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A Note on Integer Linear Programming and

Incidence Treedepth

Eduard Eiben, Robert Ganian, Dušan Knop, Sebastian Ordyniak,

Micha l Pilipczuk, Marcin Wrochna

May 27, 2019

Recently a strong connection has been shown between tractability of integer
programming (IP) with bounded coefficients on the one side and the structure
of the primal or dual Gaifmann graph on the other side. To that end, integer
linear programming is fixed-parameter tractable with respect to the primal
(or dual) treedepth of its constraint matrix and the largest coefficient (in
absolute value). Here, primal and dual treedepth refer to the treedepth of
the primal and dual Gaifman graph (of the constraint matrix). Motivated by
this, Koutecký, Levin, and Onn [ICALP 2018] asked whether it is possible to
extend these result to a more broader class of integer linear programs. More
formally, is integer linear programming fixed-parameter tractable with respect
to the incidence treedepth of its constraint matrix and the largest coefficient
(in absolute value)?

We answer this question in negative. We prove that deciding the feasibility
of a system in the standard form, Ax = b, l ≤ x ≤ u, is NP-hard even when
the absolute value of any coefficient in A is 1 and the incidence treedepth of
A is 5. Consequently, it is not possible to decide feasibility in polynomial
time even if both the assumed parameters are constant, unless P = NP.

Appendix

1 Introduction

In this paper we consider the decision version of Integer Linear Program (ILP) in standard

form. Here, given a matrix A ∈ Z
m×n with m rows (constraints) and n columns and

vectors b ∈ Z
m and l,u ∈ Z

n the task is to decide whether the set

{x ∈ Z
n | Ax = b, l ≤ x ≤ u} (SSol)

is non-empty. We are going to study structural properties of the incidence graph of
the matrix A. An integer program (IP) is a standard IP (SIP) if its set of solutions is
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described by (??), that is, if it is of the form

min {f(x) | Ax = b, l ≤ x ≤ u ,x ∈ Z
n} , (SIP)

where f : Nn → N is the objective function; in case f is a linear function the above SIP
is said to be a linear SIP. Before we go into more details we first review some recent
development concerning algorithms for solving (linear) SIPs in variable dimension with
the matrix A admitting a certain decomposition.

Let E be a 2× 2 block matrix, that is, E =
(

A1 A2
A3 A4

)

, where A1, . . . , A4 are integral

matrices. We define an n-fold 4-block product of E for a positive integer n as the following
block matrix

E(n) =















A1 A2 A2 · · · A2

A3 A4 0 · · · 0
A3 0 A4 · · · 0
...

. . .

A3 0 0 · · · A4















,

where 0 is a matrix containing only zeros (of appropriate size). One can ask whether
replacing A in the definition of the set of feasible solutions (??) can give us an algorithmic
advantage leading to an efficient algorithm for solving such SIPs. We call such an SIP
an n-fold 4-block IP. We derive two special cases of the n-fold 4-block IP with respect
to special cases for the matrix E (see monographs [DeLoeraHK13; Onn10] for more
information). If both A1 and A3 are void (not present at all), then the result of replacing
A with E(n) in (??) yields the n-fold IP. Similarly, if A1 and A2 are void, we obtain the
2-stage stochastic IP.

The first, up to our knowledge, pioneering algorithmic work on n-fold 4-block IPs is due
to Hemmecke et al. [HemmeckeKW10]. They gave an algorithm that given n, the 2×2
block matrix E, and vectors w,b, l,u finds an integral vector x with E(n)x = b, l ≤ x ≤ u

minimizing wx. The algorithm of Hemmecke et al. [HemmeckeKW10] runs in time
ng(r,s,‖E‖∞)L, where r is the number of rows of E, s is the number of columns of E,
L is the size of the input, and g : N → N is a computable function. Thus, from the
parameterized complexity viewpoint this is an XP algorithm for parameters r, s, ‖E‖∞.
This algorithm has been recently improved by Chen et al. [ChenXS18] who give better
bounds on the function g; it is worth noting that Chen et al. [ChenXS18] study also
the special case where A1 is a zero matrix and even in that case present an XP algorithm.
Since the work of Hemmecke et al. [HemmeckeKW10] the question of whether it is
possible to improve the algorithm to run in time g′(r, s, ‖E‖∞) ·nO(1)L or not has become
a major open question in the area of mathematical programming.
Of course, the complexity of the two aforementioned special cases of n-fold 4-block

IP are extensively studied as well. The first FPT algorithm1 for the n-fold IPs (for
parameters r, s, ‖E‖∞) is due to Hemmecke et al. [HemmeckeOR13]. Their algorithm
has been subsequently improved [KouteckyLO18; EisenbrandHK18]. Altmanová et
al. [AltmanovaKK18] implemented the algorithm of Hemmecke et al. [HemmeckeOR13]

1That is an algorithm running in time f(r, s, ‖E‖∞) · nO(1)L.
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and improved the polynomial factor (achieving the same running time as Eisenbrand et
al. [EisenbrandHK18]) the above algorithms (from cubic dependence to n2 log n). The
best running time of an algorithm solving n-fold IP is due to Jansen et al. [JansenLR18]
and runs in nearly linear time in terms of n.

Last but not least, there is an FPT algorithm for solving the 2-stage stochastic IP due
to Hemmecke and Schultz [HemmeckeS03]. This algorithm is, however, based on a well
quasi ordering argument yielding a bound on the size of the Graver basis for these IPs.
Very recently Klein [Klein19] presented a constructive approach using Steinitz lemma
and give the first explicit (and seemingly optimal) bound on the size of the Graver basis
for 2-stage (and multistage) IPs. It is worth noting that possible applications of 2-stage
stochastic IP are much less understood than those of its counterpart n-fold IP.
In the past few years, algorithmic research in this area has been mainly application-

driven. Substantial effort has been taken in order to find the right formalism that is
easier to understand and yields algorithms having the best possible ratio between their
generality and the achieved running time. It turned out that the right formalism is
connected with variants of the Gaifman graph (see e.g. [Dechter06]) of the matrix A

(for the definitions see the Preliminaries section).

Our Contribution. In this paper we focus on the incidence (Gaifman) graph. We
investigate the (negative) effect of the treedepth of the incidence Gaifman graph on
tractability of ILP feasibility.

Theorem 1. Given a matrix A ∈ {−1, 0, 1}m×n and vectors l,u ∈ Z
n
∞. Deciding whether

the set defined by (??) is non-empty is NP-hard even if b = 0 and tdI(A) ≤ 5.

Preliminaries

For integers m < n by [m : n] we denote the set {m,m+ 1, . . . , n} and [n] is a shorthand
for [1 : n]. We use bold face letters for vectors and normal font when referring to their
components, that is, x is a vector and x3 is its third component. For vectors of vectors
we first use superscripts to access the “inner vectors”, that is, x = (x1, . . . ,xn) is a vector
of vectors and x3 is the third vector in this collection.

From Matrices to Graphs. Let A be an m× n integer matrix. The incidence Gaifman

graph of A is the bipartite graph GI = (R ∪ C,E), where R = {r1, . . . , rm} contains one
vertex for each row of A and C = {c1, . . . , cn} contains one vertex for each column of
A. There is an edge {r, c} between the vertex r ∈ R and c ∈ C if A(r, c) 6= 0, that is, if
row r contains a nonzero coefficient in column c. The primal Gaifman graph of A is the
graph GP = (C,E), where C is the set of columns of A and {c, c′} ∈ E whenever there
exists a row of A with a nonzero coefficient in both columns c and c′. The dual Gaifman

graph of A is the graph GD = (R,E), where R is the set of rows of A and {r, r′} ∈ E

whenever there exists a column of A with a nonzero coefficient in both rows r and r′.
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Treedepth. Undoubtedly, the most celebrated structural parameter for graphs is
treewidth, however, in the case of ILPs bounding treewidth of any of the graphs defined
above does not lead to tractability (even if the largest coefficient in A is bounded as
well see e.g. [KouteckyLO18]). Treedepth is a structural parameter well suited for the
theory of so called sparse graph classes [NesetrilOdM:Sprasity]2. Let G = (V,E) be
a graph. The treedepth of G, denoted td(G), is defined by the following formula:

td(G) =











1 if |V (G)| = 1,

1 + minv∈V (G) td(G− v) if G is connected with |V (G)| > 1,

maxi∈[k] td(Gi) if G1, . . . , Gk are connected components of G.

An example was asked by Rew #2; it might be helpful to readers from the IP-theory
community. Do we have any good example?

Let A be an m×n integer matrix. The incidence treedepth of A, denoted tdI(A), is the
treedepth of its incidence Gaifman graph GI . The dual treedepth of A, denoted tdD(A),
is the treedepth of its dual Gaifman graph GD. The primal treedepth is defined similarly.
The following two well-known theorems will be used in the proof of Theorem ??.

Theorem 2 (Chinese Remainder Theorem). Let p1, . . . , pn be pairwise co-prime integers

greater than 1 and let a1, . . . , an be integers such that for all i ∈ [n] it holds 0 ≤ ai < pi.

Then there exists exactly one integer x such that

1. 0 ≤ x <
∏n

i=1 pi and

2. ∀i ∈ [n] : x ≡ ai mod pi.

Theorem 3 (Prime Number Theorem). Let π(n) denote the number of primes in [n],
then π(n) ∼ n

log(n) .

It is worth pointing out that, given a positive integer n encoded in unary, it is possible
to the n-th prime in polynomial time.

2 Proof of Theorem ??

Before we proceed to the proof of Theorem ?? we include a brief sketch of its idea. To
prove NP-hardness, we will give a polynomial time reduction from 3-SAT which is well
known to be NP-complete [GareyJ79]. The proof is inspired by the NP-hardness proof
for ILPs given by a set of inequalities, where the primal graph is a star, of Eiben et.
al [EibenGKO18].

2See also lecture notes available at https://www.mimuw.edu.pl/~mp248287/sparsity/
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Proof Idea. Let ϕ be a 3-CNF formula. We encode an assignment into a variable y.
With every variable vi of the formula ϕ we associate a prime number pi and let y mod pi
be the boolean value of the variable vi. Furthermore, if for a clause C ∈ ϕ by ‖C‖ we
denote the product of all of the primes associated with the variables occurring in C.
Then, by Chinese Remainder Theorem, there is a single value in [‖C‖], associated with
the assignment that falsifies C, which we have to forbid for y mod ‖C‖ (we use the box
constraints, i.e., the vectors l,u, for an auxiliary variable taking the value y mod ‖C‖
to achieve this). For example let ϕ = (v1 ∨ ¬v2 ∨ v3) and let the primes associated with
the three variables be 2, 3, and 5, respectively. Then we have ‖(v1 ∨ ¬v2 ∨ v3)‖ = 30 and,
since v1 = v3 = false and v2 = true is the only assignment falsifying this clause, we
have that 21 is the forbidden value for y mod 30. it is worth pointing out that for a
clause C there is exactly one number in ‖C‖ yielding the falsifying assignment to the
three variables in C. Finally, the (??) constructed from ϕ is feasible if and only if there
is a satisfying assignment for ϕ.

Proof of Theorem ??. Let ϕ be a 3-CNF formula with n′ variables v1, . . . , vn′ and m′

clauses C1, . . . , Cm′ (an instance of 3-SAT). Note that we can assume that none of the
clauses in ϕ contains a variable along with its negation. We will define an SIP, that is,
vectors b, l,u, and a matrix A with O((n′ + m′)5) rows and columns, whose solution
set is non-empty if and only if a satisfying assignment exists for ϕ. Furthermore, we
present a decomposition of the incidence graph of the constructed SIP proving that
its treedepth is at most 5. We naturally split the vector x of the SIP into subvectors
associated with the sought satisfying assignment, variables, and clauses of ϕ, that is, we

have x =
(

y,x1, . . . ,xn′

, z1, . . . , zm
′

)

. Throughout the proof pi denotes the i-th prime

number.

Variable Gadget. We associate the xi =
(

xi0, . . . , x
i
pi

)

part of x with the variable vi
and bind the assignment of vi to y. We add the following constraints

xi1 = xiℓ ∀ℓ ∈ [2 : pi] (1)

xi0 = y +

pi
∑

ℓ=1

xiℓ (2)

and box constraints

−∞ ≤ xiℓ ≤ ∞ ∀ℓ ∈ [pi] (3)

0 ≤ xi0 ≤ 1 (4)

to the SIP constructed so far.

Claim 1. An integral vector x satisfies (??) and (??) if and only if xi0 ≡ y mod pi.

Proof. By (??) we know xi1 = · · · = xipi and thus by substitution we get the following
equivalent form of (??)

xi0 = y + pi · x
i
1 . (5)
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But this form is equivalent to xi0 ≡ y mod pi for an integral vector x. y

Note that by (the proof of) the above claim the conditions (??) and (??) essentially
replace the large coefficient (pi) used in the condition (??). This is an efficient trade-off
between large coefficients and incidence treedepth which we are going to exploit once
more when designing the clause gadget.
By the above claim we get an immediate correspondence between y and truth as-

signments for v1, . . . , vn′ . For an integer w and a variable vi we define the following
mapping

(w, vi) =











true if w ≡ 1 mod pi

false if w ≡ 0 mod pi

undefined otherwise.

Notice that (??) implies that the the mapping (y, vi) ∈ {true, false} for i ∈ [n′]. We
straightforwardly extend the mapping (·, ·) for tuples of variables as follows. For a tuple
a of length ℓ, the value of (w,a) is ((w, a1), . . . , (w, aℓ)) and we say that (w,a) is defined
if all of its components are defined.

Clause Gadget. Let Cj be a clause with variables ve, vf , vg. We define ‖Cj‖ as the
product of the primes associated with the variables occurring in Cj , that is, ‖Cj‖ =

pe · pf · pg. We associate the zj =
(

z
j
0, . . . , z

j

‖Cj‖

)

part of x with the clause Cj . Let dj be

the unique integer in [‖Cj‖] for which (dj , (ve, vf , vg)) is defined and gives the falsifying
assignment for Cj . The existence and uniqueness of dj follows directly from the Chinese
Remainder Theorem. We add the following constraints

z
j
1 = z

j
ℓ ∀ℓ ∈ [2 : ‖Cj‖] (6)

z
j
0 = y +

∑

1≤ℓ≤‖Cj‖

z
j
ℓ (7)

and box constraints

−∞ ≤ z
j
ℓ ≤ ∞ ∀ℓ ∈ [‖Cj‖] (8)

dj + 1 ≤ z
j
0 ≤ ‖Cj‖+ dj − 1 (9)

to the SIP constructed so far.

Claim 2. Let Cj be a clause in ϕ with variables ve, vf , vg. An integral vector x satisfies

(??), (??), (??), (??), (??), and (??) if and only if (y, (ve, vf , vg)) is defined and satisfies

Cj.

Proof. We have already seen that the first claim together with (??) is equivalent to
(y, (ve, vf , vg)) is defined. Now, similarly to the proof of the first claim, (??) and (??)

together are equivalent to z
j
0 ≡ y mod ‖Cj‖. Finally, by (??) we obtain that z

j
0 6= dj

which holds if and only if (y, (ve, vf , vg)) satisfies Cj . y
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y

xi0 = y +
∑pi

ℓ=1 x
i
ℓ

xi0 xi1

xi1 = xi2 xi1 = xi2· · ·

xi2 xipi· · ·

Figure 1: The variable gadget for
ui of 3-SAT instance to-
gether with the global
variable y. Variables (of
the IP) are in circular
nodes while equations are
in rectangular ones. The
nodes deleted in the proof
of the third claim in the
proof of Theorem ?? have
light gray background.

Let Ax = 0 be the SIP with constraints (??), (??), (??), and (??) and box constraints
l ≤ x ≤ u given by (??), (??), (??), (??), and −∞ ≤ y ≤ ∞. By the two claims above
we have that Ax = 0, l ≤ x ≤ u is feasible if and only if (y, (v1, . . . , vn′)) is defined and
satisfies every clause in ϕ. This finishes the reduction.

In order to finish the proof we have to bound the number of variables and constraints
in the presented SIP and to bound the incidence treedepth of A. It follows from the
Prime Number Theorem that pi = O(i log(i)). Hence, the number of rows and columns
of A is at most (n′ +m′)p3n′ = O((n′ +m′)5).

Claim 3. It holds that tdI(A) ≤ 5.

Proof. Let G be the incidence graph of the matrix A. It is easy to verify that y is a
cut-vertex in G. Observe that each component of G− y is now either a variable gadget
for vi with i ∈ [n′] (we call such a component a variable component) or a clause gadget
for Cj with j ∈ [m′] (we call such a component a clause component). Let Gi

v be the

variable component (of G− y) containing variables xi and G
j
c be the clause component

containing variables zj . Let tv = maxℓ∈[n′] td(G
ℓ
v) and tc = maxℓ∈[m′] td(G

ℓ
c). It follows

that td(G) ≤ 1 + max(tv, tc).
Refer to Figure ??. Observe that if we delete the variable xi1 together with the

constraint (??) from Gi
v, then each component in the resulting graph contains at most

two vertices. Each of these components contains either

• a variable xiℓ and an appropriate constraint (??) (the one containing xiℓ and xi0) for
some ℓ ∈ [2 : pi] or

• the variable xi0.

Since treedepth of an edge is 2 and treedepth of the one vertex graph is 1, we have that
tv ≤ 4.
The bound on tc follows the same lines as for tv, since indeed the two gadgets have

the same structure. Now, after deleting z
j
1 and (??) in G

j
c we arrive to a graph with

treedepth of all of its components again bounded by two (in fact, none of its components
contain more than two vertices). Thus, tv ≤ 4 and the claim follows. y
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The theorem follows by combining the three above claims.

3 Incidence Treedepth of Restricted ILPs

It is worth noting that the proof of Theorem ?? crucially relies on having variables as
well as constraints which have high degree in the incidence graph. Thus, it is natural to
ask whether this is necessary or, equivalently, whether bounding the degree of variables,
constraints, or both leads to tractability. It is well known that if a graph G has bounded
degree and treedepth, then it is of bounded size, since indeed the underlying decomposition
tree has bounded height and degree and thus bounded number of vertices. Let (??) with
n variables be given. Let C(A) denote the maximum arity of a constraint in its constraint
matrix A and let V (A) denote the maximum occurrence of a variable in constraints of A.
In other words, C(A) denotes the maximum number of nonzeros in a row of A and V (A)
denotes the maximum number of nonzeros in a column of A. Now, we get that ILP can be
solved in time f(C(A),V (A), tdI(A))LO(1), where f is some computable function and L is
the length of the encoding of the given ILP thanks to Lenstra’s algorithm [Lenstra83].
The above observation can in fact be strengthened—namely, if the arity of all the

constraints or the number of occurences of all the variables in the given SIP is bounded,
then we obtain a bound on either primal or dual treedepth. This is formalized by the
following technical lemma.

Lemma 4. For every (??) we have tdP (A) ≤C · tdI(A) and tdD(A) ≤V · tdI(A).

The proof idea is to exploit certain properties of the decomposition of the incidence
graph of A and turn it into a decomposition of the primal or the dual graph of A. To
do so we replace the nodes corresponding to variables (or constraints, respectively) of it
with a path on V (C) nodes. Finally, it is shown that one can find a suitable subtree of
the resulting tree yielding a valid decomposition for the dual or primal graph of A. In
order to do so we have to move some vertices closer to the root of the new decomposition;
roughly speaking we move a variable to some node of the path we have used to replace the
constraint that contains the variable and is the closest such to the root (the construction
for constraints is similar).

Proof of Lemma ??. We show how to transform a decomposition of the incidence graph
of A into a decomposition of the dual graph of A showing the claimed bound. We note
that the proof for the primal graph is analogous and follows from a symmetric argument
(take a transpose of A and apply the same procedure).

Let GI be the incidence graph of A and let GD be the dual graph of A. Let T be a
rooted tree with depth d and let ι : V (GI) → V (T ) be the mapping that together with T

shows tdI(A) ≤ d. We show that there exists a rooted tree T̂ of depth at most d·V and
a mapping δ : V (GD) → V (T̂ ) such that there is a root to leaf path containing vertices
δ(v), δ(u) for each edge uv ∈ E(GD). In order to improve readability we refer to vertices
of the trees (e.g. T ) as to nodes.

We split V (GI) into two sets VV ∪̇VC in such a way that all vertices corresponding to
a variable of the given SIP are in the set VV (and for constraints we have VC). Note
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that V (GD) = VC . We begin by transforming T into a new tree T ′ in which we replace
each node v for which the vertex ι−1(v) ∈ VV by a path with V nodes; let Vv denote the
set of vertices of this path. Now, we define a mapping γ : VC → VV from constrains to
variables by γ(c) = v if v is closest to the root of T with cv ∈ E(GI) (for c ∈ VC). Now
we are ready to define an injective mapping δ′ : VC → V (T̂ ). For a vertex c ∈ VC we
define δ′(c) to be any so far unused vertex in Vγ(c). This is always possible, since we have
|NGI

(c)| ≤C=
∣

∣Vγ(c)

∣

∣. Now, we contract all edges of T ′ for which δ′ maps no vertex of

VC to at least one of its endpoints; let T̂ be the tree obtained after all of the contractions.
Let δ : VC → V (T̂ ) denote the restriction of the mapping δ′ (in fact, this is the same
mapping, since we have preserved all nodes to which δ′ maps some vertex of VC). We
claim that T̂ and δ form a valid treedepth decomposition for GD. In order to see this
note that cc′ ∈ E(GD) if and only if there exists a variable that occurs in both c and
c′. Let v be any such variable. Now, by the definition of δ both δ(c), δ(c′) must in T ′

be placed on the path between root and the bottom node of the path replacing v in T .
Consequently, δ(c) and δ(c′) are in parent-ancestor relation defined by T̂ . Observe that,
since there are at most tdI(A) nodes on each root to leaf path in T , there are at most

V · tdI(A) nodes on each root to leaf path in T ′ as well as in T̂ .

It follows that if we bound either V (A) or C(A), that is, formally set = min {V (A),C (A)},
then the linear IP with such a solution set is solvable in time f(, ‖A‖∞) · nO(1) ·L thanks
to results of Koutecký et al. [KouteckyLO18]. Consequently, the use of high-degree
constraints and variables in the proof of Theorem ?? is unavoidable.

4 Conclusions

We have shown that, unlike the primal and the dual treedepth, the incidence treedepth of
a constraint matrix of (??) does not (together with the largest coefficient) provide a way
to tractability. This shows our current understanding of the structure of the incidence
Gaifman graph is not sufficient. Thus, the effect on tractability of some other “classical”
graph parameters shall be investigated. For example we have some preliminary evidences
that

• the vertex cover number of the incidence Gaifman graph together with the largest
coefficient yields a tractable case and

• the graph in our reduction (Theorem ??) may admit a treecut decomposition of
constant width.

We are going to investigate the two above claims in detail in the full version of this
paper. Last but not least, all of the above suggest some open questions. Namely,
whether ILP parameterized by the largest coefficient and treewidth and the maximum
degree of the incidence Gaifman graph is in FPT or not. Furthermore, one may also ask
about parameterization by the largest coefficient and the feedback vertex number of the
incidence Gaifman graph.
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