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Simultaneous and Sequential Control Design for
Discrete-Time Switched Linear Systems Using

Semi-Definite Programming
Romain Guicherd, Member, IEEE , Andrew R. Mills, Paul A. Trodden, Member, IEEE

and Visakan Kadirkamanathan, Member, IEEE

Abstract— The control of switched linear discrete-time
systems occurs in multiple engineering fields, where it has
been used to deal with complex and non-linear systems.
This paper presents two strategies to design control laws
for discrete-time switched linear systems, whilst guaran-
teeing asymptotic stability of the closed loop. Firstly, an
arbitrary switching signal is considered. In this scenario
a common quadratic Lyapunov function is used for sta-
bility, but subsystem Lyapunov functions are employed to
improve local subsystem performance. Secondly, a con-
strained switching signal, associated with subsystem lower
dwell time bounds is studied. In this case, a decrease
in Lyapunov cost is achieved by design, based on dwell
time constraints only, thus removing the need for both
a common quadratic Lyapunov function or direct stable
switches. It is shown in both cases that the control de-
sign problems can be formulated as one or a sequence
of semi-definite programming problems, and therefore can
be solved efficiently. Finally, two examples are provided in
order to illustrate the different techniques presented.

Index Terms— Switched systems, optimal control, opti-
mization, semi-definite programming.

I. INTRODUCTION

S
WITCHED linear systems have great practical and theoret-

ical interest. They are useful to model discrete parameter

changes in real physical systems such as systems integrating

logic, networked systems and power systems. They can model

sudden failures of a system component, a sensor or an actuator

[1]. In addition, it is known that some classes of non-linear

systems can only be stabilized using a switching control strategy

[2]. The control design for switched linear systems usually

includes a collection of controllers as well as a switching

rule, which orchestrates the switches between the different

subsystems [3]. These switching rules can be time-dependent,

state-dependent or controlled; for each of these cases the

subsystem index values taken can be arbitrary or can belong to

a known feasible set of switching sequences. All these different

properties render switched systems non-trivial to analyse and

design [4].

R. Guicherd, A. R. Mills, P. A. Trodden and V. Kadirkamanathan
are with the Department of Automatic Control & Systems Engineer-
ing, The University of Sheffield, Mappin Street, Sheffield, S1 3JD,
United Kingdom, {r.guicherd, a.r.mills, p.trodden,
visakan}@sheffield.ac.uk

A survey on stability and stabilizability of switched linear

systems has detailed the multiple strategies to verify system

stability under switching [2]. The stability of a set of control

modes can be assessed using Lyapunov–Metzler inequalities

resulting in bilinear matrix inequality (BMI) conditions. Math-

ematical tools such as the joint spectral radius have also

been used to study the stability of autonomous systems under

arbitrary switching [5]. Constrained switching has been studied

based on joint spectral radius methods [6] as well as methods

using Lie algebraic conditions [7]. Strategies relying on a

common quadratic Lyapunov functions have been used for

arbitrary switches [8]. Polytopic Lyapunov functions have

been established as necessary and sufficient conditions for

the stability of switched systems [9], [10]. It has been proved

that the exponential stabilizability of switched linear discrete-

time systems is equivalent to the existence of a piecewise

quadratic Lyapunov function [11], [12]. Multiple Lyapunov

functions have been used to study the stability of switched

and hybrid systems [13]. Stability analysis of the closed-loop

system can be defined by a decrease of the switched Lyapunov

function, leading researchers to use approaches focusing on

dwell time conditions. The main strategies have been minimum

dwell time conditions [14], average dwell time [15] as well

as mode-dependent minimum and average dwell times [16],

[17]. The design of switched controlled systems can be divided

into two main branches. The first branch considers the design

of a family of control laws that will then be orchestrated

by an independent switching signal. This applies to both the

state- and time- dependent switching systems. The second

branch considers the design of the control laws along with

the switching signal, and in this case the switching signal is

controlled.

This paper considers the problem of designing control modes

in order to guarantee the asymptotic stability of a linear

discrete-time switched system. Firstly, an arbitrary switching

signal, unknown to the controller, is considered. For this

scenario, we propose an approach where the modal control

laws are synthesized such that they produce distinct Lyapunov

functions, guaranteeing the individual stabilizability of modes,

but at the same time guaranteeing the existence of a common

Lyapunov function, ensuring stability despite mode-to-mode

switching. The main advantage compared to [8] is to provide

improved closed-loop performance, while maintaining stability



of the switched system. Then, a constrained switching signal

is considered, combined with given modal dwell-time lower

bounds. It is shown in this case that control modes can

be computed sequentially, ensuring asymptotic stability of

the switched system. Consequently, subsystem dwell time

information can be encoded in the design, removing the need for

direct stable switches [12] between consecutive modes, or the

necessity to add a large set of auxiliary design variables [18].

The paper is organised as follows. Section II defines the

switched system dynamics and introduces the control problem

tackled. Section III describes how to cast the control law design

routines as convex optimization programming problems. Two

cases are developed, respectively when the switching signal is

arbitrary, and when the switching signal follows known feasible

sequences with associated lower bounds on dwell time modes.

Some numerical examples are included in Section IV, to show

the efficacy of both switched control design approaches. Finally,

Section V concludes the paper and proposes future research

directions.

Notation: For (a, b) ∈ N
2

such that a < b, the set Ja, bK
defines the set containing the integers from a to b included.

For a set N, the notation N
∗

defines N\{0}. The superscript
⊤

represents the transpose of a vector or matrix. For all n ∈ N
∗

and M ∈ R
n×n

, trace(M) denotes the sum of all the diagonal

elements of M . The sets of symmetric positive semi-definite

and symmetric positive definite matrices of size n ∈ N
∗

will be

noted S
n
+ and S

n
++ respectively. The zero matrix of appropriate

size will simply be noted 0, for conciseness. For n ∈ N
∗
, the

matrix In represents the identity matrix of dimension n. The

symbol ⋆ denotes the symmetric element when used within a

symmetric matrix. The generalized order on the semi-definite

positive cone will be denoted with ≻ and � respectively for

the strict and non-strict inequalities.

II. PROBLEM STATEMENT

A. Discrete-time switched linear system dynamics

Consider the discrete-time switched linear system defined

by the following dynamics

∀k ∈ N, xk+1 = Aσk
xk +Bσk

uk, (1)

where xk ∈ R
n

and uk ∈ R
m

are the state and input

variables, respectively, at time step k ∈ N. The function

σ : N → I represents a switching signal, with I = J1, NK,

where N ∈ N
∗

represents the number of possible distinct

system dynamics. In other words, the discrete-time switched

linear system dynamics can be selected from the following

set of subsystem models {(A1, B1), . . . , (AN , BN )}. For all

i ∈ I, (Ai, Bi), the matrices representing the subsystem i

are of appropriate dimensions. It is assumed that system (1)

complies with the following two assumptions,

Assumption 1: For all i ∈ I, the subsystem (Ai, Bi) is

stabilizable.

Assumption 2: The switching signal σ is unknown a priori,

but measurable in real time.

Assumption 1 implies the existence of a linear stabilizing

state feedback controller Fi ∈ R
m×n

, for all i ∈ I. It is to

be noted that Assumption 1 does not imply that the switched

system (1) is stabilizable for an arbitrary switching signal.

However, such a condition is necessary for the existence of a

collection of stabilizable control modes.

B. Switched control problem

The aim of this paper is to design a collection of control laws

Fi, i ∈ I , for the subsystems of system (1), while guaranteeing

asymptotic stability of the switched closed-loop system. The

switched system dynamics under closed-loop therefore become,

∀k ∈ N, xk+1 = Aσk
xk +Bσk

uk = Acl,σk
xk, (2a)

uk = Fσk
xk, Acl,σk

= Aσk
+Bσk

Fσk
(2b)

where Acl,σk
and Fσk

∈ R
m×n

respectively represent the

switched system closed-loop dynamics and the linear control

mode, at time step k ∈ N. Two different switching regimes

are considered separately: (i) when the signal σ is arbitrary,

and (ii) when σ is a constrained switching signal [17]. For all

i ∈ I , the control law Fi is synthesized optimally with regards

to the infinite horizon linear quadratic regulator (LQR) cost,

based on the state and input weighting matrices, Q ∈ S
n
+ and

R ∈ S
m
++, respectively. This control cost is minimized offline

based on the eigenvalues of the subsystem Lyapunov functions,

correlated to the cost-to-go. The next section presents multiple

switched control design methods, guaranteeing the asymptotic

stability of the switched discrete-time linear system.

III. OPTIMAL SWITCHED CONTROL METHODS

First, the arbitrary switching signal case is considered. The

well known technique of constructing a common quadratic

Lyapunov function (CQLF) is employed. However, rather than

designing the control laws using a CQLF, multiple Lyapunov

functions are used to allow for more flexibility in control mode

performance tuning. Section III-A.1, the CQLF approach to

stabilizing control law synthesis is briefly reviewed. Following

this, in Section III-A.2, the approach based on multiple

Lyapunov functions is developed. Finally, in Section III-B,

the constrained switching scenario is addressed using given

lower bounds on mode dwell time.

A. Stabilizing control design under arbitrary switching

1) Design based on a CQLF: A common quadratic Lyapunov

function can be used in order to prove stability under arbitrary

switching of a switched system [3], [19]. The common

Lyapunov function is represented by a positive definite matrix

P ∈ S
n
++ which complies with the following matrix inequality,

for all the subsystems of system (1),

∀i ∈ I, A⊤

cl,iPAcl,i − P � −(Q+ F
⊤

i RFi), (3)

where (Q,R) ∈ S
n
+ × S

m
++, such that the pair (Ai, Q

1

2 )
is observable for all i ∈ I. It is well known that matrix

inequalities (3) can be reformulated, losslessly, as a linear

matrix inequality (LMI) problem via a change of variables



[20], [21], yielding the following semi-definite programming

(SDP) problem,

minimize
X,Ki

− trace(X) (4a)

subject to ∀i ∈ I,








X ⋆ ⋆ ⋆

AiX +BiKi X ⋆ ⋆

Q
1

2X 0 In ⋆

R
1

2K 0 0 Im









� 0. (4b)

Solving the SDP optimization presented in (4) provides

the asymptotically stabilizing control modes Fi, for all i ∈ I,

under any arbitrary switching signal σ. However, such a control

design technique can be conservative, as a single CQLF is used

both to ensure the stability as well as to design the control

modes. Theorem 3.1 summarizes the results linked to the SDP

problem (4).

Theorem 3.1: If a solution to the LMI problem (4) exists

then (i) for each i ∈ I, Fi = KiX
−1

stabilizes (Ai, Bi), (ii)

the closed-loop system (1) with uk = Fσk
xk is asymptotically

stable for all switching signals and (iii) there exists a CQLF

shared by all the modes Acl,i, i ∈ I of system (1).

Proof: The proof is not included for conciseness, but can

be found in the prominent work [22].

The next section includes the first contribution of this paper.

It develops a strategy to simultaneously compute a collection

of control laws stabilizing for the system (1), based on multiple

subsystem Lyapunov functions as well as a CQLF. The mode

dependent Lyapunov functions allow for more flexibility in the

control design, whereas the existence of a CQLF ensures the

stability for any switching signals.

2) Independent control law design guaranteeing the existence

of a CQLF: The simultaneous design of a family of control

modes can be achieved based on distinct Lyapunov functions

allowing for the performance of any control mode to be not

only guaranteed but also fine-tuned. However, in order to

guarantee the stability of the switched system (1) under arbitrary

switching, the existence of a CQLF is added as a constraint.

The major difference with the strategy presented within the

previous subsection is that the common quadratic Lyapunov

function’s purpose is only to guarantee the switched system

stability. In a similar fashion, the control design problem can

be formulated as an SDP problem as presented in (5).

minimize
X,Xi,Ki

−

N
∑

i=1

µi trace(Xi) (5a)

subject to ∀i ∈ I,








Xi ⋆ ⋆ ⋆

AiXi +BiKi Xi ⋆ ⋆

Q
1

2Xi 0 In ⋆

R
1

2Ki 0 0 Im









� 0 (5b)





Xi ⋆ ⋆

AiXi +BiKi X ⋆

0 0 Xi −X



 ≻ 0. (5c)

For all i in I, µi is positively weighting the performance

metric of the control mode associated to subsystem i.

Theorem 3.2: If a feasible solution to the LMI problem

(5) exists, then (i) for each i ∈ I, Fi = KiX
−1
i stabilizes

(Ai, Bi), (ii) the closed-loop system (1) with uk = Fσk
xk is

asymptotically stable for all switching signals and (iii) there

exists a CQLF, shared by all the modes Acl,i, i ∈ I.

Proof: Taking the Schur complement of (5b) yields an

equivalent relationship as the one provided in Theorem 3.1. This

ensures the asymptotic stability of each control modes based

on distinct Lyapunov functions Pi = X
−1
i , i ∈ I . In addition,

the LMI constraint provided in (5c) implies the following

condition:

∀i ∈ I,

[

Xi ⋆

AiXi +BiKi X

]

≻ 0. (6)

Consequently, taking the Schur complement [20] yields the

following equivalent matrix inequality:

∀i ∈ I, (AiXi +BiKi)
⊤
X

−1(AiXi +BiKi) ≺ Xi. (7)

The pre- and post-multiplication by X
−1
i , along with the

change of variable Fi = KiX
−1
i leads to,

∀i ∈ I, (Ai +BiFi)
⊤
X

−1(Ai +BiFi) ≺ X
−1
i . (8)

The LMI condition (5c) also ensures that the following linear

matrix inequality is respected,

∀i ∈ I, Xi ≻ X ≻ 0 ⇔ 0 ≺ X
−1
i ≺ X

−1
. (9)

Combining the last two conditions guarantees the existence

of a common quadratic Lyapunov function P = X
−1

and

subsequently concludes the proof.

A necessary and sufficient condition for feasibility of

problem (5) is the existence of a CQLF; expressing this in

terms of properties of the system and cost is a topic of on-going

research. The use of multiple Lyapunov functions allows for

the optimization cost function to be a weighted combination of

the performance metric of each control mode, and ultimately

permits more flexible tuning. For instance, as discussed in

[21], the objective function weights can be set according to

the probabilities of occurrence for the different subsystems, or

ranked according to the relative importance of different control

modes in the overall system.

The next section proposes a strategy to design control laws

when the switching signal is unknown a priori, but constrained

to a subset of sequences, and subsystem dwell time lower

bound information is provided.

B. Stabilizing control design under constrained switching

Certain switched systems have a constrained switching signal.

In this case, the switching signal only allows switches within

a given set of subsystem pairs. An admissible constrained

switching signal can be represented equivalently by a directed

graph or by a set of ordered mode index pairs. Within this

subsection, the switching signal is assumed to be constrained

and the set of admissible switching sequences will be denoted

Is, such that,

Is =
{

(i, j) ∈ I2|∃(k, σ) ∈ N× Ω, σk = i, σk+1 = j
}

,

(10)



where Ω represents the set of admissible switching signals

for the switched system (1). Even if the switching signal is

not known a priori, the set Is is provided to the controller.

Consequently, not all control mode switches have to ensure

system closed-loop stability. Enforcing system stability for the

set of constrained switching sequences Is has previously been

studied in the context of state feedback synthesis for piecewise-

affine systems [12]. Such a constraint can be implemented

during the design of a collection of control laws, based on the

following LMI

∀(i, j) ∈ Is,

[

Xi ⋆

AiXi +BiKi Xj

]

≻ 0. (11)

Replacing the LMI constraint (5c) within the optimization

problem (5) by the LMI (11) with the appropriate set of decision

variables, guarantees direct stable switches between the control

mode pairs in Is. The inequality (11) guarantees stability with

the minimum dwell time of 1 for the admissible switches [14].

It is well known that dwell time constraints can be used in

order to design control modes able to switch in a stable fashion

[3]. In particular, ensuring stability between two control modes

with the minimum possible dwell time of 1, ensures a stable

switch for any greater dwell time, for the same two control

modes [23]. Enforcing direct stable switches between any

two admissible control modes can be conservative, and even

lead to infeasible problems. In some applications, information

on subsystem dwell time lower bounds is given and can be

exploited to guarantee a strict Lyapunov cost decrease as per

equation (12).

∀(i, j) ∈ Is, Pi ≻ (Ai +BiFi)
∆i⊤ Pj (Ai +BiFi)

∆i (12)

The parameters ∆i ∈ N
∗
, for all i ∈ I, represent lower

bounds on mode dwell times. In other words, it is assumed

that the switched system remains in mode i, for at least ∆i

time steps.

The main contribution developed in this section is to extend

the work of [12], [18], by adding dwell time lower bounds

information in the control design. Providing a change of

variables is done, the constraints (11) and (12) are equivalent

when all ∆i are set to 1. However, using mode dwell time

bounds strictly greater than 1 triggers a loss of convexity [18].

This leads to the LMI problem formulation given in (13). This

SDP computes the control law Fj and Lyapunov function

Pj , for j ∈ I, based on the already existing control laws

Fi, Lyapunov matrices Pi and dwell time bounds ∆i, for all

i in the set Ij
s = {i|(i, j) ∈ Is}. It can be highlighted that

the feasibility of problem (13) depends on the control modes

indexed by the set Ij
s , and thus it is not trivial to evaluate it a

priori; this is a topic of future research. Problem (13) is inspired

by the LMI problem used for fixed dwell time and system

dynamics, when the control modes are design sequentially

online [23], [24].

Theorem 3.3: If a feasible solution to the LMI problem (13)

exists, then (i) Fj = KjX
−1
j stabilizes the subsystem (Aj , Bj)

and (ii) asymptotic stability is guaranteed for a switch between

mode i and mode j after ∆i time steps have elapsed in mode

i, for all i ∈ Ij
s .

minimize
Xj ,Kj

− trace(Xj) (13a)

subject to ∀i ∈ Ij
s ,









Xj ⋆ ⋆ ⋆

AjXj +BjKj Xj ⋆ ⋆

Q
1

2Xj 0 In ⋆

R
1

2Kj 0 0 Im









� 0 (13b)

[

Pi ⋆

(Ai +BiFi)
∆i Xj

]

≻ 0 (13c)

Proof: The constraints provided in equation (13b) ensures

that the control mode j ∈ I is asymptotically stabilizing for

the associated subsystem mode. Taking the Schur complement

of the equation (13c) yields the following,

∀i ∈ Ij
s , Pi ≻

(

A
∆i

cl,i

)⊤

X
−1
j

(

A
∆i

cl,i

)

. (14)

Pre- and post-multiplying this inequality by the system state

at time k, x
⊤

k and xk respectively, different from the zero

vector, and applying the change of variable Pj = X
−1
j , yields

the following inequality,

∀i ∈ Ij
s , x

⊤

k Pixk > x
⊤

k

(

A
∆i

cl,i

)⊤

Pj

(

A
∆i

cl,i

)

xk,

⇔∀i ∈ Ij
s , x

⊤

k Pixk > x
⊤

k+∆i
Pjxk+∆i

.

(15)

This relationship ensures a strict cost decrease when switch-

ing from mode i to mode j, after ∆i time steps have elapsed,

for any i in Ij
s , which concludes the proof.

1

∆1

2
∆2

3

∆3

1

∆1

2
∆2

3

∆3

Fig. 1. Feasible switching sequences between three different system
modes, representation of a cyclic switching cycle and an acyclic switching
cycle, respectively on the left and on the right.

Figure 1 represents different possible constrained switching

sets Is, along with the corresponding mode dwell time lower

bounds, for a simple three-mode system. The control design

routine for any acyclic graph will be initialized by designing

the control laws and Lyapunov functions of the starting modes.

These modes correspond to the vertices without any parent

vertices, for example, mode 1 on the right graph in Figure 1.

Following this initialization step, the SDP problem (13) can

be solved sequentially in order to design the control laws of

all the remaining modes of the graph. The control modes are

propagated throughout the graph from parents to children nodes,

until all the vertices have been explored. In case the switching

graph contains cycles, a minimum feedback arc set problem

is solved first, allowing to generate an acyclic subgraph, by

removing the smallest amount of edges. For instance, removing

the edge from mode 1 to mode 2 on the left graph in Figure 1,

yields the maximum acyclic subgraph. Afterwards, the control

design procedure linked to acyclic digraphs can be performed

on the subgraph obtained. Finally, the stability of all the edges

that have been removed is checked, based on the computation



of the minimum dwell time ∆i, such that equation (12) holds

from parent i to child j [14].

The next section presents examples to show the efficacy of

the two design methods developed in this paper.

IV. NUMERICAL EXAMPLES

The examples are solved in Python using CVXPY [25]

along with the CVXOPT and SCS solvers [26], [27]. These

solvers respectively rely on interior-point algorithms [28] and

operator splitting methods [29]. The two examples in this

section respectively illustrates the two methods presented in

the SDP problem (5) and (13).

A. Example 1

This first example is composed of a switched system with

three subsystems, which are as follows,

A1 =





1 1

2

− 1

2
1



, B1 =





1 0
0 1



, (16a)

A2 =





−1 − 3

4
1

2
1



, B2 =





1 − 1

4
1

4
1



, (16b)

A3 =





1 1

2

− 1

4
− 1

2



, B3 =





1 1

2

− 1

4
−1



. (16c)

The switching signal is defined to be arbitrary, hence it

can select any indices in the set I = J1, 3K. The weights

associated to the modes is respectively encoded by the entries

of the following vector µ = [0.1, 0.1, 0.8]. In this example,

three controllers are designed and their performance compared,

a robust controller, a collection of control laws based on a

common Lyapunov function and a collection of control laws

enforcing the existence of a common Lyapunov function. The

robust control law design is performed using an offline version

of the work presented in [22]. The two other design strategies

are the ones included within this paper. The control gains

obtained in each of these three scenarios are given in equations

(17), (18) and (19) respectively.

Frobust =





−0.0233 0.0924
−0.3612 −1.02091



 (17)

Fc,1 =





−0.6527 −0.3711
0.2824 −0.7356



Fc,2 =





0.5602 0.2963
−0.4612 −0.7424





Fc,3 =





−0.6105 −0.2296
−0.1345 −0.3151





(18)

Fs,1 =





−0.6434 −0.3216
0.3217 −0.6433



Fs,2 =





0.4837 0.2178
−0.3524 −0.6263





Fs,3 =





−0.5509 −0.2245
−0.1567 −0.2668





(19)

The design of the collection of control laws
{

Fs,1, Fs,2, Fs,3

}

is performed using the entries of the

vector µ in order to weight the mode performance objectives

within the SDP problem (5).

Table I compares the eigenvalues of the Lyapunov functions

for each of the switched system modes as well as the perfor-

mance metric considered within the optimization formulation.

TABLE I

COMPARISON OF THE LYAPUNOV FUNCTION EIGENVALUES AND

CONTROL COSTS FOR THE DIFFERENT SWITCHED CONTROL LAWS.

Robust Common Single

Mode 1 {6.710, 2.129} {1.830, 2.657} {1.804, 1.804}
Mode 2 {6.710, 2.129} {1.830, 2.657} {1.098, 2.351}
Mode 3 {6.710, 2.129} {1.830, 2.657} {1.656, 1.073}

Control Costs 8.839 4.487 2.889

The performance metric is taken as the weighted sum of

the trace of the mode Lyapunov functions, where the mode

associated weights are the entries of the vector µ. This example

demonstrates that the robust strategy is the most conservative

in term of control cost, followed by the control design using a

common Lyapunov function. Finally, the last design method

simply relying on the existence of a common Lyapunov function

offers the best control cost. Interestingly, the eigenvalues of

the common Lyapunov function added for stability are higher

than the eigenvalues of the common Lyapunov function used

for design purposes {2.354, 3.42}.

B. Example 2

This second example establishes the feasibility of designing

a sequence of control laws with known switching sequences as

well as dwell time lower bounds. The switched linear system

is composed of three subsystems inspired by a triple integrator

system, defined such that,

A1 =









1 1 −1
0 1 1
0 0 1









, A2 =









1 1 0
0 1 −1
0 0 1









, A3 =









1 −1 0
0 1 0
0 0 1









, (20a)

B1 =









1 0
1 1
0 1









, B2 =









0 0
1 0
0 1









, B3 =









0 1
0 0
0 1









. (20b)

Figure 2 represents the switching graph of the set Is for the

system (20). It displays the possible switches along with the

associated subsystem lower bound dwell times.

1
∆1

2

∆2

3
∆3

∆12

∆21

∆23

∆31

Fig. 2. Feasible switching sequences between three different system
modes and subsystem dwell time lower bounds for the switched system
(20).

The dwell time parameters with a single subscript represent

subsystem dwell time lower bounds, such that ∆1 = 1,

∆2 = 12 and ∆3 = 5. The dwell time parameters with double

subscripts represent the minimum dwell times required for

a strict cost decrease between two control modes [14]. First,

the graph presented in 2 is changed into an acyclic graph by

removing the directional link (i.e. dotted edge) from mode 1



to mode 2. Following this, the design procedure is initiated

with mode 2 using an LQR technique. Then, mode 3 and 1
are designed using the formulation provided in (13), based

on ∆2 and {∆2,∆3} respectively. Since this system has a

cyclic switching graph, a check is performed for the previously

removed edge using condition (12). The minimum dwell time

results between the admissible modes are summarized in Table

II. It can be seen that this switched control design complies

with all the dwell time bounds. The control design strategy

in [12], not accounting for dwell times, yields an infeasible

optimization problem.

TABLE II

COMPARISON OF THE MODE DWELL TIME LOWER BOUNDS WITH THE

MINIMUM DWELL TIMES OBTAINED FOR THE ADMISSIBLE SWITCHES.

Mode dwell time bound Maximum of minimum dwell times

∆1 1 ∆12 = 1

∆2 12 max {∆21,∆23} = 7

∆3 5 ∆31 = 1

The switching control laws and associated Lyapunov function

matrices obtained are as follows,

F
⊤

1 =









−0.42 0.17
−0.80 −0.03
0.39 −0.96









, P1 =









1.70 0.42 −0.88
0.42 1.80 −0.39
−0.88 −0.39 2.85









, (21a)

F
⊤

2 =









−0.43 −0.04
−1.23 0.02
0.87 −0.76









, P2 =









2.92 2.35 −0.38
2.35 4.59 −1.26
−0.38 −1.26 2.64









, (21b)

F
⊤

3 =









0.03 −0.39
1.48 1.73
0.03 −0.33









, P3 =









38 −1.0e3 −37
−1.0e3 4.0e4 1.0e3
−37 1.0e3 38









. (21c)

V. CONCLUSION

Two different strategies proposing a solution to the control

design problem linked with discrete-time switched linear

systems have been developed. Two switching scenarios were

investigated: in the first case an arbitrary signal was considered,

whereas in the second case a constrained switching signal

was studied. In each case, it is shown how a stabilizing

optimal control synthesis may be formulated as an LMI

problem. These problems are solved either once or in a

sequence, depending on the switching signal scenario, and

ensure by design that the control modes render the closed-loop

switched system asymptotically stable. Each scenario has been

illustrated by a numerical example, highlighting the difference

in performance or feasibility with current approaches. Future

research directions could explore the influence of the control

mode initialization in the sequential design case.
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