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An EMG-driven musculoskeletal model for

estimating continuous wrist motion
Yihui Zhao, Zhiqiang Zhang, Member, IEEE, Zhenhong Li, Zhixin Yang, Member, IEEE, Abbas A.

Dehghani-Sanij and Sheng Q. Xie, Senior Member, IEEE

Abstract—EMG-based continuous wrist joint motion estima-
tion has been identified as a promising technique with huge
potential in assistive robots. Conventional data-driven model-free
methods tend to establish the relationship between the EMG
signal and wrist motion using machine learning or deep learn-
ing techniques, but cannot interpret the functional relationship
between neuro-commands and relevant joint motion. In this
paper, an EMG-driven musculoskeletal model is proposed to
estimate continuous wrist joint motion. This model interprets
the muscle activation levels from EMG signals. A muscle-tendon
model is developed to compute the muscle force during the
voluntary flexion/extension movement, and a joint kinematic
model is established to estimate the continuous wrist motion. To
optimize the subject-specific physiological parameters, a genetic
algorithm is designed to minimize the differences of joint motion
prediction from the musculoskeletal model and joint motion
measurement using motion data during training. Results show
that mean root-mean-square-errors are 10.08◦, 10.33◦, 13.22◦ and
17.59◦ for single flexion/extension, continuous cycle and random
motion trials, respectively. The mean coefficient of determination
is over 0.9 for all the motion trials. The proposed EMG-driven
model provides an accurate tracking performance based on user’s
intention.

Index Terms—Hill’s muscle model, Electromyogram signal,
Forward dynamics, Continuous wrist joint motion.

I. INTRODUCTION

ESTIMATING human joint motion is critical for the

human-machine interfaces (HMIs) that can respond to

users’ intentions accurately and promptly [1]. Electromyogram

(EMG) signal based HMIs show great advantages in the esti-

mation of human intension: 1) using non-invasive electrodes

to capture EMG can interpret the muscle activities precisely;

2) EMG signal can be detected ahead of actual motion about

10-100ms, which enables estimate intended action in real-

time [2]; 3) EMG-based HMIs allow users to control the

assistive robot more intuitively and smoothly [3].
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EMG based continuous limb motion estimation approaches

can be categorized into two subsets, model-free and model-

based. For model-free approaches, they involve machine learn-

ing techniques, mapping the relationship between EMG signals

and the desired motion by the numerical functions. Several

artificial neural network methods are applied to estimate

continuous motion in the human upper limb. For example,

Lei proposed a back-propagation neural network to estimate

continuous elbow motion [4], and U. Côté-Allard et al.,

have developed a deep learning algorithm to recognise hand

gestures [5]. Nevertheless, model-free approaches have some

limitations. It is a ‘black box’ method, employing a general

map function rather than explicitly revealing the functional

relationships between neuro-commands and the corresponding

motion. A large amount of data sets containing EMG signals

as well as the related motions is required to train the transfer

function in order to interpret the prediction with given EMG

signals. Additionally, model-free approaches may not be able

to respond to novel motions that are not defined in the training

set [6].

To provide the explicit representation between the EMG

signal and joint kinetic and kinematic characteristics and re-

duce the acquirement of training data, model-based approaches

have been widely applied to establish the HMIs. These ap-

proaches estimate the continuous limb motion through an

EMG-driven musculoskeletal model. For example, Pau et

al., proposed a simplified geometric model together with a

musculoskeletal model to estimate the continuous motion of

the elbow joint [7]. A musculoskeletal model was employed

to simulate the shoulder and elbow joint motion in real-time

using a passive damper to avoid the numerical stiffness [8].

Blana et al., proposed the implicit formulation of the mus-

culoskeletal model in order to drive the wrist/hand motion in

real-time [9]. However, their models’ parameters are adapted

from the existed biomechanical models and have not taken

the subject-specificity into account. Crouch et al., proposed

a musculoskeletal model using subject-specific parameters

to estimate the flexion/extension motion of wrist joint and

metacarpophalangeal (MCP) joint [10]. Nevertheless, using

few muscles to establish the musculoskeletal model may over-

estimate the physiological parameters, i.e., the parameters

may exceed the physiological range when these muscles are

assumed to be the only muscle groups contributing to the joint

motion. In [10], the subject-specific parameters exceeded the

physiological range largely, because they have only used two

wrist muscles to estimate the wrist flexion/extension motion.

In this paper, we propose a model-based approach to esti-
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mate the wrist continuous joint motion. The main contributions

of this paper include: 1) five primary wrist muscles are grouped

into flexor/extensor to avoid over-estimating parameters; 2)

according to the selected muscle groups, a musculoskeletal

model including a muscle-tendon model and a joint kine-

matic model is derived to estimate the continuous wrist

flexion/extension motion. Assuming the tendon is rigid, the

numerical stiffness of the muscle-tendon model is alleviated;

3) a parameter optimization algorithm is designed and imple-

mented to tune the parameters within the physiological range

by minimizing the differences of joint motion between the

model’s estimation and the measured data. Results show the

proposed approach can estimate the wrist flexion/extension

motion accurately.

The remaining paper is arranged as follows. Experiment

protocol is described in section II-E, and the results are

concluded in section III. Section IV discusses the performance

and the limitations of the proposed model. Final section gives

conclusion and future work.

II. METHODS

In the single degree of freedom (DoF) configuration, five

primary wrist muscles are grouped into wrist flexor-extensor.

The flexor digitorum superficialis (FDS) and extensor digi-

torum (ED) are excluded due to these muscles mainly con-

tribute to the MCP motion. Therefore, the five main wrist

muscles (i = 1, 2, . . . , 5) are described in following: 1)

Flexor (i = 1, 2) includes Flexor Carpi Radialis (FCR) and

Flexor Carpi Ulnaris (FCU); 2) Extensor (i = 3, 4, 5) includes

Extensor Carpi Radialis Longus (ECRL), Extensor Carpi

Radialis Brevis (ECRB) and Extensor Carpi Ulnaris (ECU).

The wrist joint motion is computed by a muscle activation

interpretation method, a muscle-tendon model and a joint

kinematic modelling technique. Muscle activation interpreta-

tion method computes the muscle activation levels from EMG

signals. The muscle-tendon model estimates the muscle-tendon

force regarding the force-length/velocity relationships and

muscle activation levels, based on the Hill’s muscle modelling

technique. Then the joint kinematic modelling technique is

developed to determine the muscle tendon length and moment

arms against joint angle and computes the joint motion using

forward dynamics. A parameter optimization algorithm is

developed to tune the physiological parameters. In the rest

of this section, we will explain how to estimate the wrist joint

motion using the proposed model.

A. Muscle activation interpretation method

To interpret the muscle activation level of each muscle

during the wrist motion, the raw EMG signals are processed

through a non-linear equation. The raw EMG signals are first

filtered by a 2nd order Butterworth band-pass filter at cut-off

frequencies between 25 Hz and 450 Hz to remove baseline and

artefact noise, and then fully rectified. The rectified signals are

low-pass filtered to clarify the characteristics of EMG to mus-

cle force relation using 4th order Butterworth low-pass filter

at a corner frequency of 4 Hz. Filtered signals are normalized

by dividing the peak value of isometric maximum voluntary

contraction (IMVC). The following equation is account for the

non-linear relationship between pre-processed signal ui(t) and

muscle activation ai(t) in each muscle

ai(t) =
eAui(t) − 1

eA − 1
(1)

where non-linear shape factor A has the range of highly non-

linearity (-3) to linearity (0.01) [11].

B. Muscle-tendon model

Fig. 1: Schematic of Hill’s type muscle model.

The Hill’s modelling technique is used to compute the

muscle-tendon force Fmt
i , which consists of a elastic tendon

in series with a muscle fibre. The muscle fibre includes

a contractile element (CE) in parallel with passive elastic

element. lmt
i , lmi and lti are the muscle-tendon length, muscle

fibre length and tendon length respectively. Pennation angle φi

is the angle between the orientation of the muscle fibre and

tendon, and the pennation angle at current muscle fibre length

is calculated by

φi = sin−1(
lmo,i sinφo,i

lmi
) (2)

where lmo,i and φo,i represent the optimal muscle fibre length

and the optimal pennation angle respectively. Besides, a scale

coefficient kmt
i is introduced to account the difference of the

muscle-tendon length across subjects. The muscle fibre length

is represented as

lmi = (kmt
i lmt

i − lti)cos
−1φi. (3)

The Fmt
i is the summation of the active force FCE,i and

the passive force FPE,i, which can be written as

Fmt
i = (FCE,i + FPE,i) cosφi. (4)

The FCE,i is the active force generated by CE, which can

be written as

FCE,i = Fm
o,ifa(l

m

i,a)f(vi)ai(t) (5)

where Fm
o,i is the maximum isometric force. The function

fa(·) represents the active force-length relationship at different

muscle fibre length and muscle activations, which is written

as

fa(l
m

i,a) = e−(l
m

i,a−1)2k−1

(6)
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where the l
m

i,a = lmi /(lmo,i(λ(1− ai(t)) + 1) is the normalized

muscle fibre length with respect to the corresponding activa-

tion levels and λ is a constant, which is set to 0.15 [12]. The

k is a constant to approximate the force-length relationship,

which is set to 0.45 [13]. The function f(vi) represents the

force-velocity relationship between the lmi and the normalized

contraction velocity vi [14]

f(vi) =

{

0.3(vi+1)
−vi+0.3 vi ≤ 0

2.34vi+0.039
1.3vi+0.039 vi > 0

(7)

where vi = vi/vo,i. vo,i represents the maximum contraction

velocity, which is set to 10 lmo,i/sec [15]. The vi is the

derivative of the muscle fibre length. Note that the passive

force FPE is the forced produced by the passive elastic

element which can be calculated as

FPE,i =

{

0 lmi ≤ lmo,i

fp(l
m

i )Fm
o,i lmi > lmo,i

(8)

where l
m

i = lmi /lmo,i is the normalized muscle fibre length. The

fp(·) is

fp(l
m

i ) =
e10(l

m

i −1)

e5
. (9)

C. Joint kinematic modelling technique

The single joint configuration is presented to estimate the

wrist continuous joint motion. The muscle-tendon length lmt
i

and moment arm ri against wrist joint angle are calculated

using the polynomial equation and the scale coefficient [16].

The joint torque of each muscle can be calculated as

Mi = Fmt
i ri. (10)

Therefore, the total joint torque during wrist motion is written

as

τ =

2
∑

i=1

Mflexor,i −

5
∑

i=3

MExtensor,i (11)

where Mflexor,i and Mextensor,i represent the flexor torque

and extensor torque, respectively.

Since the muscle activation level does not have a directly

relationship with the joint motion, it is necessary to compute

joint acceleration using the forward dynamics (Fig. 2). The

wrist joint is assumed to be a single hinge joint, the palm and

fingers are assumed to be a rigid segment rotating around wrist

joint in the sagittal plane. Thus, we can have the following

relationship based on the Lagrange equation

θ̈ =
τ −mgLsin(θ)− Cθ̇

I
(12)

where θ̈ is the angular acceleration. τ is derived from (11). I is

the moment of inertia of hand, which is equal to mL2+Ip. Ip
is the moment of inertia at the principal axis which is parallel

to the flexion/extension axis [17]. m and L are the mass of

hand and the length between rotation centre to hand’s centre of

mass, which are measured from subjects. θ and θ̇ are the wrist

joint angle and angular velocity respectively. C is the damping

coefficient representing the elastic and viscous effects from

Fig. 2: Joint motion update flowchart: muscle activation interpretation
methods gives muscle activation levels of each muscle, muscle-
tendon force is computed by a muscle-tendon model, and the joint
kinematic model estimates the wrist joint motion θ. The physiological
parameters, e.g,. optimal muscle fibre length lmo,i, tendon length lti ,
maximum muscle force Fm

o,i and optimal pennation angle φi are
optimized using the GA algorithm.

tendon, ligaments. Therefore, the EMG-based model for the

wrist joint motion estimation in discrete time can be written

as

θ̇t+1 = θ̇t + θ̈t∆t (13)

θt+1 = θt + θ̇t∆t (14)

where ∆t is the sampling time, and θ̇t and θt are the angular

velocity and joint angle at time t.

D. Parameter optimization algorithm

The muscle-tendon parameters in the proposed model, e.g.,

maximum isomeric muscle force, optimal fibre length, tendon

length and optimal pennation angle are difficult to measure

in vivo and varies between the age, gender [18]. Thus, these

parameters are required to be optimized for each subject. The

initial guess and the physiological boundaries of the muscle-

tendon parameters are chosen according to [19] and [20],

which are presented in Table I. The boundaries of maximum

isometric force are set to ±50% of the initial guess since the

variation of the physiological cross-sectional area are varied

between subjects. Genetic algorithm (GA) is used to find

out the best match of the subject-specific parameters. The

parameter vector is represented as

χ = [Fm
o,i, l

m
o,i, l

t
o,i, φi, k

mt
i , A]T (15)

The estimation of χ can be written as

χ̂ = argmin
χ

{f(χ)} (16)
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where

f(χ) =

√

√

√

√

1

N

N
∑

n=1

(θ − θ̂) (17)

where θ and θ̂ are the measured joint angle and estimated joint

angle respectively, and N is the number of samples.

GA is commonly implemented in the musculoskeletal

model [7]. It can evaluate multiple solutions in the search

space, and reduce the risk of falling into a local minima. GA

mimics the nature evolutionary process by representing the

muscle-tendon parameters as a ‘chromosome’. The algorithm

randomly generates a set of possible solutions for the joint

kinematic modelling technique. The objective function evalu-

ates the ”fitness” of each possible solution at each generation

and reaches the best set of parameters iteratively.

TABLE I: Boundaries of parameters

Parameters (units) Bounds

Maximum isometric muscle force Fm
o,i

(N) [initial guess±50%]

Optimal muscle fibre length lm
o,i

(m) [initial guess±0.010]

Tendon length lt
i

(m) [initial guess±0.010]

Optimal pennation angle φo,i (rad) [initial guess±5%]

Non-linear shape factor A [-3,0.01]

Scale coefficient kmt
i

[0.9,1.2]

Furthermore, a sensitivity analysis is conducted to inves-

tigate the sensitivities of the model output to the optimized

muscle-tendon parameters, which can be calculated by [21]:

SIj =
(Mj,pret −Mopt)/Mopt

(Pj,pret − Pj,opt)/Pj,opt

(18)

where Mj,pret and Mopt represent the perturbed model output

and optimal model output respectively. Pj,pert and Pj,opt are

the jth perturbed parameter and the jth optimized parameter

in the proposed model respectively. Additionally, the muscle-

tendon lengths and moment arms are also considered. The

maximum isometric forces are perturbed by ±20% and other

parameters are perturbed by ±10%. The sensitivity coefficient

SIj is used for comparison between parameters.

E. Experiment

The experiment is approved by the MaPS and Engineering

Joint Faculty Research Ethics Committee of the University

of Leeds (MEEC 18-002). Eight subjects participate in this

experiment (six males and two females), between the age of

25 and 31. The consent forms are signed by all subjects. We

take the subject’s weight data and the length of their hand in

order to calculate the moment of inertia of the hand.

1) EMG data acquisition: Delsys TrignoTM system is used

to record the raw EMG signals. The placement of electrodes

is placed following SENIAM recommendation [22]. The sam-

pling rate of EMG signals is 2000 Hz. Avanti electrodes are

placed over five wrist muscles over right forearm, according

to section II.

Fig. 3: Neutral Position: 16 reflective markers are attached on
subject’s right upper limb. Electrodes are placed on five primary
muscles of wrist joint, including FCR, FCU, ECU, ECRL and ECRB.

2) Motion Capture system: The trajectory data is captured

through the motion capture system (VICON Motion Systems

Ltd. UK) at 250 Hz. 16 reflective markers are placed on the

subject’s right upper limb. Markers are allocated over the

spinous process of the 7th and the 10th thoracic vertabra,

right scapula, xiphoid, acromio-clavicular joint, clavicle, lat-

eral/medial humerus medial epicondyle, right radial/ulnar sty-

loid, middle forearm and the right third metacarpus. The

kinematic data and EMG data are synchronized using a trigger

module via the VICON nexus software. The wrist joint angle

is computed from VICON upper limb model [23].

3) Experiment setup: Subjects are asked to seat on the arm-

chair while torso is fully straight, right shoulder is abducted

at 90◦ and elbow is flexed at 90◦, as shown in Fig. 3. Their

forearm and hand are fully relaxed and the position of hand

is set as the neutral position (θ = 0◦). The subject’s arm

is shaved and skin is cleaned up using an alcohol wipe in

order to minimize the artefact and impedance of the electrodes.

Before the experiment, the IMVC and the static anatomical

posture of each subject are recorded. Four sets of wrist

movement are performed whilst the MCP joint is keeping

full extension to reduce the effect of wrist muscles during

the experiment. Furthermore, the subjects are informed to try

to avoid the ulnar/radial deviation and the experimental data

with radial/ulnar deviation are excluded.

The wrist motion trials include: 1) flexion motion, which

move the wrist towards to the palm side and then return

to neutral position. 2) extension motion, which starts from

neutral position, move the wrist towards to the back-hand

side and then return to neutral position. 3) continuous cycle

motion requires to perform consecutive wrist flexion/extension

motion. Starting from neutral position, and then move the

wrist to either flexion/extension direction, and finally return to

neutral position. 4) Random motion is based on the subject’s

intention. They are asked to move their wrist freely in varying

amplitudes and at varying speed. The resultant motion data

are low-pass filtered and set as the reference. Five repetitive

trials are performed for each movement and a three minute

break is given between each trial to prevent muscle fatigue.

The first continuous cycle trial is selected as a training trial to
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optimize the parameters. The remaining four continuous cycle

motion trials and all flexion/extension motion and random

motion trials are used for validation. Each flexion/extension

motion trial and the training trial lasts for 2-5 seconds while

the continuous cycle/random motion trial lasts for about 15-20

seconds.

III. RESULTS

S1 S2 S3 S4 S5 S6 S7 S8 Mean
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Flexion Extension CCT Random

Fig. 4: Mean R2 across subjects in the flexion (mean R2 = 0.95),
extension (mean R2 = 0.94), continuous cycle motion (CCT, mean
R2 = 0.96) and random motion (mean R2 = 0.91) with the standard
deviation.

A. Verification of EMG-driven model

The proposed model is verified by the validation sets using

the root-mean-square-error (RMSE) and the coefficient of

determination (R2). RMSE and R2 indicate the difference in

terms of amplitude and correlation between the estimated joint

angles/velocities and reference respectively. Table II and Fig. 4

summarizes the mean RMSEs and R2 of the experimental

motion trials across all subjects. The random motion trials of

subject 2 and subject 3 are excluded due to the unacceptable

noise captured in the experiment. In this study, the mean

RMSE and R2 of the random motion trials are calculated using

the remaining subjects’ data.

1) Predefined motion: The results of one single flex-

ion/extension and one continuous cycle trial of subject four are

illustrated in Fig. 5. In each subfigure, joint angle (top panel)

and joint velocity (bottom panel) denote the estimated results

compared with the reference. The results of the single flex-

ion/extension trials indicate the model can estimate the correct

motion according to the measured EMG signals. Furthermore,

the results of the pre-defined trials shows the proposed model

with the optimized muscle-tendon parameters can estimate the

wrist flexion/extension motion accurately.

2) Random motion: The results of random motion trials

denote that the proposed model can provide the accurate

estimation in trend (mean R2 = 0.91), but the amplitudes de-

viate from the reference (mean RMSE = 17.59◦). Additional

estimation performance of subject six and eight are illustrated

in Fig. 6 and Fig. 7, respectively.

B. Parameters Identification

The subject-specific parameters are identified by GA. Ta-

ble III presents the variation of the optimized parameters

together with the initial guess (left column) of subject five. The

deviations of the optimal fibre length, tendon length, optimal

pennation angle and muscle-tendon length scaler are small

from the initial guess (max 7.46% in ECRL). The maximum

isometric forces deviate largely from the initial value. The

optimized non-linear shape factor A is -2.716. To evaluate

the sensitivities of the optimized parameters, the results of

the sensitivity analysis of subject five is presented in Fig. 8.

The sensitivity coefficient of the non-linear shape factor A is

0.3134.

IV. DISCUSSION

1) Model’s performance: In this paper, the experiments are

conducted to evaluate the accuracy and tracking performance

of the proposed model for the estimation of the continuous

wrist joint flexion/extension motion. The estimated joint angles

of all motion trials are highly correlated to the reference

elucidate that the proposed EMG-driven model can respond

to the subjects’ intention accurately according to the given

EMG signals. The EMG-driven model shows its capability to

maintaining high performance (mean R2 = 0.91) in terms of

the varying rotating velocities and different range of motions.

The RMSEs are similar in the single flexion/extension trials

but increase in the continuous cycle motion and random

motion trials. The estimation errors may be caused by the

crosstalk and the muscle co-activation that generates small

muscle force during the wrist flexion/extension motion. Re-

cently, high-density surface EMG is used to collect the high-

resolution signals over the forearm. Therefore, the spatial

distribution of the muscle activities can be identified and

clustered to increase the fidelity of the EMG signals [24].

Furthermore, the passive tendon force is largely different in

wrist flexion/extension motion which also results in estimation

errors. Nevertheless, it is preferred to estimate the joint motion

with greater R2 rather than the RMSE for the application of

EMG-based HMIs in assistive robots [25]. This is because

the EMG-driven musculoskeletal is an open-loop estimation

model. In practical, the close-loop control strategies are em-

ployed in HMIs. The estimation errors can be reduced through

adding feedback signals, e.g., using a Kalman filter [26] or an

error estimation model [27]. Furthermore, the proprioceptive

output from the muscle spindle model or the force feedback

from the Glogi tendon organ model may also have potential

as the feedback signals in the EMG-driven model [28].

2) Comparison with literature: The proposed model is

compared with the models [7] and [10], which estimate the

singe degree-of-freedom joint motion through the open-loop

musculoskeletal model. The proposed model shows better per-

formance in the continuous cycle motion and random motion

compared with [7], whose method has the mean RMSEs of 22◦

and 22.4◦ for continuous cycle motion and random motion re-

spectively. The mean RMSE of single elbow flexion/extension

is smaller than the proposed model. However, they have tuned

each trial four times and selected the smallest RMSE. The
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TABLE II: Mean RMSE (deg) in validation trials

Subjects
S1 S2 S3 S4 S5 S6 S7 S8 Total

Motion trial Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Flexion 12.49 1.11 3.54 0.91 12.71 3.05 9.59 2.66 8.08 2.23 6.50 1.48 16.91 2.32 10.80 1.66 10.08 4.13

Extension 14.39 6.57 8.50 5.14 7.93 2.55 9.01 2.00 10.27 1.90 15.85 5.49 9.03 0.91 7.69 0.75 10.33 3.08
Continuous Cycle 13.48 1.70 14.15 3.51 9.40 1.15 15.64 3.61 8.59 1.38 15.47 2.97 15.50 2.58 13.25 1.88 13.22 2.77
Random 15.06 1.72 Null Null 14.94 5.38 26.63 8.77 17.79 4.85 12.99 0.42 18.13 1.00 17.59 4.41

Std. = standard deviation
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Fig. 5: Comparison between the estimated results (red dashed line) and the reference (black line) of 5(a) flexion (R2 = 0.985,RMSE =
7.79◦), 5(b) extension (R2 = 0.971,RMSE = 8.49◦), 5(c) continuous cycle motion (R2 = 0.972,RMSE = 13.27◦) and 5(d) random
motion (R2 = 0.875,RMSE = 14.87◦) in subject four. In each panel, the estimated joint angle (top figure) and joint velocity (bottom
figure) are presented.
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Fig. 6: The estimation result of one random trial in subject six. The
R2 and RMSE are 0.962 and 13.5◦ respectively.
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Fig. 7: The estimation result of one random trial in subject eight. The
R2 and RMSE are 0.937 and 14.6◦ respectively.
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TABLE III: Optimized parameters of subject five

Parameter index

lm
o,i

(m) Fm
o,i

(N) lt
i

(m) φo,i (rad) kmt
i

Muscle index Initial Variation Initial Variation Initial Variation Initial Variation Initial Variation

FCR 0.062 101.40% 407 68.96% 0.24 103.90% 0.05 102.38% 1 96.38%

FCU 0.051 100.78% 479 92.33% 0.26 100.85% 0.2 99.73% 1 97.87%

ECRL 0.081 98.38% 337 73.77% 0.24 104.02% 0 NaN1 1 96.47%

ECRB 0.058 99.73% 252 136.03% 0.22 99.47% 0.16 97.79% 1 92.54%

ECU 0.062 98.86% 192 139.28% 0.2285 96.46% 0.06 96.61% 1 94.88%
1 The denominator is zero. The optimized pennation angle of ECRL is 0.0399 rad.

Fig. 8: Sensitivity analysis of subject five.

lumped-parameter model shows the mean RMSE of 0.94 for

the wrist random motion trials of the able-bodied subjects [10].

However, the optimized parameters are over-estimated.

3) Parameters of the EMG-driven model: The optimized

parameters are constrained within the physiological range,

as shown in Table III. The proposed EMG-driven model

uses five primary muscles of wrist joint [29], the effects of

finger flexor/extensor are minimized by keeping the thumb

and digits relaxed. The tendon length and the optimal muscle

fibre length deviate slightly from the initial guess, indicating

these parameters are not over-estimated.

According to the results of the sensitivity analysis, the

proposed model has very low sensitivity to the pennation

angle (SI ≈ 10−3), which is consistent with [30]. The

model output has medium sensitivities to optimal fibre length,

maximum isometric force, moment arm and non-linear shape

factor. The sensitivities of the tendon length and the muscle-

tendon length are very high in the proposed model, this is

because these parameters determine the muscle fibre muscle

length with respect to the joint angle. Using the regression

algorithms to estimate the muscle-tendon length can only

represent the average value from cadaver studies. State-of-

the-art methods to determine the muscle-tendon length include

using the biomechanical model API, e.g., OpenSim [31], or

the highly accurate estimation model [32]. Nevertheless, using

the regression algorithms to compute the muscle-tendon length

can ease the computational burden when the musculoskeletal

model is used in real-time [28].

The exclusion of the elastic tendon can also reduce the

computational cost through alleviating the numerical stiffness

in the muscle-tendon model. Other approaches have used a

passive damper which is modelled in parallel with the CE

to avoid computing the infinite muscle contraction velocity in

the muscle-tendon model [8], or have used the implicit formu-

lation of the musculoskeletal model to reduce the numerical

stiffness [9], [28]. Nevertheless, the proposed model shows

similar results in terms of R2 compared with [28], by assum-

ing the tendon is rigid without increasing the computational

complexity.

Genetic algorithm is widely used in the Hill’s muscle

model and can avoid local minima using the physiological

constraints. The average optimization time is around half an

hour. The optimization time can be reduced by reducing the

parameters for optimization based on the sensitivity analysis,

e.g., optimal pennation angle.

4) Offline computation time: The processing time of the

proposed model is measured by executing a 20-second con-

tinuous trial [10]. The mean computation time for the muscle

activation interpretation method, the muscle-tendon model and

the joint kinematic modelling technique are 68 ms, 390 ms and

690 ms respectively. The program is executed on a personal

PC with quad-core processing unit (4.2GHz) and 16GB of

RAM memory. The overall computation time of the proposed

model indicates that it is feasible for real-time implementation,

according to the real-time control constraints.

5) Limitations: The proposed EMG-driven musculoskeletal

model is experimentally verified on wrist flexion/extension

motion. Nevertheless, there are several limitations. Firstly, the

grouped five primary muscles not only have the contributions

to wrist flexion/extension, but also to other DoFs, i.e., ul-

nar/radial deviation. The proposed model has been validated

only on healthy subjects, more experimental work is required

to quantify the performance on patients with neurological

diseases, i.e., stroke and cerebral palsy.

V. CONCLUSION

This paper proposes an EMG-driven musculoskeletal model

to estimate the continuous wrist motion. Muscle activation

levels are acquired from five primary muscles for wrist

flexion/extension. The muscle-tendon model computes the

muscle-tendon force and then the continuous joint motion is

estimated via the joint kinematic modelling technique. The

genetic algorithm is developed and implemented to obtain

the subject-specific physiological parameters. The proposed

musculoskeletal model shows an accurate estimation in the
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wrist flexion/extension motion with the mean R2 of 0.9 for

all the motion trials. The mean RMSEs are 10.08◦, 10.33◦,

13.22◦ and 17.59◦ for single flexion/extension, continuous

cycle and random motion trials, respectively.

Future work includes the qualitative evaluation of real-

time application of the proposed model into our previous

wrist rehabilitation robot [33]. In addition, the model will be

extended to estimate continuous wrist motion with multiple

DoFs.
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