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Abstract: With the advent of sustainable and clean energy, lithium-ion batteries have been widely utilised in 14 

cleaner productions such as energy storage systems and electrical vehicles, but the management of their electrode 15 

production chain has a direct and crucial impact on the battery performance and production efficiency. To achieve 16 

a cleaner production chain of battery electrode involving strongly-coupled intermediate parameters and control 17 

parameters, a reliable approach to quantify the feature importance and select the key feature variables for 18 

predicting battery intermediate products is urgently required. In this paper, a Gaussian process regression-based 19 

machine learning framework, which incorporates powerful automatic relevance determination kernels, is 20 

proposed for directly quantifying the importance of four intermediate production feature variables and analysing 21 

their influences on the prediction of battery electrode mass load. Specifically, these features include three 22 

intermediate parameters from the mixing step and a control parameter from the coating step. After deriving four 23 

different automatic relevance determination kernels, the importance of these four feature variables based on a 24 

regression modelling is comprehensively analysed. Comparative results demonstrate that the proposed automatic 25 

relevance determination kernel-based Gaussian process regression models could not only quantify the importance 26 

weights for reliable feature selections but also help to achieve satisfactory electrode mass load prediction. Due to 27 

the data-driven nature, the proposed framework can be conveniently extended to improve the analysis and control 28 

of battery electrode production, further benefitting the manufactured battery yield, efficiencies and performance 29 

to achieve cleaner battery production.  30 
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A list of terminology and symbols 5 

Li-ion               lithium-ion  6 
EV                    electrical vehicle  7 
CRISP               cross-industry standard process  8 
IFV                   intermediate feature variable 9 
CP                    control parameter  10 
GPR                 Gaussian process regression  11 
ARD                automatic relevance determination  12 
EX                   exponential 13 
SE                    squared-exponential 14 
NMP                 N-Methyl-2-pyrrolidone 15 
PVDF               polyvinylidene difluoride  16 
MC                   mass content  17 
STLR               solid-to-liquid ratio  18 
CG                   comma gap  19 
MAE                mean absolute error  20 
RMSE              root mean square error 21 𝑚(𝑗)                  mean function 22 𝑘(𝑗, 𝑗′)             covariance function  23 𝜃ℎ𝑝                   hyper-parameters  24 L(𝜃ℎ𝑝)              negative log marginal likelihood  25 𝑝(𝑦′|𝑗, 𝑦, 𝑗′)     conditional distributions 26 
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 �̅�′                       mean prediction value  1 𝑵                        distribution matrix 2 𝒄𝒐𝒗                 variance matrix 3 𝑘𝐸𝑋                   exponential kernel 4 𝑘𝑆𝐸                    squared-exponential kernel 5 𝑘𝑀3/2                Matern3/2 kernel 6 𝑘𝑀5/2                Matern5/2 kernel 7 𝑘𝐴𝑅𝐷𝐸𝑋              exponential kernel with ARD structure 8 𝑘𝐴𝑅𝐷𝑆𝐸                 squared-exponential kernel with ARD structure 9 𝑘𝐴𝑅𝐷𝑀3/2            Matern3/2 kernel with ARD structure 10 𝑘𝐴𝑅𝐷𝑀5/2            Matern5/2 kernel with ARD structure 11 𝑊                      feature weights 12 
 13 

1. Introduction 14 

Nowadays, lithium-ion (Li-ion) batteries have been widely utilised to boost the development of cleaner 15 

productions such as electrical vehicles (EVs) and energy storage systems, due to their low discharge-rates and 16 

high energy densities (Liu, C. et al., 2019). However, the performance of Li-ion batteries would be directly and 17 

highly affected by their electrode production processes, which significantly hinders the improvements of battery 18 

technology. The battery electrode production is of great concern in developing clean and effective energy storage 19 

systems, which is a key factor in securing tangible economic payback and in improving the efficiencies of large-20 

scale clean energy applications (Dahodwalla and Herat, 2000). In light of this, efforts are urgently needed to fully 21 

understand the intermediate products and parameters within the battery electrode production chain (He et al., 22 

2020). 23 

Unfortunately, battery electrode production chain contains numerous intermediate processes with a large amount 24 

of intermediate products, parameters and influencing factors (Lee et al., 2010). Due to the complexity and strong-25 

coupled interdependencies of electrode manufacturing steps, the multiple correlations among feature variables of 26 

intermediate products and control parameters are still difficult to model. As the whole battery production chain 27 

consists of a number of chemical, mechanical as well as electrical operations and would generate over 600 28 

influencing parameters or variables, the analysis of feature variables in electrode production requires the deep 29 

expert experiences and specialized equipment, which still mainly relies on the trial and error solutions (Kwade et 30 

al., 2018; Pang et al., 2019). Therefore, in order to achieve smarter and cleaner battery production, advanced data 31 

analysis strategies to better quantify feature variables and select key feature items for predicting battery electrode 32 

properties are urgently needed. 33 
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With the rapid development of artificial intelligence and machine learning technologies, data-driven strategies 1 

have become popular in the field of battery management (Li et al., 2019; Lipu et al., 2018; Zhou et al., 2020). A 2 

range of data-driven approaches have been designed for estimating battery states (Meng et al., 2019; Tian et al., 3 

2020; Wei et al., 2019; Zhou et al., 2019), predicting battery lifetime during cycling (Tang et al., 2019; Zhang et 4 

al., 2019) or storage modes (Liu et al., 2019), diagnosing battery faults (Pan et al., 2020; Yang, R. et al., 2018), 5 

balancing battery cells (Ouyang et al., 2020; Saw et al., 2016), achieving efficient thermal management (Shang et 6 

al., 2019; Xiong et al., 2018) and charging management (Liu et al., 2018; Maia et al., 2019). Overall, through 7 

designing suitable data-driven models, it is expected that smarter and more efficient management of Li-ion 8 

batteries can be achieved. However, these researches primarily focus on the battery macroscopic performance 9 

without taking the battery intermediate properties in the production process into account. It should be noted that 10 

the battery production chain also generates a large amount of data and plays a more direct role in determining the 11 

battery performance, designing an effective data-driven approach to quantify and predict battery intermediate 12 

features is therefore also crucial for boosting the development of cleaner production (Dahodwalla and Herat, 2000). 13 

In contrast to the battery management where fruitful solutions are available, less reports have been found so far 14 

on using advanced machine learning technologies to improve the battery production (Wanner et al., 2019). Among 15 

limited literatures on battery productions (e.g. monitoring (Knoche et al., 2016), adjustment (Schünemann et al., 16 

2016) and control (Günther et al., 2020)), developing a proper data-driven based model to analyse feature variables 17 

and predict intermediate product properties is a hotspot. For instance, a data-driven approach was proposed in 18 

(Schnell and Reinhart, 2016) to analyse the failure modes and parametric effects, which contributes to the 19 

improvement of battery production chain control. Based on the cross-industry standard process (CRISP), Schnell 20 

et al. (Schnell et al., 2019) designed a linear model and a neural network model to identify the process 21 

dependencies and forecast the battery production properties. Turetskyy et al. (Turetskyy et al., 2019) utilised the 22 

decision tree techniques to analyse feature importance and forecast the maximum capacity of battery. A multi-23 

variate data-driven model was designed in (Thiede et al., 2019) to discover proper quality gates for predicting the 24 

manufactured battery properties. Based upon the statistical analyses of fluctuations in battery production, the 25 

influence of these fluctuations on manufactured battery capacity is evaluated in (Hoffmann et al., 2019). In (Cunha 26 

et al., 2020), several 2D graphs produced by three conventional machine learning classification models are used 27 

to analyse the dependencies of battery production features. Despite the aforementioned works on the data-driven 28 
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modelling of battery production, several limitations and challenges remain to be improved: 1) most researches 1 

simply apply conventional methodologies to predict the properties of battery production, little has been done to 2 

comprehensively evaluate the data-driven approaches to further improve their performance in battery production 3 

area. 2) commonly-used machine learning technologies such as support vector machines and neural networks only 4 

produce predictions of battery production properties, but fail to directly quantify the importance of battery 5 

production features which is also of interests to engineers. Such information could benefit engineers to conduct 6 

sensitivity analysis for effective feature selection and optimise the production chain to further enhance the 7 

manufactured batteries performance and achieve cleaner battery production. 8 

Given the aforementioned considerations, this article deals with the data-driven electrode property prediction for 9 

Li-ion battery production, where the importance weights of multiple battery production feature items can be also 10 

taken into account. The main contributions of this paper are summarized as follows: 1) After identifying four 11 

feature items of interest from three intermediate feature variables (IFVs) in the mixing step and a control parameter 12 

(CP) in the coating step of the battery production process, a Gaussian process regression (GPR)-based machine 13 

learning framework is designed to effectively map the underlying relations among these feature items and the 14 

battery electrode mass load. 2) The kernel functions within GPR are enhanced with an automatic relevance 15 

determination (ARD) structure, allowing multiple input variables to obtain different scales of hyper-parameters 16 

to improve the regression accuracy and robustness. 3) Based upon the well-tuned hyper-parameters within the 17 

ARD kernels, the importance weights of these feature variables of interest could be effectively quantified for the 18 

reliable selections of battery production features. 4) The importance of these feature items and the prediction 19 

results are comprehensively evaluated and quantified with four different ARD kernels derived from the 20 

exponential (EX), squared-exponential (SE), Matern3/2 and Matern5/2 covariance functions. This is the first 21 

known application by designing the ARD kernel-based GPR to directly and simultaneously quantify the weights 22 

of battery feature items and analyse their effects on the regressions of battery electrode mass load. Obviously, the 23 

proposed ARD kernel-based GPR framework could bring the significant benefits such as better monitoring the 24 

key variables within battery production chain to enhance the manufactured battery yield, efficiencies and 25 

performance, as well as saving the costs of battery production, further leading to cleaner battery production and 26 

improving the optimisation of energy storage system.  27 
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The remainder of this paper is organized as follows. Section 2 describes some key steps and variables within the 1 

battery electrode production chain. Section 3 presents the fundamental of GPR, ARD kernels, detailed feature 2 

selection workflow and several performance indicators. Section 4 gives an in-depth comparison of the prediction 3 

results of electrode mass load and discuss the quantified importance weights of all features of interest. Finally, 4 

Section 5 concludes this paper. 5 

2. Battery electrode production chain 6 

Electrode production is a primary and significantly sophiscated process in the battery manufacturing chain, 7 

covering multiple disciplines such as mechanical engineering, chemical engineering and electrical engineering 8 

(Chouchane et al., 2019). Moreover, the properties of manufactured electrode such as mass load plays a key role 9 

in determining the battery final performance (energy or power densities, maximal capacity and service life), which 10 

must be carefully managed for benefitting the cleaner battery production.  11 
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 12 

Fig. 1. A systematic framework of some key steps in battery electrode production chain.  13 

Fig. 1 gives a systematic framework illustrating some key steps in the battery electrode production chain. It should 14 

be known that battery electrode manufacturing is a lengthy process involving many intermediate and individual 15 

steps (i.e., mixing, coating, drying, calendaring and cutting) as well as specialized equipment (i.e., mixer, coater, 16 

oven). In this framework, the first key process is the mixing step which produces the slurries for both anodes and 17 

cathodes. Specifically, in the mixing step, the prepared active materials such as graphite and Li-NCM-Oxide, the 18 

conductive additive material such as carbon black, the solvent such as N-Methyl-2-pyrrolidone (NMP) as well as 19 

the binder such as polyvinylidene difluoride (PVDF) will be mixed within a soft blender. A standard process is 20 
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that the binder is first dissolved into the solvent, followed by adding the active and conductive additive materials 1 

to produce slurries. After mixing, these mixed slurries would be coated upon both two surface sides of mental 2 

foils by a comma-gap coater. In general, the copper foil is utilised for anode coating while the aluminium foil is 3 

adopted for cathode coating. In this stage, the speed of coater would be fixed and the comma gap is changed to 4 

ensure shear force for determining the coating thickness. Moreover, the wet coating products will be dried by 5 

setting constant temperatures of several built-in ovens simultaneously. Then, a calendaring step will follow to 6 

evaporate the residual solvent of dried coating products. Finally, both anode and cathode electrodes are obtained 7 

after cutting the coating products into proper sizes. It should be known that numerous variables and parameters 8 

are involved in such a complex production chain. Several IFVs and CPs are of extreme importance for determining 9 

the properties of electrodes, which would further affect the battery production results and must be well studied 10 

and controlled. 11 

In this context, three key IFVs including the active material’s mass content (MC), solid-to-liquid ratio (STLR) 12 

and slurry viscosity from mixing process as well as one CP named coater comma gap (CG) from coating process 13 

are selected as the interested feature variables. Then an ARD kernel-based GPR framework is derived to quantify 14 

the weights of these four interested features and analyse their effects on the prediction performance of battery 15 

electrode mass load. In theory, STLR could reflect the mass ratios among the solid components (i.e., active 16 

materials, conductive additive materials as well as binder) and the mass of slurries (i.e., solvents and solid 17 

components). Slurry viscosity would highly affect the coating step and is generally related to the shear rates of 18 

coating. CG reflects the gap value between the comma roll and coating roll, which could impact the weight and 19 

thickness of coating products. To describe battery electrode property, the mass load of uncalendered electrode 20 

with the unit of mg/cm2 is utilised because it has a direct relation with the final electrode capacity. To well analyse 21 

these feature variables and select the most important features for predicting battery electrode property, the original 22 

dataset from Franco Laboratoire de Reactivite et Chimie des Solides (LRCS) is used in this study. The 23 

effectiveness of this dataset has been validated in (Cunha et al., 2020). More detailed information regarding the 24 

experimental design and process description can be found in (Cunha et al., 2020), which would not be repeatedly 25 

described here due to space limitation. According to this dataset, effective ARD-kernel based GPR models can be 26 

developed for predicting the electrode mass load. The feature weights as well as regression performance of various 27 

ARD kernels can be also quantified.  28 
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3. Technology  1 

In this section, the fundamental of GPR is first introduced, followed by the descriptions of designing various ARD 2 

kernels within GPR for feature weight analysis and selection. Furthermore, the performance indicators to quantify 3 

and evaluate model regression performance are also provided.  4 

3.1 Gaussian process regression 5 

Based upon the Bayesian framework, GPR provides a random procedure to conduct non-parametric regressions 6 

by the Gaussian process (Liu, K. et al., 2019; Tagade et al., 2020). For any inputs, GPR generally contains a mean 7 

function 𝑚(𝑗) and a covariance function 𝑘(𝑗, 𝑗′) to reflect the probability distributions as follows: 8 

                                                                           𝑓(𝑗)~𝐺𝑃𝑅(𝑚(𝑗), 𝑘(𝑗, 𝑗′))                                                        (1) 9 

where 𝑚(𝑗) and 𝑘(𝑗, 𝑗′) can be further expressed as: 10 

                                                   { 𝑚(𝑗) = 𝐸(𝑓(𝑗))𝑘(𝑗, 𝑗′) = 𝐸[(𝑚(𝑗) − 𝑓(𝑗′))(𝑚(𝑗) − 𝑓(𝑗′))]                                            (2) 11 

In real applications, 𝑚(𝑗) is usually set as zero to simplify the computational effort (Liu et al., 2020). Covariance 12 

function 𝑘(𝑗, 𝑗′) is also called as the kernel function to reflect the correlations between the target observations of 13 

training dataset and the prediction outputs by the similarities of respective input.   14 

 For a regression, the prior distributions of output could be defined as:  15 

                                                                              𝑦~𝑵(0, 𝑘(𝑗, 𝑗′))                                                                   (3) 16 

where 𝑵(.) is a distribution matrix. Supposing both training set 𝑗 and testing set 𝑗′  have the same Gaussian 17 

distribution, then the regression test outputs 𝑦′ will provide the joint prior distributions with the training outputs 18 𝑦 as (Rasmussen and Williams, 2006):  19 

                                                                   [ 𝑦𝑦′] ~𝑵(0, [ 𝑘(𝑗, 𝑗) 𝑘(𝑗, 𝑗′)𝑘(𝑗, 𝑗′)𝑇 𝑘(𝑗′, 𝑗′)])                                                   (4) 20 

where 𝑘(𝑗, 𝑗), 𝑘(𝑗′, 𝑗′) are the covariance values among inputs of training set and testing set, respectively. 𝑘(𝑗, 𝑗′) 21 

stands for the covariance values among inputs from training and testing sets. 22 

To achieve an efficient regression based on GPR model, the hyper-parameters 𝜃ℎ𝑝 within covariance or kernel 23 

function should be well tuned during training stage. A common and effective tuning way is through using gradient 24 
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descent or heuristic methods to minimize the negative log marginal likelihood L(𝜃ℎ𝑝) (Richardson et al., 2019; 1 

Yang, D. et al., 2018) as:    2 

           L(𝜃ℎ𝑝) = −𝑙𝑜𝑔𝑝(y|𝜃ℎ𝑝) = 12 𝑙𝑜𝑔[𝑑𝑒𝑡 𝑘(𝜃ℎ𝑝)] + 12𝑦𝑇𝑘−𝟏(𝜃ℎ𝑝)𝑦 + 𝑁2 𝑙𝑜𝑔(2𝜋)                       (5) 3 

      After tuning all 𝜃ℎ𝑝 within GPR model, the forested outputs 𝑦′ related to the dataset 𝑗′ could be obtained by 4 

computing its corresponding conditional distributions 𝑝(𝑦′|𝑗, 𝑦, 𝑗′) by: 5 

                                                             𝑝(𝑦′|𝑗, 𝑦, 𝑗′)~𝑵(𝑦′|�̅�′, 𝑐𝑜𝑣(𝑦′))                                                        (6) 6 

      with 7 

                                   { �̅�′ = 𝑘(𝑖, 𝑖′)𝑇[𝑘(𝑖, 𝑖)]−1𝑦𝒄𝒐𝒗(𝑦′) = 𝑘(𝑖′, 𝑖′) − 𝑘(𝑖, 𝑖′)𝑇[𝑘(𝑖, 𝑖)]−1𝑘(𝑖, 𝑖′)                                                  (7) 8 

where �̅�′ reflects the mean value of predictions. 𝒄𝒐𝒗(𝑦′) is a variance matrix of these predictions.  9 

3.2 ARD kernel structures  10 

According to the discussions in the above subsection, the kernel function within GPR must be carefully designed 11 

because it significantly affects the performance of GPR. Although there exist several powerful kernels for GPR 12 

in the literature, a suitable one designed for a specific application is favourable (Zhang et al., 2020). For real 13 

regression applications of GPR, some typical and efficient kernels are particularly noteworthy. 14 

The first one is the EX kernel with an exponential form as: 15 

                                                            𝑘𝐸𝑋(𝑖, 𝑖′)  = σEX2 𝑒𝑥𝑝 (− ‖𝑖−𝑖′‖σl )                                                       (8) 16 

where σEX and σl are two hyper-parameters to determine the amplitude and length ranges of EX kernel. On the 17 

basis of EX kernel, another popular kernel named squared-exponential (SE) kernel with two hyper-parameters 18 

(σSE and σl) can be derived as: 19 

                                                               𝑘𝑆𝐸(𝑖, 𝑖′)  = σSE2 𝑒𝑥𝑝 (− ‖𝑖−𝑖′‖22σl2 )                                                      (9) 20 

It should be known that both EX and SE kernels belong to the fundamental type in that the correlation between 21 

two various observations is purely affected by 𝑖 − 𝑖′, which would result in the smooth distributions. This may be 22 
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too strict for predicting battery electrode property with highly nonlinear behaviour. To further improve the 1 

nonlinear capture capability of GPR, two powerful covariance functions named Matern3/2 kernel and Matern5/2 2 

kernel as expressed in Eq. (9) and (10) can be adopted. 3 

                                            𝑘𝑀3/2(𝑖, 𝑖′)  = σM3/22 (1 + √3‖𝑖−𝑖′‖σl ) 𝑒𝑥𝑝 (− √3‖𝑖−𝑖′‖σl )                                         (10) 4 

                                                    𝑘𝑀5/2(𝑖, 𝑖′)  = σM5/22 (1 + √5‖𝑖−𝑖′‖σl + 5‖𝑖−𝑖′‖23σl2 ) 𝑒𝑥𝑝 (− √5‖𝑖−𝑖′‖σl )                         (11) 5 

where σM3/2  and σM5/2  stand for the hyper-parameters to control the amplitudes of Matern3/2 kernel and 6 

Matern5/2 kernel, respectively. σl is another hyper-parameter. 7 

In real applications with multiple input variables, although the EX, SE and Matern kernels have simple structure 8 

associated with a few hyper-parameters, they present limitations to fully capture the highly nonlinear relations. In 9 

our study, the inputs of interest are composed of four different IFVs (MC, STLR, CG, and viscosity). In order to 10 

well extract these input items as well as enhance the regression performance, conventional kernels including EX, 11 

SE, Matern3/2 and Matern5/2 are further reconstructed with the powerful ARD structures as ARDEX, ARDSE, 12 

ARDMatern3/2 and ARDMatern5/2 (Rasmussen and Williams, 2006), with the form of Eqs. (12), (13), (14) and 13 

(15), respectively. 14 

                                                  𝑘𝐴𝑅𝐷𝐸𝑋(𝑖, 𝑖′)  = σEX2 𝑒𝑥𝑝 (−∑ ‖𝑖𝑐−𝑖𝑐′‖σ𝑐𝐶𝑐=1 )                                                  (12) 15 

                                                       𝑘𝐴𝑅𝐷𝑆𝐸(𝑖, 𝑖′)  = σSE2 𝑒𝑥𝑝 (− 12∑ ‖𝑖𝑐−𝑖𝑐′‖2σ𝑐2𝐶𝑐=1 )                                               (13) 16 

                                            {  
  𝑘𝐴𝑅𝐷𝑀3/2(𝑖, 𝑖′)  = σM3/22 (1 + √3𝑟)exp(−√3𝑟)

𝑟 = √∑ ‖𝑖𝑐−𝑖𝑐′‖2σ𝑐2𝐶𝑐=1                                          (14) 17 

                                         {  
  𝑘𝐴𝑅𝐷𝑀5/2(𝑖, 𝑖′)  = σM5/22 (1 + √5𝑟 + 53 𝑟2) exp(−√5𝑟)𝑟 = √∑ ‖𝑖𝑙−𝑖𝑙′‖2σ𝑐2𝐶𝑐=1                                     (15) 18 
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As mentioned in related research (Jacobs, 2012; Zhang et al., 2020; Zhao et al., 2019), ARD kernel can be seen 1 

as a powerful tool to conduct features extraction and improve prediction performance in many industrial 2 

applications. By using the ARD kernel for battery electrode mass load prediction, the effects of input features 3 

(MC, STLR, viscosity and CG) on the prediction can be automatically adjusted by optimising and fixing various 4 

length scales for their hyper-parameters σ𝑐 (here 𝑐 = 1: 𝐶, 𝐶 is the total number of input items), yielding a sparse 5 

and explanatory subset of features. It should be known that for battery production applications, the effects of 6 

feature variables on the electrode mass load could not be always same. In comparison with the conventional 7 

kernels have only one length scale for all hyper-parameters, various predictors with different length scales of 8 

hyper-parameters in ARD kernels have the potential to reduce the effects of less irrelevant feature variables and 9 

improve prediction accuracy in theory. Besides, the value of σc could also reflect the importance and effect of 10 

related input item. A larger σ𝑐 results in a lower relevancy which indicates a less impact on the regression output. 11 

Benefited from this, ARD kernels could be utilised as efficient tools for direct feature variable selection. Through 12 

adopting ARD kernels for battery electrode mass load predictions, the importance weights of interested features 13 

are able to be quantified as well as selected, while the regression performance and generalization could be also 14 

enhanced by setting various length-scales of σ𝑐 . Detailed procedures of designing ARD kernels for battery 15 

intermediate product feature selection would be described in the next subsection. 16 

3.3 ARD kernel for feature selection 17 

As the electrode production chain is constituted of multiple intermediate processes involving numerous IFVs and 18 

CPs, establishing a data-driven model to present effective regression predictions and quantify the importance 19 

weight of feature variables is significantly attractive.  20 
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Fig. 2. GPR-based machine learning model to predict electrode mass load and analyse feature importance weights.  22 
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For the electrode production chain, the mixing and coating steps play the important roles in determining the 1 

electrode mass load, further affecting the final battery performance. In our study, to well capture the underlying 2 

correlations among feature variables and electrode mass load, a GPR-based machine learning model is designed 3 

and illustrated in Fig. 2, while the related ARD structure-based kernels would be derived as follows: 4 

                     𝑘𝐴𝑅𝐷𝐸𝑋(𝑖, 𝑖′)  = σEX2 𝑒𝑥𝑝 [− (‖𝑖𝑀𝐶−𝑖𝑀𝐶′ ‖σMC + ‖𝑖𝑆𝑇𝐿𝑅−𝑖𝑆𝑇𝐿𝑅′ ‖σSTLR + ‖𝑖𝐶𝐺−𝑖𝐶𝐺′ ‖σCG + ‖𝑖𝑉−𝑖𝑉′ ‖σV )]                        (16) 5 

                   𝑘𝐴𝑅𝐷𝑆𝐸(𝑖, 𝑖′)  = σSE2 𝑒𝑥𝑝 [− 12 (‖𝑖𝑀𝐶−𝑖𝑀𝐶′ ‖2σMC2 + ‖𝑖𝑆𝑇𝐿𝑅−𝑖𝑆𝑇𝐿𝑅′ ‖2σSTLR2 + ‖𝑖𝐶𝐺−𝑖𝐶𝐺′ ‖2σCG2 + ‖𝑖𝑉−𝑖𝑉′ ‖2σV2 )]                   (17) 6 

                                     {  
  𝑘𝐴𝑅𝐷𝑀3/2(𝑖, 𝑖′)  = σM3/22 (1 + √3𝑟)𝑒𝑥𝑝(−√3𝑟)
𝑟 = √‖𝑖𝑀𝐶−𝑖𝑀𝐶′ ‖2σMC2 + ‖𝑖𝑆𝑇𝐿𝑅−𝑖𝑆𝑇𝐿𝑅′ ‖2σSTLR2 + ‖𝑖𝐶𝐺−𝑖𝐶𝐺′ ‖2σCG2 + ‖𝑖𝑉−𝑖𝑉′ ‖2σV2                                            (18) 7 

                                   {  
  𝑘𝐴𝑅𝐷𝑀5/2(𝑖, 𝑖′)  = σM5/22 (1 + √5𝑟 + 53 𝑟2) 𝑒𝑥𝑝(−√5𝑟)𝑟 = √‖𝑖𝑀𝐶−𝑖𝑀𝐶′ ‖2σMC2 + ‖𝑖𝑆𝑇𝐿𝑅−𝑖𝑆𝑇𝐿𝑅′ ‖2σSTLR2 + ‖𝑖𝐶𝐺−𝑖𝐶𝐺′ ‖2σCG2 + ‖𝑖𝑉−𝑖𝑉′ ‖2σV2                                           (19) 8 

where all ARD kernels have the same set of input items as 𝑖 = {𝑖𝑀𝐶 , 𝑖𝑆𝑇𝐿𝑅 , 𝑖𝐶𝐺 , 𝑖𝑉}. σMC, σSTLR, σCG, and σV 9 

represent the hyper-parameters to reflect the relevancies and importance of feature variables including MC, STLR, 10 

CG and viscosity, respectively. Based upon these defined ARD kernels, the detailed workflow to design GPR 11 

model for the feature selection and the regression prediction of electrode mass load is illustrated in Table 1. 12 

 13 

Table 1. Detailed workflow to design the ARD kernel-based GPR for feature selection and regression of electrode mass load 14 

1: Procedure: data pre-process and ARD kernel-based GPR training 

        a. Remove obvious outliers of original data 

        b. Prepare the proper inputs-output pairs for GPR training. Here the inputs are four intermediate feature 

variables while output is the related electrode mass load.  

       c. Optimise hyper-parameters 𝜃ℎ𝑝 within ARD kernel-based GPR to minimize its L(𝜃ℎ𝑝) through four 

folds cross-validation. Afterwards, obtain the well-trained GPR model 𝐺𝑃𝑅𝐴𝑅𝐷(𝜃ℎ𝑝). 
End procedure 

2: Procedure: feature selections and regression of electrode mass load  

        a. According to the 𝜃ℎ𝑝, calculate the feature weights by using the equation as follows: 

                                                            𝑊 = 𝑒𝑥𝑝 (−𝜃ℎ𝑝)                                                                     (20) 
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           where 𝜃ℎ𝑝 = {σMC, σSTLR , σCG, σV} represent the well-tuned hyper-parameters of feature variable 

MC, STLR,CG and viscosity, respectively. 𝑊 = {WMC, WSTLR, WCG, WV}  are their corresponding 

feature weights through taking the exponential of  the negative hyper-parameters.  

       b. Quantify the feature importance by normalizing feature weights as: 

                                                𝑊 = 𝑊/(WMC +WStLr +WCG +WV)                                            (21) 

       c. For a new sample 𝑖′ from testing dataset, use the well-trained 𝐺𝑃𝑅𝐴𝑅𝐷(𝜃ℎ𝑝) to predict related electrode 

mass load 𝑦′ as: 

                                                         𝑦′ = 𝐺𝑃𝑅𝐴𝑅𝐷(𝑖′|𝜃ℎ𝑝)                                                              (22) 

End procedure 

 1 

It should be known that taking the exponential of the negative learned 𝜃ℎ𝑝 and normalizing 𝑊 is one common 2 

solution to make the quantified feature weights become more convenient for comparison purpose (Zhang et al., 3 

2020; Zheng and Casari, 2018). Different weighting solutions such as the inverse of 𝜃ℎ𝑝 would lead the final 4 

quantified weight values slightly change but it would not affect the ranking of features. The feature with higher 5 

ranking (larger normalized weight value) means this feature is more important than others in determining the 6 

prediction result of electrode mass load. The quantified weight values here cannot be utilised to reflect the specific 7 

contribution proportion of using these feature variables (Dong and Liu, 2018; Zheng and Casari, 2018).  In light 8 

of this, all feature weights are uniformly quantified by using Eqs. (20) and (21) in our study. Following this 9 

workflow, the weights of input items including the MC, STLR, viscosity from mixing step and the CG from 10 

coating step can be directly quantified to reflect their importance. Then the reliable feature selections can be 11 

carried out based on these quantified feature weights. Besides, the designed ARD kernel-based GPR model is 12 

capable of generating an explanatory subset of features by setting different hyper-parameters for all inputted 13 

feature variables, further helping to improve the performance and generalization ability of electrode mass load 14 

regression. 15 

3.4 Performance metrics 16 

To investigate the performance of the designed ARD-kernel based GPRs in electrode mass load prediction, the 17 

following four performance metrics are utilised. 18 

1) Training time: to evaluate and compare the computation efforts of different ARD kernels, the time during GPR 19 

training process is utilised. In our study, all GPR regression models are trained through using the GPR toolbox in 20 
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Matlab 2018b. The training time with the unit second (s) for GPR model can be conveniently obtained by using 1 

tic, toc codes from the Matlab. 2 

2) Mean absolute error (MAE): supposing 𝑁 represents the total amount of regression samples, 𝑦𝑗 are the actual 3 

testing values while �̂�𝑗stand for the regression values from GPR, then the MAE can be obtained to evaluate the 4 

accuracy of predictions as follows: 5 

                                                                       MAE = 1𝑁∑ |𝑦𝑗 − �̂�𝑗|𝑁𝑗=1                                                            (23) 6 

3) Root mean square error (RMSE): RMSE is another typical indicator to illustrate the deviations between the 7 

regression and actual testing values as follows: 8 

                                                                       RMSE = √1𝑁∑ (𝑦𝑗 − �̂�𝑗)2𝑁𝑗=1                                                            (24) 9 

4. Results and discussions 10 

To well analyse and evaluate the feature selection and regression performance of GPR with various ARD kernels, 11 

two case studies including the one with all features as well as another with reduced features are carried out in this 12 

section.   13 

4.1 Case study 1: all features 14 

For case study 1, to quantify the weights of interested feature variables on the regression of electrode mass load, 15 

all feature items including MC, STLR, CG and viscosity are utilised as the inputs for GPR models. The regression 16 

performance of all four ARD kernels are evaluated using the four-fold cross-validation. Fig. 3 and Table 2 17 

illustrate the regression results and the corresponding performance metrics for the four ARD kernel-based GPRs, 18 

respectively. 19 
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 1 

 2 

Fig. 3. Regression results through using all feature items for battery electrode mass load predictions: (a) ARDEX kernel, (b) 3 

ARDSE kernel, (c) ARDMatern3/2 kernel, (d) ARDMatern5/2 kernel.  4 

Obviously, most observations in Fig. 3 agree well with the outputs from four GPRs, indicating that the used ARD 5 

kernels can achieve satisfactory prediction results for the electrode mass load. Quantitatively, due to the simplest 6 

structure, ARDEX kernel-based GPR can be well-trained within 13.547 s, while its accuracy is the worst with 7 

1.177mg/cm2 RMSE. In contrary, ARDMatern5/2 kernel-based GPR results in the longest training time of 14.487s 8 

(6.9% increase) but its RMSE value is the lowest with 1.084 mg/cm2 (by decreasing 7.9%). However, all training 9 

time are within 14.5s, which implies that the computational efforts of four ARD kernels are acceptable. In 10 

conclusion, through using all feature variables as the input items for ARD kernel-based GPR, expected accuracy 11 

can be achieved for the prediction of battery electrode mass load. 12 

Table 2.  Performance metrics for regressions through using all feature items 13 

Kernel types ARDEX ARDSE ARDMatern3/2 ARDMatern5/2 

Training time [s] 13.547 13.687 14.154 14.487 

MAE [mg/cm2] 0.946 0.913   0.911 0.875 

RMSE [mg/cm2] 1.177 1.126 1.124 1.084 



P a g e  | 16 

 

 1 

 2 

 3 

Fig. 4. Predicted versus actual plots through using all feature items: (a) ARDEX kernel, (b) ARDSE kernel, (c) ARDMatern3/2 4 

kernel, (d) ARDMatern5/2 kernel.   5 

To further reflect the deviations of regression results, the predicted versus actual plots (PVAPs) for all ARD 6 

kernel-based GPRs are shown in Fig. 4. It should be known that in the PVAPs, for the observations on the left or 7 

right of plots, the furthest from the average value would produce the most leverages and effectively pull the 8 

prediction line toward that observation. For a good regression model, the observations should cluster around the 9 

perfect prediction line. According to Fig. 4, all observations are clustered around the perfect prediction lines 10 

without large outliers, indicating that the ARD kernel-based GPRs are capable of achieving satisfactory regression 11 

results with a few deviations for the all feature case.   12 
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  1 

  2 

Fig. 5. Obtained feature weights through using various ARD kernels: (a) ARDEX kernel, (b) ARDSE kernel, (c) ARDMatern3/2 3 

kernel, (d) ARDMatern5/2 kernel.   4 

Next, according to the well-tuned GPR models, the normalized feature weights from hyper-parameters of all four 5 

ARD kernels are plotted in Fig. 5. Interestingly, although there exists difference among each feature variable, the 6 

trend of feature weights is similar for all ARD kernels. Specifically, CG provides the largest feature weight, which 7 

is nearly twice as large as the STLR. In contrary, viscosity presents the smallest feature weight (nearly five times 8 

less than the CG). The feature weights of STLR are all a slightly larger than those of MC for these ARD kernel 9 

cases. This finding signifies that among these four feature variables, CG is the most important one and must be 10 

selected for electrode mass load prediction. STLR and MC are the second and third important feature items. In 11 

contrast, viscosity makes the least contribution to predicting the battery electrode mass load. 12 

4.2 Case study 2: reduced features 13 

According to the above case study, the weights of all these four feature items are quantified from the hyper-14 

parameters within ARD kernel. Then the importance of these feature variables can be successfully ranked. In 15 

accordance with the analysis in Section 4.1, reduced feature tests accounting for less features are carried out in 16 

this section to further evaluate the effectiveness of feature ranking. Specifically, the most important three feature 17 

variables including CG, STLR and MC are utilised as the input items to evaluate the performance of all ARD 18 
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kernel-based GPRs again with four-fold cross-validation. As the number of feature items in our study is limited 1 

as four, removing the least important feature item is enough to evaluate the sensitivity analysis of feature variables 2 

in such cases (Zheng and Casari, 2018). When more data of feature variables from battery production chain are 3 

collected to generate a larger feature pool, a solution by setting the threshold for eliminating the particular feature 4 

variables with lower quantified weights can be utilised due to its flexibility. The regression results through using 5 

these reduced feature items and the corresponding performance indicators are presented in Fig. 6 and Table 3, 6 

respectively.  7 

8 

 9 

Fig. 6. Regression results through using reduced feature items for battery electrode mass load predictions: (a) ARDEX kernel, 10 

(b) ARDSE kernel, (c) ARDMatern3/2 kernel, (d) ARDMatern5/2 kernel.  11 

Table 3.  Performance metrics for regressions through using reduced feature items 12 

Kernel types ARDEX ARDSE ARDMatern3/2 ARDMatern5/2 

Training time [s] 11.237 11.632 12.986 13.124 

MAE [mg/cm2] 1.197 1.066 0.997 0.985 

RMSE [mg/cm2] 1.433 1.324 1.222 1.204 

 13 
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It can be noticed that removing one feature item (viscosity) contributes to reducing the training time of all ARD 1 

kernel cases. The maximum training time is 13.124 s for ARDMatern5/2 kernel, which is 9.4% less than its 2 

counterpart with full feature. As observed from Fig. 6, although there exist a few more obvious mismatched 3 

observations, most observations can be still well predicted by the ARD kernel-based GPRs. Quantitatively, the 4 

worst regression performance is observed from ARDEX, with 1.433mg/cm2 RMSE (17.7% increase in 5 

comparison with that of all feature case). The ARDMatern kernels still achieve the best regression performance, 6 

which are 1.222mg/cm2 RMSE for ARDMatern3/2 (8.7% increase) and 1.204mg/cm2 RMSE (9.9% increase) for 7 

ARDMatern5/2, respectively. These results imply that the GPR with ARDMatern kernels provide better accuracy 8 

for electrode mass load prediction in both all feature case and reduced feature case.  9 

10 

 11 

Fig. 7. Predicted versus actual plots through using reduced feature items: (a) ARDEX kernel, (b) ARDSE kernel, (c) 12 

ARDMatern3/2 kernel, (d) ARDMatern5/2 kernel.   13 

To reflect the deviations of these regression results, the PVAPs using GPRs with reduced feature variables are 14 

shown in Fig. 7. In comparison with the PVAPs using all features, the deviations of observations in the reduced 15 
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feature case spread over a wide uncertain region. However, all observations are still dispersed around the perfect 1 

prediction lines closely, which means that none obvious prediction outliers are generated in all ARD kernel cases. 2 

In summary, after removing the viscosity item with the lowest feature weight, the ARD-kernel based GPRs can 3 

still provide satisfactory regression results for electrode mass load. These results imply that the feature importance 4 

weights can be successfully quantified by the designed ARD kernel. For the battery production chain that contains 5 

numerous feature variables, the proposed ARD kernel-based GPR is able to not only reduce the feature dimension 6 

but also guarantee the performance of electrode property regression, further helping to promote the efficiencies.  7 

In our study, following the same flow in many feature engineering applications (Dong and Liu, 2018; Zheng and 8 

Casari, 2018), the ARD-kernel based GPR with all features is first utilised to get importance ranking of these 9 

features and then the reduced features GPR is adopted for further evaluating the correctness of selected features. 10 

Due to the number of features is four, we only remove a feature variable with lower importance weight in the 11 

reduced feature GPR case, further resulting the training time is not highly reduced. As battery production chain is 12 

a highly-complicated process with numerous feature variables in total, monitoring all feature variables and using 13 

full features to build a model is time-consuming and unrealistic. In light of this, when more feature data within 14 

battery production chain are available, the advantages of using a reduced features GPR would become more 15 

obvious as it could help to remove more irrelevant feature items and reduce the training time without sacrificing 16 

much accuracy.  17 

4.3 Performance comparison with conventional kernels 18 

 19 
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 1 

Fig. 8. Comparison results through using conventional kernels with all feature items: (a) EX kernel, (b) SE kernel, (c) Matern3/2 2 

kernel, (d) Matern5/2 kernel.  3 

Table 4.  Performance metrics for regressions through using all feature items 4 

Kernel types EX SE Matern3/2 Matern5/2 

Training time [s] 13.323 13.586 13.964 13.959 

MAE [mg/cm2] 0.994 0.983   0.958 0.907 

RMSE [mg/cm2] 1.317 1.292 1.184 1.151 

 5 

To further reflect the prediction performance of ARD kernels, four GPR models with the related conventional 6 

kernels of EX, SE, Matern3/2 and Matern5/2 are adopted as the benchmarks for comparison purpose. According 7 

to the specific forms as illustrated in Eqs. (8), (9), (10) and (11), these convention kernels without ARD structure 8 

cannot directly quantify the feature importance as the hyper-parameters of all four feature items within the kernel 9 

are same.  Fig. 8 and Table 4 illustrate the regression results and corresponding performance metrics of using all 10 

four feature items as inputs to the conventional kernel-based GPRs after four-folds cross-validation. It can be seen 11 

that EX kernel shows the worst results, while Matern3/2 and Matern5/2 provide better regression results. Here the 12 

RMSEs of all conventional kernels are a slightly worse than the related ARD kernels (5% increase). Therefore, 13 

apart from the superiority in terms of interpretability of feature importance, ARD kernel-based GPRs also present 14 

competent performance in the prediction of battery electrode mass load.  15 

4.4 Implications for theory and practice on battery production 16 

The ARD kernels-based GPR machine learning framework proposed in this study has extensive application 17 

prospects for the predictions of battery product properties and the sensitivity analysis of various feature variables 18 

in battery production application. For instance, the properties of manufactured electrode play a key role in 19 
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determining the battery final performance (energy or power densities, maximal capacity and service life), which 1 

must be carefully predicted and managed. Besides, the battery production chain contains many intermediate stages 2 

such as mixing, coating, drying and calendaring. All these stages cover multiple disciplines such as mechanical, 3 

chemical and electrical engineering, making the traditional sensitivity analysis by trial and error way is 4 

significantly time-consuming. Another complication is that battery production chain has numerous strong-coupled 5 

feature variables in total, monitoring all feature variables and using full features to build a model is inefficient and 6 

unrealistic. In light of this, this paper proposes the idea to simultaneously predict battery electrode property and 7 

analyse feature importance through machine learning approach. When more feature data within battery production 8 

chain are available, the proposed framework could help to remove more irrelevant feature items and reduce the 9 

training time without sacrificing much accuracy. The battery manufacturer can utilise the feature importance 10 

information and property prediction results from our model to redesign the monitor variables and readjust the 11 

process parameters to improve the manufacturing performance, so as to ensure the effectiveness of monitored 12 

feature variables and the satisfactory qualities of cleaner battery production. 13 

5. Conclusion 14 

As the electrode production plays a key role in affecting the results and performance for cleaner battery production, 15 

the efficient electrode mass load prediction and feature selection of battery intermediate products are presented in 16 

this study. An advanced machine learning approach, based on the GPR technology with various ARD kernels, is 17 

developed to effectively predict the battery electrode mass load. Meanwhile, the importance weights of four 18 

feature variables of interest in the mixing and coating steps are also directly quantified through analysing the 19 

hyper-parameters within ARD kernels. According to the quantitative comparison and sensitivity analysis of results, 20 

the main conclusions can be summarized as: 21 

1) The ARD kernel-based GPRs are capable of not only predicting electrode mass load (here the RMSEs are at 22 

least 5% better than those from conventional kernel-based GPRs) but also well quantifying the importance weights 23 

for all four feature variables (MC, STLR, CG and viscosity). The obtained importance ranking can well benefit 24 

the feature selection and model dimension reduction for efficient battery production. 25 
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2) Among four ARD kernel functions, the ARDMatern5/2 kernel achieves the best regression performance for 1 

the cases of either using all feature items (at least 4% improved) or reduced feature items as inputs (at least 2% 2 

improved), making it more suitable for property prognostics of battery electrode production. 3 

3) CG from coating stage is most crucial for electrode mass load regression among four feature variables of interest. 4 

Here the quantified importance value of CG is twice more than others. Therefore, CG should be well monitored 5 

and controlled to obtain electrode product with reliable performance. 6 

4) On the contrary, viscosity from mixing stage makes the least contribution to the electrode mass load regression 7 

(9.9% RMSE increases). To further improve the performance of electrode mass load prognostics in battery 8 

production, the battery manufacturer should pay more attention to MC and STLR when operating the mixing stage.  9 

This is the first known application by deriving ARD kernel-based GPR framework to directly and simultaneously 10 

predict battery electrode property as well as analyse feature importance. As the designed machine learning 11 

framework in our study belongs to a data-driven approach with the superiority in terms of accuracy and flexibility, 12 

it can be conveniently extended to analyse other variables within the battery production chain when the 13 

corresponding data are available. Our future work would focus on designing extra experiments to generate more 14 

available data from other battery production process (i.e., mixing, drying and calendaring), and then to conduct 15 

reliable sensitivity analysis and feature selection for more variables within battery production chain, further 16 

benefitting the cleaner battery production and optimal energy storage system design. 17 
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