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ABSTRACT 18 

To legally permit greywater reuse as a management strategy, it is necessary to establish allowed uses, 19 

as well as guarantee legitimacy, safety and maintain public trust. Cities with previous experience in 20 

greywater reuse have reconfigured their regulations according to their own evidence with decentralized 21 

water reuse systems. This has allowed them to encourage or restrict certain indoor uses of treated 22 

greywater. However, cities starting to use these residential schemes lack the experience to reconfigure 23 
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their water and sanitation regulation, and thus need “blindly” decide on the type of greywater uses to 24 

allow in order to achieve a balance between users’ acceptability and avoiding public health problems. 25 

In this research, we analyse hypothetical situations of greywater reuse based on real evidence related to 26 

decentralized water systems. The main objective of this study is to evaluate the heterogeneity of 27 

individuals' preferences regarding residential greywater reuse for six intended indoor uses, using stated 28 

choice experiments and a latent class model. Hence, we obtain preliminary evidence about the direction 29 

that the regulation or pilot tests should take. We use the context of Santiago (Chile) as a reference, 30 

where although allowed, greywater reuse is not taking place widely. Our results show that survey 31 

respondents can be classified into four classes (enthusiasts, greywater sceptics, appearance conscious 32 

and water expenditure conscious), according to the preferences for the different types of indoor 33 

greywater reuse and the appearance of the treated greywater. From a policy perspective, our results 34 

show differences across classes as a function of socioeconomic characteristics and previous greywater 35 

reuse knowledge, as well as wider household characteristics, including the presence of sensitive 36 

individuals (under 15 and over 74 years old), number of residents, number of sanitary devices, and 37 

location and type of garden. Along with presenting empirical results for the specific case of Santiago 38 

de Chile, the paper provides a demonstration of the method that can be replicated in other countries that 39 

need an empirical approach to acquire knowledge about people’s preferences for greywater reuse 40 

allocation, before including greywater reuse schemes in their water and sanitation regulation. 41 

Keywords: Greywater reuse preferences, choice modelling, latent class model, class allocation.  42 

1. INTRODUCTION 43 

Opportunities for using new alternative sources of water supply for households and the availability of 44 

new technology for reusing water are reshaping the way water is managed in cities (Wilcox et al., 2016). 45 

In particular, now there exist decentralized hybrid water supply systems that draw only part of the water 46 

from the mains network (between 50-70%) while the remainder (50-30%) comes from reused greywater 47 

that is locally treated (Lefebvre, 2018; Vuppaladadiyam et al., 2019). The source is greywater from the 48 
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same household, that is, water that is free of faeces, food residues, oil and fats, collected from washing 49 

machines, showers, tubs, and washbasins (Lambert & Lee, 2018).  50 

Experience in urban settings such as the Persian Gulf region and the broader Middle East (Lambert & 51 

Lee, 2018), and Sydney (Pham et al., 2011), indicates that individuals prefer to allocate reclaimed water 52 

for two non-potable purposes, namely toilet flushing and garden irrigation. Both uses are very attractive 53 

due to a higher perceived safety (i.e. no direct contact with the skin) and lower treatment costs, as high-54 

quality standards are not needed, and also because they are two of the uses that consume the largest 55 

water volumes in the household (Roshan & Kumar, 2020). However, at certain times of the year (e.g. 56 

winter or rainy months), garden irrigation is not a daily practice, or depending on rainfall, may not be 57 

required1. As a result, at those times,  the amount of greywater available would be higher than what 58 

consumers can use for other residential uses Dolnicar & Schäfer, 2009). Discharging the extra greywater 59 

to the conventional sewage system would be an economic loss for users who pay for the maintenance 60 

and operation of the treatment technology (Lambert & Lee, 2018). Thus, if allowed by law, allocating 61 

treated greywater for other uses could be beneficial since a higher volume of the greywater that was 62 

treated can be used. 63 

The perceptions that consumers hold about greywater reuse are fundamental for the success of a 64 

decentralized hybrid water supply system, since they are the primary agents that interact with the 65 

greywater, as well as operate and take care of the technology (Domnech & Saurí, 2010). To ensure that 66 

laws, regulations, and policies contribute to making these systems more attractive and to remain 67 

successful over time, an understanding of the key determinants of consumer preferences is essential 68 

(Mukherjee & Jensen, 2020). Several studies on water reuse have empirically demonstrated that there 69 

is heterogeneity in preferences and that this is mainly linked to socio-demographic characteristics, and 70 

other psychological constructs (Amaris et al., 2021; Oteng-Peprah et al., 2020). The starting point of 71 

our work is that even within the same sociodemographic group, differences in preferences may exist, 72 

in terms of which (if any) uses of greywater are desirable, and what the role of the appearance of the 73 

water is (Amaris et al., 2021). We postulate that classes or groups of individuals can be established to 74 

 
1 https://www.organicgardener.com.au/blogs/watering-winter 
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capture this heterogeneity, and that consumer characteristics can be used to at least partially explain 75 

which group an individual is more likely to belong to (Hess, 2014). In particular, our study focuses on 76 

exploring different population segments, each with its own behaviour (choice regarding preferences) in 77 

the allocation of treated greywater for six domiciliary uses that vary according to the level of skin 78 

contact, based on our earlier survey work in (Amaris et al., 2020). 79 

Our modelling context is based on hypothetical scenarios that replicate real experiences of water reuse 80 

in dwellings in Spain (Domnech & Saurí, 2010) and South Africa (Ilemobade et al.,  2013). This method 81 

uses SC experiments to explore the preferences of respondents for the qualitative and quantitative 82 

characteristics of mutually exclusive alternatives (Louviere et al., 2000). Due to the nature of the data 83 

and our study objectives, we analyse the choices in the hypothetical scenarios using latent class discrete 84 

choice models allowing for heterogeneity in preferences across consumers. These types of data and 85 

models are becoming more common in studies of technological innovations  (Su et al., 2018; 86 

Franceschinis et al., 2017), mainly because they can produce insights on preferences in the absence of 87 

an existing market (Ortúzar & Willumsen, 2011, sec. 8.6.3.2). They also offer a way of knowing about 88 

how feasible and successful a project can be and understanding which characteristics should be 89 

improved to achieve higher acceptability before it goes on the market, or prior to regulations being 90 

established.  91 

Discrete choice models of the type used here explain choices under the assumption that consumers 92 

maximize the “utility” or benefit they receive by choosing a particular alternative. This utility is based 93 

on the characteristics or attributes that define the alternative (Ortúzar & Willumsen, 2011, sec. 7.1), and 94 

the sensitivities of the user towards them. In the particular context of our study, the characteristics 95 

defining treated greywater in the hybrid water system are: (i) it's different levels of colour and odour, 96 

(ii) possible uses (e.g. toilet flushing) and (iii) the resulting savings in mains water. Our work seeks to 97 

uncover different classes of respondents, with different sensitivities to the attributes, and to understand 98 

why individuals belong to each class. We leave aside traditional economic theory (which would 99 

consider a full cost-benefit approach), since, although the cost of technology is known to be highly 100 

influential, the inclusion of cost would have dominated the scenarios and precluded our focus on 101 
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understanding other subjective elements that may influence individuals’ acceptability of treated 102 

greywater, and the heterogeneity in this across people.  103 

The study context is Santiago, the capital city and largest conurbation in Chile (INE, 2017), a place with 104 

seasonal water availability problems, and where its population has no previous experience about 105 

greywater reuse (even the concept itself is largely unknown). Although mandatory water quality 106 

standards are not established, the permitted uses for greywater are known to be garden irrigation and 107 

toilet flushing (as prescribed in the law 21,0752). With this research we aim to provide evidence, with 108 

statistical support, to show that regulations could allow other greywater uses considering the preferences 109 

in different population segments. We also provide statistical evidence suggesting that it is possible to 110 

preserve the balance between recovered water volumes and the amount of water used, while ensuring 111 

that the system’s operation provides the greatest benefits without compromising individuals’ health. 112 

Along with presenting empirical results for the specific case of Santiago de Chile, the paper provides a 113 

demonstration of the method that can be replicated in other countries that need an empirical approach 114 

to acquire knowledge about people’s preferences in greywater reuse allocation, before including 115 

greywater reuse schemes in their water and sanitation regulation. 116 

2. DATA 117 

Data for our analysis come from a Stated Choice (SC) survey carried out in Santiago. The Metropolitan 118 

Region, where Santiago is located, has water stress problems nowadays (with periods of one to four 119 

weeks with very low flows, (Vicuña et al., 2018) and is predicted to become the area with highest deficit 120 

in Chile by 2025 (Valdés-Pineda et al., 2014). Currently, residential water demand per capita varies 121 

between 150 l/day and over 600 l/day depending on the irrigation of green areas (Bonelli et al., 2014), 122 

while water losses due to pipe leaks in the mains water system are around 30% (Aguas Andinas, 2019). 123 

Although the main water supply system has been strengthened over the years, it continues to be fragile 124 

in the face of significant threats due to climate variability, climate change and population growth 125 

(Vicuña et al., 2018). 126 

 
2 https://www.bcn.cl/leychile/navegar?idNorma=1115066 
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The survey was carried out face to face in 29 of the 37 municipalities of the city, and only household 127 

heads or their partners over 18 years of age were interviewed. The information was collected by a 128 

company with experience with this type of survey. Municipalities were selected from the city areas with 129 

drinking water and sanitation services provided by Aguas Andinas, the main water company. In each 130 

municipality, the survey was carried out in different non-neighbouring blocks and the households 131 

participating in the survey were randomly selected. A final sample of 510 individuals were retained for 132 

analysis, of which 65.3% were women, 55.9% were between 18 and 54 years of age, 64.1% had lower 133 

than secondary educational level, and 71.4% had no previous knowledge about greywater reuse. These 134 

characteristics partially replicate census data reported by (INE, 2018) as shown in Figure 1. 135 

Figure 1. Overview of socio-demographic characteristics sample and census INE (2017). 136 

 137 

2.1. Survey overview  138 

Although allowed and regulated by Law 21,075, greywater reuse in Chile is not a common practice at 139 

present. Hence, the survey first presented individuals with a schematic representation to explain the 140 

concepts of greywater and sewage, and showed them how a greywater reuse technology system would 141 

work inside their homes. In the next sections, the survey collected answers/ratings related to individuals’ 142 

reactions to the concept of greywater reuse, characterization of the household (e.g. age, gender), the 143 

dwelling (e.g. house size, presence of garden and coverage percentage, kind of coverage – grass or 144 

another kind of vegetation). The choice experiment and the development of the survey are described in 145 

Amaris et al., (2020), and supplementary materials in the present paper gives more detail about the 146 
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survey form. In what follows, we give an overview of the parts most relevant to this paper (i.e. personal 147 

water reuse choices). 148 

2.2. Choice context  149 

Personal greywater reuse choices have been studied using hypothetical SC scenarios that were based 150 

on real experiences in Spain (Domnech & Saurí, 2010), South Africa (Ilemobade et al., 2013) and the 151 

USA  (Wester et al., 2016). The aim of the SC component was to estimate the acceptability of reusing 152 

treated greywater for different purposes inside the home, measuring respondents’ sensitivities to 153 

changes in the type of use and changes in water appearance and water bill savings.  154 

Each respondent was shown six different choice scenarios (see Figure 2 for an example of choice 155 

scenario), leading to a final sample of 3,060 observations. Each scenario had three alternatives for water 156 

supply inside the home, from which the respondent had to choose only one. One of these alternatives 157 

was to continue using the conventional water supply system (status quo), while the other two used a 158 

hybrid water supply that allowed the reuse of greywater for a specific purpose and mains water for other 159 

uses.  160 

Figure 2. Example choice scenario 1 161 

 162 

In the case of the hybrid system the individual had to assume that the greywater treatment device was 163 

already installed, was as easy to use as a washing machine, and that there was no additional energy cost,  164 
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as a solar panel was also already installed. For the two reuse alternatives in the SC scenarios, the treated 165 

greywater in the hybrid system was described by four characteristics at different levels (Figure 3): (i) 166 

type of use, (ii) colour (iii) odour, and (iv) the percentage savings on the water bill (shown as the actual 167 

amount of money saved).  168 

The values for each attribute in each scenario were determined on the basis of a D-efficient experimental 169 

design (cf. Rose & Bliemer, 2014). The type of greywater uses corresponded to the six most common 170 

uses within the house, which consider different levels of contact with the skin. Colour and odour (both 171 

with three levels) after treatment, could be caused by the type of treatment (e.g. water purification 172 

tablets), or could be introduced deliberately to indicate the contaminant removal success, or to 173 

distinguish treated water from that of the mains system (Domnech & Saurí, 2010). Water savings are 174 

the result of the lower use of mains water at home due to greywater reuse  (Lambert & Lee, 2018; Chen, 175 

et al., 2017) . This attribute (also with three levels) differed across two reference groups in the choice 176 

scenarios: group 1 with 290 households (T1) and group 2 with 220 households (T2); these groups were 177 

associated with a monthly water consumption bill below and above US$ 28.8, respectively. 178 

 Figure 3. Attributes and levels of treated greywater in hybrid decentralized water supply system 179 
alternatives in the SC survey 180 

3. MODEL FORMULATION AND SPECIFICATION 181 

We formulated and estimated a latent-class (LC) choice model to identify different segments in the 182 

population, each with its own preferences for reusing treated greywater in different uses inside the 183 

house. A LC model probabilistically segments the sample population into a number of segments with 184 
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different behaviour/preferences. In our application, each class was based on random utility theory, 185 

which postulates that individuals form a utility for each alternative, based on their perceptions about 186 

what characteristics describing a good or service are desirable or undesirable. Decision makers then 187 

choose the option that provides them with the highest utility. As the process of utility formation is not 188 

observed by the analyst, the models incorporate a random component and the choices become 189 

probabilistic (Train, 2009). In our LC model, the different classes are characterised by different 190 

sensitivities to the characteristics of the greywater system (Greene & Hensher, 2003). We now describe 191 

the two main components of the analysis, namely the model specification and estimation, and the post-192 

estimation processing of the estimates. 193 

3.1. Model specification and estimation 194 

The LC model uses a probabilistic class allocation model, where respondent n belongs to class k (out 195 

of a total of K classes) with probability πn,k, where 0 ≤ πn,k ≤ 1 ∀k and ∑ 𝜋𝑛,𝑘 = 1𝐾𝑘=1 , ∀𝑘. LC models 196 

are generally specified with an underlying multinomial logit (MNL) model inside each class, but can 197 

easily be adapted for more general underlying structures (Hess, 2014). Let 𝑃𝑛(𝑗𝑛,𝑡 ∣ 𝛽𝑘) give the 198 

probability of respondent n choosing alternative j in task t, conditional on respondent n falling into class 199 

k, where the model in this class uses the vector of parameters 𝛽𝑘. 200 

We observe a sequence of 𝑇𝑛 choices for person n, say 𝑗𝑛∗, where alternative 𝑗𝑛,𝑡∗  is chosen in choice 201 

situation t. With an underlying MNL model, we have that: 202 

𝑃𝑛 (𝑗𝑛,𝑡∗  | 𝛽𝐾) = 𝑒𝑉𝑗𝑛,𝑡∗∑ 𝑒𝑉𝑗𝑛,𝑡𝐽𝑗=1         (1) 203 

where 𝑉𝑗𝑛,𝑡 is the deterministic component of utility (i.e. the fraction of utility associated with attributes 204 

that the analyst can measure or observe) for person n, alternative j, in choice situation t, given by: 205 

𝑉𝑗𝑛,𝑡 = 𝑓(𝑥𝑗𝑛,𝑡 , 𝑧𝑛, 𝛽𝑘)         (2) 206 

where 𝑥𝑗𝑛,𝑡 are characteristics of alternative j in choice situation t, 𝑧𝑛 are characteristics of individual n, 207 

and 𝛽𝑘 are parameters to be estimated. The functional form  𝑓(𝑥) is typically linear in attributes. 208 
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Equations (1) and (2) are conditional on respondent n falling into class k, but this is not observed by the 209 

analyst. The unconditional (on k) choice probability for this sequence of choices for respondent n, 210 𝐿𝑛 (𝑗𝑛∗  | Ω), is then given by: 211 

𝐿𝑛 (𝑗𝑛∗  | Ω)  =  ∑ 𝜋𝑛,𝐾(∏ 𝑃𝑛 (𝑗𝑛,𝑡 | 𝛽𝐾)𝑇𝑛𝑡=1 )  𝐾𝑘=1        (3) 212 

that is, the weighted sum across the K classes of the probabilities of the sequence of choices, with the 213 

class allocation probabilities being used as weights. The vector Ω groups together all parameters used 214 

in the model. 215 

As seen in Equation (3), the LC model uses a weighted summation of class-specific choice probabilities. 216 

In the most basic version of an LC model, the class allocation probabilities are constant across 217 

respondents, such that 𝜋𝑛,𝑘 = 𝜋𝑘, ∀𝑛. However, the real flexibility arises when the class allocation 218 

probabilities are not constant across respondents and a class allocation model is used to link these 219 

probabilities to characteristics of the respondents. Typically, these characteristics take the form of socio-220 

demographic variables, such as income, age and employment status. With 𝑧𝑛 representing the vector of 221 

characteristics for respondent n, and with the class allocation model taking a MNL form, the probability 222 

of respondent n falling into class k is given by: 223 

 𝜋𝑛,𝑘 = (𝑒  𝛿𝑘 +𝑔(𝛾𝑘, 𝑧𝑛))∑ 𝑒  𝛿𝑙 +𝑔(𝛾𝑙, 𝑧𝑛)𝐾𝑙=1          (4) 224 

where 𝛿𝑘 is a class-specific constant, 𝛾𝑘 is a vector of parameters to be estimated, and g (·) corresponds 225 

to the functional form of the utility function in the class allocation model. 226 

Here, a major difference arises between class allocation models and choice models. In a choice model, 227 

the attributes vary across alternatives while the estimated coefficients (with a few exceptions) stay 228 

constant across alternatives. In a class allocation model, the attributes normally stay constant across 229 

classes while the parameters vary across classes, and are set to zero for one class for normalisation. This 230 

allows the model to allocate respondents to different classes depending on their socio-demographic 231 

characteristics. For example, a situation where high-income and low-income respondents are allocated 232 

to two classes could be represented with a positive income coefficient for the first class (with the 233 



 11 

coefficient normalised to zero for the second class). In a LC model, taste heterogeneity is accommodated 234 

as a mixture between a deterministic and a random approach. 235 

A probabilistic model is used to allocate respondents to the different classes that characterise different 236 

tastes in the sample. However, the class allocation in Equation (4) is not purely random, but a function 237 

of socio-demographic characteristics of the respondents. In addition, it is also possible to incorporate 238 

heterogeneity in preferences directly in the utility functions in Equation (3), for individual classes, rather 239 

than in the class allocation model. In some cases, such as for example an income effect on cost 240 

sensitivity, it also makes sense to keep these effects the same across classes.   241 

The LC model was estimated using Apollo v 0.1.1 (Hess & Palma, 2019). The estimation of a discrete 242 

choice model involves the maximisation of the likelihood of the observed choices, where we typically 243 

work with the log-likelihood function, given by: 244 

𝐿𝐿(𝑗𝑛∗  | Ω) = ∑ log (𝐿𝑛 (𝑗𝑛∗ | Ω) )𝑁𝑛=1        (5) 245 

where N is the number of individuals, 𝐿𝑛 (𝑗𝑛∗ | Ω) is given by Equation (1), which itself uses Equations 246 

(2) and (4). The log-likelihood function for a LC model is notoriously difficult to maximise, with a risk 247 

of convergence to poor local optima. We address this issue by moving away from gradient based 248 

approaches and using an expectation-maximisation process  (Train, 2009, Chapter 14). 249 

3.2. Posterior analysis 250 

The estimation of a LC model provides parameters for the choice model used inside each class, in this 251 

case always a MNL model. In addition, we obtain estimates for the parameters used in the class 252 

allocation models. The utility parameters provide insights into the preferences and sensitivities within 253 

each class, while the class allocation parameters explain the allocation of individuals to different classes. 254 

The differences in parameters across classes give insights into the sample level patterns of 255 

heterogeneity. Each individual belongs to each class up to a probability, where this probability varies 256 

across individuals as a function of their characteristics. For example, in a model that retrieves two 257 

classes characterised by differences in the sensitivity to cost, the class allocation model will likely show 258 



 12 

that higher income individuals have a higher probability of belonging to the class with lower cost 259 

sensitivity. However, this treats two individuals who are identical on the socio-demographics used in 260 

Equation (4) as also having identical sensitivities, contrary to the notion of random heterogeneity. In 261 

addition, it does not provide information about how preferences may vary as a function of socio-262 

demographic (or other) characteristics that were not included in Equation (4).  263 

Further insights can be obtained, post estimation, in a Bayesian manner by calculating information 264 

relating to a given individual’s sensitivities on the basis of the sample level model estimates and her 265 

observed choices. Let us return to the example with the classes used above. Two individuals with the 266 

same income may still make different choices in our data. Bayesian analysis then allows us to further 267 

disaggregate the class allocation of these individuals. If one of the two chooses more expensive options 268 

than the other on average, her likelihood of falling into the low cost sensitivity class is higher. On the 269 

other hand, if we have two individuals with different income but the same choice patterns, then the 270 

person with lower income will still have a lower probability of falling into the low cost sensitivity class. 271 

This is an illustrative example, just to explain the concept, which is now formalised using Bayesian 272 

analysis as follows. 273 

The first step is to calculate posterior class allocation probabilities, where the posterior probability of 274 

individual n for class k is given by: 275 

𝜋𝑛,𝑘̂ = 𝜋𝑛,𝑘𝐿𝑛,𝑘 (𝑗𝑛∗  |Ωk) 𝐿𝑛 (𝑗𝑛∗  | Ω)          (6) 276 

where 𝜋𝑛,𝑘 and 𝐿𝑛 (𝑗𝑛∗  | Ω) are given by Equations (4) and (3), respectively, and where 𝐿𝑛,𝑘  (𝑗𝑛∗ |Ωk) is 277 

the likelihood of the observed choices for individual n, conditional on class k, that is, the term inside 278 

the sum across classes in Equation (3). 279 

We then use the output of Equation (6) to produce a membership profile for each class. From the 280 

parameters in the class allocation probabilities, we know which class is more or less likely to capture 281 

individuals who possess a specific characteristic. Crucially, this can be done for characteristics not 282 

included in the model specification during estimation. Let us use the example of a given socio-283 
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demographic characteristic 𝑧𝑐. We can then calculate the likely value for 𝑧𝑐 for an individual in class k 284 

as: 285 

𝑧𝑐,𝑘̂ = ∑ 𝜋𝑛,𝑘̂𝑧𝑐,𝑛𝑁𝑛=1  ∑ 𝜋𝑛,𝑘̂𝑁𝑛=1           (7) 286 

where 𝑧𝑐,𝑛 is the value for this characteristics for individual n. Thus, Equation (7) considers the weighted 287 

average of the value for characteristic 𝑧𝑐 for all individuals in class k, using the posterior class 288 

allocations from Equation (6) as weights. Alternatively, we can also calculate the posterior probability 289 

of an individual in class k having a given value 𝜅 for 𝑧𝑐 by using: 290 

𝑃(𝑧𝑐,𝑘̂ = 𝜅) = ∑ 𝜋𝑛,𝑘̂(𝑧𝑐,𝑛==𝜅)𝑁𝑛=1  ∑ 𝜋𝑛,𝑘̂𝑁𝑛=1  ,       (8) 291 

where (𝑧𝑐,𝑛 == 𝜅) will be equal to 1 if and only if 𝑧𝑐,𝑛 equals k. 292 

The calculation of these posterior values for characteristics in each class opens up the possibility of 293 

graphical analysis, using three dimensions, as we will demonstrate in Section 4.2.2. In particular, this 294 

allows us to study the relationship between the posterior class allocation probabilities (Z dimension) 295 

and two different socio-demographics (X and Y) at the same time. In the graphical analysis, the inverse 296 

distance weighting method (IDW) was implemented to interpolate the estimates of Z within the data 297 

range, which implies that the assigned weights will be bigger at the points closest to the prediction 298 

location and that these will decrease as a function of distance. The reason for this is that the IDW method 299 

assumes that  closer points are more similar than those that are further away. To have a common 300 

reference system, the data used for the X and Y axes were standardized. 301 

3.3. Initial model specification considerations 302 

A number of decisions are needed prior to specify the models. These decisions relate to the levels used 303 

as reference for categorical variables, the inclusion of socio-demographic characteristics in the model, 304 

the existence of any generic parameters across classes, and the number of classes to use.  305 

The survey used three alternatives, two of which were greywater reuse (GWR) options, and the third 306 

implied using mains water. We specified mains water as reference and, thus, a parameter for each of 307 
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the six types of greywater reuses could be estimated. In addition, we estimated a constant for the left-308 

most alternative, to capture any left-to-right (reading) bias in the data. The other categorical variables 309 

were related to odour and colour; here we again used dummy coded coefficients, with the best level (i.e. 310 

clear for colour, and odourless for odour) being the reference and fixing its parameter to zero for 311 

identification. 312 

In LC models, the socio-demographic parameters are typically used only in the class allocation model, 313 

(i.e. to explain which types of individuals are more or less likely to fall into given classes). For extra 314 

flexibility, we additionally incorporated some socio-demographic variables directly in the utility 315 

functions. These variables related to differences in the preferences for different GWR uses as a function 316 

of gender and past knowledge, and in the sensitivity to water bill savings as a function of the current 317 

level of water expenditure in the household. These socio-demographics were kept generic (i.e., with the 318 

same parameter) across classes. In addition, the sensitivity to the water bill savings was kept constant 319 

across classes, as earlier results showed that segmenting by level of expenditure was sufficient to 320 

capture the heterogeneity in cost sensitivity. 321 

Within individual classes, we also tested for the significance of differences between parameters, and 322 

imposed some constraints where appropriate; for example, if the preferences for two or more uses were 323 

found not significantly different from each other. These constraints are highlighted in the presentation 324 

of the results. Similarly, some parameters were excluded from specific classes if the associated 325 

attributes did not have a significant impact on utility in those classes (marked in the tables as n.s., for 326 

non-significant to distinguish from those parameters fixed to zero as reference). Finally, socio-327 

demographic characteristics were also incorporated in the MNL class allocation model. For 328 

identification purposes, we set class 1 as reference and estimated an offset (𝛿𝑘 in Equation (4)), as well 329 

as socio-demographic effects (𝛾𝑘), for the other classes. 330 

A key decision in specifying a LC model relates to the number of classes to use. We evaluated different 331 

models to define the optimal number of classes (Table 1). The log-likelihood (LL) improves with 332 

additional classes, but at the cost of additional parameters. In line with best practice for LC models, we 333 

compared models on the basis of the Akaike Information Criterion (AIC) and Bayesian Information 334 
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Criterion (BIC). While the former favoured a 5-class model, the latter narrowly favoured a 3-classs 335 

model. The 4-class model provided a good balance between the two, with additional behavioural 336 

insights over the 3-class model. Some further parameter constraints (i.e. removing insignificant 337 

parameters) in this model led to our final specification.  338 

Table 1. Determining the number of classes 339 
Number 
of classes LL 

Nº of 
parameters AIC BIC 

1 -3,129.02 18 6,294.04 6,370.25 
2 -2,398.48 31 4,858.96 4,990.23 
3 -2,319.93 45 4,729.85 4,920.40 
4 -2,282.31 58 4,680.63 4,926.22 
5 -2,262.79 69 4,663.58 4,955.75 

4 (with  
additional 
Constraints) 

-2,304.57 34 4,677.15 4,882.04 

 340 

4. RESULTS AND DISCUSSION 341 

4.1. Estimation results for final model 342 

When working with LC models, an analyst needs to make a decision between an “exploratory” LC 343 

model and a “confirmatory” LC model (cf. Hess, 2014). While “confirmatory” LC is useful for testing 344 

for the presence of specific behavioural traits, “exploratory” LC lets the data “speak”, that is, the 345 

preferences in the classes as well as their composition are revealed by the data, rather than pre-imposed 346 

by the analyst. We use such an “exploratory” LC model, where the four classes can then be interpreted 347 

by studying the estimated sensitivities to different characteristics, including the type of use and the 348 

appearance of the treated greywater.  349 

The results in Table 2 show the parameter estimates (which give the impact on utility by a given 350 

attribute) alongside the robust t-ratios (given by dividing estimates by their robust standard errors, with 351 

for example 1.96 implying a 95% significance level for rejecting the null hypothesis that the parameter 352 

is not different from 0 in a two-sided test). The parameters show the impact of the attribute on utility, 353 

with a negative sign implying a reduction in utility (i.e. an undesirable attribute), and the opposite 354 

applying for a positive estimate. 355 

 356 
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Table 2. Estimation results for latent class model 357 
  Class 1 Class 2 Class 3 Class 4 

  
Estimate 

Robust    

t- ratio 
Estimate 

Robust    

t-ratio 
Estimate 

Robust 

t-ratio 
Estimate 

Robust 

t-ratio 

 (1) ALTERNATIVE SPECIFIC CONSTANT 

Left alternative† -0.367 -6.39 -0.367 -6.39 -0.367 -6.39 -0.367 -6.39 

 (2) GREY WATER APPEARANCE             

Colour                 
… Clear (reference) 0 reference 0 reference 0 reference 0 reference 

… Light blue 0 n.s. 0 n.s. 0 n.s. -1.301‡ -2.05 
… Dark blue -0.313 -3.13  0 n.s. -0.619 -5.09 -1.301‡ -2.05 
 Odour                 
… Odourless (reference) 0 reference 0 reference 0 reference 0 reference 

… Light chlorine -0.169 -1.45 0 n.s. -0.472 -3.53 0 n.s. 
… Strong chlorine -0.816 -6.48 -11.057 -21.08 -1.032 -6.4 0 n.s. 

(3) USES                 

0.  Mains water (reference) 0 reference 0 reference 0 reference 0 reference 

1. Toilet flushing 3.963‡ 6.74 -4.959‡ -9.79 0.303‡ 2.14 5.957‡ 2.1 
… shift for female† 0.728 4.26 0.728 4.26 0.728 4.26 0.728 4.26 
… shift for previous knowledge† 0.375 1.35 0.375 1.35 0.375 1.35 0.375 1.35 
                  
2. Garden irrigation 3.963‡ 6.74 -4.959‡ -9.79 0.303‡ 2.14 5.957‡ 2.1 
                  
3. Clothes washing 3.963‡ 6.74 -4.959‡ -9.79 0.303‡ 2.14 0 n.s. 
… shift for female† 0.257 1.75 0.257 1.75 0.257 1.75 0.257 1.75 
… shift for previous knowledge† 0.448 2.22 0.448 2.22 0.448 2.22 0.448 2.22 
                  
4. Hands washing 3.71‡ 5.98 -4.959‡ -9.79 0 n.s. 0 n.s. 
… shift for female† 0.289 2.05 0.289 2.05 0.289 2.05 0.289 2.05 
                  
5. Shower/Tub 3.71‡ 5.98 -15.29‡ -18.02 0 n.s. 0 n.s. 
                  
6. Drinking 2.397 3.88 -15.29‡ -18.02 -0.82 -3.33 0 n.s. 
… shift for female† 0.448 2.15 0.448 2.15 0.448 2.15 0.448 2.15 

(4) SAVINGS ON WATER BILL               

Low water expenditure group† 0.089 4.26 0.089 4.26 0.089 4.26 0.089 4.26 
High water expenditure group† 0.039 3.39 0.039 3.39 0.039 3.39 0.039 3.39 

                  

  Class 1 Class 2 Class 3 Class 4 

  Estimate Robust   
t-ratio 

Estimate Robust   
t-ratio 

Estimate Robust 
t-ratio 

Estimate Robust   
t-ratio 

CLASS ALLOCATION MODEL             

Constant 0 reference -1.574 -3.7 -0.595 -2.41 -8.091 -5.52 
Low educational level 0 reference 0.723 2.75 0.471 1.79 -1.046 -1.95 
Garden 0 reference -0.824 -2.49 0 n.s. 6.771 4.34 
House 0 reference 1.402 2.98 0 n.s. 0 n.s. 
Class weight 40% 24% 30% 6% 

†:  parameter shared across classes 358 
‡: parameter shared across multiple uses or multiple levels of categorical attribute 359 
n.s.: parameter constrained to zero after initial estimate was not significantly different from zero 360 
 361 

4.1.1. Generic parameters 362 

Parameters indicated with the symbol † in Table 2 are generic across classes. They fall into three 363 

categories. First, there is an alternative specific constant (ASC) for the left-most alternative, which 364 

captures the difference in baseline utility between the two greywater reuse options. The negative value 365 

shows that, all else being equal, respondents will choose the middle option (i.e. the second GWR 366 
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alternative) more often than the first. There is no apparent reason for this, as the survey design was 367 

balanced. Second, there are a number of generic socio-demographic effects. These relate to differences 368 

in sensitivities between men and women, and between those with and without prior knowledge. Women, 369 

for example, have an additional increase in utility compared to men, if water reuse is for flushing toilets 370 

(0.728), laundry (0.257), handwashing (0.289) and drinking (0.448). Previous knowledge only results 371 

in an additional increase in utility if water reuse is for toilet flushing (0.375) and clothes washing 372 

(0.448). Note that the impact of gender on the utility of reusing greywater for toilet flushing is much 373 

larger than that of having prior knowledge, while the opposite is true for laundry. 374 

The third and final generic set of parameters relate to the savings in the water bill. This is subject to 375 

household water consumption, so the model contains two estimates, one for the low consumption group 376 

and another for the high consumption group. Each time, the coefficient multiplies the actual saving 377 

expressed in 1000s of Chilean pesos (CLP). The results show that the impact per 1000 CLP in savings 378 

for the low water consumption group are more influential (0.089) than for the high water consumption 379 

group (0.039). The influence exerted by the savings attribute is positive, which is an indication that this 380 

attribute is key to achieving higher acceptability of reusing water for different uses.  381 

4.1.2. Class specific parameters 382 

We now look at those parameters which vary across the four classes, as well as giving a behavioural 383 

interpretation to each class. 384 

Class 1 – Enthusiasts: this class corresponds to individuals who have a positive perception of reusing 385 

treated greywater for the six uses considered. Table 2 shows that toilet flushing, garden irrigation and 386 

laundry are perceived the same in terms of benefits and are also the uses with greater utility. Reusing 387 

greywater for washing hands or shower/tub has the same utility in this group, slightly lower than the 388 

previous three uses, but still with a substantially higher utility than reusing treated water for drinking. 389 

Regarding the impact of appearance on utility, increased colour (though not if only increasing to light 390 

blue) and odour levels negatively influence acceptability, especially if the treated water has high levels 391 

of odour (-0.816). In this class, the influence of appearance (colour and odour) on utility is small 392 
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compared to its influence in the other classes. Furthermore, for this group, the positive impact of using 393 

treated greywater on utility is much higher than the negative utility resulting from changes in the 394 

appearance that the use of treated greywater would produce. 395 

Class 2 – Greywater sceptics: this class corresponds to individuals who have a negative perception of 396 

greywater reuse, especially those uses that require more direct skin-to-water contact (shower/tub and 397 

drinking). The size of the estimates shows that, in this class, the difference in utility between mains 398 

water and greywater is much larger than in other classes, with a substantial loss of utility for greywater 399 

options. This loss is further amplified if the water has a strong chlorine smell, while colour is not a 400 

characteristic that influences the utility in this class. 401 

Class 3 – Appearance conscious: this class corresponds to individuals who perceive positively 402 

greywater reuse for toilet flushing, garden irrigation and laundry if the treated greywater is odourless 403 

and clear/transparent. In this class, individuals are more sensitive to changes in the appearance of treated 404 

water than to the uses themselves (comparing the weights of the appearance attributes with the weights 405 

for uses). The three uses with a positive utility (compared to mains water) are those that require less 406 

skin contact.  407 

Class 4 – Water expenditure conscious: this class corresponds to individuals who have an increase in 408 

utility when treated greywater is available for toilet flushing and garden irrigation. We label these as 409 

expenditure conscious, as the preferred uses for these consumers are those with highest water 410 

consumption (toilet flushing between 10 and 20 litres per flush, while a 100 m2 garden area can use up 411 

to 1000 litres, SISS, 2019). Additionally, in this class, changes in the colour level of water are highly 412 

influential compared to individuals from other classes. However, the utility of using treated greywater 413 

for toilet flushing and garden irrigation is much higher than the loss of utility associated with changes 414 

of appearance.  415 

4.1.3. Class allocation model 416 

The final part of the model estimates relates to the class allocation model (see Table 2). This component 417 

explains which respondents are more likely to fall into specific classes. At the sample level, the 418 
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probability of belonging to Class 1 is 40%, of belonging to Class 2 is 24%, 30% for Class 3 and only 419 

6% for Class 4. These sample level class allocation probabilities are driven in large parts by the offset 420 

(𝛿𝑘 in Equation (4)) included in the class allocation model, where with Class 1 taken as reference, 421 

negative constants for the remaining classes are observed. These constants relate to an individual in the 422 

base socio-demographic group (mid or high education, without a garden and living in a flat), where the 423 

probability of belonging to Class 1 is the highest (and the lowest for Class 4). However, these 424 

probabilities vary as a function of respondent characteristics. Note that having a lower level of education 425 

increases the likelihood of belonging to the sceptic class (Class 2) or the class concerned about 426 

greywater appearance (Class 3). Having a garden reduces the likelihood of falling into the sceptic class 427 

(Class 2) and substantially increases the likelihood of falling into Class 4, which assigns high utility for 428 

using greywater for garden irrigation (with Equation (4) implying a change in probability for class 4 429 

from near zero to 14%). Thus, this finding is entirely in line with expectations. Finally, those living in 430 

a house as opposed to a flat, have an increased likelihood of falling into Class 2. 431 

4.2. Posterior - analysis 432 

The discussion in Section 4.1.3 focussed on the sample level class allocation probabilities. This process 433 

only requires the class allocation model, and thus implies that the class assignment probabilities are 434 

identical for individuals with the same characteristics. We now go a step further, making use of the 435 

approach in Section 3.2 to determine posterior class allocation, using the estimates of the sample level 436 

model and the observed choices of each individual. Unlike the direct results from the class allocation 437 

model, this posterior analysis makes use of respondent characteristics that were not included in the class 438 

allocation model. 439 

4.2.1. Posterior values of socioeconomic characteristics across classes  440 

In Table 3 we compare the posterior share (cf. Section 3.2) of given sociodemographic characteristics 441 

across classes. For each characteristic, the crucial comparison is against the sample average, showing 442 

whether individuals with given characteristics are more likely to fall into specific classes. There is also 443 
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some insight to be gained by comparing the posterior across characteristics (e.g. male vs. female), but 444 

care needs to be taken if there are differences in the sample level representation.  445 

Table 3.Socio-demographic characterization into the classes 446 

Socio-economic characteristic Class 1 Class 2 Class 3 Class 4 
Sample 
average 

Gender           

… Male 0.37 0.32 0.34 0.34 0.35 
… Female 0.63 0.68 0.66 0.66 0.65 

Age     
 

… Under 30 years old 0.16 0.09 0.06 0.10 0.11 
… Between 30 and 60 years old 0.57 0.55 0.62 0.65 0.58 
… Over 60 years old 0.28 0.36 0.32 0.25 0.31 

Education level      

… Elementary school  0.18 0.22 0.10 0.10 0.16 
… High school 0.37 0.48 0.54 0.24 0.44 
… Technical education 0.17 0.13 0.14 0.21 0.15 
… University studies 0.23 0.11 0.14 0.42 0.18 

Main occupation      

… Stay at home 0.24 0.31 0.26 0.25 0.26 
… Retired 0.15 0.19 0.15 0.12 0.16 
… Part-time 0.05 0.04 0.06 0.12 0.05 
… Full-time 0.48 0.41 0.50 0.40 0.47 

Income      

… Under 600 USD 0.42 0.47 0.42 0.40 0.43 
… Between 600 – 1,820 USD  0.48 0.44 0.49 0.40 0.47 
… Over 1,820 USD  0.10 0.09 0.09 0.21 0.10 

Previous knowledge about water reuse      

… None 0.65 0.79 0.68 0.48 0.68 
… Medium 0.11 0.06 0.12 0.17 0.10 
… High  0.25 0.15 0.20 0.35 0.21 

 447 

Gender. Women have a larger overall representation in our sample. We see only small differences in 448 

the posterior allocation to the different classes. The highest female concentration is in Class 2 and the 449 

highest male concentration is in Class 1. This indicates a more negative view of GWR by women than 450 

by men, which is in agreement with results obtained in other studies (Amaris et al., 2021; Wester et al., 451 

2015), which have been linked to the higher susceptibility of women to associate reuse with high levels 452 

of risks (Mankad & Tapsuwan, 2011). However, it is important to highlight that other studies have also 453 

found the opposite effect or no relation between gender and water reuse acceptability (Garcia-Cuerva 454 

et al., 2016; Mason et al., 2018). 455 

Age. Individuals between 30 and 60 years old are predominant in the sample. Our posterior analysis 456 

shows that individuals under the age of 30 have a higher representation in the enthusiasts class (Class 457 

1) and a much reduced share in the class caring about appearance (Class 3). People between 30 and 60 458 

years old have a higher representation in classes 3 and 4, where reusing water is desirable if greywater 459 



 21 

has a similar appearance to the mains water, or if more indirect uses are considered (i.e. toilet flushing 460 

and garden irrigation). Individuals over the age of 60 have a higher representation in Class 2, where 461 

reusing greywater for any option is undesirable, and a reduced share especially in Class 4.  462 

Education level. Our sample had a majority of individuals with high school, followed by individuals 463 

with university studies, technical education, and elementary school. Our results show that people with 464 

higher educational levels are more likely to belong to classes that have a positive perception of reusing 465 

water for two or more uses (classes 1, 3 and 4). People with elementary school only are most likely to 466 

belong to Class 2 (water reuse sceptics), people with high school education have a greater frequency in 467 

Class 3 (appearance matters), and people with technical or university education have a greater frequency 468 

in Class 4 (greywater for indirect uses) and Class 1 (water reuse enthusiasts). In general, our results are 469 

consistent with outcomes revealed Gu et al. (2015) who suggest that people with higher educational 470 

levels are more willing to reuse greywater. However, our results also show detailed information 471 

indicating that according to the educational group of the individual, the appearance and the uses could 472 

have a greater or reduced level of importance. 473 

Main occupation. The sample was composed mainly of individuals working full-time, followed by 474 

people that stay at home, old age pensioners and, finally, individuals with a part-time job. Our results 475 

indicate that individuals who are at home or retired have a higher concentration in Class 2, i.e. those 476 

who would dislike reusing water, people with a part-time job have a greater presence in Class 4, while 477 

this class is the least likely one for people with a full-time job. 478 

Income: Households with the lowest monthly income (under 600 USD) have a higher frequency in 479 

Class 2 (greywater reuse sceptics) than in any other class. Households with an intermediate monthly 480 

income (between 600 USD and 1,820 USD) have their highest frequency in classes 1 (enthusiasts) and 481 

3 (appearance conscious). Finally, households with highest income (over 1820 USD) are more prevalent 482 

in Class 4 (water expenditure conscious), and this is likely correlated with having gardens and larger 483 

properties.  484 
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Previous knowledge about water reuse. Most individuals in our sample had no previous knowledge 485 

about water reuse, as expected in a country only starting to allow residential greywater reuse. As 486 

anticipated, individuals without previous knowledge about water reuse have the highest presence in 487 

Class 2 (greywater sceptics). In contrast, people with high knowledge have a notable greater presence 488 

in Class 4 (most indirect uses) and Class 1 (enthusiasts); this has also been reported before (Garcia-489 

Cuerva et al., 2016; Dolnicar et al., 2011). Likewise, individuals with medium knowledge have a similar 490 

incidence in the classes with a positive perception of reusing water for two or more uses (classes 1, 3 491 

and 4). 492 

4.2.2. Posterior values of household characteristics across classes 493 

Section 4.2.1 focussed on socio-demographic characteristics of the survey respondent. As it is quite 494 

conceivable that household and dwelling characteristics might also influence preferences, we extended 495 

the analysis to such variables, focusing on household composition, and two key dwelling influences on 496 

water consumption, namely the number of bathrooms and the presence of gardens. The results of this 497 

analysis are summarised in Table 4, using the same approach as in Section 4.2.1.  498 

Table 4.Household characterization into the classes 499 

Socio-economic characteristic Class 1 Class 2 Class 3 Class 4 
Sample 
average 

Presence of sensitive population      

… Homes with kids under 15  0.41 0.43 0.41 0.39 0.41 

… Homes with adults over 74 years old 0.17 0.22 0.14 0.18 0.17 

Number of people living in the same place      
…  1 to 2 0.28 0.29 0.35 0.24 0.30 

… 3 to 5 0.61 0.60 0.53 0.64 0.59 

… Over 5 0.11 0.11 0.12 0.12 0.11 

Number of bathrooms      
…  1 to 2 0.65 0.62 0.71 0.47 0.65 

… 3 to 5 0.35 0.38 0.28 0.49 0.34 

Garden       
… Front garden (1) 0.25 0.25 0.27 0.18 0.25 

… Rear garden (2) 0.09 0.06 0.10 0.01 0.08 

… Front and rear garden (3) 0.51 0.50 0.47 0.81 0.51 

… None (4) 0.15 0.19 0.17 0.00 0.16 

Type of garden      
… Front garden with grass 0.28 0.31 0.33 0.43 0.31 

… Front garden with another type of vegetation 0.59 0.65 0.55 0.85 0.61 

… Rear garden with grass 0.14 0.12 0.13 0.41 0.15 

… Front garden with another type of vegetation  0.39 0.36 0.32 0.52 0.37 

 500 
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In addition, we produced contour diagrams (Figure 3), where we summarize the prevalence of 501 

characteristics across classes for the three most influential features of the households: presence of 502 

sensitive population (i.e. with people under the age of 15 and over the age of 74), household size, and 503 

presence and location of gardens. The highest concentrations are shown in darker colours and 504 

correspond to values higher than 0.5 on a 0 - 1 scale. We used three dimensions: (i) the characteristics 505 

of the home on the X-axis, (ii) the age of the individual making the decision on the Y-axis, and (iii) the 506 

latent classes 1, 2, 3 and 4 in the Z-axis.  507 

Presence of a sensitive population: Respondents whose households include sensitive population were 508 

more prevalent in Class 2 (0.43), i.e. the greywater sceptics (Table 4). A reason for this could be that 509 

people in these age ranges are more susceptible to acquiring infections (Leng & Goldstein, 2010). 510 

Additionally, the prevalence in each class was found to vary as a function of relative age. For example, 511 

if the youngest family member is between 0 and 30 years old, then respondents between 20 and 35 have 512 

a higher probability of belonging to Class 1 (greywater enthusiasts – Figure 4-A1). If the youngest 513 

person among the household’s members is between 20 and 40, then individuals between 50 and 65 have 514 

a higher probability of belonging to Class 1. We also found that if the oldest family member was 515 

between 50 and 70 or over 85, then individuals between 25 and 30 had a high probability of belonging 516 

to Class 1 (Figure 4-B1). 517 

In the case of Class 2, individuals whose youngest family members were under the age of five had a 518 

higher probability of belonging to this class. Moreover, the highest probability of belonging to this class 519 

is for 60-year old individuals with the youngest family member being in their twenties. Concerning 520 

people more likely to belong to Class 2, there are different sensitivities between the different age ranges 521 

and the age of the household’s members. For example, younger individuals (20 - 35 years of age) are 522 

more likely to belong to this class if the oldest family member is more than 80 years old. People in other 523 

age ranges are likely to belong to this class if they have family members older than 65. 524 

 525 



 24 

Figure 4. Posterior share in classes according to the most influential dwelling characteristics 526 

 527 

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4



 25 

The predominant individuals in Class 3 would be mainly: (i) people between 20 and 30 years old whose 528 

family has one or more adults between 65 and 80 (Figure 4-A3); (ii) individuals between 30 and 45 529 

years old with the youngest member of the family being between 15 and 20, and if there are adults over 530 

50 years old among the household (Figure 4-B3); (iii) individuals between 45 and 60 years old living 531 

with children under the age of 5.  532 

Class 4 is dominated by three groups, namely: (i) individuals near to 20 years of age living with younger 533 

family members (Figure 4- A4) or family members older than 65 years old (Figure 3- B4); (ii) 534 

individuals of approximately 35 years of age, whose family members have similar ages (Figure 4- A4) 535 

or family members older than 90 (Figure 4- B4); and (iii) individuals over 50 living in households with 536 

one or more individuals aged around 20 years (Figure4-A4, or in the case that there are family members 537 

over 70-year-old, Figure 4-B4). 538 

 Household size: Single-person household have a greater prevalence in Class 3, where the appearance 539 

of greywater matters most. Households with 3 to 5 people have greater representation in Class 4, and 540 

households with more than 5 people are homogeneously distributed across classes. Household size is a 541 

characteristic that has been previously defined as relevant. For example Mason et al. (2018) found that 542 

the likelihood of using greywater during dry seasons increases by 24% for each additional household 543 

member. Nevertheless, our results complement that information with a more detailed analysis about 544 

uses and types of consumers. 545 

Garden presence and its location: Overall, households belonging to Class 4 have a higher incidence of 546 

gardens, with a prevalence of mixed gardens with vegetation different from grass, mainly in their front 547 

yards. Dwellings of respondents belonging to classes 1, 2 and 3 consistently have a small presence of 548 

gardens with grass, and a higher presence of front yards with vegetation other than grass. Note that 549 

these characteristics, which are associated with bigger dwellings (i.e. large number of bathrooms, 550 

presence of gardens), and more household members, are associated with households who tend to have 551 

a higher prevalence in class 4. 552 

 553 
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5. CONCLUSIONS 554 

This study aimed to extend our understanding about heterogeneity in the acceptability of uses for treated 555 

greywater and the factors that influence it, by focusing on the interaction of variables that rarely receive 556 

attention. The most novel finding is associated with the possibility of quantifying the relationship 557 

between the acceptability of reusing water, by use, and the characteristics of a consumer, their 558 

household and their dwelling. Our approach offers numerical support for making predictions about how 559 

different latent classes of individuals may behave when facing different reuse options. 560 

In particular, the method implemented has been more commonly used in other disciplines such as 561 

transport research, health and most recently in innovation appliances. The latent class approach we used 562 

is valuable in showing that a pre-feasibility empirical analysis can be carried out to assess greywater 563 

projects or initiatives in zones with no experience in reusing water. Likewise, these results are valuable 564 

to demonstrate that uses other than flushing toilets and garden irrigation can also be accepted once the 565 

potential users are aware of all possible uses of treated greywater.  566 

This study considers the case of residents in future buildings that must adhere to new greywater 567 

regulations, which establish that new buildings must have a parallel greywater system. However, future 568 

studies should incorporate the cost of technology, operation and maintenance in order to include those 569 

consumers that want to adopt these new systems in their existing dwellings. These studies can be based 570 

on real-world pilot experiences carried out in areas with a high concentration of people, with 571 

characteristics similar to those identified in our study as having the highest level of acceptability of 572 

GWR. On the basis of that new evidence, policies can then be updated to produce management 573 

strategies that can achieve greater user acceptability. 574 
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LIST OF ACRONYMS 584 

Acronyms: 585 
AIC: Akaike Information Criterion 586 
ASC: alternative specific constant 587 
BIC: Bayesian Information Criterion 588 
CLP: Chilean pesos 589 
GWR: greywater reuse 590 
IDW: inverse distance weighting  591 
INE: National Statistics Institute (Instituto Nacional de Estadísticas) 592 
LC: latent class 593 
MNL: multinomial logit 594 
n.s.: not significant  595 
SC: stated choice 596 
T1: households with monthly water bills below US$28.8 597 
T2: households with monthly water bills above US$28.8 598 
 599 
Symbols in equations: 600 
Vectors in data:  601 𝑥𝑗𝑛,𝑡: characteristics of alternative j in choice situation t for respondent n  602 𝑧𝑛: characteristics of respondent n 603 𝑗𝑛∗: sequence of observed choices for respondent n 604 𝑗𝑛,𝑡∗ : observed choice for respondent n in task t 605 

 606 
Probabilities and likelihoods: 607 
πn,k: class allocation probability for respondent n for class k 608 𝑃𝑛(𝑗𝑛,𝑡 ∣ 𝛽𝑘): probability of respondent n choosing alternative j in task t, conditional on being in class k 609 𝐿𝑛 (𝑗𝑛∗  | Ω): likelihood of observed sequence of choices for respondent n, conditional on vector of 610 
parameters Ω 611 𝐿𝐿(𝑗𝑛∗  | Ω): log-likelihood of observed sequence of choices for respondent n, conditional on vector of 612 
parameters Ω 613 
 614 
Parameters and functional form: 615 𝛽𝑘: vector of utility parameters in class k 616 𝑉𝑗𝑛,𝑡: deterministic component of utility for person n, alternative j, in choice situation t 617 𝑓(𝑥): functional form for utility function in within-class model 618 Ω: vector grouping together all parameters used in the model 619 
g(·): functional form of the utility function in the class allocation model 620 𝛿𝑘: class-specific constant for class-allocation model 621 𝛾𝑘: vector of parameters for class-allocation model utility for class k 622 
 623 
Indices: 624 
j: index for alternatives (j=1,…,J) 625 
k: index for latent classes (k=1,…,K) 626 
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n: index for individuals (n=1,…,N) 627 
 628 
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