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Approximate methods for the solution of quantum wires and dots:
Connection rules between pyramidal, cuboidal, and cubic dots

M. Califanoa) and P. Harrison
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering,
University of Leeds, LS2 9JT, United Kingdom

~Received 20 April 1999; accepted for publication 29 July 1999!

Energy eigenvalues of the electronic ground state are calculated for rectangular and triangular
GaAs/Ga0.6Al0.4As quantum wires as well as for cuboidal and pyramidal quantum dots of the same
material. The wire ~dot! geometries are approximated by a superposition of perpendicular
independent finite one-dimensional potential wells. A perturbation is added to the system to improve
the approximation. Excellent agreement with more complex treatments is obtained. The method is
applied to investigate the ground state energy dependence on volume and aspect ratio for finite
barrier cubic, cuboidal, and pyramidal quantum dots. It is shown that the energy eigenvalues of
cubes are equal to those of cuboids of the same volume and aspect ratio similar to one. In addition,
a relationship has been found between the volumes of pyramidal quantum dots~often the result of
self-assembling in strain layered epitaxy! and cuboidal dots with the same ground state energy and
aspect ratios close to one. ©1999 American Institute of Physics. @S0021-8979~99!04721-0#

I. INTRODUCTION

While the long term interest in semiconductor quantum
well heterostructures is beginning to yield a generation of
electronic devices which exploit quantum mechanical
properties,1 attention is now turning towards solid state sys-
tems with a higher degree of carrier confinement. The impe-
tus at the moment is to understand the electronic and optical
properties of these quantum wires and dots2–8 in order to
evaluate their potential in the next generation of electronic
and photonic devices.

The theoretical understanding of the basic properties of
the two-dimensional electron~or hole! systems in quantum
wells is well developed. However the added degrees of quan-
tum confinement exhibited in lower dimensional systems,
i.e., one-dimensional~1D! quantum wires and zero-
dimensional~0D! quantum dots, produces a greatly increased
complexity in the Schro¨dinger equation which is usually the
cornerpiece of theoretical methods.

Approaches to developing theoretical models for the
lower dimensional systems are often generalizations of quan-
tum well methods. For example, the generalization of the
empirical pseudopotential technique from a superlattice to a
quantum wire or dot is straightforward and merely involves a
change in the atomic base.9 However, the compromise is that
the standard computational implementation which is based
around direct diagonalization of the Hamiltonian matrix is
only solvable for several hundred atoms at most, because of
the rapidly increasing base set required. Qualitatively sim-
pler physical models such as the envelope function/effective
mass approximations conversely produce highly complex
multidimensional Schro¨dinger equations which need to be
solved with finite element analysis10 or plane wave
expansions.11

The purpose of this work is to introduce a simple, almost
analytical, technique for approximating the solutions in both
rectangular cross-section wires and cuboid quantum dots, as
well as demonstrating possible routes to the more difficult
triangular cross-section wires,12,13and strategically important
pyramidal dot.3,4,7,10The approach is based upon construct-
ing the required multidimensional solutions to Schro¨dinger’s
equation from combinations of decoupled one-dimensional
quantum well solutions. These approximate solutions can be
improved by the addition of an appropriate correction from
perturbation theory.

II. THEORY

The starting point is the three-dimensional time-
independent Schro¨dinger equation in the effective mass ap-
proximation

F2

\2

2 S ¹
1

m* ~x,y ,z !
¹ D 1V~x,y ,z !GC~x,y ,z !

5EC~x,y ,z !, ~1!

wherem* represents the effective mass of the carriers and
the confinement system is specified by the spatial dependen-
cies.

If V(x,y ,z) is a general potential energy there is no easy
way to solve this equation, but great simplifications occur if
it can be written as a sum of three independent potentials
V(x), V(y), V(z), as is the case for a rectangular quantum
wire ~or a cuboidal quantum dot! surrounded by an infinite
confining potential, which represents theN- ~two- or three-!
dimensional analogy to the one-dimensional infinitely deep
quantum well. For such a potential it is possible to separate
the motion along the three coordinate axis and the three-
dimensional Schro¨dinger equation decouples intoN identical
one-dimensional quantum well and 32N free particle equa-a!Electronic mail: eenmc@sun.leeds.ac.uk
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tions. The 3D eigenfunction is therefore the product of three
one-dimensional eigenfunctions, and the total energy is the
sum of the individual components.

In the more realistic situation of a finite confining poten-
tial it is no longer possible to write the potentialV(x,y ,z) as
a sum of independent terms, thus the motion cannot be sepa-
rated into normal independent components.

A very useful~even though rough! approximation, how-
ever, could be to allow the motion in the finite case to be
decoupled, thus considering the total potentialV(x,y ,z) as a
sum of N ~two for the wire, three for the dot! independent
one-dimensional finite quantum wells, each with a depth
equal to the real confining potential, as is sketched in Fig. 1
for the case of the wire~the generalization to the dot is
straightforward!.

The size of the barrier is so chosen that the wave func-
tion is zero at the boundaries. The only difference with the
real potential is in the corners in the barrier region outside
the wire, where the two one-dimensional potentials overlap
giving rise to a value of 2V ~for the dot we have outer re-
gions where either two or three one-dimensional well poten-
tial overlap giving a value of 2V or 3V for the total poten-
tial!.

Typical wires and dots have characteristic dimensions
greater than 100 Å, a range where the penetration of the
wave function into the barrier is small, thus the approxima-
tion with this potential could be good.

We can account for this deviation from the real potential
by adding to the Hamiltonian a perturbationV8 which takes
the value2V (2V and 22V for the dot! in these critical
areas, restoring the correct value ofV(x,y ,z)5V every-

where. A sketch of this perturbation forN52 ~wire! is pre-
sented in Fig. 1~with a further perturbation which restricts
the motion in a triangular wire!. The problem of solving:

F2

\2

2 S ¹
1

m* ~x,y ,z !
¹ D 1V~x,y ,z !1V8~x,y ,z !GC~x,y ,z !

5EC~x,y ,z !, ~2!

can now be treated by means of time-independent perturba-
tion theory, since, although the perturbation is large com-
pared to the energy eigenvalues of the system, it is weighted
over regions where the eigenfunctions and hence the matrix
elementŝ C juV8uC i& are small.

Therefore, the eigenfunctions are a product ofN one-
dimensional finite well solutions and the total energyE
5E (0)

1E (1)
1 . . . , whereE (0) is simply the sum of the cor-

responding finite well energies and the first order correction
to thenth energy eigenvalue is

En
(1)

5^CnuV8uCn&. ~3!

We have found that it is not necessary to go further to higher
perturbation orders, since the second order correction is al-
ready negligible~of the order of a few percent of the first
order correction!.

III. RESULTS

Energy eigenvalues and eigenvectors were calculated for
rectangular and triangular GaAs/Ga0.6Al0.4As quantum wires
as well as for cuboidal and pyramidal quantum dots of the
same material. In the calculations the following parameters
have been used:14 for electrons: mW50.0665m0 , mB

50.0858m0 , V5276 meV; for heavy holes: mW

50.3774m0 , mB50.3865m0 , V5184 meV.m0 is the free
electron mass. The one-dimensional wave function and ener-
gies are then used to calculate numerically the matrix ele-
ments of the perturbation and the totalN-dimensional
energy.

A. Rectangular cross-section quantum wires

Calculations have been made for different values of the
base widthb, ranging from 20 to 220 Å keeping the ratio
between base widthb and heighth constantb/h520/14. The
results are presented in Fig. 2. The graph on the left-hand
side illustrates the total energyEgs5Egs

(0)
1Egs

(1) of the elec-
tronic ground state in the wire as a function ofb. The energy

FIG. 1. Confining potential for a rectangular wire, as assumed in our model:
left-hand side. Perturbation used for the case of a triangular wire: right-hand
side.

FIG. 2. Energy eigenvalues of rectan-
gular quantum wires~barrier potential:
dashed line!: left-hand side. First per-
turbation order correction to the energy
eigenvalues of rectangular quantum
wires: right-hand side.
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decreases, as expected, as the wire width increases, as a con-
sequence of the inverse-of-the-well-width dependence of the
one-dimensional unperturbed energies. The value ofE is
greater than the confining potential for a wire width of 20 Å
showing that this state is not bound. This is in contrast with
the theoretical prediction that 2D wells have always at least
one bound state, however shallow or narrow the well,15 and
could mean that our model is not suitable for very narrow
wires with linear dimensions less than 40 Å. This inadequacy
of the model to reproduce the behavior of narrow systems is
also shown in Fig. 2~right-hand side!, where the first pertur-
bation order correction is presented as a function of the base
width b. The correction is large forb520 Å, whereas it very
small for all the other base widths, constituting ana poste-
riori justification of our initial assumptions about the appli-
cability of the perturbative method to this particular case.
This correction becomes negligible forb.140 Å as the
value of the ground state wave function in the corners tends
to zero.

B. Cuboidal quantum dots

The 3D quantum-confinement structure treated in this
section is a cuboid with the dimensionsLx , Ly , and Lz ,
obtained starting from the rectangular wire configuraton of
Sec. III A by adding along the directionz of the free motion,
between2Lz/2 andLz/2, a further one-dimensional well~fi-
nite! confining potential perpendicular to~and of the same
height of! the other two potential wells.

Since our method is a simple approach to the study of
zero-dimensional systems, we wanted to avoid all the unnec-
essary complications such as those deriving from the use of
the degenerate perturbation theory: therefore we consider
only dots of cuboidal shape~i.e., with different dimensions
Lx , Ly, and Lz) and not regular cubes, the energy of the
one-dimensional well in each directioni (i5x, y, z) in
which the motion is decoupled depending only on the well
width L ~the dimensionL i in that direction!.

It has been reported16 that finite barrier cubic quantum
dot energy eigenvalue calculations agree to within 3% of
those for a sphere with a volume of (0.96)3 times the volume
of the cube.

Assuming a similar equivalence formula to hold for the
cuboidal case, we have chosen the dimensionsL i so that the
volume of the resulting cuboid was the same as that of a
cube of sideLx , and the aspect ratioQc ~which in this case
we define as the square root of the base surface divided by
the height! was similar to one (Qc51.09!.

Although we are aware that the hole band structure com-
plexity requires a more sophisticated approach to be treated
properly, heavy holes energy eigenvalues have been calcu-
lated within our simple model as well, by using the well and
barrier effective masses and the confining potential value
listed in Sec. III. It has been found16 that the effect of the
nonparabolicity of the bands does not significantly affect the
energy eigenvalues for the GaAs/Ga0.6Al0.4As system.

Electron and hole energy eigenvalues as well as the en-
ergy shift are presented in Fig. 3, as a function of theLx

dimension, together with the results obtained by Gango-

padhyay and Nag16 for the energy shift of electron-heavy-
hole transitions for cubic dots of sideLx , by means of a
plane wave expansion of the envelope function~unfortu-
nately experimental results are not available for this kind of
3D quantum-confinement structures with sharply defined in-
terfaces!. Our calculated values are in excellent agreement
~to within less than 2% forLx550 Å to less than 0.5% for
Lx5250 Å! with those relative to the cubic structure. Such
an agreement, while not very surprising for dimensions
greater than 90 Å~where the calculated values differ from
those obtained for the infinite-barrier model by about 2% in
Ref. 16!, is striking for smaller structures, considering the
simplicity of our method if compared to that used in Ref. 16,
where the envelope function is expanded in terms of a com-
plete orthonormal set of periodic functions and the energy
eigenvalues derived by diagonalizing the resultant matrix
equation. This proves the suitability of our perturbative
method for the study of simple shaped 3D structures.

The first perturbation order correction to the ground state
energy for electrons and heavy holes is presented in Fig. 4.
As in the rectangular wire case, this correction for the elec-
trons is less than 1% of the unperturbed energy forLx

5100 Å ~for Lx550 Å it is less than 5%! and becomes
negligible for wider quantum boxes, where the penetration of
the wave function into the barrier is smaller. This behavior is
even more accentuated in the heavy holes case, where the
heavier effective mass is responsible for the smaller value of
the wave function in the classically excluded region.

The equivalence between the energy eigenvalues of
cuboids and cubes of the same volume has been explored by
performing further calculations for cuboids with differents
aspect ratios over a wide range of volumes. As expected, the
behavior of the energy as a function of the aspect ratio
E(Qc) is symmetrical with respect toE(1) in the range in-
vestigated@in other wordsE(Qc)'E(1/Qc), for Qc<3], be-
cause of the symmetry of the cube.

We have found the energy variationDE(Qc)5uE(Qc)
2E(1)u, between the energy of a cuboid of aspect ratioQc

and a cube of the same volume, to have some volume depen-
dency. The energy has been found to be to within 3% of that
of the cube for aspect ratios ranging from 0.67 to 1.5. for

FIG. 3. Energy eigenvalues of quantum cuboids. Electrons: squares; heavy
holes: diamonds; energy shift of electron-heavy-hole transitions: triangles;
theoretical data of the same energy shift from Ref. 16: circles~dashed line!.
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~100 Å!3 cuboids. For~50 Å!3 cuboids the same variation of
energy occurs over a wider range ofQc , i.e., from 0.526 to
1.9, whereas for~250 Å!3 cuboids for 0.76,Qc,1.3. In
other words forQc in that range the ground state energy
levels of the cuboids are almost~to within 3%! undistin-
guishable from those of the cubes of the same volume.

C. Triangular cross-section quantum wires

The starting point is the rectangular wire of Sec. III A.
To reproduce the triangular shape, we proceed as before and
add to the Hamiltonian~1! a perturbationVpert(x,y ,z)
5V8(x,y ,z)1V9(x,y ,z), where V8 is the same as before
and accounts for the overlap of the one-dimensional well
potentials, andV95V within the triangular shaded regions of
Fig. 1 right-hand side, the boundaries being given by

y5

2xLy

Lx
1Ly , ~4!

y52

2xLy

Lx
1Ly . ~5!

We again try to solve the new Schro¨dinger equation

F2

\2

2 S ¹
1

m* ~x,y ,z !
¹ D 1V~x,y ,z !

1Vpert~x,y ,z !GC~x,y ,z !5EC~x,y ,z !, ~6!

using the perturbative method. In this case, however, the
perturbation unlike the rectangular wire case covers an area
inside the 2D well where the wave function is expected to
assume high values, so that the matrix elements ofV9 are not
small compared to the energy eigenvalues. This, in principle,
limits a priori the applicability of the perturbative method to
medium sized wires and low energy states, where the wave
functions should have the smallest value in the new barrier
region. The results are shown in Figs. 5 and 6. The total
ground state energy

Egs5Egs
(0)

1Egs
(1)

1Egs
(2) , ~7!

is displayed in Fig. 5 as a function of the triangular wire
base. The second order perturbation correction for base
widths greater than 60 Å~since withb560 Å there are only
two bound states in the one-dimensional well, which are not

enough to perform a proper second order calculation! have
also been included. As expected, here we again find the un-
bounded state forb,40 Å as in Fig. 2. A new feature of this
graph is the behavior of the energy for base widths greater
than 180 Å where it becomes negative.

As seen from Fig. 6 it is a consequence of the second
order correction whose value is negative and higher, in
modulus, than that of the sum of the unperturbed energy and
the first order term. Figure 6 also shows the limitations of
this perturbative approach for the wider triangular wires: the
second order term diverges, rather than converging towards
zero, as the base width becomes wider, and becomes pre-
dominant compared to the unperturbed one.

Furthermore, comparing Figs. 6 and 5 it is apparent that
the first order correction becomes greater than~or of the
same order of magnitude as! the unperturbed energy forb
;100 Å. So, even if the first order terms seem to converge
slowly towards zero asb increases, their values are too high
to be considered just a small correction to the unperturbed
energy, in other words the perturbation which has been in-
troduced to produce the triangular shape cannot be consid-
ered small, which is the essential feature for this approach to
give accurate results. Nevertheless, the energy eigenvalues
calculated for wire bases of 100 and 140 Å are in very good
agreement with those obtained by Gangopadhyay and Nag12

~unfortunately they do not provide data for base widths less
than 100 Å! in their more sophisticated calculations using the
eigenfunctions of an infinite-barrier triangular wire as basis
functions for expanding the envelope function.

FIG. 4. First order correction to the
ground state energy of a quantum
cuboid. Electrons: left-hand side heavy
holes: right-hand side.

FIG. 5. Energy eigenvalues of triangular quantum wires. Barrier potential:
dashed line.

5057J. Appl. Phys., Vol. 86, No. 9, 1 November 1999 M. Califano and P. Harrison

Downloaded 01 Nov 2006 to 129.11.21.2. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



D. Pyramidal quantum dots

The quantum dot structure treated in this section is a
pyramid with a rectangular base of dimensionsLx and Lz ,
and heightLy obtained from the cuboid of Sec. III B by
adding a perturbing potential which further restricts the mo-
tion in the pyramidal region.

Following the considerations about the results obtained
for the triangular wire in Sec. III C we did not expect that the
applicability of our model could be exploited further in the
pyramidal case with satisfactory results for a wide range of
base width. The limitations in this case should have been
even more severe, due to the decreased dimensionality of the
system. Therefore we have limited the range of the dimen-
sion used around the value of 60 Å which had been found to
be accessible by our aproach in the triangular wire case.

Since there are not enough bound states for a proper
second order calculation to be performed forLy values of 40
and 50 Å (E (2) is of the order of 10232, if the few available
bound states wave functions are used!, only the ground state
energies of pyramids higher than 50 Å contain the second
order correction. From the behavior of this correction for
Ly.50, however, we estimate the inaccuracy of the energy
eigenvalues forLy<50 Å to be not greater than a few per-
cent of the total energy.

The results are shown in Fig. 7~left-hand side!, where
we plot the electron energy eigenvalues as a function of the
heightLy . The other dimensions are so chosen that the base
be nearly ~not exactly to avoid degenerate energy eigen-
states! square~the typical shape of self-organized quantum
dots obtained by Stranski–Krastanov growth, see for ex-
ample, Ref. 17 and reference therein!, and the volume of the

pyramid be the same as that of a cube with sideLy . The
resulting aspect ratioQp ~which we define for the pyramid as
Qp5AAb/2h, where Ab is the base surface andh is the
height! is 0.86 for all the structures.

It is therefore possible to compare Fig. 7~left-hand side!
with the electronic ground state energy of a cuboidal quan-
tum dot, displayed in Fig. 3.

It is apparent that the relationship

Egs
cub

~L !5Egs
pyr

~aL !, ~8!

holds between the ground state energies of the pyramidal and
cuboidal dots considered. Our calculations show an agree-
ment to within 3% for a value ofa51.17 for pyramidal dots
heights between 40 and 70 Å. This provides confirmation
that the perturbative theory has been applied correctly and
gives an independent estimate of the accuracy of the energy
eigenvalues derived and of the range of pyramid dimensions
~volumes and aspect ratios! for which that approach is suit-
able.

The agreement is poorer for the 80 Å height dot~about
7%!. This difference may be explained in terms of the re-
duced accuracy to which its energy eigenvalue is known. In
fact, when, as this is the case, the first order correction is
much greater than the unperturbed energy~in other words,
when the perturbation cannot be regarded as small!, the per-
turbative method becomes inaccurate. The electronic ener-
gies of cuboids~from Fig. 3! and pyramids~from Fig. 7,
left-hand side!, together with a fit fora51.17 ~dashed line!,
are presented in Fig. 7~right-hand side! for the dimension
range of interest (L is the side of the cube with the same
volume!.

FIG. 6. Second~left-hand side! and
first ~right-hand side! perturbation or-
der correction to the energy eigenval-
ues of triangular quantum wires.

FIG. 7. Ground state energy eigenval-
ues of pyramidal quantum dots~left-
hand side!. Comparison between pyra-
midal ~triangles! and cuboidal
~squares, solid line! quantum dots en-
ergy eigenvalues; dashed line: fit for
a51.17 ~right-hand side!.
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A similar behavior as in the triangular wire case has
been found for both first and second order corrections, the
former seeming to converge forLy values greater than 100 Å
while the latter diverges in the same way as the triangular
one.

As for the case of the cuboid, the behavior of the energy
eigenvalues of pyramids of a given volume and differents
aspect ratios has been explored by performing further calcu-
lations over the range of volumes considered.

The behavior of the energy as a function of the aspect
ratio E(Qp) is no longer symmetrical with respect toE(1),
but has a flat profile for lowQp , with a minimum at about
Qp50.4. For the~40 Å!3 pyramid, for instance, it is constant
to within 1% of this value fromQp50.25 ~i.e., h52b) to
0.67 (h53b/4).

Again we have found a volume dependence in the en-
ergy differenceDE(Qp). The energy has been found to be to
within 3% of E(Qp51) for aspect ratios 0.85,Qp,1.15 for
the volumes@up to ~80 Å!3] range investigated. In this case
also there is an inverse-to-volume dependency: for~40 Å!3

pyramids the same variation of energy occurs over a wider
range ofQp , i.e., from 0.06 to 3.3.

IV. CONCLUSIONS

Eigenfunctions and eigenvalues of the finite one-
dimensional potential well have been used to decouple the
Schrödinger equation for 2- and 3D quantum confinement
systems intoN independent one-dimensional ones, by con-
sidering the total finite potentialV(x,y ,z) as a sum ofN
independent one-dimensional wells. The deviation of this re-
sulting potential from the actual one has been accounted for
by the use of a perturbative method.

A further perturbation has been added to obtain the tri-
angular and pyramidal shape, starting from the rectangular
wire and cuboidal dot.

It was found that limitations in the applicability of the
method arise in the former cases, due to the large size of the
perturbation matrix elements, leading to a severe restriction
of the range of the system dimensions which can be treated
successfully. Nevertheless, in this range, the calculated en-
ergy eigenvalues are in good agreement with those obtained
with more sophisticated calculations.

Results for the energy shift in electron-heavy-hole tran-
sitions have been presented for the case of the cuboidal dot

with aspect ratio of 1.09, which are in excellent agreement
with those calculated for cubic structures with the same vol-
ume by means of a plane wave expansion of the envelope
function and numerical diagonalization of the resulting ma-
trix equation. This shows that an equivalence holds between
the ground state energy eigenvalues of cubic and cuboidal
structures of the same volume and aspect ratios similar to
one ~i.e., 0.76,Qc,1.3).

A similar equivalence has been found to hold between
the ground state energies of cuboidal and pyramidal dots of
aspect ratios similar to 1~i.e., 0.85,Qp,1.15), with the
side of the pyramid 1.17 times the side of a cuboid having
the same volume.
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