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Abstract
Use of choice models is growing rapidly in tobacco research. These models are
being used to answer key policy questions. However, certain aspects of
smokers' choice behavior are not well understood. One such feature is
addiction. Here, we address this issue by modeling data from a choice
experiment on the US smokers. We model addiction using a latent variable.
We use this latent variable to understand the relationship between choices and
addiction, giving attention to nicotine levels. We find that more addicted
smokers have stronger preferences for cigarettes and are unwilling to switch to
e‐cigarettes. Addicted smokers value nicotine in tobacco products to a much
greater extent than those that are less addicted. Lastly, we forecast short‐term
responses to lowering nicotine levels in cigarettes. The results suggest that
current nicotine‐focused policies could be effective at encouraging addicted
smokers to less harmful products and lead to substantial public health gains.
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1 | INTRODUCTION

In the economics of risky behavior, and in particular tobacco, the use of discrete choice models has proliferated in recent
years (Regmi et al., 2018; Shi, Cao, Shang, & Pacula, 2019). Standard choice models that are commonly used try to explain
differences in sensitivities/behavior toward products' attributes as a function of individuals' characteristics, that is
through differences across sociodemographic groups. In so doing, there is the possibility that elements of the cognitive
decision‐making process are suppressed, and these elements can be important for understanding choice behavior (Vij &
Walker, 2016). Encouragingly, a trend in the risky behaviors literature, which follows the broader choice modeling
literature (Balbontin, Hensher, &Collins, 2019; Hensher, 2015), has been to usemore advanced choicemodels in attempts
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to understand more complex behaviors of individuals than permitted with standard models. Examples include
incorporating measures of risk preferences into models of choice behavior (Ida & Goto, 2009); the segmentation of
individuals into groups or types of individual (Marti et al., 2019); accounting for optimization errors in individuals' choices
(Kenkel, Peng, Pesko, &Wang, 2020); accounting for aversive choice behaviors (Buckell & Sindelar, 2019); and embedding
real‐world behaviors into models based on experimental data (Buckell & Hess, 2019). This information is crucial for
policymaking; failure to capture these behaviors can lead to misguided policy recommendations (Buckell & Sindelar,
2019). Given that the complexion of tobacco markets has changed markedly in the past few years with the arrival of
e‐cigarettes, and that a variety of new policies are being enacted, it is now critical to understand the complex cognitive
processes underpinning smokers' choices so as to better inform regulation.

Perhaps surprisingly, one aspect of behavior that has not been incorporated into choice models is addiction
(although there are studies of habitual behavior such as modal choice in transport, where individuals are captive to a
single mode). It is well‐known that addiction plays a central role in smokers' behaviors (Wehbe, Ubhi, & West, 2018;
West, 2009; West & Brown, 2013). Indeed, economists have developed theories for, applied models to, addiction using
longitudinal smoking data (see comprehensive literature reviews in Chaloupka & Warner, 2000; Cawley, Ruhm, Pauly,
McGuire, & Barros 2011; DeCicca, Kenkel, & Lovenheim, 2020). While there are many studies of addiction‐based,
longer term tobacco use behavior, the role of addiction in smokers' shorter‐term choice behavior is not well understood.
Moreover, many studies have found heterogeneity in how specific subgroups (defined by observed individual charac-
teristics) react to individual attributes. But it is unclear as to whether these are true preferences, or that the individual
characteristics are linked to addiction, and it is the underlying addiction that impacts on choices. This is a key issue
because many policies are directed at both addiction (i.e., nicotine policies) and vulnerable subpopulations, and the
effectiveness of policies can be improved with a greater understanding of addiction‐related choice behavior.

Attempting to incorporate addiction into choice models is beset by a number of issues. First, addiction is both
multifaceted and unobservable (Collins & Marks, 1991; Shadel, Shiffman, Niaura, Nichter, & Abrams, 2000). Typically,
only indicators of addiction are used, such as the number of cigarettes smoked per day. The number of cigarettes smoked
is not a measure of addiction, but a function of addiction (and the underlying direction of causality is unclear). Second,
there is not a one‐to‐one correspondence between these indicators and addiction. These are, at best, imperfect measures
for the underlying metric of interest. For example, a more addicted smoker with high will power (or lower income) could
smoke fewer cigarettes per day than a less addicted smoker with low will power (or higher income). In this case, using
cigarettes per day as a direct measure of addiction is incorrect and it should only be used as an indicator of addiction.

There are many other such indicator measures. Thus, it is not always clear which indicators should be used to
measure addiction or whether to use the full set of available indicators. Using only a subset of the indicators risks
overlooking key information or misattributing effects. On the other hand, using all indicators poses significant problems
for modeling, because using many indicators that are also likely to be highly correlated leads to a proliferation of
parameters and technical issues such as collinearity. Several indices have been developed that sum these indicators,
such as the Fagerstrom Test of Nicotine Dependence (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991) for
cigarettes, or equivalent measures for e‐cigarettes (more than 10 now exist, see Bold et al., 2018). This is not an ideal
solution because unweighted summation, or equal weighting, may be inappropriate (Fayers and Hand, 2002). In
addition, these indices and their constituents are still product‐specific and thus only capture addiction toward a specific
type of cigarette (though some studies have sought to attend to this issue, e.g., Shiffman, Waters, & Hickcox, 2004;
Shiffman and Sembower, 2020). Moreover, any indicators that are collected but are not included in the index will be
discarded; it is less than ideal to disregard potentially useful behavioral information.

Whether using a single indicator or multiple ones, the issue of causality remains. The indicators are a function of
addiction rather than a direct measure thereof. Moreover, there is likely to be correlation between these indicators and
other unobserved effects at the individual level that influence choice behavior. Using these indicators as error‐free
variables in the model thus potentially leads to endogeneity bias, that is breaching the independence assumption of the
explanatory variables and the error term. It is for these reasons that using latent variables to try to identify the
underlying behavioral drivers of these indicators is becoming more common, because identifying these underlying
drivers can help to avoid these issues (Shiffman et al., 2004; Strong et al., 2017).

In this study, we develop a choice model capable of handling the present issues in measuring and incorporating
addiction into the analysis of smokers' choices. This model draws from two areas in the choice modeling literature:
hybrid choice models and experience‐conditioned choice models. Hybrid choice models allow for a latent, or unob-
served, variable to be specified and estimated with the choice model in a system of equations (Abou‐Zeid & Ben‐Akiva,
2014). As such, it is well‐suited to capturing addiction, the nature of which is inherently latent (see e.g., Shiffman et al.,
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2004; Strong et al., 2017 for latent variables to measure addiction in tobacco); while we are not the first to take a latent
variable approach to measuring addiction, we are the first to use it in a hybrid choice framework to analyze smoking
choices. Figure 1 is a schematic of the modeling framework. Within the system, the latent variable is used to explain
observed variables, such as indicators of addiction. Thus, these variables do not enter the choice model directly,
avoiding possible endogeneity issues. Moreover, this framework can accommodate any number and form (i.e., the
nature of the data) of indicator, using all the available information. The latent variable is then used in the utility
function in place of the indicators (which would be a more traditional approach). Because there is only a single
addiction variable, having to specify a large number of parameters directly in the utility function is thus also avoided. Of
course, additional parameters are required for the measurement model components that are used to explain the values
observed for the indicators.

The experience‐conditioned choice models (Balbontin et al., 2019; Hensher, Balbontin, & Greene, 2019; Hensher &
Ho, 2016) are based on the notion that preferences and choice behaviors are in part a function of a given individual's
prior experience with a given product or service. In the context of smoking, this implies a behavioral assumption that
tobacco product choices are to some extent determined by the past use of tobacco products. This is highly appealing
because the idea is applicable to both the addiction to nicotine and formation of habits that are associated with longer
term, habitual tobacco product use (Wehbe et al., 2018). For this reason, we test addiction‐conditioning in our model1.

Developing this model allows us to overcome a set of difficult empirical issues and specify a behaviorally appealing
model of short‐term smoking choices. Thismodel embodies amore sophisticated depiction of smokers' cognitive decision‐
making processes than in previous work. We use this model to study the relationship between addiction and choice
behavior, examine smokers' willingness to pay (WTP) for nicotine in tobacco products, and predict the impact of lowering
nicotine in cigarettes (which has recently been proposed by the US government). With this, policymakers are better
informed in key issues around smoking and addiction. The remainder of the paper is set out as follows. In section 2, we set
out themodel and its features. In section 3, the results from themodel are presented. Section 4 summarizes and discusses.

2 | METHODS

2.1 | Experiment and data

Data are taken from a labeled smoking choice experiment in which 1531 adult smokers chose between cigarettes,
e‐cigarettes and an opt‐out option2, labeled “none of these” (Buckell, Marti, & Sindelar, 2019; see Figure 2 for a
sample choice scenario). Products were described by four attributes: nicotine, flavor, health harms, and price. These
attributes and levels were defined according to literature reviews, pilot studies, consultation with subject matter
experts, and according to policies that the Food and Drug Administration (FDA) could implement. Restrictions on
attribute levels were made to make the experiment more realistic, for example, fruit and sweet flavored cigarettes are
not available on the market, so we did not allow them in the experiment; attribute level balance was maintained in the
design as far as possible by the design software, Ngene (Choice Metrics, 2018). Table 1 shows the products, attributes, and
levels. The design was Bayesian D‐optimal, using priors obtained from a pilot study of 87 respondents. The design was
based on the main effects only (i.e., without interactions). Individuals each answered 12 choice sets, which balances
concerns of learning and respondent fatigue (Hess, Hensher, & Daly, 2012). A total of 36 choice sets were divided into
three blocks, and respondents were randomized to each block in the ratio 1:1:1. Choice sets were presented in the same
order within blocks. Sampling was based on quotas, defined using the Behavioral Risk Factor Surveillance System data in
2013/14, based on gender, age, education, and region, to make the sample representative of the US smokers. Table 2
shows the descriptive statistics for individuals in the sample. The sample size was sufficient to ensure statistical power for
the main parameters and is larger than most discrete choice experiments in health (de Bekker‐Grob, Donkers, Jonker, &
Stolk, 2015). Data quality measures, including minimum time thresholds, forced responses, attention checks, cheap talk,
duplicate ID checks, and practice choice scenarios for respondents, were taken to promote data quality. Failure of any of
these checks resulted in respondents being ejected from the survey.

A survey was collected alongside the experiment. In this survey, sociodemographic information on respondents was
collected. We also collected revealed preference data on respondents' tobacco behaviors. This data include product use
and products' attributes such as prices and flavors. For addiction, a number of indicators of addiction were collected.
These were daily smoking, number of cigarettes smoked per day, time before first cigarette of the day is smoked, time
since last having smoked a cigarette that day, time since last having smoked a cigarette in the last few days/weeks, the
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number of quit attempts in the past year, e‐cigarette use, frequency of e‐cigarette use, and current urge to smoke (i.e.,
craving). These measures include those which may be considered outcomes such as cigarettes per day versus symptoms
such as craving (cf. Bold et al., 2018; Strong et al., 2017).

Summary statistics for these measures are shown in Table 2.

2.2 | Choice models

In a standard random utility model, the utility Unit that individual n derives from product i in choice t comprises a
systematic component, Vnit, and a remaining error term, εnit that follows an iid type I extreme value distribution, such
that:

Unit ¼ Vnit þ εnit ð1Þ

F I GURE 1 Schematic of hybrid choice model for addiction. Square boxes are observed variables; ellipses are unobserved variables.
NB, “Tobacco Products and Attributes”, particularly nicotine, could of course impact on addiction. But these will be longer‐term effects,
rather than short‐term choices. In this setup, the attributes impact on short‐term choices via utility; longer term effects impact on addiction
and addiction, in turn, influences utility and choices. [Colour figure can be viewed at wileyonlinelibrary.com]

F I GURE 2 Sample choice scenario. Four
options were presented to each respondent in
each choice set, along with an opt‐out option,
“none of these” [Colour figure can be viewed at
wileyonlinelibrary.com]
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The systematic component incorporates two parts, with:

Vnit ¼ δni þ βnxnit ð2Þ

where δni is a constant capturing product‐specific preferences for alternative i, where this includes cigarettes, e‐ciga-
rette, and the opt‐out. βn is a vector of estimated sensitivities capturing the impact of changes in explanatory variables
xnit, where this includes nicotine, flavor, health harm, and price. Both δni and βn are person‐specific, where the former is
also different across alternatives.

We next allow for deterministic and random heterogeneity across individuals in the values of both δni and βn, both
directly, and through the latent addiction variable. In particular, we have:

δni ¼ μδi þ λδizn þ σδiξnδi þ τδiαn ð3Þ

and for the coefficient associated with attribute xnikt:

βnk ¼ μβk þ λβkzn þ σβkξnβk þ τβkαn ð4Þ

In this specification, μδi and μβkcapture mean values in the sample population for δni and βnk; λδi and λβkcapture
shifts in their values as a function of sociodemographic characteristics, zn; σδi and σβk capture random heterogeneity,
where ξnδi and ξnβkfollow standard normal distributions across individual respondents; and τδi and τβkcapture the impact
of the latent addiction variable, αn, a point we return to below.

For the price sensitivity, we relax the oft‐assumed constant marginal utility of income imposed in many health choice
models (Reed Johnson,Mohamed, Özdemir,Marshall, & Phillips, 2011). Preferences for the cost attribute p, are treated as:

βnp ¼
�
μβp þ λβpzn

�
⋅
�
incomen
income

�η

ð5Þ

TABLE 1 Experimental design
E‐cigarette Cigarette

Flavor Plain tobacco Plain tobacco

Menthol Menthol

Fruit ‐

Sweet ‐

Life years lost by average user 10 10

5 ‐

2 ‐

Unknown ‐

Level of nicotine High High

Medium Medium

Low Low

None ‐

Price $4.99 $4.99

$7.99 $7.99

$10.99 $10.99

$13.99 $13.99
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TABLE 2 Descriptive statistics

Mean Standard deviation Min Max

Age 41.09 12.55 18 64

Female 0.55 0.50 0 1

Higher education 0.41 0.49 0 1

Income 52974.67 34199.27 15,000 150,000

Hispanic 0.08 0.26 0 1

White 0.86 0.35 0 1

Black 0.10 0.30 0 1

Asian 0.03 0.16 0 1

Employed 0.60 0.49 0 1

Married 0.36 0.48 0 1

Family member smokes 0.44 0.50 0 1

Daily smoker 0.95 0.22 0 1

Number of cigarettes smoked per day 14.61 9.34 1 61

Time before first cigarette of the day is smoked: Less than 5 min 0.32 0.47 0 1

Time before first cigarette of the day is smoked: 5–30 min 0.46 0.50 0 1

Time before first cigarette of the day is smoked: 31–60 min 0.12 0.33 0 1

Time before first cigarette of the day is smoked: Longer than 60 min 0.10 0.31 0 1

Time since last having smoked a cigarette that day: Less than 15 min 0.31 0.46 0 1

Time since last having smoked a cigarette that day: 15–30 min 0.27 0.44 0 1

Time since last having smoked a cigarette that day: 30–60 min 0.19 0.39 0 1

Time since last having smoked a cigarette that day: 1–3 h 0.11 0.31 0 1

Time since last having smoked a cigarette that day: 3 to 6 h 0.02 0.15 0 1

Time since last having smoked a cigarette that day: more than 6 h 0.02 0.15 0 1

Time since last having smoked a cigarette in the last few days/weeks: Today 0.90 0.30 0 1

Time since last having smoked a cigarette in the last few days/weeks: Yesterday 0.07 0.26 0 1

Time since last having smoked a cigarette in the last few days/weeks: In the last
week

0.02 0.14 0 1

Time since last having smoked a cigarette in the last few days/weeks: In the last
month

0.00 0.06 0 1

Time since last having smoked a cigarette in the last few days/weeks: Longer than a
month

0.00 0.05 0 1

Quit attempts in the past year: None 0.53 0.50 0 1

Quit attempts in the past year: 1 0.32 0.47 0 1

Quit attempts in the past year: 2–3 0.11 0.31 0 1

Quit attempts in the past year: more than 4 0.03 0.18 0 1

E‐cigarette use 0.36 0.48 0 1

Frequency of e‐cigarette use: daily 0.12 0.32 0 1

Frequency of e‐cigarette use: several times per week 0.14 0.35 0 1

Frequency of e‐cigarette use: once per week 0.04 0.20 0 1

Frequency of e‐cigarette use: less than once per week 0.05 0.23 0 1

Current urge to smoke (i.e., craving) 5.19 2.49 1 10
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This drops the random heterogeneity and impact of the latent addiction variable, but adds in an income effect where
η is an estimated income elasticity, incomen is a given individual's income and income is the sample median.

As per Figure 1, the latent variable for addiction is regressed on individual characteristics in the structural equation:

αn ¼ γzn þ ξn ð6Þ

where zn is individual characteristics, γ captures the relationship between addiction and observed individual
characteristics, and ξn is unobserved individual addiction heterogeneity, which follows a standard normal distribution.

In our specification, we allow for an impact of the latent addiction variable on the constants for the different
alternatives as well as the parameters associated with individual attributes. This in essence means that our model is a
standard hybrid choice model, albeit one where the latent variable relates to experience/addiction. We did test a model
in which the entire utility function was addiction‐conditioned, as in the original Hensher and Ho (2016) work, but this
led to inferior results, largely as a function of the conditioning exerting itself on all sensitivities in the same direction,
whether they relate to desirable or undesirable components.

With the elements of the utility function defined, we move to the specification of the choice model, which, given the
assumption on the error term, takes the classic multinomial logit form:

PCn ¼∏T
t¼1

eVni ∗ t

∑J
j¼1eVnit

ð8Þ

where PCn is the probability of the observed sequence of choices for individual n, where i∗ refers to the chosen
alternative.

Next, we examine the relationship between the latent variable for addiction, αn, and the indicator measures
of addiction. The data for the indicator measures take three broad forms. For each, its probability is modeled in a series
of measurement equations. For the two binary variables (daily smoking, e‐cigarette use), such as whether the individual
smokes every day or not, a logit model is used:

Pbinaryn ¼∏2
k¼1
ðeðδkþζkαnÞÞIkn¼¼1

1þ eðδkþζkαnÞ
ð9Þ

where δk are constant terms to be estimated, and ζk are estimated parameters capturing the relationship between the
latent variable for addiction and the indicator at hand, Ikn, where the exponent Ikn ¼¼1 ensures that the appropriate
numerator is used depending on the observed value for Ikn.

For five ordered variables (frequency of e‐cigarette use, time before first cigarette of the day is smoked, time since
last having smoked a cigarette that day, time since last having smoked a cigarette in the last few days/weeks, and the
number of quit attempts in the past year), an ordered logit model is used (Greene & Hensher, 2010):

Porderedn ¼∏5
k¼1

 

∑S
s¼1 δðIkn ¼¼sÞ

h eτk;s � ζkαn

1þ eτk;s � ζkαn
�

eτk;s� 1 � ζkαn

1þ eτk;s� 1� ζkαn
i
!

ð10Þ

where τk;s are estimated threshold parameters for threshold s of categorical indicator Ikn, and ζ k are estimated
parameters capturing the relationship between the latent variable for addiction and the indicator at hand.

Finally, for two continuous variables (number of cigarettes smoked per day and current urge to smoke), a linear
model is used:

Plinearn ¼∏2
k¼1

1
ffiffiffiffiffiffiffiffiffiffi

2πσ2k
q e

�
ðIkn � Ik � ζkαnÞ

2

2σ2
k ð11Þ
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where demeaning the variables, as shown by subtracting Ik, avoids the need to estimate a constant (Daly et al., 2012b).
The variance of the error, σ2k, is estimated along with other parameters. ζ k are estimated parameters capturing the
relationship between the latent variable for addiction and the indicator at hand.

Finally, each of the model components are combined into a single likelihood function and jointly estimated:

LL¼∑N
n¼1ln ∫β ∫αPcPbinaryPorderedPlinearϕðζÞmðβ |ΩÞdβdα ð12Þ

We integrate over the parametermixingdistributions and latent variable,wheremaximumsimulated likelihood is used
for estimation (Train, 2009). Becausewe havemore than 5 dimensions, standardHalton draws are rejected in favor of 1500
modified Latin hypercube sampling draws per random component and per individual, due to correlation concerns (cf.
Bhat, 2003;Hess, Train,&Polak, 2006). Sobol drawswouldhave also been auseful alternative toHaltondraws (Czaikowski
& Budziński, 2019); the main point is to avoid using Halton draws. Given the known complexities of likelihood functions
with mixing distributions, we use an algorithm for searching for starting values, based on Bierlaire, Thémans, and
Zuerey (2009)3, to aid in finding a global optimum. All models are estimated using Apollo (Hess & Palma, 2019).

We optimized the specification with several rounds of removing interaction terms that were not statistically sig-
nificant and updating the starting values. We followed the choice modeling literature in the choice of normalization for
alternative‐specific constants and categorical variables by deliberately over‐specifying the model (attempting to estimate
all parameters) and then omitting those with the lowest variance (Walker, 2001). On the basis of this, we normalized to
zero the constant for the opt‐out, the impact of the addiction latent variable on cigarettes, the low level of nicotine, and
the impact of the latent variable on high nicotine.

Finally, because we are using the model for forecasting, it is crucial to calibrate the model constants and the scale of
utility. We follow the approach of Buckell and Hess (2019). More specifically, the Alternative‐specific constants are
calibrated post‐estimation using national data on tobacco product market shares. This aligns the base choice shares in
our model to real‐world market shares of the products. We also adopt the partial calibration developed in that paper;
that is, the choice share of the opt‐out in the uncalibrated model is retained and then the cigarette and e‐cigarette choice
shares are calibrated according to revealed preference (RP) market shares. This avoids ascribing a specific behavioral
interpretation to the opt‐out (due to its framing, it could confer several behaviors). For calibrating the scale of utility, we
use RP data on respondents collected in the survey and build a RP choice model equivalent of Equation (8). We estimate
a common price coefficient in model (8) and its RP equivalent, and estimate an additional SP scale parameter, μSP. This
aligns the scale of the SP model to that of the RP model. Terming the choice probability in model (8) Pc;SP and its RP
equivalent Pc;RP, the log‐likelihood becomes:

LL¼∑N
n¼1ln ∫β ∫αPc;SPPc;RPPbinaryPorderedPlinearϕðζÞmðβ |ΩÞdβdα ð13Þ

2.3 | Limitations

Our methods are subject to a set of limitations. First, we are limited by the set of indicator measures that
we collected. However, those that we do use cover important aspects of addiction: we have measures for cigarettes
and e‐cigarettes; we have longer and shorter term measures of addiction; we include measures of symptoms (craving)
as well as outcome measures (cigarettes per day). While it is common practice to run factor analyses prior to esti-
mating latent variables, we discarded this preliminary exercise in this case. The factor analysis suggested that there
were three latent variables. However, the directions of indicator variables across these latent variables were highly
implausible. Moreover, attempting to estimate three separate latent variables would have added considerable
complexity to the exercise and exposition. And, in fact, the one that we did estimate resulted in plausible directions of
coefficients and implied choice behaviors. Using a single latent factor from a factor analysis was similarly done in
Shiffman et al. (2004). And other studies that conducted factor analysis yielded a single underlying driver of addiction
(Strong et al., 2017). For these reasons, we kept to a single latent variable. As with all hybrid choice models, the latent
variable should not be used in forecasts, due to the fact that it is only a cross‐sectional measure (Chorus & Kroesen,
2014). Another limitation is the framing of the opt‐out as “none of these”. This could denote several different
behaviors of respondents and ultimately we cannot observe precisely what these meant. However, we note that
among smokers, other behaviors such as noncigarette/none‐cigarette use—which are likely responses when choosing
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the opt‐out here—are much less popular among smokers, which is in keeping with what we find here. But this is at
best speculation, and its interpretation is not clear. It is for this reason that we applied the partial calibration (Buckell
& Hess, 2019), to avoid this issue impacting on forecasts and to allow for an open interpretation on the opt‐out
coefficient. It is also not an issue specific to our study. As we have previously suggested, it may be possible to allow
different opt‐out options with different labels, for example “I would rather try to quit” or “a cigar” to aid inter-
pretation (Buckell & Hess, 2019). It would also be possible to use post‐experimental questions to help interpret these
choices (Reed Johnson et al., 2013). Finally, we were limited by processing power to using 1500 Halton draws in
estimation. While this is in excess of many other studies in health, we note recent research which suggests this may
be too few draws (Czaikowski & Budziński, 2019). Using 1500 draws was the maximum feasible number of draws
permissible with the processing power available. This is likely to be common in applications where researchers do not
have access to high‐performance computing. In preliminary analyses, we used 500 draws. When we moved to 1500
draws, we did not see any notable difference in parameter estimates. So while we would have preferred more draws,
we do not see 1500 as problematic.

3 | RESULTS

3.1 | Measurement equations and structural equation

Table 3 shows the results from the measurement equations and the structural equation. This is informative in
understanding the nature of addiction captured in the model. By studying the ζ parameters, we note that higher values
of the latent variable are associated with a lower chance of being a daily smoker; smoking fewer cigarettes per day; a
longer time in the morning before smoking their first cigarette; a longer time since last having smoked a cigarette that
day; a longer time since last having smoked a cigarette in the last few days/weeks; more quit attempts in the past year; a
higher probability of being an e‐cigarette user; no increase in the frequency of e‐cigarette use (not statistically signif-
icant); and reporting a lower level of current craving.

Taken together, these results suggest that a higher value for the latent variable is associated with lower levels of
addiction to cigarettes and nicotine (or, equivalently, lower values of the latent variable are associated with higher levels
of addiction to cigarettes and nicotine). This is due to, first, the lower levels of cigarette use and addiction. But it is of
course possible that more addicted smokers could just be switching away from cigarettes to e‐cigarettes. In this case, we
would expect to see very little change in reported craving and increased frequency of use of e‐cigarettes. However, we
see the opposite: no increase in the frequency of e‐cigarette use and lower reported craving. Moreover, higher values for
the latent variable are associated with more past year quit attempts, which again is a sign of lower addiction. For these
reasons, we interpret the latent variable as capturing reduced addiction to cigarettes and nicotine, where lower values
signify higher levels of addiction. We then move to the structural equation to examine how individual characteristics of
vary with addiction.

In the structural equation, individual characteristics are used to explain the latent variable. Higher values of
the latent variable (i.e., less addicted) are associated with younger individuals (more likely to be younger and
less likely to be older); higher education; higher income (less likely to be associated with lower income); non‐
white race/ethnicity (positive values for Hispanic, Black, and Asian); and lower probability that a family member
smokes.

This in keeping with what we would expect to see: these demographic patterns are opposite to those of smokers,
which would fit with the idea of higher values for the latent variable capturing lower levels of addiction (Wang et al.,
2018; though note that the definition of smokers varies between this study and that of Wang et al.; and that we are
measuring addiction, whereas Wang et al., 2018 study current use.)

3.2 | Utility function and impact of addiction latent variable

Estimates of the utility function are presented in Table 4. All else being equal, the alternative‐specific constants indicate
that cigarettes are preferred to the opt‐out; and e‐cigarettes are preferred to the opt‐out. Unobserved preferences for
cigarettes (relative to the opt‐out) vary considerably around the mean, as reflected by the large and significant standard
deviation. No preference heterogeneity for cigarettes across sociodemographic characteristics was found. Preferences
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for e‐cigarettes (relative to the opt‐out) varied in both unobserved ways (statistically significant estimated standard
deviations) and according to age (older adults) as captured by the associated interaction terms of preferences and that
characteristic.

For nicotine, medium level is preferred to all other levels (highest relative utility among the mean coefficients).
Preferences for nicotine levels vary deterministically across some characteristics, but not all (i.e., associated interaction
terms of nicotine levels and sociodemographic characteristics) and random ways for no nicotine and high nicotine
(statistically significant estimated standard deviations). Our results indicate that female smokers prefer high and me-
dium nicotine products, reflecting an overall preference for higher levels of nicotine in tobacco products. Older smokers
chose high‐nicotine products less often, reflecting an aversion to higher levels of nicotine in tobacco products; and
e‐cigarettes less often. Younger smokers chose high‐nicotine products more often. Unmarried smokers had preferences
for medium and high‐nicotine products. (nota bene of course these preferences are only part of the overall picture—
characteristics are related to the latent variable, which also impacts on product and nicotine preferences.)

Price sensitivity, as expected, is negative. The income elasticity estimate implies that price sensitivities decline as
income increases. In other words, as income increases, individuals are less sensitive to price changes. Tobacco is
preferred to all other flavors. And healthier products are preferred to more harmful products, shown by stronger
preferences for fewer life years lost.

Next, we move to the impact of the latent variable. From the interactions of the latent variable and product constant
terms, lower addiction (higher values for the latent variable) is associated with increased preferences for e‐cigarettes.
Oppositely, this implies that those that are more addicted prefer cigarettes. With reduced addiction, the lower levels of
nicotine are preferred to high nicotine; or, oppositely, more addicted smokers prefer higher levels of nicotine in cig-
arettes—and progressively so with higher levels of addiction, as captured by the monotonicity in the interactions of
nicotine levels and the latent variable.

TABLE 3 Estimates from the
measurement equations and the
structural equation of the latent variable

Estimate t‐ratio (0)

Structural equation

Young 0.65 4.40

Older � 0.24 � 3.02

Higher education 0.34 5.45

Low income � 0.29 � 3.97

Hispanic 0.49 4.11

Black 0.58 6.75

Asian 0.57 3.68

Family member smokes � 0.27 � 5.06

Measurement equations

Daily smoker � 1.99 � 5.03

Cigarettes per day � 6.46 � 17.32

Time to first cigarette 1.47 10.44

Last cigarette 1.86 6.48

Long ago last cigarette 0.41 5.43

Quit attempts 0.29 4.28

E‐cigarette user 0.31 2.76

Frequency of e‐cigarette use 0.20 1.76

Current craving � 0.29 � 4.29

Notes: In the structural equation, the parameters are the estimated gammas as in Equation (6). In the
measurement equations, the zeta parameters are each taken from separate measurement equations, as
in (9)‐(11).
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3.3 | WTP and willingness to accept (WTA)

Table 5 shows the estimated WTP (or WTA, in the case of negative values) for the attributes in the utility function using
the standard approach (Hensher et al., 2015). These reflect the dollar value per 20 pack (or e‐cigarette equivalent) that

TABLE 4 Utility function and
addiction interactions in the hybrid
choice model

Estimate t‐ratio (0)

Utility function

Cigarette ASC 2.98 4.92

Cigarette s.d. 2.29 4.88

E‐cigarette ASC 1.18 4.40

E‐cigarette s.d. 2.38 4.89

E‐cigarette � older � 0.95 � 3.55

No nicotine � 0.07 � 1.40

No nicotine s.d. 0.58 4.19

Medium nicotine 0.05 1.18

Medium nicotine � female 0.13 2.04

Medium nicotine � older � 0.26 � 2.99

Medium nicotine � unmarried 0.14 2.11

High nicotine s.d. 0.63 4.78

High nicotine � female 0.18 2.69

High nicotine � young 0.30 2.26

High nicotine � older � 0.37 � 3.49

High nicotine � unmarried 0.18 2.37

Price � 0.13 � 5.07

Lambda income � 0.28 � 5.39

Menthol � 0.54 � 4.56

Fruit � 0.22 � 3.30

Sweet � 0.29 � 3.73

Unknown health harm 0.83 4.54

2 years of life lost 1.08 4.61

5 years of life lost 0.45 3.80

mu_SP 1.02 4.95

Dual user � 1.53 � 7.99

Addiction‐utility function interactions

Tau � E‐cigarette 0.26 2.01

Tau � No and low nicotine 0.37 3.88

Tau � medium nicotine 0.14 3.55

Note: lambda income is the income elasticity; its coefficient reflects that those on higher incomes are less
responsive to price variation as economic theory predicts.
Abbreviations: ASC, Alternative‐specific constant (mean of the mixing distribution); s.d., standard
deviation of the mixing distribution; mu_SP, scale parameter for SP relative to RP (t‐ratio vs. 1 ¼
meaning that differences in scale between SP and RP were not statistically significant, which follows
from the coefficient being close to 1).
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individuals are willing to pay (must be compensated for, WTA) for that level of the attribute, relative to the omitted
category, so as to remain indifferent (equal utility) between two products with these differing levels. For health harm,
smokers, on average, are willing to pay $8.64 extra on a packet of 20 cigarettes to reduce the health risk from losing
10 years of life to losing 2 years of life. For flavors, smokers, on average, must be compensated to move to nontobacco
flavored tobacco products to attain the same level of utility as for tobacco products. This differs across flavors. For
menthol, WTA is $4.31; for fruit, WTA is $1.79; and for sweet, WTA is $2.32.

For nicotine, WTP/WTA is more modest on average than for other attributes (note nicotine valuations are also related
to addiction, since the latent variable is interacted with these attributes in the utility function). Smokers express WTA for
all levels of nicotine; that is, smokers must be compensated to achieve the same utility for moving frommedium nicotine
strength in tobacco products to any other strength of nicotine in tobacco products. More specifically, WTA at the mean
for no nicotine is $0.57; for medium nicotine is $0.68; and for high nicotine is $0 since the estimated coefficient was 0.

From a policy perspective, it is of interest to examine how WTP/WTA for nicotine varies as a function of addiction4.
The results indicate that key heterogeneity in WTP/WTA for nicotine by addiction is masked by analysis at the sample
level. In Figure 3, how WTP/WTA for the levels of nicotine varies as a function of addiction is shown. We have used no
nicotine as the reference category for these analyses (which is possible following from the fact that all of the coefficients
are based on relative preferences). We have also reversed the scale of the latent variable so that increasing addiction is
shown along the x‐axis (for ease of reading). We see that increasing addiction is associated with higher WTP for nicotine
in tobacco products (positive correlations for each of the attributes). We also see that WTP increases monotonically for
higher levels of nicotine (steeper gradients across levels). In some cases, the value of WTP/WTA is in excess of average
the price of a packet of 20 cigarettes (around $8), underlining the importance of nicotine to smokers.

3.4 | Forecasting of lowering levels of nicotine in cigarettes

A key policy issue is the extent to which smokers would switch away from cigarettes if nicotine levels were reduced in
cigarettes. Table 6 shows two models' forecasts of lowering nicotine in cigarettes5. Our preferred specification is the
calibrated model. Here, we see that the model predicts that lowering nicotine levels in cigarettes would result in around a
3% decline in the choice share of cigarettes; and 4% and 11% increases, respectively, in choice shares for e‐cigarettes and
the opt‐out option. The table also indicates that smokers are slightly less responsive to the reduction in nicotine levels
than dual users, because the reduction in cigarette choice share for smokers is less than that for dual users. However, this
difference is fairly modest and smokers appear at least somewhat responsive to the lowering of nicotine. Of course, these
should be considered as short‐term responses in demand; longer term forecasts are not possible with these data.

3.5 | Diagnostics

Table 7 shows the diagnostic information. The log‐likelihood of the joint estimation is shown, along with, for com-
parison, the log‐likelihood of a model where all products are chosen equally (i.e., no information on choices) and the log‐
likelihood of a model with only the experimental choice shares (Mokhtarian, 2016). Measures of fit, Akaike information
criteria and Bayesian information criteria are presented along with the total number of estimated parameters, 76.

4 | DISCUSSION AND CONCLUSIONS

In this study, we developed a model to evaluate the role of addiction in smokers' choice behavior. The hybrid choice
model seeks to better understand smokers' decision‐making by allowing addiction to flexibly impact on smokers'
choices. This framework allows us to overcome a set of empirical issues that present in trying to measure addiction
and to incorporate addiction in choice models in a traditional manner. We used the model to estimate preferences,
WTP for nicotine in cigarettes, and to predict the impact of lowering nicotine levels in cigarettes in the United States.

We find that the latent variable captures addiction, with higher values explaining lower levels of addiction and lower
values capturing higher levels of addiction. Higher levels of addiction are associated with increased use of cigarettes
(including more cigarettes smoked per day), lower use for e‐cigarettes, fewer quit attempts, and higher levels of reported
craving. This addiction was associated with sociodemographic characteristics in a way that corresponds to known,
observed patterns of cigarette use nationwide.
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TABLE 5 Estimates of WTP, $ per
20‐pack of cigarettes, for the hybrid
choice model

Variable WTP t‐ratio (0) Rob s.e. LCB, 95% UCB, 95%

No nicotine � 0.57 � 1.47 0.39 � 1.32 0.18

Medium nicotine 0.42 1.12 0.35 � 0.26 1.10

Menthol � 4.31 � 10.31 0.42 � 5.13 � 3.49

Fruit � 1.79 � 4.38 0.41 � 2.59 � 0.99

Sweet � 2.32 � 5.59 0.41 � 3.13 � 1.51

year2 8.64 12.67 0.68 7.30 9.98

year5 3.56 6.23 0.57 2.44 4.68

Unknown 6.62 11.03 0.60 5.44 7.80

Note: Standard errors are computed using the delta method (see Daly, Hess, & de Jong, 2012).
Abbreviations: LCB, lower confidence bound; UCB, upper confidence bound; WTP, willingness to pay.

F I GURE 3 Willingness to pay/willingness to accept (WTP/WTA) for nicotine as a function of addiction. (left) WTP/WTA for low
nicotine (reference: no nicotine) as a function of addiction; (middle) WTP/WTA for medium nicotine (reference: no nicotine) as a function
of addiction; and (right) WTP/WTA for high nicotine (reference: no nicotine) as a function of addiction. Addiction is defined as the latent
variable (for ease of interpretation we have reversed the scale so that higher score on the latent variable denotes higher addiction). Each
point is taken from a draw from the mixing distributions of the parameters and latent variable. NB – WTP for low versus no nicotine will be
zero given the parameter restrictions on the model; we show the relationship as there is important random heterogeneity that remains, as
can be seen. Overall, WTP increases with addiction for the same level of the attribute (positive correlation) and increases monotonically
with increasing levels (progressively steeper gradients). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Predicted choice shares and changes in choice shares from lowering nicotine in cigarettes

Cigarette E‐cigarette Opt‐out

Choice share Choice share Choice share

Base choice shares, uncalibrated 0.56 (0.557; 0.562) 0.33 (0.333; 0.336) 0.10 (0.103; 0.106)

Low nicotine in cigarettes, uncalibrated 0.54 (0.535; 0.541) 0.35 (0.344; 0.348) 0.11 (0.113; 0.116)

% Change in choice shares, uncalibrated � 3.86 3.50 9.49

Base choice shares, calibrated 0.68 (0.671; 0.682) 0.22 (09.214; 0.224) 0.10 (0.103; 0.106)

Low nicotine in cigarettes, calibrated 0.65 (0.648; 0.659) 0.23 (0.224; 0.233) 0.12 (0.114; 0.118)

% Change in choice shares, calibrated � 3.28 4.17 10.68

% Change in calibrated choice shares, if smokes only � 3.04 4.01 11.47

% Change in calibrated choice shares, if dual user � 3.23 4.53 12.36

Notes: 95% confidence intervals are listed in parentheses beneath the product forecasts. Calibration follows previous work (Buckell & Hess, 2019). In the table,
smokes only refer to those in the sample that report no e‐cigarette use; dual user refers to those in the sample that report e‐cigarette use.
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In terms of the impact of addiction on stated choices, we find that addiction drives preferences for cigarettes,
and away from e‐cigarettes. Those that are more addicted prefer higher levels of nicotine in tobacco products.

Analysis of WTP indicates that, on average, smokers prefer medium levels of nicotine, and on average are willing to
pay or must be compensated in the range of $0.42–0.57 per 20 pack to be equally satisfied with levels of nicotine other
than “low”, which was the reference in our model. However, these valuations vary considerably across respondents
when the range of addiction is taken into account. More addicted smokers exhibit utility for higher levels of nicotine in
tobacco products where WTP is, in some cases, in excess of the price of a packet of 20 cigarettes; less addicted smokers
value lower levels of nicotine in tobacco products where WTA is, in some cases, in excess of the price of a packet of 20
cigarettes.

Our results suggest that the short‐run response to the FDA's proposed lowering of nicotine in cigarettes would
result in a slight shift away from cigarettes; roughly 3% of its choice share. Shifts in choice shares would be toward both
e‐cigarettes (4% increase in its choice share); and a 11% increase in the choice share of the opt‐out—either cessation
behavior or alternative tobacco products (depending on one's interpretation of the opt‐out in the experiment—we have
previously interpreted as the former based on higher choices of the opt‐out option among those that attempted to quit in
the past year; see Buckell, Marti, & Sindelar, 2019).

These results are likely to have significant meaning for policy. In the United States, the FDA has set out its reg-
ulatory agenda, the centerpiece of which is reducing the level of nicotine in cigarettes (FDA, 2019). Therefore, these
findings are likely to be of direct relevance to current policymaking. The results suggest that this policy is likely to be
effective at shifting smokers' choices away from cigarettes; though with limited impact in the short run (NB—we can
make no determination on the medium‐ to long‐term impacts of this policy). While there seems to be more of a
response to this policy from the dual users, smokers, too, showed some switching away from cigarettes. Since the
smokers are most likely at harm, this is encouraging for the public health implications of this policy.

These results are important because, from a behavioral and policy perspective, we have greater insight into smokers'
decision‐making processes with respect to nicotine preferences and product choices. Our basic utility function
parameter estimates are in keeping with previous results elsewhere in the literature (Pesko, Kenkel, Wang, & Hughes,
2016; Marti et al., 2019; Buckell et al., 2019; Shang, Huang, Chaloupka, & Emery, 2018). Here, where measured, the
preference estimates for nicotine are typically lower than other attributes. However, these studies do not explicitly study
the impact of addiction. And now that we do, the results appear to be markedly different. Thus, the key point is that,
even when nicotine is used in choice experiments, the behavior of smokers toward products and nicotine is likely to be
underestimated if addiction is not explicitly modeled.
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ENDNOTES
1 In preliminary modeling, we tested a series of specifications based on experience‐conditioned choice model versus a conventional hybrid
choice model (i.e. with interactions between the latent variable and elements of the utility function). We found that the hybrid choice
model led to better fit of the model and we thus used this approach. However, we note both the similarity to, and relevance of, the
experience conditioning model for this application. The model in this form allows for addiction to condition utility, but in varied
directions (as opposed to conditioning impacting all attributes in a single direction which is the case in the standard experience‐condi-
tioned model).

2 Since there are two alternatives for each label (i.e., each product and the opt‐out), there may be difficulty in interpreting preferences for
each label separately. To aid interpretation, we use generic constant terms for each label in our models.

3 Procedure detailed in the Apollo manual (version 0.1.0), pp. 123–125.
4 For this, a slightly more involved computation for WTP is used. Taking low nicotine as an example, WTP/WTA at the mean is computed as,

WTPlownicotine ¼
μβlownicotine

þλβlownicotine; unmarriedunmarriednþτβlownicotineαn

μ̂βprice ⋅
�
incomen
income

�η . In Figure 3, this value is plotted for each draw from the mixing distributions.
5 NB–we used “low” rather than “no” nicotine to make these predictions. This is because the FDA's stated position is to lower nicotine to
“non‐addicting levels” and, as such, cigarettes would still contain some (albeit very little) nicotine. Therefore, we think that low nicotine
makes for more realistic forecasts.
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