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Abstract: Live sheep export has become a public concern. This study aimed to test a non-contact
biometric system based on artificial intelligence to assess heat stress of sheep to be potentially used
as automated animal welfare assessment in farms and while in transport. Skin temperature (◦C)
from head features were extracted from infrared thermal videos (IRTV) using automated tracking
algorithms. Two parameter engineering procedures from RGB videos were performed to assess Heart
Rate (HR) in beats per minute (BPM) and respiration rate (RR) in breaths per minute (BrPM): (i) using
changes in luminosity of the green (G) channel and (ii) changes in the green to red (a) from the
CIELAB color scale. A supervised machine learning (ML) classification model was developed using
raw RR parameters as inputs to classify cutoff frequencies for low, medium, and high respiration rate
(Model 1). A supervised ML regression model was developed using raw HR and RR parameters from
Model 1 (Model 2). Results showed that Models 1 and 2 were highly accurate in the estimation of RR
frequency level with 96% overall accuracy (Model 1), and HR and RR with R = 0.94 and slope = 0.76
(Model 2) without statistical signs of overfitting

Keywords: animal welfare; skin temperature; artificial intelligence; heart rate; respiration rate

1. Introduction

Live animal exports have been lately under scrutiny by the public and animal welfare advocates [1],
especially live export though shipping, related to welfare conditions and heat stress during long
trips up to six weeks by sea, which in extreme cases can result in the death of animals in rates up
to 2–3.8% [2]. Specifically, these mortality rates have been recently found in animal shipments from
Australia through the Persian Gulf, which can reach temperatures of 36 ◦C with 95% relative humidity
resulting in heat stress [3].

Heat stress events for animals are not only restricted to animal transport through sea or land,
but it can also happen in farms due to increased ambient temperatures related to climate change,
which can directly impact the health and welfare of animals [4–7]. There have been several types
of research investigating the genetic resilience and adaptation of animals to heat stress [8–11] and
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mitigation strategies [12–14]. Many of these studies have based their assessment of heat stress
on environmental indices, such as ambient temperature and relative humidity combined to form
a temperature-humidity index (THI) [14–16]. The THI can be coupled with direct assessment of the
effects of heat stress using physiological responses through manual monitoring [17,18], using sensors
directly located on animals [19], behavioral assessments or including molecular, cellular and metabolic
biomarkers [20–22]. These methods, though very reliable and robust, are intensive, requiring animal
restraining, are labor-intensive, and time-consuming, also requiring specialized instrumentation and
technical know-how from the personnel acquiring the data. Moreover, the use of intravaginal/rectal
devices or contact sensors can be stressful for the animals [23].

Applications of artificial intelligence (AI) and machine learning modeling (ML) have been recently
implemented to analyze environmental factors, such as THI, and its effects on heat stress of dairy cows
and final productivity and quality of milk to maximize the utility of big data available from robotic
dairy farms [24]. Further, AI and ML have been applied for processing and modeling remotely sensed
information, which may offer a powerful tool to automatically extract critical physiological data from
videos and infrared thermal imagery from animals and welfare analysis or the effects on quality of
products [23,25–27].

Non-invasive methods to assess heat stress, based on remote sensing, have shown to be promising,
as they avoid biases in the physiological data obtained from animals due to stresses imposed by
wearable sensors, such as collars, polar sensors (for respiration and heart rate measurements),
or intravaginal/rectal sensors for body temperature measurements [23,28]. Specifically, computer vision
and infrared thermal remote sensing techniques have been recently applied to assess animal stress
based on skin temperature and respiration rate [23,29] or the detection of heart rate and respiratory
rates in pigs through luminosity changes from RGB videos of animals [29,30].

One of the main constraints in applying remote sensing techniques on sheep involves the thick fleece
from unshorn animals, which presents a thick resistance layer from the skin. The advantage of utilizing
these remote sensing techniques on pigs, especially hairless breeds, is that reflectance from visible and
infrared thermal wavelengths are a direct representation of skin changes. Hence, non-invasive methods
are required to be applied to body sections with less hair or wool in sheep and with outputs that can be
representative, such as the head and face parts [23,30,31]. Specifically, these areas mainly correspond
to the nose for respiration and heart rate and the whole head for skin temperature, especially focused
on the eye section, since they are the only exposed internal organs to the environment, which may
represent core body temperatures.

This study aimed to test a non-contact biometric system based on artificial intelligence to assess
heat stress of sheep to be potentially used as automated animal welfare assessment in farm and while in
transport. Specifically, it was focused on the automatic tracking of regions of interest (ROI) from sheep
RGB videos and infrared thermal videos (IRTV) and the assessment of physiological information such as
skin temperature, respiration rate (RR), and heart rate (HR) modeled using machine learning algorithms
of sheep subjected to thermoneutral and controlled heat stress conditions. The system proposed
was based on an affordable and integrated RGB 4K video camera and a high-resolution thermal
infrared camera. It was further recommended an artificial intelligence approach to extract information
automatically from sheep that could be coupled to blockchain [32,33] to have an independent assessment
of animal welfare to be applied in the farm and transport or vessel environments. The latter could allow
research on automated systems to ameliorate heat stress on farm animals or during transportation,
such as mister or sprinklers, and will offer a blockchain system for control and certification of good
practices on the farm or transportation to abattoirs or export markets.
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2. Materials and Methods

2.1. Location, Animal Treatments, and Data Acquisition

This study was based on live animals and approved by the Faculty of Veterinary and Agricultural
Sciences, University of Melbourne Animal Ethics Committee (AEC#1914872.1). It was conducted at
The University of Melbourne (UoM), Dookie Campus, Victoria, Australia (36◦22′48′′ S, 145◦42′36′′ E).
Twelve sheep (Merino lambs 4–5 months old) were acclimatized to indoor facilities and housed in the
individual pens for 3 days before starting measurements. They were fed a mixed ration (50% pellets,
25% oaten, and 25% Lucerne chaff) formulated to meet or exceed the National Research Council
(NRC) [34] requirements, complemented with fresh water ad libitum. Room exhaust ventilation was
performed using fans through the whole time of the experiments to simulate ventilation usually
performed during live sheep export shipments. The latter mainly rely on mechanical ventilation
using fans to remove heat and water vapor produced by animals, to ventilate moisture produced
from manure pads, and to remove any possible build-up of noxious gases. After acclimatization,
sheep were relocated to metabolic cages and housed in two temperature and relative humidity control
rooms (Figure 1), conditioned to have two treatments with six sheep exposed to cyclic heat stress:
(i) room at 28–40 ◦C and 40–60% relative humidity (RH), the cycles consisted of high temperatures
of 36–40 ◦C every day from 8:00 to 16:00, and then reduced to 28–30 ◦C, and thermoneutral (control)
conditions (ii) room at 18–21 ◦C and RH between 40 and 50%. The temperature (T) and RH were
recorded every 30 min in each room using a universal serial bus (USB) temperature and humidity
data logger (TechBrands; Electus Distribution, Rydalmere, NSW, Australia). These data were used to
calculate the THI using the formula from Equation (1), which was specially developed for sheep [35].

THI = T −
⌈
(0.31− 0.31RH)(T − 14.4)

⌉
(1)

An integrated RGB video and infrared thermal video (IRTV) camera, FLIR®Duo Pro (FLIR Systems,
Wilsonville, OR, USA) was fixed in each room using a small rack and tripod for stabilization (Figure 1A).
This device has two cameras to record simultaneously RGB videos (Resolution: 4000 × 3000; Field of
View: 56◦ × 45◦) and IRTV (with a resolution of 336 × 256; Field of View: 35◦ × 27◦; Thermal Sensitivity:
<50 mK; Thermal Frame Rate: 9 Hz; Accuracy: ±5 ◦C). The camera has Bluetooth® connectivity
(Bluetooth Special Interest Group, Kirkland, WA, USA) and, hence, can be controlled remotely using
a FLIR smartphone/tablet personal computer (PC) application, FLIR® UAS 2 (FLIR Systems, Wilsonville,
OR, USA). The RGB video and IRTV data were recorded three times daily (8:00; 12:00; 16:00) during
1 min each time for four weeks to have a wider range of physiological data.

Two kinds of measurements were conducted using: (i) traditional/manual techniques, and (ii)
non-contact biometrics based on remote sensing (Figure 1B). The manual methods consisted of (i) heart
rate (HR) using an elitecare® Sprague stethoscope (eNurse, Brisbane, QLD, Australia) and a timer,
(ii) respiration rate (RR) visually with a chronometer assessing animal inhalations and exhalations,
(iii) skin temperature from the right flank, below the wool in contact with the skin using a digital
thermometer (Model: DT-K11A; Honsun, Shanghai, China), and (iv) rectal temperature using the
same type of digital thermometer (Model: DT-K11A). The remotely sensed data (FLIR camera) were
recorded using two FLIR® Duo integrated cameras for 1 min on each side of the room to capture
all sheep three times a day, as previously mentioned. The thermal videos were used to assess skin
temperature. In contrast, the RGB videos were recorded to evaluate HR and RR using computer
vision analysis and customized ML modeling developed by the Digital Agriculture Food and Wine
Group (DAFW) from UoM based on changes in luminosity within the RGB (HR) and Lab (RR)
channels that have been developed for humans and animals based on the photoplethysmography
(PPG) principle [23,30,31,36–38]. For the validation/calibration purposes of these newly developed ML
models, only the most representative recordings were used; therefore, not all sheep were analyzed due
to chamber size restrictions.
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Figure 1. Images showing the experimental layout for thermoneutral (control) and heat stress 
chambers and implementation of feature tracking algorithms and machine learning (ML) Models 1 
and 2 developed, with (A) the FLIR® Dup Pro camera setup, (B) shows the selected region of interest 
(ROI: nose) from each sheep visible and extraction of corresponding respiration rate and heart rate 
values from the video analysis using machine learning (Models 1 and 2), and (C) the selected region 
of interest (ROI: face) from each sheep and automatic tracking and extraction of temperature values 
(°C) from the infrared thermal video (IRTV) analysis. Abbreviations: BrPM: breaths per minute; BPM: 
beats per minute. 

2.2. Computer Vision Analysis to Obtain Biometrics 

The radiometric IRTVs were saved in sequence file extension (seq) and batch converted to Audio 
Video Interleaved (AVI) using the Sense Batch software (Sense Software, Warszawa, Mazowsze, 
Poland). The latter was also used to extract in batch and parallel the radiometric data from each frame 
from all thermal videos in comma-separated values (csv) files. The IRTV was imported to MATLAB® 
R2020a (MathWorks Inc., Natick, MA, USA) and the Video Labeler functions from the Computer 
Vision Toolbox™ 9.2 in MATLAB® R2020a were then used to select and track ROIs focusing on the 
head from each animal (automatic). Specifically, for sheep, the face was selected because the hottest 
visible spots are found in the eyes and nose (Figure 1C). Once the ROIs were tracked, labels were 
saved automatically, and a customized algorithm written in MATLAB® R2020a by the DAFW Group 
from UoM was used to obtain the maximum (Max), mode, and standard deviation (SD) of the 
temperatures from each frame from the selected ROI. Additionally, the mean, Max, mode, and SD 
from the Max temperatures from all frames were calculated. 

For the analysis of raw signals related to HR and RR, the RGB videos acquired in QuickTime 
Movie (MOV) file-extension were used. These were analyzed using the Video Labeler functions from 
the Computer Vision Toolbox™ 9.2 in MATLAB® R2020a and the point tracker algorithm, which can 
detect features defined as a region of interest (ROI) and track one or more region of interest (ROI) 
based on the Kanade–Lucas–Tomasi (KLT) algorithm. For this specific study, the nose section was 

Figure 1. Images showing the experimental layout for thermoneutral (control) and heat stress chambers
and implementation of feature tracking algorithms and machine learning (ML) Models 1 and 2
developed, with (A) the FLIR® Dup Pro camera setup, (B) shows the selected region of interest (ROI:
nose) from each sheep visible and extraction of corresponding respiration rate and heart rate values
from the video analysis using machine learning (Models 1 and 2), and (C) the selected region of interest
(ROI: face) from each sheep and automatic tracking and extraction of temperature values (◦C) from
the infrared thermal video (IRTV) analysis. Abbreviations: BrPM: breaths per minute; BPM: beats
per minute.

2.2. Computer Vision Analysis to Obtain Biometrics

The radiometric IRTVs were saved in sequence file extension (seq) and batch converted to Audio
Video Interleaved (AVI) using the Sense Batch software (Sense Software, Warszawa, Mazowsze, Poland).
The latter was also used to extract in batch and parallel the radiometric data from each frame from
all thermal videos in comma-separated values (csv) files. The IRTV was imported to MATLAB®

R2020a (MathWorks Inc., Natick, MA, USA) and the Video Labeler functions from the Computer Vision
Toolbox™ 9.2 in MATLAB® R2020a were then used to select and track ROIs focusing on the head
from each animal (automatic). Specifically, for sheep, the face was selected because the hottest visible
spots are found in the eyes and nose (Figure 1C). Once the ROIs were tracked, labels were saved
automatically, and a customized algorithm written in MATLAB® R2020a by the DAFW Group from
UoM was used to obtain the maximum (Max), mode, and standard deviation (SD) of the temperatures
from each frame from the selected ROI. Additionally, the mean, Max, mode, and SD from the Max
temperatures from all frames were calculated.

For the analysis of raw signals related to HR and RR, the RGB videos acquired in QuickTime
Movie (MOV) file-extension were used. These were analyzed using the Video Labeler functions from
the Computer Vision Toolbox™ 9.2 in MATLAB® R2020a and the point tracker algorithm, which can
detect features defined as a region of interest (ROI) and track one or more region of interest (ROI)
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based on the Kanade–Lucas–Tomasi (KLT) algorithm. For this specific study, the nose section was
used as ROI for both HR and RR analysis (Figure 1B), as this is the area in which less wool may be
found, as other areas may interfere with the readings creating biases in the data extracted. The ROI
labels obtained were automatically exported and used to crop the RGB videos to get smaller videos
only from the nose area from each sheep selected. These cropped videos were then automatically
analyzed to obtain the signal changes from luminosity and different channels (RGB, CIELAB) using
a modified version of the raw video analysis (RVA) algorithm developed as a function to measure
HR in humans using the photoplethysmography (PPG) method [38] developed by the DAFW Group
from UoM. This algorithm applies a fast Fourier transformation (FFT) for the transformation of the
time signal to frequency and uses a second-order Butterworth filter with cutoff frequencies (Hz) for
analysis. To assess raw signals related to RR, the RVA algorithm was modified (RVAm) to determine
the luminosity changes in the “a” channel from the CIELAB color scale (green to red). The raw
signals from computer vision analysis of cropped videos were evaluated within the cutoff frequency
range 0.33–3.1 Hz for a ML classification model (Model 1, detailed in the machine learning modeling
subsection), and the respiration cutoff frequency ranges used were according to the outputs of Model 1
described in detail below for low: 0.2–1.2 Hz; medium: 1.2–2.2 Hz, and high: 2.2–3.2 Hz. On the other
hand, to assess HR, the luminosity changes in the green (G) channel of the RGB color scale were used
within a frequency range of 0.83–3.00 Hz, since the normal and stressed HR for sheep had a lower
spread in values compared to RR.

All the steps mentioned above were automated into a pipeline code using components as functions,
which are represented in the diagram of Figure 2, in which the only supervised processes are the initial
ROI selection for the IRTVs and RGB Videos.

2.3. Statistical Analysis and Machine Learning Modeling

Linear regression analysis for temperature data with intercept passing through the origin and
p ≤ 0.05 as criteria were used to compare the skin and rectal temperature measurements using the
manual methods against each other and the non-invasive infrared thermal biometrics (IRTV) with
XLSTAT ver. 2020.3.1 (Addinsoft, New York, NY, USA). Furthermore, linear regression analysis
for RR and HR data measured manually and from videos using computer vision analysis with
a single frequency range for RR and using frequency ranges for low, medium, and high, as previously
mentioned, were performed. Statistical parameters, such as determination coefficient (R2), p-value,
and root means squared error (RMSE) were calculated to test the goodness of fits.

Based on a proposed parameter engineering procedure, raw RR-related parameters obtained
from RGB Video analysis, using the RVAm algorithm and a single frequency range (0.33–3.1 Hz),
of mean, minimum (Min), maximum (Max), and standard deviation (SD) of luminosity changes
and mean, SD, frequency, and amplitude were used as inputs to develop an initial ML supervised
pattern recognition model to classify the sheep cropped videos into low, medium, and high respiration
frequencies (Model 1; Figure 2D). For this procedure, a customized MATLAB® code, developed by the
authors, was used to test 17 artificial neural networks (ANN) training algorithms [39]. The Bayesian
Regularization algorithm was selected as the best performing algorithm from this procedure based
on the accuracy [correlation coefficient (R)] and best performance (means squared error (MSE)) with
no signs of overfitting. This algorithm does not require a validation stage as it updates the weights
and biases according to the optimization of the model, and is very effective on avoiding overfitting
especially for small and/or noisy datasets [39–41]. Samples were divided randomly with 70% used
for training (n = 94), and 30% for testing (n = 40). Figure 2D shows the model diagram with the
two-layer feedforward network with a tan-sigmoid function in the hidden layer and Softmax function
in the output layer. Ten neurons were selected as the best performance with no under- or over-fitting,
which was obtained from a neuron trimming test (data not shown).
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Figure 2. Diagram showing the algorithms pipeline for RGB video analysis process from (A) region of
interest selection; (B) cropped videos from sheep feature to be analyzed; (C1) raw video analysis (RVA)
for heart rate (HR) signals using the green channel (RGB); (C2) modified RVA (RVAm) for respiration
rate (RR) analysis using the “a” channel (CIELAB) wide cutoff frequency range; (D) machine learning
pattern recognition (Model 1) to obtain actual cutoff frequency range; (E) re-analysis of RR signals;
(F) regression machine learning (Model 1) to obtain accurate HR an RR. Model diagram abbreviations:
w: weights; b: bias.

Once the videos of sheep were classified automatically into low, medium, and high RR by
cutoff frequency ML analysis, the videos are automatically reanalyzed using the corresponding
frequency ranges, low: 0.2–1.2 Hz; medium: = 1.2–2.2 Hz; high: 2.2–3.2 Hz, by calling three separated
functions. From this analysis, the outputs from raw RR and HR parameters were used as inputs
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to develop a fitting/regression model to predict the real values of RR and HR based on the manual
measurements as targets (Model 2). Again, 17 different training algorithms [40] for artificial neural
networks (ANN) were assessed in batch to find the best model based on output statistics. The Bayesian
Regularization algorithm was selected as the best performing from this procedure. For modeling
purposes, samples were divided randomly as follows: 70% (n = 94; observations (n × targets) = 188)
for training and 30% (n = 40; observations (n × targets) = 80) for testing. Figure 2F depicts the model
diagram showing the two-layer feedforward network with a tan-sigmoid function in the hidden layer
and a linear transfer function in the output layer. Ten neurons were selected as the best performance
with no under- or over-fitting, which was obtained from a neuron trimming test (data not shown).

Multivariate data analysis based on a biplot (variables and samples) of principal component
analysis (PCA) was performed using XLSTAT to find relationships and patterns among the data
between real physiological parameters and estimated using computer vision tools and models
proposed. The cutoff point of 60% of data variability explained by the total of both PC1 and PC2 was
considered to test significance [42]. The THI index calculated using Equation (1) was also included to
compare data from sheep in control and heated chambers.

3. Results

Figure 3a shows the results from the linear regression of rectal and skin temperatures measured
with the manual/traditional methods compared to those obtained from the IRTV analysis. There was
a narrow distribution of temperatures from all sources (from around 35−40 ◦C) since the study was
performed on live animals. The linear regression passing through the origin (0,0) was statistically
significant (p < 0.001) and presented a very high correlation and determination coefficients (R = 0.99;
R2 = 0.99; RMSE = 0.66; slope =0.97) between these two parameters with 3.6% of outliers (4 out of 110)
based on the 95% confidence intervals. On the other hand, Figure 3b shows the results from the linear
regression of observed skin temperature (manual/traditional methods) and the values obtained from
the remote sensing analysis using the IRTVs. These relationships were also statistically significant
(p < 0.001) with an R2 = 0.99 (R = 0.99); RMSE = 1.66; slope = 1.02. Based on the 95% confidence
intervals, it only had 2.73% of outliers (3 out of 110). Similarly, Figure 3c shows the results from the
linear regression of observed rectal temperature (manual/traditional methods) and the values obtained
from the remote sensing analysis using the IRTVs. The lineal model resulted with very high correlation
and determination coefficients (R = 0.99; R2 = 0.99) and was statistically significant (p < 0.001) with
RMSE = 1.71; slope = 0.98 and 3.6% of outliers (4 out of 110) based on the 95% confidence intervals.
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Figure 4. Linear regressions comparing results from (a) respiration rate (RR) and heart rate (HR) 
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Figure 3. Linear regressions comparing results from (a) rectal vs. skin temperatures measured manually
using a digital thermometer (DT), (b) observed skin temperature (manual) vs. temperature from the
infrared thermal video analysis (IRTV), and (c) observed rectal temperature (manual) vs. temperature
from the IRTV analysis. Abbreviations: Obs: observed, Conf: Confidence.

Figure 4A shows the linear regression between RR and HR measured manually and raw signal
analysis related to HR and RR using computer vision analysis with a single cutoff frequency range
for respiration rate (0.33–31. Hz) and HR (0.83–3.00 Hz). It can be observed that the correlation and
determination coefficients were very low (R = 0.15; R2 = 0.02; p < 0.001) with RMSE = 23.73 and
slope = 0.09 mainly represented by the poor correlation found for the RR raw data. On the other hand,
Figure 4B shows the same manually measured HR and RR rates against the raw computer vision
analysis using different cutoff frequency ranges for RR according to low, medium, or high values (low:
0.2–1.2 Hz; medium: = 1.2–2.2 Hz; high: 2.2–3.2 Hz). It can be observed that the correlation increased
significantly (R = 0.78; R2 = 0.61; p < 0.001) compared to Figure 4A, with RMSE = 21.81 and slope = 0.67.
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Figure 4. Linear regressions comparing results from (A) respiration rate (RR) and heart rate (HR)
measured manually (x-axis) and using computer vision analysis with a single cutoff frequency range for
respiration rate (0.33–3.1 Hz; y-axis), and (B) respiration rate and heart rate measured manually (x-axis)
and using computer vision analysis with the corresponding cutoff frequency range for respiration
rate according to low, medium or high respiration rate (low: 0.2–1.2 Hz; medium: = 1.2–2.2 Hz;
high: 2.2–3.2 Hz; y-axis).
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Table 1 shows the results from the ML pattern recognition model to classify cropped videos from
sheep into low, medium, and high RR, according to the cutoff frequencies for these three levels. It can
be observed that it presented a very high overall accuracy (96%) with no signs of overfitting as the
MSE of the training stage (MSE < 0.01) was lower than the testing (MSE = 0.10). Figure 5 depicts the
receiver operating characteristics (ROC) curve with the true positive (sensitivity) and false-positive
(specificity) rates of the three categories, with all three categories within the true positive side of the
curve; the high RR group presented the lowest sensitivity.

Table 1. Results of the artificial neural networks pattern recognition model (Model 1) showing the
accuracy, error, and performance based on means squared error (MSE) for each stage for the selection of
cutoff frequency related to low, medium, and high respiration rate signals from computer vision analysis.

Stage Samples Accuracy Error Performance (MSE)

Training 94 100% 0% <0.01
Testing 40 85% 15% 0.10
Overall 134 96% 4% -
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the true-positive and false-positive rates.

Table 2 shows the results of the ML model developed using the results from the remote sensing
analysis proposed to obtain physiological parameters using RGB video, computer vision, and ML
modeling (Figure 2) to extract parameters used as inputs to predict RR and RH. It can be observed that
the overall model presented a high correlation (R = 0.94) and slope close to the unity (0.92) with no
signs of overfitting as the performance MSE value of the training stage (MSE = 72) was lower than the
testing (MSE = 512). Furthermore, the overall model presented 9.7% of outliers (13 out of 134) based
on the 95 confidence intervals (Figure 6).
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Table 2. Results of the artificial neural networks regression model (Model 2) showing statistical data
such as correlation coefficient (R), slope, and performance based on means squared error (MSE) for
each stage.

Stage Samples Observations R Slope Performance (MSE)

Training 94 188 0.98 0.94 72
Testing 40 80 0.84 0.86 512
Overall 134 268 0.94 0.92 -
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Figure 6. Artificial neural network overall fitting model showing the correlation coefficient (R),
observed (x-axis), and predicted (y-axis) respiration rate and heart rate values. Abbreviations: BrPM:
breaths per minute; BPM: beats per minute; T: Targets.

Figure 7 shows the PCA comparing the HR, RR, and skin temperature measured with manual
techniques (HRreal, RRreal, and SkTreal) with those predicted using Model 2 (HRM2, and RRM2) and
measured by computer vision algorithms (SkTcv), as well as the THI (Equation (1)) for sheep from
both treatments (control and heat stress) in different days/times of measurements. The resulting PCA
described a total of 82.92% of total data variability (PC1: 65.04%; PC2: 17.88%). It can be observed
that the manual measurements and those assessed using the proposed methods were closely related.
Furthermore, skin temperature was related to THI. As expected, there was a clear separation and
clustering between the sheep physiology under control treatment (blue circles) compared to those
under heat stress (red crosses), with the latter associated with higher RR, skin temperatures, and THI.
PC1, which is the main responsible for the separation of the data according to the treatments, is more
related to RR and skin temperature, with HR with lower variability related to PC2. The THI values
obtained in this study ranged from 18 to 20 for control and between 27 and 36 for heat stress conditions
(data not shown).
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Figure 7. Principal components analysis of data measured with manual techniques (i) SkTreal: skin
temperature real, (ii) HRreal: heart rate real, (iii) RRreal: respiration rate real, and those measured
using computer vision analysis and predicted using the machine learning models (iv) SkTcv: skin
temperature computer vision, (v) RRM2: respiration rate from Model 2, (vi) HRM2: heart rate from
Model 2, and the temperature-humidity index (THI) from each day of the control and heat stress rooms.

4. Discussion

4.1. Selection of Critical Sheep ROIs, Features Tracking, and Automation

Due to constraints in the experimental chambers related to interference from the metabolic cages
and sheep head movement through them, especially while feeding (Figure 8), it was not possible to
use single co-registered ROIs for RGB videos and IRTV. The latter would have simplified the modeling
procedure; however, results could have been only applicable to animals with visible features and with
no obstructions through the whole video recordings, rather than those with obstructions like bars from
the cage (Figure 8A,B). Hence, the methodology proposed has greater practical applications in penned
and transported animals. By selecting the whole head of the sheep as ROI for IRTV analysis (Figure 8;
red rectangles), with automated maximum temperature extraction, it gives a higher probability of
extracting meaningful temperature information from the eyes, nose or mouth regions at any specific time
from cropped videos even when the head moves across obstacles, such as bars from the cages (Figure 8).
Furthermore, without obstructions and considering nose and mouth regions as ROI, a simplified
skin temperature extraction could also have been easily implemented by signal analysis of peaks and
valleys that represents mathematically the variability between temperatures related to inhalations
and exhalations using a similar RVA analysis of the signal (Figure 2). However, considering obstacles
(metabolism cage bars) and head movement through them (Figure 8), the temperature variability could
have been biased and difficult to discriminate from those related to obstacles (Figure 8A), which would



Sensors 2020, 20, 6334 12 of 18

have rendered this potential simple procedure with higher errors in skin temperature estimation
similar to Figure 4A. On the contrary, the method proposed in this research resulted in high accuracy
compared to measured skin and rectal temperatures with closer relationship from the 1:1 line for skin
temperatures as expected (Figure 3).
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Figure 8. Examples of sheep with head and features tracked as region of interest (ROI) for the head
(blue rectangles) for infrared thermal video (IRTV) analysis and nose/mouth regions (blue rectangles)
for heart and respiration rates analysis from RGB video analysis behind bars (A) and through the bars
(B) of cages.

In the case of HR and RR, ROIs were selected from the nose/mouth region of the animals since
they have more hairless skin exposed (Figure 8; blue rectangles). The nose region is considered
the best area to measure RR as it is where inhalation and exhalation occurs and the area in which
a large number of blood vessels are found in sheep [43,44], which also allows measuring HR more
accurately. Specifically, from these ROIs, changes in luminosity are related to the rushing in and out
of the bloodstream and cooling down and warming up of skin surfaces, which can be related to HR
and RR, respectively. This would happen obviously on surfaces of living and breathing organisms,
making inanimate obstacle’s luminosity unchanged and easy to discriminate either by signal analysis
from RGB video or to be detected by ML modeling.

4.2. Computer Vision Analysis of Raw Signals Obtained from Videos

The sensitivity of the raw signal analysis extracted from computer vision algorithms related to
raw HR and RR can be determined by the use of specific cutoff frequency ranges (Hz) as determined
by the RVA and RVAm algorithms [38]. Since the range of RR observed for sheep under control and
heated environments is very high (27–240 BrPM) compared to HR (63–132 BPM), the selection of
cutoff frequency to extract RR raw data is critical. By selecting the whole range cutoff frequency range,
results showed low sensitivity when compared to observed RR data (Figure 4A).

Accuracies for HR and respiration rates found through computer vision analysis with different
cutoff frequencies for sheep to obtain raw HR and RR (Figure 4B) were in accordance to those using
similar methodologies for cattle [31] and pigs [30]. In the case of HR, this study had a narrower range
between 55 and 135 BPM, with the lower range consistent to the average HR reported for lambs without
stress of 57 ± 5 [45].

For RR rate analysis, a review showed that by using cutoff frequencies between 0.20 and 0.40 Hz
in the case of sheep and goats corresponded to RR of 12–24 BrPM. However, a breathing frequency
study in ruminants recorded RR of 54 BrPM, equivalent to 0.9 Hz, which is within the reference range
for adult sheep of 12–72 breaths per minute [46]. In this study, RR ranged from around 45–260 BrPM,
which is consistent with ranges found in other sheep studies under normal and heat stress conditions,
such as BrPM values between 31 and 247 BrPM [47]. Hence, higher RR corresponding to stressed
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sheep corresponded to three times higher than those associated with around 1 Hz frequency. By using
maximum values of 3 Hz for higher RR values, resulting in more accurate raw RR obtained from
computer vision algorithms (Figure 4B).

4.3. Machine Learning Modeling to Extract Further Sheep Biometrics

The ANN pattern recognition algorithm (Model 1) was able to pre-process the data to obtain these
specific cutoff frequency ranges for RR analysis, which increased the accuracy and performance of
Model 2 compared to lower accuracies and performances using a single frequency cutoff range for
both HR and RR and computer vision analysis (Figure 4B). By using computer vision analysis for
skin temperature extraction and ANN models 1 and 2 allowed full automation in the estimation of
HR and RR from RGB video and IRTV. Furthermore, the integrated FLIR cameras used have direct
connectivity drivers to be used within MATLAB® environments that can allow real-time extraction of
sheep biometrics using the codes developed in this study as shown in Figure 1B, C. From Figure 2,
the only supervised procedure is the initial ROIs selection for visible animals, making the rest of the
process automatic through the pipeline of algorithms, functions and ML models proposed (Figure 2).

Pre-processing of videos using a wider cutoff frequency range for signal analysis of cropped
videos from sheep, plus classification (Model 1) and re-analysis, it takes around 20 s for a 1-min
video approximately, using parallel computing capabilities on a 4-core laptop PC. Hence, using higher
computer capabilities, it was estimated for this time requirement to be between 3–5 s to allow
signal stabilization and cut start to initiate real-time rendering of outputs as shown in Figure 1B, C.
Specifically for HR in humans, the same pre-analysis periods can be found for commercial software,
such as FaceReader (Noldus, Wageningen, The Netherlands) and the computer application Cardiio
(Cardiio, Inc., Cambridge, MA, USA) for smartphones and tablet PCs.

4.4. Comparison between Non-Invasive Biometrics and Environmental Heat Stress Indices

In previous studies, sheep exhibit heat stress with THI ≥ 23 for Mediterranean dairy sheep and
THI ≥ 27 in Comisana dairy sheep [48]. These THI values are consistent with the ranges for heat
stress treatment applied in this study (THI: 26–36). Sheep regulate heat through panting mainly;
hence, the RR is the main heat regulatory mechanism for these animals [47]. Very high RR values
found for heat-stressed sheep (260 BrPM) were related to the highest THIs between 27 and 36 (Figure 7).
From the same figure, vectors related to THI, skin temperature, and RR (for both observed and extracted
through biometrics) were related as expected, which help to maintain a relatively constant maximum
HR showing heat stress regulation. Higher THI is related to higher panting from sheep, which helps
reducing skin and the internal temperature of animals. Some sheep from the heat stress treatments
appear in the PCA graph close to the control cluster, which may correspond to more genetically resilient
sheep to heat stress [49,50].

4.5. Artificial Intelligence System Proposed Based on Algorithms and Models Developed

Automatic ROI selection from sheep can be achieved through the training of deep learning
algorithms to recognize specific sheep features, such as those for the head and nose/mouth
regions. This has been achieved using convolutional networks for pigs [51], wildlife animals [52],
marine animals [53], and chimpanzee faces [54], among others. Other methodologies based on ML,
such as discriminant analysis, independent components Analysis, and ANN, among others, have been
used for animal detection, classification, and tracking [55–59].

Previously, an AI system to reduce heat stress and increase milk production and quality has been
proposed for dairy farms based on the analysis of THI data and cow management information through
ML [24]. From the latter study, automatic drafting doors are controlled from ML outputs that transport
the cows to the milking area or to a sprinkler-based system to reduce heat stress. A similar method can
be implemented here using the algorithms and models developed in this study (Figure 9A). The system
proposed has the advantage that there are no physical obstacles between the camera/analysis hub



Sensors 2020, 20, 6334 14 of 18

and the individual sheep monitored. In open environments, this AI system could be coupled with
virtual fencing systems through collars and the internet of things (IoT) to automate the separation
of heat-stressed sheep towards a sprinkler cooling system (Figure 9A). Virtual fencing has been
successfully applied for automated cattle control systems [60,61], for sheep [62,63], with acceptable
ethical frameworks assessed for their implementation [62,64].
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Figure 9. Representation of potential artificial intelligence applications implementing models developed
in this study for (A) in farm detection of heat-stressed sheep and isolation towards a cooling or shaded
area from non-stressed sheep by synchronization with an automated sorting gate, and (B) detection of
heat stress for sheep in transport coupled with cooling fan systems.

The AI systems proposed can also be implemented in confined sheep in the preparation or
during transport (Figure 9B), which could be coupled to blockchain [32,33] to have an unbiased
control and independent assessment of animal welfare to be applied in the farm and transport or
vessel environments.

5. Conclusions

This study proposed the implementation of automated computer vision algorithms and machine
learning models to obtain critical biometrics from recorded RGB, and infrared thermal videos from
sheep, to help in the automated assessment of heat stress. The implementation of the proposed system
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requires affordable hardware capabilities, such as the FLIR integrated cameras, which can include
dedicated AI micro-processors and blockchain technology. The user-friendly AI system proposed
would be able to analyze non-invasive biometrics from sheep in the farm automatically, and through
their transport to secure animal welfare, through independent analysis of information incorporating
blockchain technology for control purposes. Advances proposed in this paper could offer an AI-based
system to monitor animal welfare in farms, and also as a tool to assess animal welfare in transport by
land or sea independently, using blockchain. The latter not only could serve governments to audit live
animal exports but also the industry in general, for more transparency to the public in their treatment
of living animals for human consumption.
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