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This study diagnoses the degree of gradient wind balance (GWB) in dropsonde

observations of 30 tropical cyclones (TCs) divided into 91 intense observation periods.

The diagnosed GWB in these observation periods are composited to investigate which

characteristics of a TC are significantly related to departures from GWB. This analysis

confirms that on average the flow above the boundary layer is approximately in GWB.

Supergradient flow is more common near the radius of maximum wind (RMW) in the

upper boundary layer than above in the free troposphere or outside the RMW and is

also more common in strong storms than in weak storms. In contrast, the degree of

GWB does not differ between intensifying, steady-state and weakening storms. Storms

with a peaked wind profile have a higher probability of showing supergradient winds

than those with a flat wind profile. The comparison of two commonly used functions to

fit observations shows that the diagnosing GWB from dropsonde observations is highly

dependent on the analysis technique. The agradient wind magnitude and even sign is

shown to depend on which of these functions is used to fit the observations. The use of

a polynomial fit consistently diagnoses the presence of supergradient winds far more

frequently than a piece-wise function, and also shows a marked degree of imbalance

above the boundary layer. Therefore, caution is warranted when determining the degree

of GWB with a polynomial fit.

Received . . .
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1. Introduction1

Gradient wind balance (GWB) in tropical cyclones (TCs) has long been investigated by observational and modelling studies (e.g. Gray2

and Shea 1973; Willoughby 1979; Pendergrass and Willoughby 2009; Miyamoto et al. 2014) due to the different roles that balanced3

and unbalanced dynamics have for storm structure and intensification in theoretical and numerical models (Shapiro and Willoughby4

1982; Bui et al. 2009; Smith and Montgomery 2010; Montgomery and Smith 2017; Heng et al. 2017). The first analyses of aircraft5

data that diagnosed whether the wind was close to GWB found contradictory results because different methodologies would render6

different conclusions (e.g. Gray 1962; Gray and Shea 1973; Willoughby 1979; Jorgensen 1984).7

The debate remained until the influential analysis of Willoughby (1990) concluded that the mid- and low-troposphere of the majority8

of TCs was in GWB. Although this result was contested by Gray (1991), GWB was considered a fair assumption in TCs and became9

a common constraint in theoretical TC models, particularly above the boundary layer, for example in the Wind-Induced Surface10

Heat Exchange (WISHE) model (e.g. Emanuel 1997) or in the Sawyer-Eliassen equation (Pendergrass and Willoughby 2009; Heng11

et al. 2017). However, recent observations have shown that imbalances may occur. In particular, in dropwindsondes, several analyses12

documented supergradient winds (e.g. Kepert 2006a,b; Schwendike and Kepert 2008; Bell and Montgomery 2008; Montgomery et al.13

2014, hereafter M14), especially in the upper boundary layer.14

The boundary layer model of Kepert (2001) and Kepert and Wang (2001) provides a theoretical framework to explain supergradient15

winds in the upper boundary layer. In their model, supergradient flow in the upper boundary layer was caused by the strong inward16

advection of angular momentum, thereby linking the presence of supergradient winds to the radial distribution of angular momentum.17

Furthermore, Stern et al. (2020) recently used an axisymmetric version of the boundary layer model of Kepert and Wang (2001) to18

explain why the flow right above the top of the boundary layer should be weakly subgradient. Stern et al. (2020) argue that the layer of19

subgradient flow near the eyewall is associated with an inertial oscillation and is strongly influenced by the radius of maximum wind20

(RMW).21

Kepert (2006a,b) found that the degree of GWB in Hurricanes Georges (1998) and Mitch (1998) was a function of the radial shape of22

the wind profile, which is related to the radial distribution of absolute angular momentum. Although Georges and Mitch had relatively23

similar intensities, the GWB analysis showed that Georges was close to GWB whereas Mitch showed markedly supergradient flow24

near the RMW. One of the main differences between Mitch and Georges was the radial gradient of wind speed: while Georges had a25

smooth flat radial wind profile, Mitch had a peaked profile. These studies argue that the radial shape of the wind profile determines the26

advection of angular momentum and influence the degree of GWB in these storms, as accounted for by the model of Kepert and Wang27

(2001).28

Schwendike and Kepert (2008) provide further evidence that the shape of the radial wind profile is related to the degree of GWB.29

They showed that Hurricane Danielle (1998) with relatively weak winds (Cat. 2) and a flat radial wind profile was close to GWB. In30

contrast, their analysis of Hurricane Isabel (2003), a major hurricane (Cat. 5) with a peaked wind profile, showed strongly supergradient31

winds in the upper boundary layer and was balanced above 2000 m.32

A recent theoretical examination of the validity of GWB arose in the paradigm for TC intensification, known as the boundary layer33

spin-up mechanism, which proposes that supergradient flow in the boundary layer imports air into the eyewall with minimal loss of34

momentum (Smith and Montgomery 2010; Montgomery and Smith 2017). The supergradient flow in the boundary layer is advected35

upwards and acts to direcly intensify the vortex (e.g. Smith and Montgomery 2016; Montgomery and Smith 2017).36

Observational evidence (see e.g. Montgomery et al. 2006; Bell and Montgomery 2008; Bell et al. 2012; Sanger et al. 2014;37

Rogers et al. 2015; Abarca et al. 2016) has supported this theory by documenting supergradient winds in the boundary layer in38

dropsonde observations. For example, M14 used dropsondes deployed in Hurricane Earl (2014) to diagnose supergradient winds in39
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four observation periods of Earl: two periods where the storm was weak and intensifying, and two periods where Earl was a major40

hurricane and with relatively constant strength. Their results suggest that during the four periods the storm was supergradient near the41

inner-core at the top of the boundary layer. Rogers et al. (2015) also shows evidence of supergradient winds for Hurricane Earl near the42

RMW from the surface up to 2400 m. Similar evidence of supergradient winds in the boundary layer of strong TCs was shown for the43

cases of Hurricanes Isabel (2003) (Bell and Montgomery 2008), Rita (2005) (Bell et al. 2012), Edouard (2014) (Abarca et al. 2016)44

and Typhoon Jangmi (2008) (Sanger et al. 2014).45

The degree of GWB was assessed in the studies mentioned above (e.g. Kepert 2006a; Schwendike and Kepert 2008; Bell et al. 2012),46

by analyzing low-level dropsonde observations of the tangential wind and comparing them to an estimation of the gradient wind. To47

estimate the GWB winds, dropsonde observations of pressure (and/or wind) were fitted with a pressure (and/or wind) continuous48

function producing a radial wind profile that was then used to estimate a radial wind speed (or pressure) profile using the gradient wind49

equation. The comparison of these wind (and/or pressure) values estimated through the GWB equation with the observed tangential50

wind (pressure), provided a measure of the degree of GWB.51

The principal difference between the studies mentioned above was the analytical function used to fit the observations. For example,52

Kepert (2006a) used a piece-wise function (Willoughby et al. 2006) whereas Bell and Montgomery (2008) and Didlake and Houze53

(2011) used a polynomial function (see Section 2). While M14 acknowledged that using polynomial fits could be too simplistic, they54

argued that a polynomial function was appropriate since the selection of this family of functions over other functions that they tested55

did not significantly affect the GWB analysis. However, several studies have discussed and shown that the analysis technique may be56

key and potentially a source of error in determining balance in observations (Willoughby 1990; Gray 1991; Kepert 2006a).57

In short, observational studies have recurrently found supergradient winds in TCs, and several theories and models of intensification58

provide physical accounts for the wind flow to depart from GWB. The observational evidence of imbalances summarised above was59

provided in single case studies. However, the question remains as to how many storms show a departure from GWB or indeed60

which characteristics of a storm are linked to the degree of GWB. For instance, the boundary layer spin-up mechanism argues that61

supergradient winds are an essential component of TC intensification, a feature that is supported by several dropsonde case studies62

(Bell and Montgomery 2008; Bell et al. 2012; Sanger et al. 2014; Rogers et al. 2015). One might reasonably infer from their evidence63

that there would be a relationship between the degree to which the winds are supergradient and the intensification rate, with intensifying64

storms being more likely supergradient in the boundary layer and weakening storms being in GWB or having slight supergradient flow.65

Similarly, the boundary layer model of Kepert and Wang (2001) suggested that the radial distribution of momentum determines the66

location and magnitude of supergradient winds, which is also supported by dropsonde evidence in a handful of cases (Kepert 2006a,b;67

Schwendike and Kepert 2008). A reasonable hypothesis arising from their results is that storms with peaked wind profile will more68

likely show supergradient signatures than storms with a flat wind profile.69

This study investigates the degree of gradient wind balance in a larger set of TCc and dropsonde observations. The primary70

motivation of this study is to expand on the results from the case studies to quantify whether there is any statistical relation between71

TC characteristics and the degree of GWB. In particular, as explained above, four characteristics of TC structure and development have72

been theoretically linked to GWB: mean intensity, the rate of change of intensity, the height level and the shape of the radial wind73

profile.74

This paper is structured as follows. Section 2 describes the data and the methodologies used to analyse the GWB and to composite75

the observations. Section 3 shows a few well-known example cases to illustrate and compare existing methods to measure the degree76

of GWB. Section 4 then presents the analysis of the degree of GWB in dropsonde composites. These results are discussed in Section77

5, which also presents the conclusions.78
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2. Data and methodology79

Dropsondes are scientific instruments launched from research aircrafts from the National Oceanic and Atmospheric Administration80

(NOAA), the United States Air-Force (USAF), the National Aeronautic and Space Administration (NASA) and by the National81

Taiwan University. Since their development, dropsonde observations have been useful for operational and research purposes due82

to their unique vertical and horizontal information of the TC inner-core wind and temperature structure (Franklin et al. 2003;83

Zhang et al. 2011, 2013; Wang et al. 2015). A large dropsonde dataset, thoroughly described in Wang et al. (2015) (obtained from84

www.eol.ucar.edu/content/noaa-hurricane-dropsonde-archive), is the main data source of this study.85

This dataset contains observations taken between 1999-2012 from onboard research flights of NOAA, USAF and NASA research86

aircrafts. Each dropsonde profile has been corrected and quality-controlled to account for sensor offsets, the effect of shear on the87

sonde, accelerated descent rates and other system failures. The raw dropsonde files have been processed by the Atmospheric Sounding88

Processing Environment (ASPEN) which smooths and filters the data, after which most dropsonde profiles were visually evaluated as89

further quality control (Wang et al. 2015). In order to standardize the analysis, the GWB analysis was done in 100-m intervals from 10090

m to the highest recorded level from each profile. The wind or pressure values in this 100-m spacing are obtained by averaging all the91

data-points in a 20-m window. Previous studies such as Kepert (2006a,b) and Schwendike and Kepert (2008) accounted for the radial92

motion of the sonde and the horizontal temperature gradient. The data in this study has not undergone these corrections. Other than the93

vertical averaging to a 100-m interval grid as described above, the dropsonde profiles are only processed by putting the observations in94

a storm relative-framework using the tracks described in the following section.95

2.1. Track determination96

An accurate track can be essential for studies investigating the tangential wind speed in the inner-core (Kepert 2005), particularly in97

regard to GWB assessments, due to the sensitivity of the analysis technique to track errors. Flight-level data (Vigh et al. 2015), available98

at https://verif.rap.ucar.edu/tcdata/flight/, provide a track time-series with high temporal resolution. The tracks99

in this dataset were estimated using the Willougby-Chelmow (WC) (Willoughby et al. 1982) algorithm, based on flight-level wind data.100

The WC method minimises the distance between the centre of the storm and tangential lines to the direction of each wind observation.101

This centre-finding method has been extensively used in dropsonde analyses (e.g. Zhang et al. 2011, 2013; Rogers et al. 2013) due to its102

simple interpretation and application, as well as its suitability to be used on high temporal resolution onboard radar wind measurements103

(Zhang et al. 2011).104

Although the main track finding algorithm used is the WC, two alternative track datasets were used to analyse the sensitivity of105

the GWB analysis technique to the track: the best track dataset (Landsea and Franklin 2013) and the translating pressure fit (TPF)106

technique (Kepert 2005). The best-track dataset (Landsea and Franklin 2013) has a 6-h temporal resolution which makes this dataset107

less suitable for inner-core studies but it has been extensively used, for instance, to determine the rate of intensity change of a storm108

(e.g. Hendricks et al. 2010). The TPF method determines the centre as the point that minimizes the error of fitting a profile (Holland109

1980) to pressure observations (Kepert 2005).110

2.2. Intense observation periods111

An intense observation period (IOP) is defined as a finite time-frame where a storm was well-sampled. IOPs have been used previously112

(e.g. Rogers et al. 2013) to merge observations into a single sample and to evaluate the mean characteristics of a storm during a specific113

period. In particular, this study considers an IOP as a period where a given storm had more than ten dropsondes in the inner-core114

region (r < 100 km). Similarly, each IOP could be no longer than 12 hours and could not overlap with another IOP. This threshold115
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constrained the period to avoid artefacts in the analysis caused by intensity or structure changes in the storm. The use of IOPs relies on116

the assumption that during the IOP, relatively few changes occurred during this time to the storm, which is not always the case. Several117

studies require that during an IOP the storm is approximately in steady-state (Kepert 2006a,b; Schwendike and Kepert 2008), i.e., that118

the intensity of the storm does not greatly vary within the IOP. Other studies define IOPs based on the periods in which the storms119

were well-sampled with particular interest on periods where the storm was undergoing intensity or structural changes such as eyewall120

replacements (e.g. Abarca et al. 2016). In this study, the definition of IOP, as stated above, depends only on length and inner-core121

dropsonde constraints, to maximize the number of IOPs.122

Out of all observations in the dropsonde dataset, over 100 IOPs fulfilled the previous definition. However, only 91 IOPs (≈ 3000123

dropsondes) are reported in this study since the GWB analysis of most of the weakest storms (tropical storm strength or weaker) was124

challenging as in most of these cases the radial pressure gradient was very small which caused the GWB analysis to diagnose unrealistic125

gradient wind estimations. Table 1 shows the information of each IOP, including storm name, start and end dates of each IOP.126

2.3. Compositing127

The IOPs were composited according to three main characteristics: mean TC intensity, intensity change rate, and the shape of the wind128

profile. The analysed TCs were classified using the Saffir-Simpson scale based on their mean intensity, i.e., the average was taken of129

all the intensity values in the best-track dataset reported within an IOP.130

The categories of intensity change or rate of intensification of each IOP were determined by computing the rate of change of intensity131

of the TC during the IOP. Several definitions exist of intensity change (e.g. Hendricks et al. 2010; Rogers et al. 2013; Cione et al. 2013),132

which measure the rate of change in wind speed reported in the best-track dataset in a given period. Here, as in Hendricks et al. (2010),133

we use the following categories of intensity change: intensifying IOPs were defined as ∆I/∆t ≥ 10 kt 24-h−1, weakening IOPs as134

∆I/∆t ≤ −10 kt 24-h−1, and steady-state IOPs as −10 < ∆I/∆t < 10 kt 24-h−1. For this classification, the best track dataset was135

first interpolated to 1-h resolution. The change in wind intensity ∆I is computed as the difference between the closest time-step in the136

interpolated 1-h best track dataset to the middle-point of an IOP, and the intensity found 12-h later. Because this difference is computed137

over a time window of 12-h, the result is multiplied by two to adjust to the criteria above, measured in kt 24-h−1. This final value is138

then used to classify the IOPs using the definitions above.139

Two alternative definitions of intensity change were employed to evaluate the sensitivity of the results to this definition of intensity140

change categories. One method computes ∆I over the subsequent 24-h period instead of over the following 12-h. The other definition141

computes the change of intensity within the IOP by calculating the difference between the closest intensity in the best track to the start142

and end times of the IOP, i.e., this metric aims to measure the change of intensity while measurements were taking place.143

Finally, the shape of the resulting gradient wind profile at each height was classified as either peaked or flat by inspecting the fitted144

wind profile or the derived gradient wind profile as in Kepert (2006a,b) and Schwendike and Kepert (2008). This classification was145

done using two threshold criteria based on the radial gradient of the wind speed. The first criteria was that peaked profiles have a146

radial gradient of the wind |∂v/∂r| > 1m s−1 km−1. In this first criteria, stronger storms have a higher likelihood of being classfied147

as ‘peaked’, simply because they are stronger and more likely to fit this criteria. Therefore, the second criteria weighs the wind148

observations by the maximum tangential wind speed (Vmax), as ‘peaked’ profiles are those that meet the criteria ∂ V
Vmax

/∂r >16 m−1.149

These thresholds aim to capture the strength of the radial decrease in wind speed between the RMW and 2RMW. Composites of wind150

profiles (see Fig. S1) show that these criteria are able to separate wind profiles where the maximum wind decreases more rapidly151

(peaked) compared to those with a smoother weakening in wind speed (flat) outside the RMW.152

Section 3 will present examples of peaked and flat wind profiles illustrating how these threshold are a reasonable estimation of when153

a profile is peaked or flat. Table 1 also presents the mean intensity Ī (kt) of each IOP, the intensity category on the Saffir-Simpson Scale154
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(I. Cat.), the intensity change rate (ICR kt 24-h−1), and whether the wind profile was classified as being peaked (P) or non-peaked155

(NP), i.e., flat at the boundary layer top and above.156

Figure 1 illustrates how the 91 IOPs are distributed between each of the composite categories of intensity and intensity change. The157

largest number of cases in the intensity composite were hurricanes of Category 1. Since the number of Cat. 5 hurricanes was low, these158

storms were combined with the Cat. 4 storms. The majority of IOPs represent weakening (48 cases) and intensifying (30) storms and159

a relatively low number of IOPs (13) are in the steady-state category (Figure 1). Out of the 91 IOPs, 34 (26) showed a peaked and 57160

(65) a flat wind profile in the boundary layer (above the boundary layer).161

2.4. Gradient wind balance162

The gradient wind is defined through the balance of the pressure gradient force by the sum of the centrifugal and the Coriolis force163

(Holton and Hakim 2012), as follows:164

1

ρ0

∂p

∂r
=

V 2
g

r
+ fVg , (1)

where ρ0 is the density, r is the distance to storm centre, ∂p / ∂r is the radial pressure gradient, f is the Coriolis parameter, and Vg is165

the gradient wind.166

As in many previous studies, the degree of GWB is diagnosed in an axisymmetric framework, therefore, GWB refers here to the167

balance of forces in the azimuthal mean. This assumption is noteworthy as several factors can induce asymmetry in the wind flow168

in different quadrants of the storm. For instance, an otherwise balanced vortex might have an azimuthal wave-number 1 inertia wave169

superimposed, or a motion-induced asymmetry. Hence, due to the limited number of dropsonde observations and the need to account170

for asymmetries, the azimuthal mean assumption is necessary.171

The degree of GWB is commonly assessed by comparing the observed pressure or wind speeds with those estimated by the gradient172

wind equation. To better quantify the difference between the observed and estimated winds and possible method biases, the departure173

from gradient wind balance or agradient wind (Vag) is defined (Kepert 2006a) as the difference between observed azimuthal uθ and174

estimated gradient Vg winds, i.e.:175

Vag = uθ − Vg. (2)

The agradient wind (Vag) will be used as a quantitative measure of the degree of GWB.176

For the purpose of dignosing gradient wind from dropsonde observations, a continuous function is fitted to pressure or wind177

observations (e.g. Kepert 2006a; Schwendike and Kepert 2008; Bell et al. 2012). If pressure observations are fitted then the gradient178

wind equation (equation 1) needs to be differentiated, whereas if wind observations are fitted, the gradient wind equation will need to179

be integrated. The fitted continuous function of pressure or wind is then used to solve equation 1 to compute the remaining field, which180

is considered an estimation of the values of the field if the wind flow was in GWB. For instance, M14 fitted a polynomial (degree 2)181

function to pressure observations and then estimated the gradient wind (Vg) from the gradient wind equation. Schwendike and Kepert182

(2008) analysed both pressure-to-wind and wind-to-pressure functions by using a piece-wise function defined by Willoughby et al.183

(2006), hereafter the WDR function.184

The polynomial pressure function P (r) to be fitted, as defined in several studies (e.g. Bell et al. 2012), can be written as:185

P (r) =

n
∑

k=0

akr
k, (3)
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where n is the degree of the polynomial, ak are the coefficients to be determined by the fit, and r is the distance to storm centre. While186

M14 used n = 2, Didlake and Houze (2011) used n = 6 and Bell et al. (2012) n = 3. Tests using different n values from 2 to 6 showed187

that increasing n often leads to overfitting and critical poor fits, especially when no dropsondes are found outside the 100 km radius to188

contraint the polynomial. For this reason, in this study n = 3 is used.189

WDR showed that a piece-wise function provided more realistic radial pressure gradients and radial wind profiles than previously190

used profiles (e.g. Holland 1980). The WDR function was defined as a wind function over three regions: the inner, transition,191

and the outer region. The inner region wind profile Vi(r) is defined between the storm centre and the RMW, i.e., in the interval192

(0 ≤ r ≤ RMW ). Vi(r) is given by the following:193

Vi(r) = Vmax

(

r

RMW

)n

, (4)

where Vmax is the maximum tangential wind and n is an exponent to be fitted to the data. In the outer region, the wind profile Vo(r) is194

the sum of two weighted-functions with different length scales:195

Vo(r) = Vmax

[

(1− A)e
− r−RMW

L1 + Ae
− r−RMW

L2

]

, (5)

where L1 and L2 are e-folding distances, and A is a relative weight of L1 and L2.196

Finally, the wind profile in the transition region Vtz , for R1 ≤ r ≤ R2 is a linear combination of equations 4 and 5, given by:197

Vtz(r) = Vi(1− w) + Vow, (6)

where w is a polynomial of degree 9. See Kepert (2006a), Willoughby et al. (2006) and Schwendike and Kepert (2008) for further198

details.199

The fit of the WDR function follows closely the method outlined in Kepert (2006a) and Schwendike and Kepert (2008) as the200

pressure version of the WDR wind fit is found by radially integrating the gradient wind equation using the WDR wind function.201

However, there are relevant differences from these previous studies in the fit optimization technique and approach as follows.202

The pressure version of the WDR function was fitted to the pressure observations from the dropsonde profiles every 100-m using203

a non-linear squares optimization technique in three steps. The minimum and maximum values of these parameters for this fitting204

procedure are shown in Table 2. The first step is to fit the inner region observations to the inner region pressure profile using equation205

4 which results in fitted values of Vmax and RMW . Using the Vmax and RMW from the best fit in the inner region, the outer region206

observations are fitted to the outer region pressure function to estimate A, L1 and L2. In short, step 1 and 2 constrain Vmax, RMW207

and A. The third and final step then fits the pressure observations simultaneously in the inner, outer and transition regions holding208

Vmax, RMW and A fixed from the values obtained by the previous steps to produce a continous pressure profile. This profile is then209

iteratively optimized to find the values of n, L1 and L2 that produce the best fit across all the observations. In other words, the final210

step optimizes a fit of the optimized individual fits per region using the constraints given by the first two steps. The gradient wind Vg is211

then obtained by numerically solving the gradient wind equation (equation 1) using the fitted pressure profile (either the polynomial or212

the WDR function) via a numerical quadrature method.213

3. GWB Analysis of Selected IOPs214

This section illustrates the GWB analysis techniques by comparing the results from the two fitting functions for previously analysed215

well-sampled storms. For each IOP, the two pressure-versions of the fits were adjusted to the pressure observations, and then, the216
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pressure profiles were used to compute the gradient wind (Vg). The residual is the difference between the fitted pressure function217

estimate and the pressure observations, which is often used to evaluate the skill of each fit.218

The first case is that of Hurricane Earl (2010). Two IOPs of Earl are shown, the first period corresponds to 18 UTC 30 August to 01219

UTC August 2010 (IOP 71 from Table 1) and the second to 06-18 UTC on 2 September, 2010 (IOP 75). Earl was an Atlantic hurricane220

that went through a period of rapid intensification and was very well-sampled (Braun et al. 2013). The degree of GWB of Earl was221

analysed in 4 IOPs in M14, who used the polynomial fit (degree 2). Earl underwent rapid intensification during the former two IOPs,222

reached peak intensity and was a mature storm in a relative steady-state during the latter two IOPs. M14 found a difference between223

observed winds and the estimated gradient winds of 20− 60%, i.e., evidence of supergradient wind flow at the height of maximum224

tangential wind speed.225

The first example (IOP 71) falls between the second and third IOPs of M14 and the second example shown here corresponds to the226

fourth period analysed in M14. Figure 2a, b show the pressure observations and the two continuous pressure profiles for the first case,227

Figure 2c, d show the residual, which is the difference between the fits and the observations, and Figure 2e, f show the gradient wind228

from both fitting methods. Figure 2a, b highlights the differences between the polynomial pressure function and the WDR pressure229

function, particularly in the shape of the pressure profile. Figure 2e, f show differences in the shape and magnitude of the gradient wind230

profile. Although the magnitude of the residuals is very similar (Figure 2c, d), the polynomial residuals are mostly positive outside of231

the 50 km radius, suggesting that the fit misses the data outside the RMW. The WDR fit does not have this problem. Another relevant232

difference between the methods is the shape of the fitted pressure profiles which determines the radial gradient of pressure.233

Since the gradient wind equation refers to the radial gradient of pressure, the resulting gradient wind estimations Vg have different234

shapes and RMW locations. The polynomial Vg estimates the RMW to be in the outer region of the storm, far away from the observed235

RMW, whereas the WDR Vg produces an RMW very close to the observed value. M14 argued that the misrepresentation of the RMW236

location (of the polynomial Vg) was further evidence of the “inaccuracy of the gradient wind for characterizing the structure of the237

vortex”. However, Figure 2 suggests that some of the results presented by M14 were an artefact of the method and not indicative of238

the degree of GWB, for instance, the location of the RMW. A qualitative assessment of the polynomial Vg suggest that this IOP was239

supergradient in the inner-core both at the 600-m level and above. The two methods disagree on the degree of GWB as the WDR fit240

suggests a flow close to balance at both levels in the inner-core.241

Figure 3 shows the results for a second example IOP of Hurricane Earl (IOP 75), which can be compared to Figure 11 and 12242

of M14. The RMW is located in different regions depending on the fit and the flow near the centre of the storms can be classified243

as supergradient by the polynomial fit but is closer to balance by the WDR function, as was the case in the previous example. The244

mean gradient wind anomaly was estimated for each level and weighted by the maximum wind speed to render a percentage value.245

The reported 32% supergradient wind by M14 for this period is confirmed and also reduced to less than 10% in the estimate by the246

WDR function. A qualitative assessment of both the WDR and the polynomial Vg suggest that this IOP had supergradient winds in the247

azimuthal mean in the boundary layer, although by noticeable different magnitudes. Very similar features were observed in the analysis248

of the remaining nine periods of Hurricane Earl (see Table 1). Three of these periods were also analysed by M14, who diagnosed249

supergradient winds in these periods in the inner-core across the boundary layer but also at the 2000-m level (see their Figure 12).250

Hurricane Rita (2005), another well-studied storm, experienced an eyewall replacement cycle that modified the storm structure and251

intensity (see e.g. Rogers and Uhlhorn 2008; Judt and Chen 2010). Didlake and Houze (2011) and Bell et al. (2012) used the polynomial252

fit (n = 6) to analyze the degree of GWB of Rita using dropsonde observations and concluded that Rita had supergradient winds in the253

boundary layer. Figure 4 shows the pressure functions, residuals and Vg calculations for both the polynomial and WDR functions for254

IOP 44 (Table 1). As for Hurricane Earl, the residuals from the fits are of similar magnitude, but the residuals for the polynomial fit are255

mostly positive for radii between 50 and 90 km, whereas the residuals for the WDR fit appear evenly distributed across the abscissa.256
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Figure 4e, f suggest that the flow is supergradient in and above the boundary layer near the RMW for both fitting methods, although257

noticeably the imbalance is much larger for the polynomial fit. However, the magnitude of the difference between the estimated Vg and258

the observations is much larger for the polynomial fit than for the WDR function. This lack of agreement between both methods further259

motivates the notion that the degree of diagnosed GWB, particularly in magnitude, is very sensitive to the method used.260

For instance, another well-studied storm, Hurricane Isabel (2003), showed strong boundary layer winds (Montgomery et al. 2006;261

Bell and Montgomery 2008) and was diagnosed as supergradient in the boundary layer using the WDR fit (Schwendike and Kepert262

2008). The Vg and Vag from both fits are shown in Figure 5 during 16-21 h UTC on 12 September, 2003 (IOP 20 from Table 1). The Vag263

(Fig. 5c, d) suggests that Isabel had supergradient winds, i.e., several Vag observations of over +40 m s−1, according to the polynomial264

Vg . In fact, the mean Vag found for the polynomial Vg was +24m s−1 and +20m s−1 for the 600 and 1800-m levels, respectively.265

The Vag obtained from the WDR Vg also shows highly supergradient winds; however, the magnitude of Vag is different from the266

polynomial results. While some of the resulting Vag from the WDR Vg are over +20 m s−1, the mean Vag is +8 m s−1 and +2 m s−1
267

for the 600 and 1800 m, respectively. Welch t-tests showed that the resulting gradient wind anomalies Vag of the two methods were268

significantly different from each other at the 99% confidence level at both 600 and 1800-m levels. Furthermore, the resulting Vag mean269

anomalies from the polynomial fit were significantly diffferent to 0 at the 99% confidence level at both 600 and 1800 m, whereas the270

anomalies resulting from the WDR fit were only significant at the 600 m level to the 95% confidence level.271

The results of the WDR function support the conclusion of Schwendike and Kepert (2008) that the flow in the upper boundary layer272

near the RMW was supergradient whereas the flow outside the RMW and above the boundary layer was in balance. This conclusion273

changes depending on the method. While the polynomial fit suggests that the flow is supergradient at all height levels near the RMW,274

the results from the WDR function show that the supergradient winds were observed only in the upper boundary layer (600 m).275

The polynomial fit more frequently diagnosed supergradient winds, i.e., typically larger and positive Vag were diagnosed using the276

polynomial fit compared to the WDR fit, not just for the cases of Earl and Rita but consistently for most of the analysed IOPs. For277

example, IOP 13 (see Table 1) of Hurricane Michelle (2001), shown in Figure 6, illustrates the different gradient wind anomalies278

resulting from each method. Figure 6a, b shows the wind observations and gradient wind profiles diagnosed from the polynomial and279

WDR fits. The polynomial fit has an overall positive Vag both at the 600 and 1800-m levels, whereas the WDR fit shows a balanced280

flow in the upper boundary layer and a weakly subgradient flow above (Figs. 6c, d). These differences in the gradient wind anomalies281

between the methods were determined to be statistically significant at 600 m at the 95% confidence level by a Welch t-test, but the282

differences are not significant at the 1800-m level.283

To illustrate the difference between peaked and flat wind profiles and their relevance to determine the degree of GWB, Figure 7284

shows the wind profiles of IOPs 80, 37 and 31 for Hurricanes Hilary (2011), Frances (2004) and Ivan (2004), respectively. The radial285

gradient of the wind in and above the boundary layer, classified each of these IOPs in distinct categories as explained in section 2.3.286

The WDR wind profile is used to highlight the difference between the wind profiles given this method’s superior skill in accurately287

depicting wind profiles. Hurricane Hilary (Fig. 7a, b) was a storm with a peaked wind profile at the top of the boundary layer and a flat288

wind profile above (1600 m); such cases are referred to as “mixed cases”. Hurricanes Frances and Ivan illustrate a flat and a peaked289

wind profile, respectively, both in and above the boundary layer. The wind profile of Frances (Fig. 7c, d) shows a small decrease in290

wind speed outside of the RMW, i.e. the radial gradient of wind speed outside the RMW is small compared to the same metric for Ivan.291

Consider, for example, the wind speeds in Figure 7c, d at radii 30 and 75 km which are ≈ 55 and 40 m s−1, i.e., in a 25 km radial292

distance, the wind speed changed by only ∼ 15 m s−1. In contrast, a similar measure (wind speed at 40 and 60 km) for Ivan (Figure 7e,293

f) showed a decrease in wind speed of nearly 20ms−1 over a shorter distance. This strong contrast in the radial gradient of the wind294

speed is the main difference between flat profiles (Hurricane Frances in Fig. 7c, d) and peaked wind profiles (Hurricane Ivan in Figure295

7e ,f). Another example of a peaked wind profile was shown in Figure 4e, f.296
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4. Composite analysis297

This section expands on the previous results by analysing the composites from the 91 IOPs. These composites refer to IOPs separated298

by i) mean intensity, ii) intensity change rate, and iii) the shape of the wind profile, as explained in the methods section. In addition, the299

composites were separated by the height of the measurement to analyze whether the degree of GWB changes depending on the vertical300

layer, for instance, whether supergradient wind is more likely to be diagnosed in the boundary layer than in the free troposphere. Given301

that the WDR method represents the shape of wind profiles best, results in this section mostly show the Vg and the Vag computed from302

the WDR pressure function. As in the previous sections, the gradient wind anomalies Vag are calculated based on the azimuthal mean303

wind in an axisymmetric framework.304

Probability density functions (PDFs) of the Vag are used to summarize the differences between the composites. PDFs are useful305

in this instance since they convey information on the distribution of the Vag from each composite, thus highlighting the mean and306

spread of the difference between the observed wind and the diagnosed gradient wind. Figure 8 shows the PDFs of the diagnosed Vag307

composited based on four characteristics: a) intensity, b) rate of intensification, c) shape of wind profile, and d) height. Similarly, Table308

3 reports the mean and standard deviation of each composite, as well as the likelihood of showing markedly supergradient and markedly309

subgradient flow. These probabilities were estimated by integrating the density function using a trapezoid numerical method. The mean310

of all the diagnosed Vag for all heights is 1 m s−1 (Table 3), which confirms the results of Willoughby (1990) that GWB is generally a311

good assumption for the flow of TCs. Alternatively to PDFs, Figures S2 and S3 show the same distributions in the form of cumulative312

density functions and boxplots, respectively, both of which agree well with the PDF analysis that follows.313

The PDF of all of the observations in the inner-core (RMW/2 < r < 3RMW/2), i.e., 16,000 dropsondes observations, is labelled314

Control to illustrate the distribution of the gradient wind anomalies Vag of the 91 IOPs. This distribution shows that gradient wind315

anomalies are roughly evenly distributed across negative and positive anomalies. The Control PDF is relatively broad because this316

sample contains observations from multiple height levels, different storms sizes and intensities, all of which may produce a number of317

positive and negative gradient wind anomalies. Additionally, this PDF is evenly distributed due to observational errors, turbulence and318

other factors that affect the dropsonde measurements, as well as possible storm asymmetries between storm quadrants.319

Figure 8a indicates that stronger storms have a higher probability of experiencing supergradient flow. The PDFs of the Cat. 3, 4 and320

5 TCs suggest a more frequent occurrence of Vag > 10 m s−1, when compared to the Control and to weaker storms. Table 3 shows321

that the stronger the tangential wind in an IOP the higher the likelihood of finding markedly supergradient winds in the inner-core. The322

narrowest distribution of all composites is from the weakest composite, i.e., the Tropical Storms and Tropical Depressions (TS/TD),323

which is also the composite with the lowest standard deviation (Table 3). A narrower distribution is interpreted as being more frequently324

in balance.325

The PDF of the TS/TD category shows the highest probability of gradient wind anomalies in the 0-5 m s−1 interval, which suggests326

a balanced flow with a tendency towards very frequent small positive gradient wind anomalies. This relatively narrower PDF is due to327

smaller wind speeds in IOPs in the TS/TD category (17-32 m s−1), which are usually observed with weaker radial pressure gradients328

and therefore weaker diagnosed gradient winds compared to stronger storms. Since both the observed and gradient winds are small,329

the resulting gradient wind anomaly is frequently also small.330

The inner-core observations were composited based on the observed rate of intensification as explained in section 2.3, into331

steady-state, weakening and intensifying IOPs, shown as PDFs in Fig. 8b. The major difference amongst these categories is that332

the weakening composite shows a higher likelihood of modest supergradient winds than steady-state and intensifying IOPs. Table 3333

shows quantitatively that the highest probability of supergradient flow p(Vag > 15 m s−1) is that of the weakening composite. The334

other difference is that the PDF of the steady-state composite has a higher probability of diagnosing weakly subgradient flow than in335
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the other categories. The intensifying PDF is very similar to the Control PDF and the probabilities of marked sub- and supergradient336

imbalances are also similar to that of the Control (see Table 3).337

The gradient wind anomalies Vag in the inner-core composite based on the shape of wind profile show substantial differences in338

the PDFs (Fig. 8c) using the criteria of |∂v/∂r| > 1m s−1 km−1. The PDFs indicate a higher likelihood of supergradient flow in the339

peaked wind profiles when compared to the flat profiles and control samples. For instance, consider the probability of Vag > 15 m340

s−1 for the peaked and flat profiles in Table 3. The probability of the peaked composite to have markedly supergradient flow is twice341

as high than that of the flat composite. These results do not change when applying the second criteria ∂ V
Vmax

/∂r used to account for342

strong storms (see Figure S4).343

The effect of height on the characteristics of the PDFs is shown in Fig. 8d, with observations binned into 4 different categories. The344

greatest probability of supergradient flow (Vag > 10 m s−1) is found for observations in the upper-boundary layer (400-600 m) whereas345

observations close to the surface (<400 m) show a higher probability of having subgradient flow Vag < −10 m s−1, consistent with346

the effects surface friction. Gradient wind anomalies above 1500 m appear to have a higher likelihood of presenting weak subgradient347

flow than at other heights and than the Control.348

Figure 9 shows the distributions of gradient wind anomalies further divided by both the height and radial location of the dropsonde349

observation. First, Figure 9a shows that observations in the upper boundary layer near and inside the RMW have a higher likelihood of350

being supergradient than observations outside the RMW. The PDF of observations outside the RMW is also narrower than the Control351

suggesting that the wind is more likely to be balanced in this region.352

Second, Figure 9b, c show the PDFs from observations in the inner-core of strong Cat. 4-5 (Fig. 9b) and weak Cat. 1-2 IOPs (Fig.353

9c) at two different height levels: the upper boundary layer (400-600 m) and above 1500 m. These PDFs show that the degree of GWB354

varies depending on both the intensity of the IOP and the height of the measurement. These PDFs are compared against observations355

from the Control PDF subdivided into two PDFs according to the height level: 400-600 and above 1500 m. Strong storms have a356

higher likelihood of supergradient wind in the upper boundary layer than above and a higher likelihood of supergradient winds than the357

Control at the same height. Weak storms also show more frequently supergradient winds in upper boundary layer than above 1500 m,358

however, the likelihood of markedly supergradient winds in Cat. 1-2 IOPs in the upper boundary layer is smaller than that of the Control359

and of stronger storms at the same height. The PDF of the Cat. 1-2 IOPs at the upper boundary layer shows a bimodal distribution with360

two peaks: a peak in the very weak subgradient region and another peak showing increased probability of modest supergradient flow361

(5< Vag <12 m s−1).362

Furthermore, Figure 9d-f show the observations subsampled by rate of intensification and height. The weakening and intensifying363

composites show a higher likelihood of markedly supergradient winds in the upper boundary layer than above 1500 m (Figs. 9d, e).364

In contrast, the steady-state composite shows a slightly narrower PDF in the upper boundary layer than above 1500 m, suggesting a365

slightly lower probability of supergradient winds in the upper boundary layer than above. The weakening composite shows a slightly366

higher probability of markedly supergradient flow (Vag > 15 m s−1) than the Control and the intensifying PDFs in the upper boundary367

layer. The steady-state PDF in the boundary layer top also shows a bimodal structure in the same regions as the Cat. 1-2 PDF of Fig.368

9c.369

Table 3 presents the results of a Welch t-test between each composite and the Control sample, indicating significance at the 95%370

and 99% levels. Moreover, to statistically test the differences between each PDF, a Kolmogorov-Smirnov (KS) test was used, which371

measures how likely is a distribution, or a PDF, to be simply a sub-sample of another distribution. In other words, this test evaluates372

whether a given composite is statistically are distinct from all the observations. Both tests show that the rate of intensity change has the373

least significant values when compared to the Control sample, i.e., this characteristic was the least important to distinguish the degree374
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of GWB amongst composites. In contrast, the peaked wind profiles and the composites of periods of higher intensity were significant375

using both the Kolmogorov-Smirnov and the Welch t-test at the 99% significant level.376

Given the sensitivity of the Vag to the different GWB analysis techniques, it is relevant to illustrate how the Vag PDFs depend on377

the use of the polynomial fit or the WDR function. Figure 10 compares the PDF of the polynomial Vag with the WDR function for all378

observations. The WDR curve is the same as the one labelled Control in previous figures. The choice of function to fit observations379

has a stronger impact over the Vag anomaly PDF than compositing the observations by any of the characteristics previously used (e.g.380

intensity). For instance, consider the probability of a Vag > 20 m s−1 for both methods. The polynomial fit shows a higher probability,381

visible as the large extent of the right tail of the distribution with significant probabilities. The wind speed that correspond to the 99%382

percentile of the distributions is 28 m s−1 for the WDR fit and 52 m s−1 for the polynomial fit. This behaviour is much less apparent383

on the left-hand tail, where the distributions are more similar, thus confirming a positive bias of the polynomial fit when compared to384

the WDR functions. The more frequent supergradient winds estimated by the polynomial fit confirm the results of the previous section,385

which suggested that the polynomial fit produced stronger supergradient features when compared to the WDR function.386

To test the sensitivity of the results to the track dataset used, Vag was computed using two alternative track datasets (best-track and387

TPF) for ten IOPs (6, 20, 21, 22, 39, 40, 41, 42, 43 and 56). The observations resulting from these alternative tracks were analysed388

using the two fitting functions as for the WC track. The results of each track for each fitting function were compared in different radial389

regions: inside, near and outside the RMW. Boxplots (Figure 11) show that the three datasets produce a very similar mean Vag . The390

TPF technique produces a larger spread in Vag , particularly near the RMW. However, the impact of the fitting method on the diagnosed391

gradient wind anomalies Vag is stronger than the track dataset used to locate the dropsondes in a storm-relative framework. The mean392

Vag using the polynomial fit (Figure 11b) is higher than the results for the WDR function (Figure 11a), regardless of the track method393

and especially near the RMW. The PDFs calculated from the two alternative tracks did not show substantial differences. In particular,394

the mean and spread of each distribution was not significantly different between the track algorithms.395

Similarly, to analyze whether the definition of intensity change affected the findings of this section, two alternative definitions of396

intensity change were implemented (see method section). One definition is based on the change in wind speed in a 24-h period and397

the other definition considers the difference in intensity during the course of the IOP. The PDFs of the intensity change composites398

using the two alternative definitions of intensity change (not shown) were consistent with the results from the first definition, shown in399

Figures 8 and 9, i.e., no difference between the intensifying, weakening or steady-state composites. The analysis of the PDFs and the400

Welch and Kolmogorov-Smirnov statistical tests showed no sensitivity to the definition of intensity change category.401

5. Summary and discussion402

Observations of supergradient winds in TCs have been documented in several case studies, but the question remains as to whether403

the degree of GWB is consistently linked to some characteristics of a TC such as intensity. This study expands on previous work by404

diagnosing the degree of GWB in a sample of 91 IOPs corresponding to 30 TCs in the period of 1999-2012.405

Previous studies have used two different functions to fit pressure observations and then diagnose GWB, some studies use the WDR406

piece-wise function and others use the polynomial function. The two fitting methods were compared for several cases, first by evaluating407

the skill of the fit in reproducing the main features of the radial pressure gradient and, second, by comparing the diagnosed gradient408

wind from both methods to the observed tangential wind. This analysis showed that the diagnosed gradient wind profiles were notably409

different between the polynomial and the WDR functions. Several characteristics of the diagnosed gradient wind profile were sensitive410

to the fitting function such as the location of the RMW and the maximum wind speed. For example, in two IOPs of Hurricane Earl411

and one IOP of Hurricane Rita, the polynomial function resulted in mostly positive residuals in the pressure fit outside 50 km radius, a412
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displaced RMW and a gradient wind much weaker than the observed wind. The WDR fit, in contrast, showed a better representation413

of the radial pressure gradient and a more accurate depiction of the RMW compared to observations.414

In two example IOPs of Hurricane Earl, the polynomial fit diagnosed strongly supergradient winds in the inner-core both at the top of415

the boundary layer and above, in agreement with M14. However, the WDR fit diagnosed a balanced flow in the first case (IOP 72) and416

a weakly supergradient flow in the second case (IOP 75). For the case of Hurricane Isabel, the polynomial fit diagnosed supergradient417

winds in the inner-core at the 600-m and 1800-m levels. The WDR fit, in turn, only diagnosed supergradient winds at the upper-418

boundary layer level and not above, as also previously shown by Schwendike and Kepert (2008). The magnitude of the supergradient419

winds in the boundary layer was also markedly different between the methods, as the polynomial fit diagnosed the greatest imbalance.420

The degree of GWB, quantitatively measured as the difference between the observed winds and the estimated gradient winds, could421

differ between using a polynomial and a piece-wise fitting function by more than 40 m s−1 for individual observations and a mean422

anomly difference between the methods of 20 m s−1 for some storms.423

The polynomial fit frequently diagnosed supergradient winds in the upper-boundary layer and above in other storms, such as424

Hurricanes Michelle and Rita, which agrees well with previous analyses using the polynomial fit (Bell and Montgomery 2008; Rogers425

and Uhlhorn 2008; Rogers et al. 2015). Above the boundary layer, the polynomial fit also consistently suggests supergradient winds426

(Fig. 10) whereas the WDR more frequently diagnoses a flow closer to balance (observed as a narrower PDF). Also, the RMW427

diagnosed from the gradient wind resulting from the polynomial fit occurs at larger radii than observed whereas the WDR fit usually428

finds a RMW much closer to the observed RMW.429

These differences amongst methods reinforce the conclusion that the diagnosis of GWB in observations is highly sensitive to the430

technique, in this case the function used for the fit to pressure observations (Gray and Shea 1973; Willoughby 1990; Gray 1991). Given431

the better performance of the WDR function in representing observed wind profiles (Willoughby et al. 2006), arguably, the results432

from the WDR function are more representative than those of the polynomial fit. For instance, the results from the WDR profile are433

consistent with our theoretical expectation that the azimuthal mean flow above the boundary layer should usually be relatively close to434

GWB.435

Additionally, this study investigated whether the degree of GWB was statistically linked to mean intensity and intensity change436

rate of the IOP, the height and distance from storm centre of the measurement and the shape of the wind profile at each height level437

by compositing 91 observation periods using the results from the WDR fit. Figure 12 summarises the results of the PDF analysis by438

showing the probabilities of finding markedly supergradient and subgradient flows in each of the different composities of intensity,439

rate of intensification, shape of wind profile, etc. The PDF analysis showed that the composite of periods of stronger storms (Cat. 3, 4440

and 5) had a significantly higher likelihood of exhibiting supergradient winds than the composites of weaker storms (TS/TD and Cat.441

1-2). These differences were accentuated when observations were composited based on both intensity of the IOP and height of the442

measurement as more supergradient winds are found in the upper boundary layer than above.443

The degree of GWB is less related to the rate of intensification. The distributions of the weakening, intensifying and steady-444

state composites were not significantly different. Weakening storms show a higher likelihood (Fig. 12) of supergradient winds than445

intensifying storms, particularly in the boundary layer. This result seems inconsistent with the implications of the boundary layer spin-446

up paradigm (Montgomery et al. 2014; Smith and Montgomery 2015; Montgomery and Smith 2017), which argues that supergradient447

winds in the boundary layer play an important role for intensification.448

In contrast, one of the compositing characteristics that led to the largest differences in the PDFs of gradient wind anomalies was the449

shape of the wind profile, as separating the wind profiles into peaked and flat resulted in significantly different PDFs of gradient wind450

anomalies. In particular, peaked wind profiles had a higher probability of having supergradient winds above 15 m s −1 than periods451

with a flat wind profile (Fig. 12). These results agree with the model of Kepert and Wang (2001), in which the radial distribution of452
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momentum, accounted for as the shape of the wind profile, has a strong relationship to the degree of GWB. Peaked wind profiles,453

where the radial gradient of momentum was largest, had a much higher likelihood of presenting supergradient winds than all the other454

composite categories, including the flat wind profiles.455

There are several caveats and factors to consider in this study. For instance, the different composite sizes may affect the PDFs, but456

the statistical tests used account for this factor. Similarly, possible uneven radial distributions of the dropsondes in the observation457

periods could cause biases in several analysed periods. Several criteria were tested to define intensity change categories or the shape of458

the wind profiles and the results did not change depending on the definition.459

Nevertheless, this is the first study to analyse which characteristics determine GWB in a large number of observation periods.460

Additionally, the comparison between methods suggests that analysis of GWB should use a fitting function that accurately represents461

the wind profile, such as the WDR function, instead of a polynomial function, which may lead to significant artefacts.462
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Figure 1. (a, b) Number of IOPs and (c, d) total dropsonde number for each of the (a, c) intensity and (b, d) intensity change categories. The total dropsonde number

includes only dropsondes within a 220-km radius from the storm centre.
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Figure 2. Gradient wind balance assesment during 18 UTC on 30 August to 00 UTC on 31 August 2010 (IOP 72 in Table 1) of Hurricane Earl (2010). (a, b) show the

pressure observations (circles) with the polynomial (dashed red) and WDR (solid black) pressure fits. (c, d) show the residuals from the fits, in units of hPa. (e, f) The

gradient wind profiles (Vg) from each fitting method is shown, as well as the observed tangential wind (circles). Results are shown at (a, c, e) 600 m and (b, d, f) 1800 m

height.
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Figure 3. As in Figure 2, but for 06-18 UTC on 2 September 2010 (IOP 75 in Table 1) of Hurricane Earl (2010).
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Figure 4. As in Figure 2, but for 15-21 UTC on 21 September, 2005 (IOP 44 in Table 1) of Hurricane Rita (2005).
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Figure 5. (a, b) Tangential wind observations (blue circles) and estimated gradient winds (Vg) from the polynomial (red) and the WDR functions (black) for Hurricane

Isabel for 16-21 UTC on 12 September 2005 (IOP 20 from Table 1) is shown. (c, d) The agradient wind (Vag), a measure of the degree of GWB, is shown for each wind

observation. The black (red) dashed line illustrates the mean Vag for the WDR (polynomial) fit. Results are shown at the (a, c) 600-m level and (b, d) the 1800-m level.
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Figure 6. As in Figure 5, but for Hurricane Michelle from 18 UTC 3 November to 05 UTC 4 November (2001) (IOP 13 in Table 1).
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Figure 7. Gradient wind from the WDR function (black) and dropsonde observations (blue circles) for IOPs of Hurricanes (a, b) Hilary (2011), (c, d) Frances (2004), and

(e, f) Ivan (2004). Panels (a,c,e) represent the top of the boundary layer (600 m) whereas (b, d, f) are above the inflow layer (1600 m).
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Figure 8. Probability density functions of the Vag (m s−1) of all the IOPs in the inner-core (RMW/2 < r < 3RMW/2) composited by (a) the mean intensity, (b) the

intensity change category, (c) the shape of the wind profile and (d) four height intervals. The Control (dashed black line) PDF is the distribution of the sample of the Vag

from all IOPs at all heights, also in the inner-core.
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Figure 9. PDFs as in Figure 8. (a) shows the effect of the radial distance to storm centre by compositing for observations near the RMW (RMW/2 < r < 3RMW/2),

inside the RMW (0 < r < RMW/2), and outside the RMW (r > 3RMW/2). These PDFs, as well as the Control in this panel only contain observations in the interval

of 400-600 m, the upper boundary layer (UBL). (b) PDFs of inner-core observations in Cat. 4-5 IOPs in the UBL (400-600 m) and the observations above 1500 m. (c) is as

in (b) but for Cat. 1-2 IOPs. (d, e, f) as in (b) but for Intensity change (IC) categories: weakening, intensifying and steady-state storms. The Control was also subsampled

at these two height intervals in (b-f).
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Figure 10. PDFs of gradient wind anomalies Vag computed from the WDR function (black dashed line) and the polynomial fit (orange solid line) at all height levels for

all IOPs. The WDR function PDF is the same as the Control in the previous figures (e.g. Figure 8).
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Figure 11. Boxplots of gradient wind balance anomalies (Vag) computed using the best-track (BT), the translating pressure fit (TPF) and the Willougby-Chelmow (WC)

track finding algorithms in three different radial regions: inside (I, blue), near (N, red) and outside (O, maroon) the RMW. The boxplots are shown using (a) the WDR

function and (b) the polynomial fit.
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Figure 12. Scatter plot of the probabilities of Vag being markedly supergradient (p(Vag > 15)) versus being strongly subgradient (p(Vag < −15)). These probabilities

were estimated for observations in the inner-core (RMW/2 < r < 3RMW/2) that were then separated into categories of intensity, rate of intensification, shape of

the wind profile and height. The black dot (Control) includes all the Vag estimations in the inner-core and the dashed line follows the same proportion of supergradient

likelihood to subgradient likelihood as the Control.
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Table 1. Information on the intense-observation periods (IOPs) used in this study. The table reports the start and end dates, the mean intensity Ī (kt), the

intensity category (I. Cat.), the intensity change rate (ICR ; kt (24 h)−1), the number of dropsondes in the inner-core (Drops), and whether the shape of the

wind profile (WPS) was found to be peaked (P) or flat/non-peaked (NP) in (BL) or above (ABL) the boundary layer.

IOP Storm Start date hour End date hour Ī (kt) I. Cat. ICR (kt/24-h) Drops WPS

BL

WPS

ABL

1 Irene 1999-10-15 20 1999-10-16 01 65.0 Cat. 1 -10.0 25 NP NP

2 Bret 1999-08-21 17 1999-08-21 21 105.0 Cat. 3 70.0 13 P NP

3 Bret 1999-08-21 21 1999-08-22 03 105.0 Cat. 3 10.0 12 P NP

4 Floyd 1999-09-12 18 1999-09-13 02 125.0 Cat. 4 20.0 19 P NP

5 Floyd 1999-09-13 17 1999-09-14 01 120.0 Cat. 4 -20.0 36 NP NP

6 Floyd 1999-09-15 20 1999-09-16 09 90.0 Cat. 2 -40.0 62 NP NP

7 Dennis 1999-08-26 18 1999-08-26 21 65.0 Cat. 1 -10.0 15 NP NP

8 Dennis 1999-08-26 21 1999-08-27 02 65.0 Cat. 1 0.0 3 NP NP

9 Dennis 1999-08-29 18 1999-08-30 01 90.0 Cat. 2 -10.0 25 NP NP

10 Gabrielle 2001-09-15 17 2001-09-16 00 47.5 TS/TD 10.0 35 NP NP

11 Humberto 2001-09-23 19 2001-09-24 02 85.0 Cat. 2 -30.0 69 NP NP

12 Humberto 2001-09-24 18 2001-09-25 00 65.0 Cat. 1 0.0 77 NP NP

13 Michelle 2001-11-03 18 2001-11-04 05 115.0 Cat. 4 10.0 31 P P

14 Michelle 2001-11-04 11 2001-11-04 17 120.0 Cat. 4 -30.0 14 P NP

15 Lili 2002-09-30 18 2002-10-01 01 70.0 Cat. 1 40.0 34 NP NP

16 Lili 2002-10-02 02 2002-10-02 11 100.0 Cat. 3 45.0 39 P P

17 Lili 2002-10-02 17 2002-10-03 01 123.3 Cat. 4 -90.0 46 P P

18 Isidore 2002-09-21 18 2002-09-22 00 110.0 Cat. 3 0.0 73 P NP

19 Isidore 2002-09-22 18 2002-09-23 01 105.0 Cat. 3 -100.0 27 NP NP

20 Isabel 2003-09-12 16 2003-09-12 21 140.0 Cat. 5 -20.0 77 P NP

21 Isabel 2003-09-13 16 2003-09-14 01 137.5 Cat. 5 -10.0 43 NP NP

22 Isabel 2003-09-14 16 2003-09-15 00 135.0 Cat. 4 -30.0 76 NP NP

23 Isabel 2003-09-18 14 2003-09-18 19 87.5 Cat. 2 -80.0 30 NP P

24 Fabian 2003-09-02 17 2003-09-02 23 120.0 Cat. 4 -20.0 65 NP NP

25 Fabian 2003-09-03 17 2003-09-03 22 110.0 Cat. 3 -10.0 59 NP NP

26 Jeanne 2004-09-24 17 2004-09-25 00 85.0 Cat. 2 10.0 30 NP NP

27 Jeanne 2004-09-25 18 2004-09-26 02 105.0 Cat. 3 -60.0 53 NP NP

28 Ivan 2004-09-09 16 2004-09-10 00 130.0 Cat. 4 -10.0 26 P P

29 Ivan 2004-09-12 06 2004-09-13 00 133.7 Cat. 4 20.0 47 P P

30 Ivan 2004-09-13 18 2004-09-14 00 140.0 Cat. 5 -30.0 34 P P

31 Ivan 2004-09-14 06 2004-09-15 00 121.6 Cat. 4 0.0 50 P P

32 Ivan 2004-09-15 00 2004-09-15 12 117.5 Cat. 4 -10.0 21 NP NP

33 Ivan 2004-09-15 17 2004-09-16 05 112.5 Cat. 3 -80.0 68 NP NP

34 Frances 2004-08-30 17 2004-08-31 00 110.0 Cat. 3 20.0 21 P P

35 Frances 2004-08-31 16 2004-08-31 19 125.0 Cat. 4 -10.0 17 NP NP
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36 Frances 2004-09-01 16 2004-09-02 00 120.0 Cat. 4 10.0 39 P P

37 Frances 2004-09-02 17 2004-09-03 00 110.0 Cat. 3 -30.0 25 NP NP

38 Frances 2004-09-03 15 2004-09-03 23 90.0 Cat. 2 -5.0 28 P P

39 Ophelia 2005-09-09 12 2005-09-09 18 62.5 TS/TD -10.0 25 P P

40 Ophelia 2005-09-11 11 2005-09-12 01 65.0 Cat. 1 -10.0 50 NP NP

41 Rita 2005-09-19 16 2005-09-19 21 60.0 TS/TD 0.0 30 NP NP

42 Rita 2005-09-19 21 2005-09-20 05 60.0 TS/TD 20.0 15 NP NP

43 Rita 2005-09-20 14 2005-09-21 03 90. Cat. 2 50.0 26 NP NP

44 Rita 2005-09-21 15 2005-09-21 20 147.5 Cat. 5 20.0 65 P P

45 Rita 2005-09-21 20 2005-09-22 13 150.0 Cat. 5 -60.0 13 P NP

46 Rita 2005-09-22 13 2005-09-22 22 95.0 Cat. 2 -20.0 99 P NP

47 Rita 2005-09-22 22 2005-09-23 13 147.5 Cat. 5 -10.0 29 P P

48 Rita 2005-09-23 13 2005-09-23 20 128.3 Cat. 4 -20.0 74 NP NP

49 Rita 2005-09-23 20 2005-09-24 08 113.3 Cat. 3 -80.0 80 P NP

50 Ophelia 2005-09-14 14 2005-09-15 00 75.0 Cat. 1 -10.0 16 NP NP

51 Dennis 2005-07-07 18 2005-07-08 07 116.6 Cat. 4 20.0 15 NP NP

52 Dennis 2005-07-09 06 2005-07-09 13 80.0 Cat. 1 60.0 17 NP NP

53 Katrina 2005-08-27 14 2005-08-28 01 100.0 Cat. 3 50.0 46 NP NP

54 Katrina 2005-08-28 17 2005-08-29 11 131.2 Cat. 4 -65.0 60 P P

55 Ernesto 2006-08-31 13 2006-08-31 19 60.0 TS/TD -10.0 22 NP NP

56 Helene 2006-09-17 14 2006-09-17 18 90.0 Cat. 2 30.0 16 NP P

57 Helene 2006-09-19 16 2006-09-19 20 90.0 Cat. 2 0.0 20 NP NP

58 Dolly 2008-07-22 08 2008-07-22 14 55.0 TS/TD 20.0 20 NP NP

59 Dolly 2008-07-22 23 2008-07-23 02 65.0 Cat. 1 40.0 18 NP NP

60 Gustav 2008-08-31 06 2008-09-01 01 96.6 Cat. 2 0.0 45 NP NP

61 Gustav 2008-09-01 01 2008-09-01 19 91.25 Cat. 2 -70.0 51 NP NP

62 Ike 2008-09-06 14 2008-09-07 00 115.0 Cat. 4 0.0 21 P P

63 Ike 2008-09-07 17 2008-09-08 00 110.0 Cat. 3 -60.0 18 P NP

64 Ike 2008-09-09 19 2008-09-10 10 75.0 Cat. 1 30.0 22 NP NP

65 Ike 2008-09-10 18 2008-09-11 12 85.0 Cat. 2 0.0 27 NP NP

66 Paloma 2008-11-08 14 2008-11-08 18 125.0 Cat. 4 -140.0 13 P P

67 Earl 2010-08-28 18 2010-08-29 06 53.0 TS/TD 20.0 49 NP NP

68 Earl 2010-08-29 18 2010-08-30 06 80.0 Cat. 1 40.0 49 P P

69 Earl 2010-08-30 06 2010-08-30 12 100.0 Cat. 3 15.0 26 P P

70 Earl 2010-08-30 12 2010-08-30 18 110.0 Cat. 3 0.0 22 P P

71 Earl 2010-08-30 18 2010-08-31 00 115.0 Cat. 4 -5.0 42 NP NP

72 Earl 2010-08-31 15 2010-09-01 07 110.0 Cat. 3 0.0 12 NP P

73 Earl 2010-09-01 07 2010-09-01 20 111.6 Cat. 3 20.0 20 NP NP

74 Earl 2010-09-01 18 2010-09-02 06 120.0 Cat. 4 -10.0 27 P NP

75 Earl 2010-09-02 06 2010-09-02 18 113.3 Cat. 4 -50.0 19 NP NP
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76 Earl 2010-09-02 22 2010-09-03 13 90.0 Cat. 2 -30.0 34 NP NP

77 Earl 2010-09-03 13 2010-09-04 03 68.3 Cat. 1 -20.0 42 NP NP

78 Bill 2009-08-19 20 2009-08-20 02 115.0 Cat. 4 -20.0 22 NP NP

79 Bill 2009-08-20 08 2009-08-20 13 105.0 Cat. 3 10.0 21 NP NP

80 Hilary 2011-09-28 17 2011-09-28 20 70.0 Cat. 1 -20.0 27 P NP

81 Hilary 2011-09-29 16 2011-09-29 19 50.0 TS/TD -40.0 16 P P

82 Rina 2011-10-26 23 2011-10-27 02 80.0 Cat. 1 -40.0 23 NP NP

83 Isaac 2012-08-26 20 2012-08-27 01 50.0 TS/TD 10.0 26 NP NP

84 Isaac 2012-08-28 11 2012-08-28 15 65.0 Cat. 1 10.0 24 NP P

85 Isaac 2012-08-28 20 2012-08-29 08 70.0 Cat. 1 -10.0 34 NP NP

86 Isaac 2012-08-27 04 2012-08-27 17 58.3 TS/TD 10.0 24 P P

87 Isaac 2012-08-27 16 2012-08-28 03 58.3 TS/TD 10.0 34 NP NP

88 Sandy 2012-10-25 21 2012-10-26 00 75.0 Cat. 1 -20.0 11 NP NP

89 Sandy 2012-10-26 00 2012-10-26 04 65.0 Cat. 1 -20.0 14 NP NP

90 Sandy 2012-10-26 09 2012-10-26 14 65.0 Cat. 1 -10.0 21 NP NP

91 Sandy 2012-10-27 08 2012-10-27 14 70.0 Cat. 1 -10.0 27 NP NP
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Table 2. Parameter limits for the pressure fit using the piece-wise function of Willoughby et al. (2006). For the profile inside the radius of maximum wind, n is

the degree of the polynomial and Vmax and Rmax are the maximum wind speed and radius of maximum wind, respectively. L1 and L2 are length scales that

constrain the exponential function outside the radius of maximum wind, and R1 and R2 are the radial distances that determine where the inner, transition and

outer profiles are defined.

Parameter Lower limit Upper limit Unit

n 1 1.5 N/A

L1 420 700 km

L2 15 35 km

R1 RMW - (RMW/2) RMW km

R2 RMW 2 RMW km

Rmax RMW-2 RMW+2 km

Vmax Vmax -10 Vmax +10 ms−1

Table 3. Statistical information of each composite of inner-core observations reporting the: mean and standard deviation and the p-value of a Welch and

a Kolmogorov-Smirnov (KS) statistical tests. Each test compared each composite to the Control sample, which includes all inner-core observations. The

probabilities p of the agradient wind being higher than 15 m s−1 and lower than -15 m s−1 in each distribution are also shown.

Composite Mean st dev p-value (Welch) p-value (KS) p(Vag < −15ms−1) p(Vag > 15ms−1)

Control 1.3 12.1 - - 0.07 0.11

Intensifying 1.08 11.8 > 0.05 < 0.05 0.08 0.11

Weakening 1.5 12.6 > 0.05 > 0.05 0.08 0.14

Steady-state 0.8 8.7 > 0.05 < 0.05 0.03 0.07

TS/TD -1.0 8.0 > 0.05 < 0.01 0.05 0.05

Cat. 1 -2.4 8.5 < 0.01 < 0.01 0.07 0.03

Cat. 2 0.1 10.7 < 0.05 < 0.01 0.1 0.06

Cat. 3 3.0 11.0 < 0.01 < 0.01 0.06 0.14

Cat. 4,5 3.9 12.8 < 0.01 < 0.01 0.07 0.19

Flat 0.3 11.2 < 0.01 < 0.01 0.09 0.09

Peaked 3.4 13.5 < 0.01 < 0.01 0.07 0.19

400-600 m 2.6 12.7 < 0.01 < 0.01 0.08 0.16

>1500 m -0.7 11.0 < 0.01 < 0.01 0.1 0.08
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