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Abstract

We investigate the problem of recovering the possibly both space and time-dependent

forcing term along with the temperature in hyperbolic systems from many integral ob-

servations. In practice, these average weighted integral observations can be considered

as generalized interior point measurements. This linear but ill-posed problem is solved

using the Tikhonov regularization method in order to obtain the closest stable solution

to a given a priori known initial estimate. We prove the Fréchet differentiability of the

Tikhonov regularization functional and derive a formula for its gradient. This minimiza-

tion problem is solved iteratively using the conjugate gradient method. The numerical

discretization of the well-posed problems, that are: the direct, adjoint and sensitivity

problems that need to be solved at each iteration is performed using finite difference

methods. Numerical results are presented and discussed for one and two-dimensional

problems.

Keywords: Inverse force problem; hyperbolic equations; integral observations; Tikhonov’s
regularization; conjugate gradient method.

1 Introduction

Hyperbolic PDE’s and, in particular, the wave equation, govern many wave propagation
phenomena, e.g. in acoustic scattering, vibrations of a string, etc. When it comes to inverse
modelling probably the most investigated are obstacle identification problems in acoustic
scattering, see Colton and Kress (2013), followed by the reconstruction of the speed of
wave propagation, see Isakov (1998, Section 8.1). On the other hand, many engineering
applications related to unknown force loads and control of seismic, wind or noise exatations,
modelled as inverse force problems for hyperbolic PDE’s have been less investigated possibly
due to their high non-uniqueness of solution that occurs in general.
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Practical examples of inverse force problems include: (i) the reconstruction of time-dependent
external forces in a vibrating system from the measurements of the displacement and velocity
at different times, see Huang (2001); (ii) seismic events such as implosion, explosion or
earthquake, which can be modelled as a point moment tensor forcing in the elastic wave
equation, and can then be estimated using measurements of waveforms, see Sjögreen and
Petersson (2014); (iii) ocean acoustics, where point forces in the ocean are to be determined
from measurements of the acoustic pressure at an array of hydrophones, see Collins and
Kuperman (1994).

Prior to this study, the inverse force problem of determining the free term in the right-
hand side of hyperbolic PDE’s has been investigated in some works, see e.g. Cannon and
Dunninger (1970), Amirov (1987), Yamamoto (1995), Hasanov (2009), Hussein and Lesnic
(2014), Vabishchevich (2019). For more detail, see also the PhD thesis of Hussein (2016)
and the references therein. However, in all these works, the force function was sought as
a function depending solely on either time or space. This restriction is needed because
otherwise the inverse problem does not have a unique solution, unless the main dependent
variable u(x, t) is available/measured at all points (x, t) in the space-time solution domain,
or a certain conductivity parameter is varied, see Abasheeva (2009). However, as proposed
in this study, given some known a priori estimate f ∗(x, t) of the real practical solution, we
can determine the (unique) closest force f(x, t) to f ∗(x, t) which together with u(x, t) satisfy
in the weak sense the initial-boundary value problem for hyperbolic PDE’s and match a
finite set of integral observations. This formulation is described in the next section.

2 The mathematical formulation

Let Ω ⊂ R
d, d = 1, 2, 3, be an open bounded domain with a sufficiently smooth boundary ∂Ω.

Denote the cylinder QT := Ω×(0, T ], where T > 0, and the lateral surface ST := ∂Ω×(0, T ].
We consider the following general second-order linear hyperbolic PDE

utt −∇ · (A∇u) + b(x, t)u = F (x, t), (x, t) ∈ QT , (2.1)

where b ≥ 0 is a given material property coefficient, A = (aij(x, t))i,j=1,d is the conductivity
tensor which is assumed symmetric and positive definite, u(x, t) represents the displacement,
and F (x, t) is a force acting on the system. In the inverse problem, these two latter quantities
u(x, t) and F (x, t) are unknown. Equation (2.1) is quite general and models a wide range
of wave-type phenomena including the thermal wave model of bio-heat transfer, see Özen et
al. (2008), obtained by replacing in (2.1) the term utt by εutt + ut with ε > 0 being small,
or the wave equation obtained by replacing in (2.1) the term utt by c−2(x)utt with c(x) > 0

representing the wave speed.

Associated with (2.1), we have prescribed the initial conditions

u|t=0 = u0(x), ut|t=0 = v0(x), x ∈ Ω, (2.2)

and either the Robin boundary condition

∂u

∂N
+ σu = ϕ on ST , (2.3)
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or, the Dirichlet boundary condition

u = ψ on ST . (2.4)

In (2.2), u0 and v0 represent the initial displacement and velocity, respectively, and ϕ and ψ
are given functions in L2(ST ). In (2.3), L∞(ST ) ∋ σ ≥ 0 is a given transfer coefficient and
the normal derivative is defined so as to take into account the anisotropy of the conductivity
A = (aij)i,j=1,d, namely,

∂u

∂N
:=

d
∑

i,j=1

(aij(x, t)uxj
) cos(ν, xi) on ST , (2.5)

where ν is the outward unit normal to the boundary ∂Ω and cos(ν, xi) is the direction cosine
with the xi-axis for i = 1, d. Remark that the Robin boundary condition (2.3) incorporates
the Neumann boundary condition (obtained by taking σ = 0) and the homogeneous Dirichlet
boundary condition (obtained by taking σ = ∞) given by

u = 0 on ST . (2.6)

The latter condition (2.6) is also obtained when taking ψ = 0 in (2.4). In the above model
(2.1)-(2.3) or (2.1), (2.2) and (2.4), if the coefficients b, aij and σ, and the functions F , u0,
v0, ϕ or ψ are all known, then this gives rise to a direct problem whose well-posedness holds
in various spaces. For example, the direct problem given by the hyperbolic equation (2.1)
with

aij = aji ∈ C1(QT ), i, j = 1, d, b ∈ C1(QT ), (2.7)

λ‖ξ‖2
Rd ≤

d
∑

i,j=1

aij(x, t)ξiξj ≤ Λ‖ξ‖2
Rd , ∀ξ ∈ R

d, (2.8)

0 ≤ b(x, t) ≤ µ1, a.e. in QT , (2.9)

for some positive constants λ and Λ and µ1 ≥ 0, (2.10)

F ∈ L2(QT ), (2.11)

satisfying the initial conditions (2.2) almost everywhere with

u0 ∈ H1
0 (Ω), v0 ∈ L2(Ω), (2.12)

and the homogeneous Dirichlet boundary condition (2.6) has a unique weak solution in the
space

W (0, T ) := {u ∈ C(0, T ;H1
0 (Ω)) with ut ∈ C(0, T ;L2(Ω))};

in fact, one has utt ∈ L2(0, T ;H−1(Ω)) and the stability estimate

max
t∈[0,T ]

(

‖u(·, t)‖H1

0
(Ω) + ‖ut(·, t)‖L2(Ω)

)

+ ‖utt‖L2(0,T ;H−1(Ω))

≤ C
(

‖F‖L2(QT ) + ‖u0‖H1

0
(Ω) + ‖v0‖L2(Ω)

)

, (2.13)
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for some positive constant C, holds, see Evans (1998, Section 7.2). The above solution
satisfies equation (2.1) in the weak sense, i.e.

∫ T

0

(utt, η)(H−1(Ω),H1

0
(Ω))dt+

∫

QT

((A(x, t)∇u) · ∇η + b(x, t)uη) dxdt

=

∫

QT

F (x, t)ηdxdt, ∀η ∈ L2(0, T ;H1
0 (Ω)). (2.14)

In this definition of a weak solution we have taken the test function η depending on both x
and t, see Ladyzhenskaya (1985, p.157); however, it can also be taken to depend only on x,
see Evans (1998, p.402). The boundary condition (2.6) is also satisfied since u(·, t) ∈ H1

0 (Ω),
∀t ∈ [0, T ].

In the inverse problem the function F (x, t) (together with u(x, t)) is unknown and has to be
determined subject to additional information. Depending on the particular form of the func-
tion F (x, t) that is a priori assumed and the type of additional information/measurement,
we can have different inverse problem formulations, as follows:

• Inverse Problem (IP1):
F (x, t) = f(x)h(x, t) + g(x, t), (2.15)

with h(x, t) and g(x) given. Find f(x), given:

a) u(x, T ) or
∫ T

0
u(x, t)dt for x ∈ Ω, see Cannon and Dunninger (1970), Prilepko et

al. (2000, Section 8.2), Kozhanov and Safiullova (2010), Lesnic et al. (2016);
or

b) ∂u
∂N

on ST , see Klibanov (1992), Engl et al. (1994), Yamamoto (1995), Hussein
and Lesnic (2016a).

• Inverse Problem (IP2):
F (x, t) = f(t)h(x, t) + g(x, t), (2.16)

with h(x, t) and g(x, t) given. Find f(t), given:

a)
∫

Ω
ω(x)u(x, t)dx for t ∈ [0, T ], with ω(x) given, see Prilepko et al. (2000, Section

9.2), Hussein and Lesnic (2016b), Vabishchevich (2019);
or

b) ∂u
∂N

on ST , see Rashedi and Sini (2015).

• Inverse Problem (IP3):
Find point forces from additional information, see El Badia and Ha-Duong (2001).

We remark that in some of these formulations accurate measurements should be available at
all points x ∈ Ω, which might be too intrusive from the practical point of view. In order to
overcome this possible deficiency, we assume that we measure instead the average integrals

ℓku :=

∫

Ω

ωk(x)u(x, t)dx = hk(t) ∈ L2(0, T ), k = 1, N, (2.17)
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where N represents the number of measurements and ωk ∈ L∞(Ω) with
∫

Ω
ωk(x)dx > 0

for k = 1, N are given linearly independent weight functions. Then, with the multiple
measurements (2.17) it might be possible to recover uniquely a sum of time-dependent forces
(fk(t))k=1,N of the form

F (x, t) = g(x, t) +
N
∑

k=1

fk(t)hk(x, t), (2.18)

with g(x, t) and (hk(t))k=1,N given, see Vabishchevich (2019).

Remark that the pointwise measurement of u(x, t) at a discrete set of distinct points ξ1, ..., ξN ∈

Ω can be approximated by (2.17) if we take

ωk(x) =
1

|Ωk|
χΩk

(x), k = 1, N, (2.19)

where Ωk is a small neighbourhood of the point ξk such that Ωk ∩ Ωj = ∅, ∀j 6= k, χΩk
is

the characteristic function of the domain Ωk and |Ωk| denotes its volume. Then, with the
weights (2.19), the integrals (2.17) become

hk(t) =
1

|Ωk|

∫

Ωk

u(x, t)dx, t ∈ (0, T ), k = 1, N, (2.20)

and represent an average measurement around the point ξk which can be obtained by letting
the neighbourhood Ωk becoming vanishingly small.

Of course, in order to capture as much information as possible one should take N large, and
in this case (2.20) has the set ξk for k = 1, 2, ... dense in Ω. But even so, under no further
restriction on the general form of F (x, t), there is still no unique solution globally. However,
we can seek a quasi-solution (which is unique) by being the closest to an a priori estimate
of the desired physical solution. Thus, assuming the form

F (x, t) = f(x, t)h(x, t) + g(x, t), (2.21)

with h ∈ L∞(QT ) and g ∈ L2(QT ) given, we minimize the Tikhonov regularization functional
Jλ : L2(QT ) → R+ defined by

Jλ(f) :=
1

2

N
∑

k=1

‖ℓku− hk‖
2
L2(0,T ) +

λ

2
‖f − f ∗‖2L2(QT ), (2.22)

where λ > 0 is a regularization parameter to be prescribed, f ∗ ∈ L2(QT ) is a known a priori

estimate of f(x, t) and u(x, t) satisfies the PDE

utt −∇ · (A∇u) + b(x, t)u = f(x, t)h(x, t) + g(x, t), (x, t) ∈ QT , (2.23)

and the initial and boundary conditions (2.2) and (2.3). Remark that this formulation has
recently been adopted by Hào et al. (2017) for solving the corresponding inverse source
problem for parabolic PDE’s.

The plan of the remainder of the paper is as follows. In Section 3, we prove the Fréchet
differentiability of the functional (2.22) and derive a formula for its gradient. Then, the CGM
is described for the minimization procedure. Section 4 presents and discusses numerical
results for typical benchmark examples in one and two dimensions and, finally, Section 5
highlights the conclusions of the paper.
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3 The CGM

Consider, for simplicity, the homogeneous Dirichlet boundary condition (2.6) and analyse
the inverse problem given by (2.23), (2.2), (2.6) and (2.17). The case of the Robin boundary
condition (2.3) is similar.

First, it is easy to observe that if λ > 0, then there exists a unique solution to the minimiza-
tion of (2.22). The sensitivity problem, adjoint problem and the gradient of the objective
functional (2.22), whose solutions are required in the CGM, are derived in Sections 3.1-3.3,
respectively.

3.1 The sensitivity problem

The sensitivity problem is found by first assuming that when the force function f(x, t)

undergoes a small variation ∆f(x, t), the temperature u(x, t) is changed by a small amount
∆u(x, t). Then, substituting these perturbed quantities into the direct problem given by
(2.23), (2.2) and (2.6) and subtracting the original direct problem from the resulting problem,
we obtain the sensitivity problem given by

(∆u)tt −∇ · (A∇(∆u)) + b(x, t)∆u = ∆f(x, t)h(x, t), (x, t) ∈ QT , (3.1)

∆u(x, 0) = (∆u)t(x, 0) = 0, x ∈ Ω, (3.2)

∆u(x, t) = 0, (x, t) ∈ ST . (3.3)

3.2 The adjoint problem

The adjoint problem is obtained via the Lagrange multiplier method. This method proceeds
by first multiplying the original direct problem given by equations (2.23), (2.2) and (2.6) by
the Lagrange multiplier v(x, t) and then integrating over the domain. Then, the resulting
expression is added to the objective functional J0 defined by (2.22) to yield

J0(f) =
1

2

N
∑

k=1

‖ℓku− hk‖
2
L2(0,T )

+

∫

QT

v(x, t)
[

∇ · (A∇u)− b(x, t)u+ f(x, t)h(x, t) + g(x, t)− utt
]

dxdt. (3.4)

Given the variation of the above objective functional is ∆J0(f) = J0(f +∆f)− J0(f), and
by neglecting second order terms, J0(f +∆f) can be evaluated as follows:

J0(f +∆f) =
1

2

N
∑

k=1

‖ℓk(u+∆u)− hk‖
2
L2(0,T )

+

∫

QT

v(x, t)
[

∇ · (A∇(u+∆u))− b(x, t)(u+∆u) + (f(x, t) + ∆f(x, t))h(x, t)

+ g(x, t)− (u+∆u)tt
]

dxdt. (3.5)
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Subtracting J0(f) given by (3.4) from J0(f +∆f) given above, we obtain

∆J0(f) =
1

2

N
∑

k=1

‖ℓk(u+∆u)− hk‖
2
L2(0,T ) −

1

2

N
∑

k=1

‖ℓku− hk‖
2
L2(0,T )

+

∫

QT

v(x, t)
[

∇ · (A∇(∆u))− b(x, t)∆u+∆f(x, t)h(x, t)− (∆u)tt
]

dxdt, (3.6)

=
1

2

N
∑

k=1

‖ℓk∆u‖
2
L2(0,T ) +

N
∑

k=1

〈ℓk∆u, ℓku− hk〉L2(0,T )

+

∫

QT

v(x, t)
[

∇ · (A∇(∆u))− b(x, t)∆u+∆f(x, t)h(x, t)− (∆u)tt
]

dxdt. (3.7)

By integrating by parts the terms involving both ∆u and v in the right-hand side of the
equation above and using the initial and boundary conditions of the sensitivity problem
(3.1)-(3.3), we obtain the adjoint problem given by

vtt −∇ · (A∇v) + b(x, t)v =
N
∑

k=1

ωk(x)(ℓku− hk), (x, t) ∈ QT , (3.8)

v(x, T ) = vt(x, T ) = 0, x ∈ Ω, (3.9)

v(x, t) = 0, (x, t) ∈ ST . (3.10)

As ωk ∈ L∞(Ω) ⊂ L2(Ω) and hk ∈ L2(0, T ), then ℓku−hk ∈ L2(0, T ), and it follows that the
right-hand side of equation (3.8) is in L2(QT ). Then, it can be easily seen that the problem
(3.8)-(3.10) is well-posed and it has a unique weak solution in W (0, T ).

3.3 The gradient of the objective functional Jλ(f)

The remaining terms in equation (3.7) are as follows:

∆J0(f) =
1

2

N
∑

k=1

‖ℓk∆u‖
2
L2(0,T ) +

∫

QT

h(x, t)v(x, t)∆f(x, t)dxdt. (3.11)

Due to the a priori estimate (2.13) for the direct problem (2.23), (2.2) and (2.6), for each
k = 1, N , we have

‖ℓk∆u‖
2
L2(0,T ) = o

(

‖∆f‖L2(QT )

)

, as ‖∆f‖L2(QT ) → 0. (3.12)

The proof of (3.12) is as follows. Since ∆u is the solution to the problem (3.1)-(3.3), from
the estimate (2.13), we have

max
t∈[0,T ]

‖∆u(·, t)‖L2(Ω) ≤ C‖∆f‖L2(QT ).

It follows that

‖lk∆u‖
2
L2(0,T ) =

∫ T

0

∣

∣

∣

∫

Ω

ωk(x)∆u(x, t)dx
∣

∣

∣

2

dt ≤ ‖ωk‖
2
L∞(Ω)

∫ T

0

∫

Ω

∣

∣

∣
∆u(x, t)dx

∣

∣

∣

2

dxdt

≤ C2‖ωk‖
2
L∞(Ω)‖∆f‖

2
L2(QT ) = o(‖∆f‖L2(QT )).
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Then, from (3.11) and (3.12), the following holds

∆J0(f) =

∫

QT

h(x, t)v(x, t)∆f(x, t)dxdt+ o
(

‖∆f‖L2(QT )

)

. (3.13)

From the right-hand side of equation (3.13) and the definition of the Fréchet derivative, we
see that the objective functional J0 is Fréchet differentiable and its gradient at f is given by

∇J0(f) = h(x, t)v(x, t). (3.14)

From this equation we can see that for identifiability we need to have that |h(x, t)| 6= 0

a.e. in QT . Finally, we obtain that the objective functional Jλ given by (2.22) is Fréchet
differentiable and its gradient at f is given by

∇Jλ(f) = h(x, t)v(x, t) + λ(f(x, t)− f ∗(x, t)). (3.15)

Remark. If instead of (2.21), the force F (x, t) is sought in the simplified form (2.15), i.e.
space-dependent, or (2.16), i.e. time-dependent, then the gradient (3.14) takes the form

∇J0(f) =

∫ T

0

h(x, t)v(x, t)dt, (3.16)

or

∇J0(f) =

∫

Ω

h(x, t)v(x, t)dx, (3.17)

respectively, Also, the norm of the regularization term in (2.22) becomes the L2(Ω)-norm or
the L2(0, T )-norm, respectively.

In the next subsection, the CGM is described for the minimization of the Tikhonov regular-
ization functional given by (2.22).

3.4 Iterative procedure

In this subsection, the CGM is described for minimizing the objective functional given by
(2.22). The following recursive relation is utilized to recover the unknown force f(x, t) in
the hyperbolic equation (2.23) starting from an initial guess f 0(x, t):

fn+1(x, t) = fn(x, t)− γnPn(x, t), n = 0, 1, · · · , (3.18)

where the superscript n denotes the iteration number, γn is the search step size used for
obtaining the updated version of the missing force fn+1(x, t) from the previously obtained
force fn(x, t), and Pn(x, t) is the direction of descent given by

Pn(x, t) =

{

−∇Jλ(f
n), if n = 0,

−∇Jλ(f
n) + αnPn−1, if n = 1, 2, · · · .

(3.19)

In equation (3.19), the conjugate coefficient αn can be found by the Fletcher-Reeves expres-
sion given by

α0 = 0, αn =
‖∇Jλ(f

n)‖2L2(QT )

‖∇Jλ(fn−1)‖2
L2(QT )

, n = 1, 2, · · · . (3.20)
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The search step size γn is computed as the minimizer

γn = argmin
γ≥0

Jλ(f
n − γPn), n = 0, 1, · · · . (3.21)

To solve the line search problem given by (3.21), let us first write the solution u(·, ·, f) =: u(f)
of the problem (2.23), (2.2) and (2.6) as a superposition of the solution denoted by u(u0, v0, g)
of the problem















utt −∇ · (A∇u) + b(x, t)u = g(x, t), (x, t) ∈ QT ,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ST ,

(3.22)

and the solution denoted by u[f ] of the problem














utt −∇ · (A∇u) + b(x, t)u = f(x, t)h(x, t), (x, t) ∈ QT ,

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ST .

(3.23)

Then, the observation operator in (2.17) can be recast in the form

ℓku(f) = ℓku[f ] + ℓku(u0, v0, g) = Akf + ℓku(u0, v0, g), k = 1, N, (3.24)

where Akf := ℓku[f ] is the linear bounded operator from L2(QT) to L2(0, T ) defined from
the solution u[f ] to the problem (3.23) via the integral relation (2.17). Remark that from
the similarity between the problem (3.23) and the sensitivity problem (3.1)-(3.3) we have
that ℓk∆u = Akf .

To evaluate the search step size γn we set ∆fn(x, t) = Pn(x, t) and linearize u(x, t; fn−γPn)

by a first-order Taylor series expression to obtain

u(x, t; fn − γPn) ≈ u(x, t; fn)− γPn

∂u

∂fn
(x, t; fn) ≈ u(x, t; fn)− γ∆u(x, t; fn), (3.25)

where ∆u(x, t; fn) is obtained by solving the sensitivity problem (3.1)-(3.3) with ∆fn(x, t) =

Pn(x, t). Then, differentiating Jλ(fn− γPn) with respect to γ and making it zero, we obtain

γn =

N
∑

k=1

〈ℓk∆u(f
n), ℓku(f

n)− hk〉L2(0,T ) + λ〈Pn, f
n − f ∗〉L2(QT )

N
∑

k=1

‖ℓk∆u(fn)‖2
L2(0,T ) + λ‖Pn‖2L2(QT )

. (3.26)

In equation (3.26), remark that ℓku(fn)− hk can be calculated from

ℓku(f
n)− hk = ℓk∆u(f

n) + ℓku(u0, v0, g)− hk = ℓk∆u(f
n) + ĥk, (3.27)

where ĥk := ℓku(u0, v0, g) − hk does not depend on the iteration number n, and can be
calculated independently by solving the direct problem (3.22).
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3.5 Algorithm

The CGM proceeds as described in the following steps:

1. Set n = 0 and select an initial guess f 0 ∈ L2(QT ) equal to an a priori given estimate
f ∗ ∈ L2(QT ).

2. Solve the direct problem given by equations (2.23), (2.2) and (2.6) to obtain u(x, t; fn)

and compute Jλ(fn) from equation (2.22).

3. Solve the adjoint problem given by equations (3.8)-(3.10) to find v(x, t; fn). Compute
the gradient ∇Jλ(fn) from equation (3.15), the conjugate coefficient αn from equation
(3.20), and the direction of descent Pn(x, t) from equation (3.19).

4. Solve the sensitivity problem given by equations (3.1)-(3.3) to obtain ∆u(x, t; fn) by
taking ∆fn(x, t) = Pn(x, t) and compute the search step size γn from equation (3.26).

5. Update fn+1(x, t) from equation (3.18).

6. Stop if the desired level of accuracy has been achieved, else set n = n + 1 and go to
step 2.

4 Numerical results and discussion

We use the finite-difference method (FDM), as in Dai and Nassar (1999), based on the
Crank-Nicolson scheme in one dimension d = 1 with mesh size ∆x and time step ∆t, or
the alternating direction implicit (ADI) scheme, as in Araújo et al. (2014), relying on the
Peaceman-Rachford splitting strategy in two dimensions d = 2 with mesh sizes ∆x1 and ∆x2,
and time step ∆t, to solve the direct, sensitivity and adjoint problems in the CGM described
in Section 3.5. Alternatively, the finite element method could be used, see e.g. Johanson
(1993). The trapezoidal rule is used for discretizing the integrals in equations (3.20) and
(3.26). The error functional, as a function of the number of iterations n, is defined as

E(fn) = ||fn − f ||L2(QT ), (4.1)

where fn stands for the numerical result obtained by the CGM at the iteration number n
and f denotes the true force function, if available.

In the inversion below we consider both noise-free and noisy data. While the noise-free data
hk for k = 1, N are obtained from the available analytical solution u(x, t), the noisy data
h
(ǫk)
k for k = 1, N , satisfying

||h(ǫk)k − hk||L2(0,T ) ≤ ǫk, k = 1, N, (4.2)

where ǫk ≥ 0 is the amount of noise, is numerically simulated as

h
(ǫk)
k (tl) = hk(tl) + ǫ

(k)
l , l = 1,M, (4.3)
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where tl = lT/M for l = 1,M and, for each k = 1, N , (ǫ(k)l )l=1,M are M random variables
generated from a Gaussian normal distribution with zero mean and standard deviation given
by

σk = p× max
t∈[0,T ]

|hk(t)|, k = 1, N, (4.4)

where p represents the percentage of noise. In MATLAB, this is realized using the command
normrnd to generate the random variables ǫ

(k) = (ǫ
(k)
l )l=1,M as follows:

ǫ
(k) = normrnd(0, σk,M), k = 1, N. (4.5)

The total amount of noise ǫ is given by

ǫ =

√

√

√

√

N
∑

k=1

||h(ǫk)k − hk||2L2(0,T ). (4.6)

The convergence, accuracy and stability of the proposed CGM for inversion is verified in one
and two dimensions in the next two subsections.

4.1 Example 1 (one-dimensional example)

Taking d = 1, Ω = (0, 1), T = 1, and the input data

a11(x, t) = 1, b(x, t) = 1, h(x, t) = 1, (4.7)

u(x, 0) = u0(x) = x− x2,
∂u

∂t
(x, 0) = v0(x) = x− x2, (4.8)

g(x, t) = 2
[

(x− x2)et + et
]

− (1− t) sin(πx), (4.9)

and considering the force
f(x, t) = (1− t) sin(πx), (4.10)

it can be verified by direct substitution that the analytical solution of the direct problem
given by equations (2.23), (2.2) and (2.6) is given by

u(x, t) = (x− x2)et. (4.11)

To investigate the influence of the number of observations N on the accuracy of reconstruct-
ing the force f(x, t) for the inverse problem given by equations (2.23), (2.2), (2.6) and (2.17)
with unknown force f(x, t) and displacement u(x, t) we take N = 1 (ξ1 = 0.5), N = 3

(ξ1 = 0.3, ξ2 = 0.5 and ξ3 = 0.7), and N = 5 (ξ1 = 0.1, ξ2 = 0.3, ξ3 = 0.5, ξ4 = 0.7 and
ξ5 = 0.9) observation points, and use the average weighted integral observations (2.20) with
Ωk = (ξk −∆x, ξk +∆x) of length |Ωk| = 2∆x for k = 1, 5. This yields

hk(t) = −
1

3
et
[

(∆x)2 + 3(ξk − 1)ξk
]

, t ∈ (0, 1), k = 1, 5. (4.12)

In practice, f ∗ is usually taken as the mean average of f , namely, f ∗ = 1
|QT |

∫

QT
f(x, t)dxdt,

see Thanh (2020); however, in this section we take it arbitrary, say f ∗ = 0. Then, with the
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initial guess f 0 = 0 we run the CGM described in Section 3.5 with ∆t = ∆x = 0.025, p = 0,
i.e. no noise, and λ = 10−5 for 20 iterations. Figure 1(a) and (b) show the true (4.10) and
numerical forces at (0.5, t), as functions of t ∈ [0, 1], and at (x, 0.5), as functions of x ∈ [0, 1],
respectively, for N ∈ {1, 3, 5}. From these figures, it can be seen that increasing the number
of observations N renders the reconstructed force f(x, t) more accurate.

Next, we fix N = 5 and run the CGM described in Section 3.5 with ∆t = ∆x = 0.025

and p ∈ {0, 1}% noise for 20 iterations. We take λ = 10−5 for p = 0, i.e. no noise, while
for p = 1% we take λ = 2.1 × 10−3 as dictated by the discrepancy principle illustrated in
Figure 2 to obtain a stable solution. Figures 3(a) and (b) show the monotonic decreasing
convergence of the objective functional Jλ(fn) defined by (2.22) and the error functional
E(fn) defined by (4.1), respectively, as functions of the number of iterations n. Figure 4
presents the numerical reconstructions of the force f(x, t) in comparison with the true force
(4.10). To elaborate more on the convergence, Figures 5(a) and (b) depict the true (4.10)
and numerical forces at (0.5, t), as functions of t ∈ [0, 1], and at (x, 0.5), as functions of
x ∈ [0, 1], respectively, for exact and noisy data. From Figures 4 and 5, it can be seen that
stable and reasonably accurate solutions have been achieved.

4.2 Example 2 (two-dimensional example)

In this two-dimensional example, we take d = 2, Ω = (0, 1) × (0, 1), T = 1, and the input
data

aij(x1, x2, t) = δij, i, j = 1, 2, b(x1, x2, t) = 1, h(x1, x2, t) = 1, (4.13)

u(x1, x2, 0) = u0(x1, x2) = (x1 − x21) sin(πx2), (4.14)

∂u

∂t
(x1, x2, 0) = v0(x1, x2) = (x1 − x21) sin(πx2), (4.15)

g(x1, x2, t) =
{

[

(π2 + 2)et − sin(πt)
]

(x1 − x21) + 2et
}

sin(πx2), (4.16)

and consider the force

f(x1, x2, t) = (x1 − x21) sin(πx2) sin(πt). (4.17)

It can be verified by direct substitution that the analytical solution of the direct problem
given by equations (2.23), (2.2) and (2.6) is given by

u(x1, x2, t) = (x1 − x21) sin(πx2)e
t. (4.18)

For the inverse problem given by equations (2.23), (2.2), (2.6) and (2.17) with unknown force
f(x1, x2, t) and displacement u(x1, x2, t) we take N = 9 observation points ξk = (ξk1 , ξ

k
2 ) for

k = 1, 9, as ξ1 = (0.1, 0.4), ξ2 = (0.2, 0.7), ξ3 = (0.4, 0.1), ξ4 = (0.5, 0.6), ξ5 = (0.5, 0.9),
ξ6 = (0.6, 0.4), ξ7 = (0.7, 0.2), ξ8 = (0.8, 0.8) and ξ9 = (0.9, 0.5), and use the average
weighted integral observations (2.20) with Ωk = (ξk1 −∆x1, ξ

k
1 +∆x1)× (ξk2 −∆x2, ξ

k
2 +∆x2)

of area |Ωk| = 4∆x1∆x2 for k = 1, 9. This yields

hk(t) =
et

π∆x2

{

ξk1 −
(

ξk1
)2

−
(∆x1)

2

3

}

sin
(

πξk2
)

sin(π∆x2), t ∈ (0, 1), k = 1, 9. (4.19)

12



We also take the a priori estimate f ∗ = 0 and the initial guess f 0 = 0, and run the CGM
described in Section 3.5 with the ADI-FDM mesh sizes ∆t = ∆x1 = ∆x2 = 0.025 and
p ∈ {0, 1}% noise for 20 iterations. We take λ = 10−3 for p = 0, i.e. no noise, while for
p = 1% we take λ = 1.5× 10−2 as dictated by the discrepancy principle illustrated in Figure
6 to restore the stability of the solution.

Figures 7(a) and (b) show the monotonic decreasing convergence of the objective functional
Jλ(f

n) defined by (2.22) and the error functional E(fn) defined by (4.1), respectively, as
functions of the number of iterations n. Figure 8 shows the reconstructions of the force
f(x1, x2, t) at (x1, x2, 0.5) in comparison with the analytical force (4.17), as functions of
(x1, x2) ∈ [0, 1] × [0, 1]. In addition, Figure 9 depicts the analytical (4.17) and recovered
forces at (0.4, 0.5, t), as functions of t ∈ [0, 1], for exact and noisy data. From Figures 8 and
9, it can be seen that stable and reasonably accurate solutions have been accomplished.

5 Conclusions

In this paper, a new formulation to determine general space- and time-dependent forces from
many average integral observations in hyperbolic PDE’s has been attempted. This linear
but ill-posed inverse problem formulated as a minimization problem still encounters non-
uniqueness issues, but we can at least reconstruct that force solution which is the closest
to an a priori given estimate f ∗. Stability of reconstruction has been ensured using the
Tikhonov regularization method. The Tikhonov regularization functional has been proved
to be Fréchet differentiable and a formula for its Fréchet gradient has been derived. The
CGM has been applied for minimizing iteratively the Tikhonov regularization functional with
the discrepancy principle employed for selecting the regularization parameter. The finite-
difference numerically obtained results illustrate the accuracy and stability of the numerical
reconstruction.

The approach described in this paper can easily be extended to fourth-order evolution PDE’s,
e.g. identifying the load in the Euler-Bernoulli beam equation, but this extension will be
undertaken in a future work.
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(a) (b)

Figure 1: The analytical (4.10) and numerical forces f(x, t) at (a) (0.5, t), as functions of
t ∈ [0, 1], and at (b) (x, 0.5), as functions of x ∈ [0, 1], for N ∈ {1, 3, 5} with p = 0, i.e. no
noise, for Example 1.
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Figure 2: The objective functional J0(f 20) after 20 iterations, as a function of λ, for p = 1%

noise, for Example 1.
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(a) (b)

Figure 3: (a) The objective functional Jλ(fn) and (b) the error functional (4.1), with p ∈

{0, 1}% noise, for Example 1.
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(a)

(b) (c)

Figure 4: (a) The analytical (4.10) and numerical forces f(x, t) with (b) p = 0 and λ = 10−5,
and (c) p = 1% noise and λ = 2.1× 10−3, for Example 1.
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(a) (b)

Figure 5: The analytical (4.10) and numerical forces f(x, t) at (a) (0.5, t), as functions of
t ∈ [0, 1], and at (b) (x, 0.5), as functions of x ∈ [0, 1], with p ∈ {0, 1}% noise, for Example
1.
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Figure 6: The objective functional J0(f 20) after 20 iterations, as a function of λ, for p = 1%

noise, for Example 2.
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(a) (b)

Figure 7: (a) The objective functional Jλ(fn) and (b) the error functional (4.1), with p ∈

{0, 1}% noise, for Example 2.

22



(a)

(b) (c)

Figure 8: (a) The analytical (4.17) and numerical forces f(x1, x2, t) at (x1, x2, 0.5) with (b)
p = 0 and λ = 10−3, and (c) p = 1% noise and λ = 1.5× 10−2, for Example 2.
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Figure 9: The analytical (4.17) and numerical forces f(x1, x2, t) at (0.4, 0.5, t), as functions
of t ∈ [0, 1], with p ∈ {0, 1}% noise, for Example 2.
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