the change of   and x
 . 
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Fig. 7. Equilibrium trip cost varying with 2 and 1 . 

 

Given the temporal-spatial capacity allocation scheme with 0.5   and 2
x

  , Figure 7 shows that 

the equilibrium trip cost is a step function but always increases with 2  or 1  for Case 1 and Case 2, 

respectively, whilst keeping piece-wise constant with the change of 2 . These are consistent with 

Lemma 1. In Figure 7(i), as 2  increases, the commute pattern consecutively goes through two different 

situations for Case 1, i.e., Case 1(a) and Case 1(b) analyzed in Section 4. Specially, for Case 1(b), solo 

driving dominates carpooling and then no carpooler commute on the GP lane, so that the equilibrium 

trip cost is independent of 1  and 2 . Similarly, for Case 2 in Figure 7(ii), when 2  is smaller, all 

commuters choose carpooling and then the trip cost presents as different horizon lines which only 

depend on 1 . In Figure 7(iii), the trip cost for Case 3(a) with only carpooling and that for Case 3(b) 

with only solo driving are both unchanged with 2 .  

 
6.2 Inefficiency of temporal-spatial capacity allocation 

 Propositions 1–6 will also apply to analyze how the inefficiency arising from a given temporal-

spatial allocation varies with x
  and  . Recalling *r

c c  , the equilibrium trip cost under the optimal 

temporal-spatial capacity allocation scheme *
c  keeps constant with respect to x

  and  , and thus the 

change of   is the same as that of the equilibrium trip cost under a given temporal-spatial allocation 

scheme r
c . Here, we do not numerically discuss this to save space. Next, we only discuss the change of 

  with 1  and 2 , given 2
x

   and 0.5   for Case 1, Case 2(a) and Case 3(a). 

 



 30 

2

2

u

 

Fig. 8. Inefficiency   varying with 1  and 2 . 

 

As shown in Figure 8, the inefficiency of the temporal-spatial allocation with 2
x

   and 0.5   

always increase with 1  and 2  for Case 1(a) and Case 2(a) whilst decreasing with 1  for Case 1(b) 

and being constant for Case 3(a). The upper bound on   can be achieved at 1 0   and 2 0   for Case 

1 (the red point), and line 2

2 2

u    divides the feasible region of 1  and 2  for the scenario with excess 

queue delay and that with excess capacity waste, which is consistent with the analysis in Section 4. 

 

6.3 Upper bounds on the inefficiency 

Here, we numerically discuss the respective impacts of parameters x
 ,  , m  and N s  on the upper 

bounds on the inefficiency arising from the temporal-spatial allocation scheme only for Case 1, as 

shown in Figures 9–13. 

Figure 9 shows the indifference curves of the upper bounds on the inefficiency with the change of   

and x
  for Case 1. For the scenario with excess queue delay, it is clear that the upper bound   in Eq. 

(21) increases with   and x
 , i.e., the more capacity is allocated to the GP lane is, the larger the worst-

case inefficiency is. This is consistent with Proposition 4, in which the equilibrium trip cost is 

minimized at 0  . But for the scenario with excess capacity waste, the inefficiency bound   

according to either Eq. (22) or Eq. (23), depending on the relationship between x
  and ˆ

x
 , first 

decreases and then increases with  , whilst it consistently decreases with x
 . It means that to allocate 
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some capacity to the GP lane may be helpful for reducing the worst-case inefficiency for the scenario 

with excess capacity waste when ˆ
x x

    as shown in Appendix D.2. 

 

ˆ
x



 

Fig. 9. Upper bounds on the inefficiency varying with   and x
 . 

 

 

ˆ
x x

  

 

Fig. 10. Upper bounds on the inefficiency with the change of x
 . 

 

Figure 10 depicts the changes of the upper bounds on the inefficiency   with x
  for Case 1 with 

0.55  . For the scenario with excess queue delay, it is obvious that   in Eq. (21) is increasing with 

x
 , and reaches its maximum, 2m  , at 6.21

x
N s    ($). This suggests the worst-case commute 

pattern for Case 1 with excess queue delay, where there is no time reservation for carpool purpose and 

all commuters drive alone on the highway. But for the scenario with excess capacity waste,   in either 
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Eq. (22) or Eq. (23) is decreasing with x
 , and reaches its maximum,   1 1.38m m     for 

ˆ[0, ]
x x

    and        2 1 1 1 1.24m m m        for ˆ[ , ]
x x

N s    with ˆ 1.38
x

   ($). The 

derivations of all upper bounds relaxed by x
  can be found in Appendix D.2. 

Figure 11 depicts the changes of the upper bounds on the inefficiency with   before and after the 

relaxation by  , besides those calculated in Propositions 7 for Case 1 when 2
x

  . it can be noted that, 

for the scenario with excess queue delay,   in Eq. (21) is increasing with  , and reaches its maximum, 

2m  , at 1  . This corresponds to the worst case where all commuters solo drive alone on the 

highway in equilibrium, as even though the full bottleneck capacity is (spatially) allocated to the carpool 

lane but there is no time reservation for carpool purpose. The scenario with excess capacity waste is 

more complex, where   in Eq. (22) or Eq. (23) first decreases and then increases with  , and reaches 

its minimum at 0.57  . Furthermore, the upper bound before the relaxation by  , i.e., that relaxed 

only by x
  but depends on the value of  , and the upper bound further relaxed by   (thus independent 

of  ) are both segmented at =1 0.5m    and 0.57  ; see their derivations in Appendix D.2. 

These results imply that for the scenario with excess capacity waste, a spatial allocation of bottleneck 

capacity between the carpool lane and the GP lane at ratio 0.57   can reduce the worst-case 

inefficiency. 

 





ˆ
x x

  
 

0 

1 

 

Fig. 11. Upper bounds on the inefficiency with the change of  . 
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

ˆ
x x

  

 

Fig. 12. Upper bounds on the inefficiency with the change of m . 

 

Given the temporal-spatial allocation scheme with 2
x

   and 0.5  , Figure 12 depicts the changes 

of the upper bounds on the inefficiency with respect to m . It shows clearly that   increases with m  for 

the scenario with excess queue delay, implying that increasing the number of commuters in a carpooling 

vehicle would always increase the worst-case inefficiency arising from a non-optimal temporal-spatial 

allocation. This is however not necessarily true for the scenario with excess capacity waste, where there 

exists the right number of commuters in a carpooling vehicle, 2.48m   here, that reduces the 

inefficiency. When 2 2.48m   which corresponds to ˆ 0
x x

    , there should be no time window 

reserved for carpool purpose (see also derivations in Appendix D.2), thus increasing m  will reduce the 

inefficiency upper bound in Eq. (22). When 2.48m   which corresponds to ˆ
x x

   , the optimal 

equilibrium trip cost is associated with that with 1 x
   , which will render the inefficiency upper 

bound in Eq. (23) first increase and then decrease with m . 

Figure 13 depicts the changes of the inefficiency upper bounds with N s  for given parameter values 

2
x

   and 0.55  . It is found that,   in Eq. (21) decreases with N s  for the scenario with excess 

queue delay, suggesting that, to shorten the rush hour period on the highway can increase the worst-case 

inefficiency arising from a non-optimal temporal-spatial allocation. For the scenario with excess 

capacity waste,   in Eq. (22) and Eq. (23) which correspond to 2.90N s   and 2.90N s   

respectively, increase with N s . 
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ˆ
x x

  



 

Fig. 13. Upper bounds on the inefficiency with the change of N s . 

 

7. Conclusions 

This paper proposes temporal-spatial bottleneck capacity allocation schemes to manage the morning 

commute with carpool. A congested highway with one single bottleneck is assumed to serve commuters' 

travel, and its bottleneck capacity is proportionally shared by a GP lane and a carpool lane. 

Homogeneous commuters are assumed to make the joint choice of departure time and travel mode (solo-

driving or carpooling) to minimize their trip costs, consisting of travel delay cost, schedule delay cost, 

and a time-dependent extra carpool cost where applied. 

 With a temporal-only allocation of bottleneck capacity, where the carpool lane is available only 

within a reserved time window, we show that the resultant morning commute patterns with carpool are 

significantly different from those generated by the standard bottleneck model without carpool whilst the 

impact of the reserved carpool time window on the commute patterns is similar to that of the single-step 

toll scheme studied in the literature. An optimal temporal-allocation scheme requires prior knowledge on 

the extra carpool cost   (or the combination of 1  and 2 ). If, in practice, the government makes an 

overestimation or underestimation of the extra carpool cost, excess queue delay or excess capacity waste 

will occur at the tails of the reserved time window.  

We analyse the equilibrium commute patterns under a joint temporal-spatial carpool allocation 

scheme. It is proved that when the unit cost of schedule delay early is not too small as compared with 

that of travel time, the equilibrium trip cost decreases gradually with increasing allocation of capacity to 

the carpool lane. Furthermore, we show that it is possible to design an optimized joint temporal-spatial 
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capacity allocation scheme that minimizes the system's total trip cost. For the optimized joint scheme, 

the full bottleneck capacity should be spatially designated to the carpool lane and the reserved time 

window for carpooling should be set in the middle of the peak period such that the first carpoolers just 

pass the bottleneck without experiencing excess queuing delay.  

The optimal joint temporal-spatial capacity allocation schemes are also dependent on the accurate 

government estimation of the commuters' extra carpool cost. Inaccurate estimation leads to sub-optimal 

schemes, and efficiency loss. We formulate tight analytical expressions to quantify the upper bounds on 

the inefficiency arising from a non-optimal temporal-spatial allocation, and demonstrate through 

numerical illustrations how the worst-case inefficiency can be affected by a range of operational and 

behavioral variables, including the ratio of capacity allocation between GP and carpool lanes, the 

proportion of carpool traffic, and the length of peak period. 

The model and key findings in this paper have not only theoretical, but also practical and policy 

implications. Firstly, as far as we are aware, this is the first comprehensive study on the complex 

morning commute problem with temporally and/or spatially designated carpool facilities, where all 

possible commute patterns under UE conditions are derived. These analytical derivations provide a solid 

foundation and practical tool for policy design such as congestion tolling, travel incentives and subsidies 

to induce commuters' travel, and modeling extensions such as incorporating the parking at destination, 

the use of autonomous unmanned vehicles (AUVs) (e.g., Liu, 2018; Tian et al., 2019), the competition 

and shifts between private vehicle and public transit. Secondly, in practice, it is difficult for the 

government to accurately estimate the commuters' extra carpool costs and then implement the optimal 

temporal-spatial capacity allocation. This inaccurate estimation may have very bad consequences. As 

shown in Eq. (25) and numerically discussed in Section 6.3, when the free-flow travel time is negligible, 

the upper bound on the inefficiency due to the non-optimal temporal-spatial capacity allocation may 

tend to the infinity. When only limited information about extra carpool cost components, such as range 

of change, is known a priori, the derivations of the upper bounds on the inefficiency provides a possible 

tool for the government agencies to evaluate the worst-case system performance due to the inaccurate 

estimation of the commuters' extra carpool cost and the impacts of some other operational and 

behavioral parameters. 

Along the line of thought of this paper, our future studies will consider four possible extensions. 

Firstly, it is meaningful to convert the carpool lane to the HOT lane by allowing solo drivers commute 

during the reserved time window if they pay a toll (Zhong et al., 2020). Secondly, the number of 
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commuters in a carpool vehicle is assumed to be constant during the rush hour period for simplicity. It is 

worthy to extend to incorporate carpoolers' matching process and explore its impact on commute 

patterns (Ma and Zhang, 2017; Wang et al., 2019). Thirdly, if the government does make a serious 

mistake in estimating the commuters' extra carpool cost, a trial and error approach (Yang et al., 2004) 

can be adopted to repeatedly adjust the reserved time window until excess queuing is eliminated without 

inducing capacity waste. Fourthly, many people either cannot, or strongly prefer not to, carpool. 

Carpooling is more attractive for commuters with lower incomes, longer trips to work, and somewhat 

restricted access to auto. Furthermore, the sign and magnitude of extra carpool cost may vary 

considerably across individuals. Accordingly, it is of interest to integrate user heterogeneity into the 

temporal-spatial capacity allocation problem for managing morning commute with carpool (Chen et al., 

2015; Wu and Huang, 2015; Liu and Nie, 2017; Yu et al., 2019). 
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Appendix A: Bottleneck model with carpooling 

A.1. Main variables and notation 

  Unit cost of in-vehicle travel time 

  Unit cost of arriving at destination early 

  Unit cost of arriving at destination late 

i
c  Trip cost for role i , ,i s c  

( )Q t  Length of the queue at time t  

f
T  Free-flow travel time 

( )v
T t  Queuing time at the bottleneck 
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( )t  Extra carpool cost 

1  Constant component of extra carpool cost 

2  Time-varying component of extra carpool cost 

N  Number of commuters 

f
N  Number of vehicles 

g
N  Number of vehicles on the GP lane 

h
N  Number of vehicles on the HOV lane 

c
N  Number of carpooling vehicles on the HOV lane 

s
N  Number of solo-driving vehicles on the HOV lane 

m  Average number of commuters in a carpooling vehicle 

  Spatial capacity allocation ratio to the GP lane 

i
r  Arrival rate at the bottleneck for vehicles with role i , ,i s c  

s  Capacity of the bottleneck 

t  Time 

*
t  Desired arrival time at destination 

o

i
t  Earliest arrival time at the bottleneck for each role of commuters i , ,i s c  

e

i
t  Latest arrival time at the bottleneck for each role of commuters i , ,i s c  

t
  Starting time of temporal reservation 

t
  Ending time of temporal reservation 

r
c  Trip cost with any temporal-spatial capacity allocation 

*
c  Trip cost with optimal temporal-spatial capacity allocation 

  Inefficiency arising from an temporal-spatial capacity allocation 

  Upper bound on the inefficiency by 1  and 2  

 

A.2. Derivations for the bottleneck model with carpooling 

Case 1: 10 N s    

When 1s
c N s   , all commuters would choose only solo driving to the destination. Thus, the 

necessary condition to ensure that both modes may be used is 10 N s    when 1 0  . We first 

consider Case 1(a). As shown in Figure 1(i), the carpoolers pass the bottleneck at the center of the rush 

hour period and the solo drivers commute at the two tails. The queuing time (i.e., dividing queuing 
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length by capacity) for both roles at o

c
t  or e

c
t  is the same, i.e., s c

Q Q . Using  2 1s c
Q Q    , 

we can get the queuing time at the two critical points, 1 2  . 

Recall that c s
N mN N   and 

f c s
N N N  . According to the arrival order between the two roles, 

the earliest and the latest arrival time at the bottleneck for each role can be determined by equalizing the 

trip costs of the first and last commuters as follows: 

 * fo

s

N
t t

s




  , * fe

s

N
t t

s




  , 1

2

o o

c st t
 


 
 


, 1

2

e e

c st t
 


 
 


.  

The numbers of solo driving vehicles and carpooling vehicles are, respectively 

      1 2

1 2

o o e e

s c s s s c s
N t t r t t r s         ,     1 2

e o

c c c
N t t s N s m      . 

To make 0
c

N   hold, it requires 1

2 2

u      , with 1

2 1 ( ) 0u
s N     . As a result, only if 

10 (1 ) N s       and 1

2 2

u      , the commute pattern is consistent with Figure 1(i) for 

Case 1(a). 

Clearly according to the ADL model (Arnott et al., 1990), the equilibrium trip cost is  

 1 2
ˆ ( ) ( 1) ( )

f
c N s N ms m m        . 

Since 
f c s

N N N N   , ĉ  in the presence of carpooling is lower than the equilibrium trip cost in the 

absence of carpooling ( N s ). Hence, all commuters are better off due to carpooling. 

Next, we consider the scenario that 10 N s    and 1

2 2

u    for Case 1(b). The time-varying 

component of the extra carpool cost ( 2 ) is so large that all commuters choose solo driving, and thus the 

equilibrium trip cost is ĉ N s . 

Case 2: 10 ( )N sm     

When   1 0
c

c N ms   , all commuters would only choose carpooling to the destination. Thus, 

the necessary condition to ensure that both modes may be used is 10 ( )N sm     when 1 0  . For 

Case 2(a), the commute pattern is that the carpoolers pass the bottleneck at the two tails and the solo 

drivers commute at the center of the rush hour period, as shown in Figure 1(ii). The earliest arrival time 

and the latest arrival time at the bottleneck for each role in this case are: 

 * fo

c

N
t t

s




  , * fe

c

N
t t

s




  , 1

2

1o o

s ct t
 


  

    
, 1

2

1e e

s ct t
 


  

    
.  
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Using Eq. (4), the numbers of vehicles for solo driving and carpooling are, respectively 

     2 1 2

e o

s s s
N t t s N m s        ,        1 2

2 1 2

o o e e

c s c c c s c
N t t r t t r s          . 

The corresponding equilibrium trip cost is 

    1 1 1 2 2
ˆ + 1

f
c N s N s m            . 

Since 1 0   and 
f

N N , all commuters are also better off due to carpooling in this case. 

Due to 0
s

N   and 1( ) 0N sm     in Case 2(a), we easily get 1

2 2

l    with 

 1

2 1 1 ( ) 0l
sm N sm        . Thus for Case 2(b), when 1

2 2

l      , all commuters choose 

carpooling with others and the corresponding equilibrium trip cost is  1ĉ N ms   . 

Case 3: 1 0   

When 1 0  , all commuters are indifferent to the arrival time with no queue and the equilibrium 

solutions depend on the value of 2 . 

(a) If 2 0  , solo driving is a better choice than carpooling at any time t , and thus s
N N , 0

c
N  , 

and the corresponding equilibrium trip cost is ˆ  c N s . 

(b) If 2 0     , carpooling with others is a better choice than solo driving at any time t , and 

thus c
N N m , 0

s
N  , and the corresponding equilibrium trip cost is  ĉ N ms . 

(c) If 2 0  , all commuters are indifferent to any arrival time, and thus the order of departure is 

indeterminate. 

 

Appendix B:  Temporal-only capacity allocation 

B.1. Proof of Proposition 1 

Under the temporal-only bottleneck capacity allocation scheme ( , )t t
  , the reserved time window for 

carpooling is set according to the queuing time cost for the solo drivers just passing the bottleneck at t   

and t  , x
 , which can be smaller or larger than 1 . When 1x

   , then 1x

   . Using Eq. (8), we get 

d d 1 0r

x
c m    . If 1x

   , then x x

   , we get d d 1 1 0r

x
c m    . This completes the proof. 

□ 

 

B.2. Derivations for Case 2(a) under temporal-only capacity allocation 
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Under temporal-only bottleneck capacity allocation scheme, commuters can be divided into three 

groups, the commuters passing the highway bottleneck before t
  and after t

  by driving alone or 

carpooling, and the carpoolers commuting inside [ , ]t t
  . Denote r

c
N  and u

c
N  as the numbers of 

carpooling vehicles passing the bottleneck inside and outside of the reserved time window, respectively. 

Then we get the numbers of carpooling vehicles and total vehicles, r u

c c c
N N N   and 

f c s
N N N  . 

Since the commuters arriving at the bottleneck at the times corresponding to points B  and C  of Figure 

4 experience the same schedule early delay, the extra carpool cost should be equal to the difference 

between the two queuing delay costs. For a given x
 , the rush hour period for arriving at the bottleneck 

and the reserved time window can be determined by equalizing the trip costs of the first and last 

commuters for solo-driving or carpooling as follows: 

 
 * 1 2

1
o x
c

mN m
t t

s m


 

    
   , 

 * 1 2
1

e x
c

mN m
t t

s m


 

    
   , 

 1 2

2

o o

s ct t
 


   

 


, 1 2

2

e e

s ct t
 


   

 


,  

 1xo

c
t t


  
  , 

 1xe

c
t t


  
  . 

And the number of solo drivers and the number of carpooling vehicles passing the bottleneck within the 

reserved time window or not can be expressed as follows: 

      1 2

e o

s s s x
N t t s t t s s          , 

    1xr

c fN t t s N s


   
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2

u e e o o

c c s s c
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N t t s t t s
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
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     


. 

 

Appendix C: Temporal-spatial capacity allocation 

C.1. Proof of Proposition 4 

For Case 1(a), we easily get from Eq. (13) 

 1

2

( 1)r

x x x

c m

m



  

        
. 

For the excess queue delay, 
x x

   . If 1 2x
     , we get 0r

c    , and then for 

 1 1 2,
x

      , that 0r
c     always holds.  
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For the excess capacity waste with  10,
x

   , 
1x

   , then 

    2 11 1r

x
c m m m          , which is increasing with x

 . Since 2

2 2 0u       , 

we get 0r
c     if 1x

   . But for 0
x

  , we get   2 1( 1) 1r
c m m        . It suggests 

that if  2 1m m    , then 0r
c    for  10,

x
   ; otherwise, there exists 

    #

2 1 11
x

m m          to make # 0
x

r
c 


    hold. Therefore, if  2 1m m    , we 

get 0r
c     for  10,

x
   , whilst 0r

c    , at #0,
x x

    and 0r
c     at #

1,
x x

      . 

Since 2     , it is obvious that  2 1m m     when m   . 

For Case 1(b), we get from Eq. (14) 

 
  

   
  2 2

11

1 1

r
x x x

m mm N sdc

d m m


    

    
 

   
. 

For the excess queue delay, since 
x x

   , we have      2
1 1r

x
dc d m N s m        . 

Substituting 1 2x
      into the equation, we get 0r

c    . Hence, for  1 1 2,
x

      , we 

have 0r
c    . 

For the capacity waste with  10,
x

   , 1x

   , 10 N s    and 

     2

11 ( ) 1r

x
dc d m N s m m          , which is increasing with x

 . If 1x
   , we get 

0r
c    . But for 0

x
  , we get      2

11 1r
dc d m N s m m         . It suggests that 

there exists  #

1 11
x

m m N s        to make # 0
x

r
c 


    hold. Therefore, if m   , we get 

0r
c     for  10,

x
   , whilst 0r

c    , at #0,
x x

    and 0r
c     at #

1,
x x

      . 

  This completes the proof. □ 

 

C.2. Derivations for Case 2(a) under temporal-spatial capacity allocation 

For Case 2(a), according to the derivations in Appendix A.2 and Appendix B.2, we easily get the 

numbers of carpooling vehicles on the GP lane and solo-driving vehicles on the HOV lane as follows: 

 
 21

2

g

c
N s







 


, 
 1

2

1
h

s x

s
N





 

    
, 
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where 
1 2 x x

       , with   1 2 11
x

N s m m         . 

Since the peak period is the same for both lanes, i.e., g g h h
N s N s , and using g h

N N mN  , 

g g h

s s
N N N   and h g h

c c
N N N  , then we get the numbers of vehicles for solo driving on the GP lane 

and carpooling on the HOV lane and the total vehicles on the highway as follows: 

 g g

s f c
N N N  ,  1h h

c f s
N N N    and 

 
 

( 1)

1

h g

s c

f

N m N N
N

m 

  


 
. 

To make 0g

s
N  , it requires       2

2 2 1 11 1 ( 1) 1l

x
m m N s m m                  , 

with 1( ) 0N ms    . As a result, when   1 0N ms    , only if 2

2 2

l   , the commute pattern 

is that for Case 2(a) under temporal-spatial capacity allocation, otherwise if 2

2 2

l      , all 

commuters choose carpooling for Case 2(b), and thus whether to set the reserved time window or not 

makes no difference to the commute. 

 

C.3. Proof of Proposition 5 

For Case 2(a) with 2

2 2

l   , we get from Eq. (16) 

  
 

  
 

2

1
1 22 2

2

( 1) ( 1)

1 1

r

x

c m N m

sm m

 
    

               
. 

Substituting   1 2 11
x x

N s m m            into the above equation, we get 0r
c    . Since 

r
c    is decreasing with x

  for , we get 0r
c     for 1 2[ , ]

x x
      . This completes the 

proof. □ 

 

C.4. Derivations for Case 3(a) under temporal-spatial capacity allocation 

For Case 3(a), where 2 0  , driving alone is a better choice than carpooling without carpooling 

reservation, then the number of carpoolers on the GP lane is zero, i.e., 0g

c
N  . Similar to that in Case 

1(a), the number of solo drivers on the HOV lane can be formulated as: 

  1h x
s

N s



  . 
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Since the peak period is the same for both lanes, i.e., g g h h
N s N s , and using g h

N N mN  , 

g g h

s s
N N N   and h g h

c c
N N N  , we get the numbers of vehicles for solo driving on the GP lane and 

carpooling on the HOV lane and the total vehicles on highway as follows: 

 g

s f
N N ,  1h h

c f s
N N N    and 

 
( 1)

1

h

s
f

N m N
N

m 
 


 

. 

 

C.5. Proof of Proposition 6 

From Eq. (17), we get 

  2

( 1)

1

r

x

c m N

sm


  

        
. 

Substituting x
N s   into the above equation, we get 0r

c    . Obviously, r
c    is decreasing 

with x
 , thus 0r

c     for [0, ]
x

N s  . This completes the proof. □ 

 

Appendix D: Bounding the inefficiency 

D.1. Proof of Lemma 1 

For Case 1(a), where 2

2 2

u      , from Eq. (13), we get 

 
 

1

2

2 2

( 1)
0

r
c m

m
 

 
 

 and  
1 2

( 1)
1 0

r
c m

m


  

      
. 

Using Eq. (14), we get 2 0r
c    and 1 0r

c    for Case 1(b). 

For Case 2(a), where   1( ) ( 1) 1 0
x

N ms m m          and 2

2 2
l   , from Eq. (16), we get 

 
   

1

2

2 2

( 1)
0

1

r
c m

m


 

  
   

     
 and 

 1 2

( 1)
1 0

1

r
c m

m


 

  
        

. 

For Case 3(a), where 1 0   and 2 0  , from Eq. (17), we get 2 0r
c   . 

This completes the proof. □ 

 

D.2. Proof of Proposition 7 



 44 

From the proof of Lemma 1, we have 2 0r
c    for Case 1(a), where 

2 1
2 2

( (1 ))

(1 )( )

u

x x

m

N s m

   
  

  
     

   
, and 2 0r

c    for Case 1(b), where 2

2 2

u   . Thus, 

from Eq. (19), we get for 1 20
x

       

 
          

   2
2 2

1

1 1 1

1
u

x x x
N s m m m

N ms m m

   
 





 

        
 

  
, 

which 
2

2 2
u

 
 is the same for Case 1(a) and Case 1(b). 

For the excess queuing scenario with 
2

2 2
1 1 2 ux 

 
       , substituting 

x x

    into 
2

2 2
u

 
 

and using 1 0  , we easily get for 1 [0, ]
x

    and [0, ]
x

N s   

 
      

2 2
2 2 12 2 , 0

1 1 1

( )
u u

xN s m m

N ms

   
 

     

     
   

2
2 12 , 0 , ( )

u
x N s

N s
m

N ms


     

   . 

For the excess capacity waste scenario with 10
x

    , using 1x

   , we easily get 

      
   2

2 2

1

1

1 1

1
u

x
N s m m

N ms m m

   


 
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

  
 

           
  1

1 1 1
1

11 1

xm N s mm
m

N s mm m

  


 
     

          
. 

Letting 
 
  

1ˆ
1 1

x

m N s

m

 



 

 
, ˆ 0

x
   if 1 1 m    ; ˆ 0

x
   otherwise. Next, we will discuss two 

different situations. 

(1) When ˆ
x x

   , 
2

2 2
u

 
 is increasing with 1 . Hence, further if 1    , we have for 

1 [ , ]
x

N s    and ˆ[ , ]
x x

N s   , 

        
2 2

2 2 12 2 ,

1 1 1 1
u u

x

N s

m N s m

N s
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 

     

      
   
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 
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If 0    , we have for 1 [ , ]
x

N s    and [0, ]
x
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(2) When ˆ
x x

   , 
2

2 2
u

 
 is decreasing with 1 , with   . Hence, we have for 1 [ , ]

x
N s    

and ˆ[0,min( , )]
x x

N s    
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2

2 12 , , 0, 1
u

x x

m



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This completes the proof. □ 

 

D.3. Proof of Proposition 8 

Using Eq. (24) and 
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Since 2 0r
c    from Lemma 1, we get 
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Since 0
x

  , 
2

    is decreasing with 1 . Hence, for 1 ( ( ) ,0)N sm    and [0, ]
x

N s  , 

we have 
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2 2 1, ( )N sm        . 

This completes the proof. □ 
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