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Abstract

Enteric fever is a systemic infection caused by Salmonella Typhi or Paratyphi A. In many

endemic areas, these serovars co-circulate and can cause multiple infection-episodes in

childhood. Prior exposure is thought to confer partial, but incomplete, protection against

subsequent attacks of enteric fever. Empirical data to support this hypothesis are limited,

and there are few studies describing the occurrence of heterologous-protection between

these closely related serovars. We performed a challenge-re-challenge study using a con-

trolled human infection model (CHIM) to investigate the extent of infection-derived immunity

to Salmonella Typhi or Paratyphi A infection. We recruited healthy volunteers into two

groups: naïve volunteers with no prior exposure to Salmonella Typhi/Paratyphi A and volun-

teers previously-exposed to Salmonella Typhi or Paratyphi A in earlier CHIM studies. Within

each group, participants were randomised 1:1 to oral challenge with either Salmonella Typhi

(104CFU) or Paratyphi A (103CFU). The primary objective was to compare the attack rate

between naïve and previously challenged individuals, defined as the proportion of partici-

pants per group meeting the diagnostic criteria of temperature of�38˚C persisting for�12

hours and/or S. Typhi/Paratyphi bacteraemia up to day 14 post challenge. The attack-rate in

participants who underwent homologous re-challenge with Salmonella Typhi was reduced

compared with challenged naïve controls, although this reduction was not statistically

significant (12/27[44%] vs. 12/19[63%]; Relative risk 0.70; 95% CI 0.41–1.21; p = 0.24).
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Homologous re-challenge with Salmonella Paratyphi A also resulted in a lower attack-rate

than was seen in challenged naïve controls (3/12[25%] vs. 10/18[56%]; RR0.45; 95% CI

0.16–1.30; p = 0.14). Evidence of protection was supported by a post hoc analysis in which

previous exposure was associated with an approximately 36% and 57% reduced risk of

typhoid or paratyphoid disease respectively on re-challenge. Individuals who did not develop

enteric fever on primary exposure were significantly more likely to be protected on re-chal-

lenge, compared with individuals who developed disease on primary exposure. Heterolo-

gous re-challenge with Salmonella Typhi or Salmonella Paratyphi A was not associated with

a reduced attack rate following challenge. Within the context of the model, prior exposure

was not associated with reduced disease severity, altered microbiological profile or boosting

of humoral immune responses. We conclude that prior Salmonella Typhi and Paratyphi A

exposure may confer partial but incomplete protection against subsequent infection, but

with a comparable clinical and microbiological phenotype. There is no demonstrable cross-

protection between these serovars, consistent with the co-circulation of Salmonella Typhi

and Paratyphi A. Collectively, these data are consistent with surveillance and modelling

studies that indicate multiple infections can occur in high transmission settings, supporting

the need for vaccines to reduce the burden of disease in childhood and achieve disease

control.

Trial registration NCT02192008; clinicaltrials.gov.

Author summary

In this study, we assessed whether previous infection with the bacteria Salmonella Typhi

and Salmonella Paratyphi protected against second infections. Healthy volunteers who

had been previously infected with these bacteria in earlier human challenge studies were

challenged for a second time. We compared the rate of infection in the re-challenge group

with healthy volunteers who were challenged for the first time. We found that previous

infection was associated with a lower rate of second infections and longer time to disease

but was not associated with complete protection from disease. Some individuals appeared

to be more resistant to developing infection on both occasions. Previous infection with

Salmonella Typhi did not appear to protect against later infection with Salmonella Paraty-

phi and vice-versa. Antibody responses and clinical symptoms were similar in between

first and second infections. These results and future studies could help us to better under-

stand immunity to these bacteria and help the development of new vaccines for Salmo-

nella Typhi and Paratyphi.

Introduction

Enteric fever results from infection with the typhoidal Salmonella serovars: Salmonella enterica

subspecies enterica serovars Typhi and Paratyphi (S. Typhi and S. Paratyphi). The annual bur-

den of enteric fever is estimated at ~14 million cases/year–the majority of which is attributable

to S. Typhi[1]. An increasing incidence S. Paratyphi A disease has been reported over the past

two decades, such that this serovar is now responsible for a large proportion of enteric fever

cases in parts of Asia[2], including in Nepal [3], Cambodia [4,5] and China[6,7]. Comprehen-

sive control of typhoid and paratyphoid fever is likely to require integration of initiatives to
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improve water quality, sanitation and hygiene, coupled with the deployment of effective vac-

cines[8]. Three vaccines are recommended by the WHO for typhoid fever, but no vaccines are

currently available for control of paratyphoid fever[9].

Studies modelling the impact of vaccination on transmission of typhoidal Salmonella

include infection-derived immunity as an important variable[10,11]. However, there are lim-

ited empirical data describing the extent, mechanisms and duration of immunity conferred by

prior typhoid or paratyphoid infection. In high-burden settings, the incidence of typhoid dis-

ease is highest in infants and school-age children and declines with age—a pattern thought to

be in keeping with acquisition of immunity through repeated exposures in childhood[1].

Modelling data suggest that multiple (~3–5) episodes of typhoid exposure are required to con-

fer functional protection against future clinical typhoid disease[10,11]. Data from early case-

series indicate that repeated typhoid infections can occur, particularly when there is exposure

to a large infectious dose[12] and early human challenge studies suggest that previous typhoid

fever confers moderate (~30%) but incomplete protection against subsequent disease[13]. An

improved understanding of infection-derived immunity to S. Typhi could help to identify

immunological correlates of protection and inform transmission modelling.

Much less is known regarding immunity acquired following previous paratyphoid infec-

tion. Similarly, it is unknown whether infection with S. Typhi confers heterologous protection

against S. Paratyphi and vice-versa. Cross-reactive cellular and humoral immune responses

can be detected in vitro [14–16] but it is unknown whether these responses correlate with pro-

tection. Some data indicate that the S. Typhi Ty21a vaccine confers moderate protection

against S. Paratyphi B[17]. Less is known regarding cross-protection of Ty21a against S. Para-

typhi A, although it is generally considered not to confer protection to this serovar[18].

We have previously described the establishment of S. Typhi and S. Paratyphi controlled

human infection models in healthy volunteers in a non-endemic setting[19–23]. Challenge

with wild-type S. Typhi (dose 1-5x104 CFU) and S. Paratyphi (dose 1-5x103 CFU) achieves an

attack rate of 60–75% in unvaccinated individuals[19–23], whereas the attack rate, time to

diagnosis and disease severity are reduced by prior-vaccination with a Vi-conjugate vaccine

[22] and reduced challenge dose[19,20]. Challenge/re-challenge studies have been used exten-

sively to investigate the extent of infection-derived immunity to a range of enteric pathogens,

including Vibrio cholerae[24,25], enterotoxigenic E. Coli,[26] Campylobacter jejuni[27–29],

Shigella spp.[30–32] and Giardia lamblia[33]. Such studies can offer insights into mechanisms

and determinants of immunity to guide vaccination strategies.

To better characterise the effect of prior exposure on subsequent incidence of enteric fever,

we performed homologous and heterologous re-challenge of participants previously enrolled

in S. Typhi and S. Paratyphi challenge studies. The primary objective of the study was to com-

pare the rate of enteric fever in re-challenge groups with naïve controls. Secondary objectives

of the study were to compare the clinical features, microbiological profile and humoral

immune responses between groups.

Methods

Ethics statement

Written informed consent was obtained from all volunteers prior to enrolment. Ethical

approvals for the primary protocol, and any study amendments, were obtained from the

South-Central Oxford A research ethics committee (14/SC/1204). The study was registered

with clinicaltrials.gov (NCT02192008) and was performed according to the provisions of the

Declaration of Helsinki and Good Clinical Practice guidelines.

PLOS NEGLECTED TROPICAL DISEASES Typhoid and paratyphoid re-challenge

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008783 October 20, 2020 3 / 25

https://clinicaltrials.gov/ct2/show/NCT02192008
https://doi.org/10.1371/journal.pntd.0008783


Study design & participants

We performed a participant-blinded, randomised, out-patient human challenge/re-challenge

study using well-characterised wild-type strains of S. Typhi[19] and S. Paratyphi A[20]. The

study was performed at the Centre for Clinical Vaccinology & Tropical Medicine (Churchill

Hospital, Oxford, UK). Healthy adults aged 18–60 years, without prior residency for�6

months in an enteric fever endemic country, were considered eligible for enrolment. Partici-

pants with a known and documented history of typhoid vaccination with either Vi-polysaccha-

ride or Ty21a were excluded from the naïve cohort. Key exclusion criteria included significant

medical, surgical or psychiatric history, gallbladder disease and high-risk occupations as

defined by National guidelines[34]. A full description of inclusion and exclusion criteria is pro-

vided in the S1 Methods.

We enrolled naïve volunteers with no known exposure to typhoidal Salmonella or previous

vaccination into the naïve challenge cohort, consistent with earlier challenge studies conducted

at the Oxford site [19–22].

The re-challenge cohort was comprised of volunteers who had previously participated in

earlier S. Typhi or S. Paratyphi challenge studies conducted at the Oxford site[19–22]. All pre-

vious participants who had consented to be approached for future studies were contacted to

consider enrolment into a re-challenge cohort. The pool of potential volunteers was limited

and heterogenous—notably all eligible participants from earlier challenge studies were consid-

ered for re-challenge, regardless of previous challenge dose, outcome of primary challenge

(disease vs. no-disease) or vaccination status[21,22]. In addition, participants enrolled into the

naïve group of this study were eligible for enrolment into the re-challenge group after a mini-

mum of 12 months from primary challenge (S1 Methods).

Randomisation &masking

Randomisation was undertaken using the computer randomisation system Sortition (Nuffield

Department of Primary Care, Clinical Trials Unit, University of Oxford). Participants in the

naïve cohort were randomised 1:1 to receive either S. Typhi or S. Paratyphi. Participants in the

re-challenge cohort were stratified according to previous exposure. Those with S. Typhi were

randomised 1:1 to receive either homologous S. Typhi re-challenge or heterologous S. Paraty-

phi re-challenge. Those previously challenged with S. Paratyphi were randomised 1:1 to receive

either homologous S. Paratyphi re-challenge or heterologous S. Typhi re-challenge. Varying

block sizes were used. Randomisation was performed after screening investigations were com-

pleted at the time of enrolment.

Participants and laboratory staff were masked to challenge agent and group allocation until

unblinding, using distinct participant IDs for clinical and laboratory staff. Microbiology staff

processing blood cultures were also blinded to challenge agent allocation. Clinical staff admin-

istering the challenge agent were not blinded to challenge agent allocation.

Procedures

Participants were challenged by oral ingestion of 1–5 × 104 colony forming units (CFUs) of S.

Typhi Quailes strain or 1–5 × 103 CFUs of S. Paratyphi A NVGH308 strain, as previously

described[20–23,35]. Two minutes prior to challenge, participants ingested a sodium bicar-

bonate solution (2.1g/120ml) to neutralise stomach acid. The oral challenge inoculum was

administered suspended in a sodium bicarbonate solution (0.53g/30ml) and kept on ice prior

to administration within two hours of preparation. Participants were reviewed twelve hours

after challenge and then daily for a minimum of fourteen days, as previously described[19].

Participants completed an online diary with twice daily self-recorded temperature
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measurements for 21 days, covering the two-week challenge period and an additional seven

days to monitor antibiotic tolerability and symptom resolution. Solicited symptoms and twice

daily temperature measurements were also recorded in an electronic diary for 21 days follow-

ing challenge. Symptoms were categorized as not present, mild, moderate or severe (S1

Methods).

We initiated antibiotic treatment when participants met the composite diagnostic criteria

(see Outcomes), or at day 14 for those not diagnosed with enteric fever. FromMarch 2015 to

October 2016, the first line treatment was oral azithromycin 500mg once daily for 14 days.

After October 2016, first line treatment was changed to ciprofloxacin 500mg twice-daily for 14

days. The change in first line therapy was prompted by a recommendation from the data safety

monitoring committee, following review of safety data pertaining to antibiotic treatment from

a parallel typhoid challenge study[22,36].

Outcomes

The primary objective of this study was to compare the proportion of participants meeting the

composite diagnostic endpoint for enteric fever (attack rate, AR) in the naïve cohorts, com-

pared with the re-challenge cohorts. The composite diagnostic endpoint for enteric fever was

defined as a temperature of�38˚C persisting for�12 hours and/or S. Typhi/Paratyphi bacter-

aemia collected�72hours after oral challenge.

Secondary endpoints were mode of diagnosis; time to diagnosis; time to first temperature

�38oC; time to bacteraemia; duration of bacteraemia and quantitative blood culture (S1

Methods). Descriptive endpoints included severe adverse events; solicited symptom profiles;

proportion of participants meeting the criteria for severe enteric fever; haematological and bio-

chemical measures; pattern of bacteraemia and pattern of stool shedding (S1 Methods). Blood

culture samples were collected at 12 hours after challenge and daily thereafter until 96 hours

post initiation of treatment. As no further blood cultures were scheduled for collection after 96

hours post-typhoid diagnosis, the analysis for duration of bacteraemia were censored at 96

hours after treatment initiation. Sample collection timepoints for bacteraemia evaluation are

outlined in the S1 Methods and S1 Protocol.

Stool samples for culture, blood samples for culture (10ml), haematological and biochemi-

cal testing were processed by the local hospital’s accredited pathology laboratory as previously

described[19,37]. Haematology and biochemistry laboratory samples were processed at a

United Kingdom Accreditation Service (UKAS) accredited laboratory at the John Radcliffe

Hospital, Oxford, UK. Stool samples were submitted for standard microbiological culture at

the microbiology laboratory, John Radcliffe Hospital, Oxford University Hospital NHS Foun-

dation Trust. Stool cultures were performed according to local procedures and based on

national guidance.[38] Briefly, selenite broth was inoculated with ~1g faeces and mixed by vor-

tex. Agar plates, including XLD, were either directly inoculated with 100μL of the suspension,

or after 18–24 hours incubation at 37˚C, when chromogenic agar (Salmonella Plus agar, E&O

laboratories) for the detection of Salmonella spp, was inoculated. All negative cultures were

incubated and kept for 1-week until being discarded and being reported as ‘no growth’.

Samples for assessment of antibody responses were collected at 28 and 90 days after chal-

lenge and compared with those measured at baseline. We measured specific immunoglobulin

G (IgG) and IgA isotype responses to S. Typhi LPS (S. Typhosa LPS, L2387; Sigma-Aldrich,

Dorset, UK); H-d antigen (University of Maryland CV0150622); S. Paratyphi O:2 (GSK Vac-

cines for global health) and H-a antigen (University of Maryland CVD1902D lot CVD141113-

01) using an in-house ELISA, as previously described[19–21]. In addition, immunoglobulin G

(IgG) responses to Vi were measured using a commercial ELISA kit (VaccZyme, The Binding
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Site Ltd, Birmingham, UK) according to the manufacturer’s instructions as previously

described[22].

Statistical analyses

Attack rates and 95% confidence intervals were calculated for each challenge group for the per-

protocol population (i.e. participants who completed the fourteen-day challenge period) as the

primary endpoint. Participants who were challenged but who commenced antibiotics prior to day

14 without meeting the diagnostic criteria were excluded from the primary analysis but were

included in the time-to-event analysis and were censored at the time of antibiotic initiation.

No formal sample size calculations were made in the design of this study. We assumed that

the attack rates in the S. Typhi and S. Paratyphi naïve challenge groups would be 60%-75%,

consistent with earlier studies[19–23]. All participants who had participated in previous chal-

lenge studies and who had consented to be contacted for future studies were approached to

participate in the re-challenge group. The number of volunteers enrolled into the re-challenge

group was dependent on the number of participants who consented to re-challenge and who

were eligible after screening. We aimed to enrol 20 volunteers into each of the S. Typhi and S.

Paratyphi naïve groups, giving 95% confidence intervals (CIs) for attack rates of between

36%–81% and 46%–88% assuming measured attack rates of 60%-75%[19].

We calculated the differences in attack rates between naïve and re-challenge groups using

Fisher’s exact test. Estimated protection was calculated as the percentage reduction in the re-

challenge groups compared with naïve groups ([1-relative risk] x 100). We also performed a

post-hoc analysis comparing attack rates in the re-challenge groups with the combined attack

rates from non-vaccinated/control individuals from previous studies where challenge was per-

formed at an equivalent dose. Sub-group analysis was performed in the re-challenge group

according to prior vaccination status (no vaccine vs. any vaccine and Vi-polysaccharide, Vi-

tetanus conjugate, Ty21a or MO1ZH09 vaccination) and outcome of first challenge (enteric

fever diagnosis vs. no enteric fever diagnosis). We analysed factors potentially associated with

a higher probability of being diagnosed when re-challenged using a multivariable log-binom-

inal model. Predictors in the model included time since first challenge (years); challenge agent

(S. Typhi or S. Paratyphi); re-challenge group (homologous vs. heterologous re-challenge); sex

(male vs. female); age (years); previous typhoid vaccination (yes or no) and prior diagnosis sta-

tus (diagnosed on previous challenge or not). Multivariable analysis was conducted using SAS

version 9.4.

Time to diagnosis, time to first fever and time to bacteraemia were summarised using the

Kaplan-Meir method, with participants censored at Day 14. Group comparisons were per-

formed using a log-rank test.

Clinical data were recorded on a web-based database (OpenClinica Enterprise). Data analy-

sis was performed using R version 3.6.1[39], using ggplot2[40], survminer[41] and forestplot

[42] packages.

Results

We enrolled 124 participants between 17thMarch 2015 and 24th August 2017. Nine partici-

pants withdrew prior to challenge. Three participants commenced antibiotics prior to day 14

without meeting the criteria for enteric fever diagnosis and were excluded from the primary

analysis. In total, 112 participants were included in the per-protocol primary analysis (S1 Fig).

Baseline characteristics were comparable across groups (Table 1).

All challenged participants were successfully treated, with no episodes of disease relapse or

recrudescence after twelve months follow up. One participant had convalescent shedding of S.
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Table 1. Participant characteristics OVG2014/01(PATCH) study. ST-ST Re-Challenge = Homologous re-challenge with S. Typhi following previous S. Typhi challenge.
SPT-SPT Re-Challenge = Homologous re-challenge with S. Paratyphi following previous S. Paratyphi challenge. ST-SPT Re-Challenge = Heterologous re-challenge with S.
Paratyphi following previous S. Typhi challenge. SPT-ST Re-Challenge = Heterologous re-challenge with S. Typhi following previous S. Typhi challenge. Prior known
typhoid vaccination of any type was an exclusion criterion for enrolment into the naïve arm of the study. Participants with prior history of Vi-polysaccharide vaccination
were eligible for enrolment in previous paratyphoid challenge studies. Participants with a history of Vi-polysaccharide, Vi-tetanus toxoid conjugate, Ty21a, M01ZH09 vac-
cination received either vaccine as part of previous human challenge studies assessing vaccine efficacy. [21, 22] Minimum interval between primary challenge and re-chal-
lenge was 12 months.

Challenge Group

All S. Typhi Challenge S. Paratyphi (A) Challenge

ST Naïve ST-ST Re-
Challenge

SPT-ST Re-
Challenge

SPT Naïve SPT-SPT Re-
Challenge

ST-SPT Re-
Challenge

Number 112 19 27 10 18 12 26

Male sex, n (%) 71/11(63%) 14/19
(74%)

16/27 (59%) 9/10 (90%) 11/18
(61%)

6/12 (50%) 15/26 (58%)

Age, Years, median (range) 27.8 (18.8–
60.8)

27.2 (19.6–
59.7)

33.2 (21.3–60.8) 26.7(22.2–52) 27.1(18.8–
42.6)

23.8 (21–44.1) 32.0 (19.3–55)

Ethnicity, n (%)

White British 82 /112
(73%)

13 /13
(68%)

19/27 (70%) 9/10 (90%) 11/18
(61%)

9/12 (75%) 21/26 (81%)

White (Other) 23/112
(21%)

6/19 (31%) 6/27 (22%) 1/10 (10%) 4/18 (22%) 2/12 (12%) 4/26 (15%)

Mixed 6/112 (5%) 0/19 (0%) 2/27 (7%) 0/10 (0%) 3/18 (17%) 0/12 (0%) 1/26 (4%)

Asian (Indian) 1/112 (1%) 0/19 (0%) 0/27 (0%) 0/10 (0%) 0/18 (0%) 1/12 (8%) 0/26 (0%)

Previous travel to enteric fever endemic area,
n (%)

42/112
(38%)

5/19 (26%) 10/27 (37%) 8/10 (80%) 5/18 (28%) 8/12 (67%) 6/26 (23%)

Alcohol consumption, any, n (%) 92/112
(82%)

14/19
(73%)

22 /27 (82%) 9/10 (90%) 16/18
(89%)

8/12 (67%) 23/26 (88%)

Tobacco smoker, any, n (%) 35/112
(31%)

7/19 (37%) 9 /27 (33%) 3/10 (30%) 4/18 (22%) 5/12 (42%) 7/26 (27%)

Previous Salmonella Challenge, n (%)

S. Typhi 53/112
(47%)

- 27/27 (100%) - - - 26/26 (100%)

Challenge Dose (CFU): 1-5x103 5/112 (4%) - 3/27 (11%) - - - 2/26 (8%)

Challenge Dose (CFU): 1-5x104 48/112
(43%)

- 24/27 (89%) - - - 24/26 (92%)

S. Paratyphi 22/112
(20%)

- - 10/10 (100%) - 12/12 (100%) -

Challenge Dose (CFU):0.5–1 x 103 12/112
(11%)

- - 6/10 (60%) - 6/12 (50%) -

Challenge Dose (CFU): 1–5 x 103 10/113
(9%)

- - 4/10 (40%) - 6/12 (50%) -

Re-Challenge Interval, months, median
(range)c

19 (12–
67.9)

- 38 (12–60.6) 17.3 (13.9–24.9) - 17 (14.2–27.2) 28 (12.2–67.9)

Previous enteric fever diagnosis, n (% enrolled
in re-challenge groups)

37/75(49%) - 12/27 (44%) 7/10 (70%) - 5/12 (41%) 13/26 (50%)

Previous typhoid vaccination, n (%)b Any
Vaccine

26/112
(23%)

0/19 (0%) 11/27 (41%) 0/10 (0%) 0/18 (0%) 0/12 (0%) 15/26 (58%)

Vi-Polysaccharide 7/112 (6%) 0/19 (0%) 4/27 (15%) 0/10 (0%) 0/18 (0%) 0/12 (0%) 3/27 (11%)

Vi-Tetanus toxoid conjugate 11/112
(10%)

0/19 (0%) 3/27 (11%) 0/10 (0%) 0/18 (0%) 0/12 (0%) 8/27 (30%)

Ty21a 4/112 (4%) 0/19 (0%) 3/27(11%) 0/10 (0%) 0/18 (0%) 0/12 (0%) 1/27 (4%)

M01ZH09 4/112 (4%) 0/19 (0%) 1 /27(4%) 0/10 (0%) 0/18 (0%) 0/12 (0%) 3/26 (12%)

https://doi.org/10.1371/journal.pntd.0008783.t001
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Paratyphi in the stool following a 14-day course of ciprofloxacin. Following treatment with azi-

thromycin, all subsequent stool samples in this participant were negative. Four serious adverse

events were reported during the course of the study, of which two were considered related to

challenge (S1 Table). Five participants met the pre-specified criteria for severe enteric fever

across all challenge groups (S2 Table). The median interval between primary challenge and re-

challenge in participants previously challenged with S. Typhi was 38 months (range 12–68)

compared with 16.9 months (13.9–27.7) in participants previously challenged with S. Paraty-

phi (p = 0.09), reflecting the timing of previous challenge studies (S2 Fig).

We challenged a total of 56 participants with S. Typhi across three groups. All participants

were challenged within the target dose range of 1-5x104 CFU (Table 2). In the S. Typhi homol-

ogous re-challenge group 12/27 participants (44%) met the composite primary endpoint for

typhoid fever, compared with 12/19 (63%) of naïve controls, however this difference was not

significant (relative risk 0.70; 95% CI 0.41 to 1.21; p = 0.24; Table 2). The diagnosis of typhoid

fever was confirmed by a positive blood culture in 12/12 (100%) of the naïve cohort and 11/12

(92%) of the re-challenge cohort and the majority of participants in both groups were diag-

nosed based upon microbiological criteria (Table 2). The median time to diagnosis was 8 days

[4–10.9] (median days [range]) in the homologous re-challenge group compared with 6.2 days

[5–10.1] in the naïve group (p = 0.08 Log-rank test ST-ST vs. ST challenge) (Fig 1A). Homolo-

gous re-challenge was also associated with a non-significant prolonged time to bacteraemia

and time to fever compared with naïve controls (Fig 2).

Ten participants with previous exposure to S. Paratyphi underwent heterologous re-chal-

lenge with S. Typhi, after a median interval of 17.3 months (range 13.9–24.9; Table 2). There

was no detectable cross-protection between S. Typhi and S. Paratyphi A. Typhoid fever

occurred in 7/10 (70%) of participants challenged with S. Typhi following prior S. Paratyphi

challenge compared with 12/19 (63%) in the naïve cohort (RR 1.11; 95%CI 0.65 to 1.89;

p = 0.99), with a comparable time to diagnosis (7.0[4.0–8.9] vs. 6.2 [5–10.1] days; p = 0.88

SPT-ST vs. ST; Fig 1A).

We challenged a total of 59 participants with S. Paratyphi A in three groups (Table 2).

Three participants commenced antibiotics prior to meeting the diagnostic endpoint before

day 14 and were excluded from analysis of the primary endpoint (S1 Fig). All participants

were challenged within the target dose range of 1-5x103 CFU (Table 2). The observed rate of

paratyphoid infection in the S. Paratyphi homologous re-challenge group was 3/12 (25%) com-

pared with 10/18 (56%) in the naïve group, however this difference was again not significant

(RR 0.45; 95% CI 0.16 to 1.30; p = 0.14). In addition, the median time to diagnosis was longer

in the S. Paratyphi homologous re-challenge group at 9.4 days [6.0–11.0] (median [range])

group, compared with 6.4 days (4.3–12.1) in the naïve group, but did not meet significance

(p = 0.09 SPT-SPT vs. SPT; Fig 1B).

A total of 26 participants with previous exposure to S. Typhi underwent heterologous re-

challenge with S. Paratyphi. The median interval between primary challenge and re-challenge

was 28 months (range 12.2–67.9). The attack rate in the S. Paratyphi heterologous re-challenge

group was not reduced compared with naïve controls (13/26 (50%) vs. 10/18 (56%); RR 0.90;

95% CI 0.51 to 1.58; p = 0.77; ST-SPT vs. SPT; Fig 1B). In keeping with this, there was no sig-

nificant difference in time to bacteraemia and time to first fever following heterologous re-

challenge (Fig 2).

Regardless of the disease definition that was applied, we observed no significant difference

in the attack rate of enteric fever between naïve and re-challenge groups (S4 Table).

As the main comparisons between naïve and re-challenge cohorts had low statistical power

with wide confidence intervals, we performed a post-hoc analysis comparing the rate of

typhoid infection in the re-challenge cohort with the combined attack rate from all naïve
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Table 2. Primary and secondary outcome. ST-ST Re-Challenge = Homologous re-challenge with S. Typhi following previous S. Typhi challenge. SPT-SPT Re-
Challenge = Homologous re-challenge with S. Paratyphi following previous S. Paratyphi challenge. ST-SPT Re-Challenge = Heterologous re-challenge with S. Paratyphi
following previous S. Typhi challenge. SPT-ST Re-Challenge = Heterologous re-challenge with S. Typhi following previous S. Paratyphi challenge.

All Challenge Group

S. Typhi Challenge S. Paratyphi Challenge

ST Naïve ST-ST Re-
Challenge

SPT-ST Re-
Challenge

SPT Naïve SPT-SPT Re-
Challenge

ST-SPT Re-
Challenge

Number Challenged 115 19 27 10 19 13 27

Included in Primary Outcome Analysis 112 19 27 10 18 12 26

Enteric Fever Diagnosis, n (% attack rate) 57/112
(51%)

12/19 (63%) 12/27 (44%) 7/10 (70%) 10/18
(56%)

3/12 (25%) 13/26(50%)

Attack rate 95% Confidence Interval, % 41–60% 38–84% 25–65% 35–93% 31–78% 5–57% 30–70%

Primary Clinical Diagnosis, n (% diagnosed) 3/57 (5%) 0/12 (0%) 1/12(8%) 0/7 (0%) 1/10 (20%) 1/3 (33.3%) 0/13(0%)

Primary Microbiological Diagnosis, n (%
diagnosed)

54/57
(95%)

12/12
(100%)

11/12 (92%) 7/7 (100%) 9/10 (90%) 2/3 (66.7%) 13/13(100%)

Actual challenge dose administered, CFU x
103, median (IQR)

- 24.4 (21.9–
29.5)

22.9 (21.3–24.4) 26.2 (21.5–29.3) 2.1 (2.1–
2.6)

2.5 (2.2–2.7) 2.6 (2.4–2.8)

Previous Typhoid Diagnosis, n (% attack rate) - - 8/12 (67%) - - - 10/13 (77%)

Previous Paratyphoid Diagnosis, n(% attack
rate)

- - - 6/7 (86%) - 1/5 (20%) -

Previous Typhoid Exposure (No Diagnosis), n
(% attack rate)

- - 4/15 (27%) - - - 3/13 (23%)

Previous Paratyphoid Exposure (No
Diagnosis), n(% attack rate)

- - - 1/3 (33%) - 2/7 (29%) -

Previous Vaccine Diagnosed, (% attack rate)

None 23/50
(46%)

NA 7/16 (44%) 7/7 (100%) NA 3/12 (25%) 6/10 (60%)

Any 12/26
(46%)

NA 5/11 (45%) 0/0 (0%) NA 0/0 (0%) 7/15 (47%)

Vi-PS 3/7 (43%) NA 2/4 (50%) 0/0 (0%) NA 0/0 (0%) 1/3 (33%)

Vi-TT 5/11 (45%) NA 0/3 (0%) 0/0 (0%) NA 0/0 (0%) 5/8 (63%)

Ty21a 2/4 (50%) NA 2/3 (67%) 0/0 (0%) NA 0/0 (0%) 0/1 (0%)

M01ZH09 2/4(50%) NA 1/1 (100%) 0/0 (0%) NA 0/0 (0%) 1/3 (33%)

Time to diagnosis, Days, median (range) 7.0(6.0–
8.9)

6.2 (5.0–
10.1)

8.0(4.0–10.9) 7.0(4.0–8.9) 6.4 (4.3–
12.1)

9.4 (6.0–11.0) 8.0 (5.1–14.2)

Time to first fever>38˚C, Days, median
(range)

8.43 (6.4–
11)

7.3(5.4–
10.6)

10.2 (5.5–13.0) 6.4 (6.0–10.1) 7.4(5.0–
12.2)

9.44 (9.4–10.0) 9.5 (5.8–14.5)

Severe Enteric Fever (Any), n 5/57 (9%) 2/12 (17%) 0/12 (0%) 1/10 (10%) 0/10 (0%) 0/3 (0%) 2/13 (15%)

Systolic blood pressure� 85mmHg 0 0 0 0 0 0 0

Oral Temperature � 40°C 0 0 0 0 0 0 0

Significant lethargy or confusion 0 0 0 0 0 0 0

Gastrointestinal bleeding and/or perforation 0 0 0 0 0 0 0

Grade 4 laboratory abnormality 5 2 0 1 0 0 2

Microbiology—Blood culture

Time to bacteraemia, Days, Median (IQR) 7.0 (5.9–
8.9)

6.2 (5.0–
6.7)

8 (6.1–9.0) 7 (5.0–8.9) 6.2 (5.1–
11.0)

7 (6–11) 8 (7–11)

Duration of bacteraemia,Hrs, Median (IQR) 81.4
(60.2–96)

24.5(4.49–
76.3)

24 (15.1–68.4) 92 (88.4–96) 93.7
(67.5–96)

72.8 (49.5–96) 74.8 (45.6)

Positive at ED + 96 hours, n (% diagnosed) 21/57
(37%)

2/12 (17%) 1/12 (8%) 6/7 (86%) 5/10 (50%) 1/3 (33%) 6/13(46%)

Quantitative blood culture, CFU/ml, Median
(IQR)

- 0.1(0–1.8) 0.1 (0–1.3) 0.2 (0–1.1) 0.3 (0–0.7) 0 (0–0.2) 1.2 (0.05–3.15)

https://doi.org/10.1371/journal.pntd.0008783.t002
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volunteers enrolled in all challenge studies between 2011 and 2018, including naïve partici-

pants from this study[20–23,35]. The observed attack rate across all naïve volunteers chal-

lenged with S. Typhi (n = 121) was consistent from study-to-study with an average attack rate

of 69% (95%CI 60–77% S3 Fig).When compared with all unvaccinated historical controls chal-

lenged in Oxford, the rate of typhoid infection was significantly reduced in the S. Typhi re-

challenge group compared with naïve historical controls, corresponding with a 36% relative

risk reduction (84/121 [69%] vs. 12/27 [44%]; RR 0.64 [0.41–0.99]; p = 0.02 Fisher’s exact test).

The time to diagnosis was also prolonged in the typhoid re-challenge group when compared

with all naïve historical controls but did meet significance (median days [range] 7[4–14] vs. 6.2

[5–10.1]; p = 0.06 –S4A Fig). When we included all naïve participants from this and earlier S.

Paratyphi studies[20] in a post-hoc analysis (n = 39), previous challenge with S. Paratyphi was

associated with an estimated 57% relative reduction in the rate of paratyphoid disease and pro-

longed time to diagnosis, but this difference did not meet significance (3/12[25%] vs. 22/38

[58%]; RR 0.43 [0.15–1.19]; p = 0.1; S4 Fig).

In order to determine if prior exposure was associated with an altered clinical phenotype,

we compared solicited symptoms between naïve and re-challenge groups. Homologous S.

Fig 1. Time to diagnosis after challenge with a) Salmonella Typhi and b) Salmonella Paratyphi A. Kaplan-Meier survival cumulative incidence of participants
meeting the composite diagnostic endpoint, measured from challenge agent ingestion to development of first fever�38˚C or first positive blood culture sampling. Non-
diagnosed participants censored at day 14 hours. P = log-rank test between three groups. ST = S. Typhi naïve challenge. ST-ST = Homologous Re-Challenge with S.
Typhi. SPT = S. Paratyphi naïve challenge. SPT-SPT = Homologous Re-Challenge with S. Paratyphi. SPT-ST Re-Challenge = Heterologous re-challenge with S. Typhi
following previous S. Paratyphi challenge. ST-SPT Re-Challenge = Heterologous re-challenge with S. Paratyphi following previous S. Typhi challenge.

https://doi.org/10.1371/journal.pntd.0008783.g001
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Typhi and Paratyphi re-challenge was associated with a non-significant prolongation in the

time to bacteraemia and time to first fever compared with naïve controls (Fig 2A–2D, S1

Data). The most common symptoms reported by all participants diagnosed with enteric fever

were headache (97%), malaise (90%), anorexia (78%) and myalgia (78%) (Fig 2). Symptom

profiles were broadly similar between all study groups, with the exception of participants diag-

nosed in the S. Paratyphi homologous re-challenge group who reported fewer severe symp-

toms. There was no significant difference in the proportion of participants recording any fever

between naïve and re-challenge groups (S4 Table). Haematological and biochemical parame-

ters were comparable between groups (S5 Fig). Overall, this suggests that prior exposure was

not associated with an altered clinical phenotype within the context of the model.

In order to determine if previous challenge was associated with an altered microbiological

profile, we compared the pattern of bacteraemia and stool shedding between all challenge

groups. We observed no significant difference in the number of colony forming units at the

time of typhoid or paratyphoid diagnosis (Fig 2). The pattern of bacteraemia following chal-

lenge with S. Typhi and Paratyphi is illustrated in S6 Fig. In participants who met the compos-

ite criteria for typhoid or paratyphoid fever, the diagnosis was confirmed by positive blood

culture in 30/31 (97%) and 25/27 (93%) cases respectively. Participants who met the diagnostic

criteria for enteric fever were significantly more likely to have at least one positive stool culture

than participants who did not develop disease (36/58 [62%] vs. 18/75 [24%]; RR 2.59 [95%CI

1.67–4.10]; p<0.0001 –Table 2, S7 Fig).

Participants enrolled into the re-challenge cohorts were heterogeneous with respect to sev-

eral variables that might impact the outcome of re-challenge. These included vaccination sta-

tus, outcome of primary challenge (disease vs. no disease) and interval between primary and

secondary challenge (Table 1). We analysed sub-groups within the re-challenge cohort to

determine which factors might impact the response to re-challenge. Within the re-challenge

cohort, participants with any history of typhoid vaccination had an equivalent attack-rate on

re-challenge compared with unvaccinated participants (AR 12/26[46%] vs. 23/50[46%];

Table 2).

Of the 75 participants analysed in all re-challenge groups, 37 (49%) had been previously

diagnosed with enteric fever on primary exposure. Individuals who did not develop enteric

fever at the time of their first challenge had a significantly lower attack rate when they were re-

challenged, as compared with those who had been diagnosed with enteric fever after their first

exposure (10/38 [26%] vs. 25/37 [68%]; RR 0.38, 95%CI 0.22–0.69; p = 0.0005; Table 3). When

analysed by sub-group, participants who did not develop typhoid on primary exposure were

less likely to develop typhoid on re-challenge (4/15 vs. 8/12; RR 0.40, 95%CI 0.16 to 1.01

p = 0.06; Table 3). The protection conferred to these individuals in their primary challenge

Fig 2. Clinical profile following Salmonella Typhi and Salmonella Paratyphi A challenge and re-challenge: Kaplan-
Meier curves indicating time to bacteraemia following Salmonella Typhi (a) and Salmonella Paratyphi (b) challenge, in
naïve and re-challenge participants; Time first fever>38oC following Salmonella Typhi (c) and Salmonella Paratyphi
(d) challenge, in naïve and re-challenge participants. P = log-rank test between three groups;. Comparison of
cumulative symptom severity scores (Day 0 to 21) in all participants diagnosed with Salmonella Typhi (e) or
Salmonella Paratyphi (f) (median, interquartile range, p = Mann-Whitney U test); Quantitative blood culture at time of
typhoid (g) or paratyphoid (h) diagnosis. Box plots represent median, interquartile range. Samples with no colonies
were assigned a value corresponding to half the lower limit of detection (0.05 CFU/ml). p = Mann-Whitney U test;
Maximum symptom severity score in participants diagnosed with typhoid (i) or paratyphoid (j) fever. Percentage of
participants reporting one or more events. Symptoms were recorded using an electronic diary from Day 0 up to Day
21 post challenge. Stacked columns display percentage of participants reporting maximum symptom severity graded as
mild (present but no interference with daily activity), moderate (some limitation of daily activity) or severe (unable to
perform normal daily activity).

https://doi.org/10.1371/journal.pntd.0008783.g002
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study may have resulted from prior vaccination, as the S. Typhi re-challenge group included

some individuals who had received typhoid vaccines, as well as those who had received a pla-

cebo or no vaccine. To explore this, we repeated the analysis in the S. Typhi homologous re-

challenge group excluding previously vaccinated individuals and observed a similar trend (2/9

[22%] vs. 5/7[71%]; RR0.31 [0.08–1.15]; p = 0.13; Table 3). In the multivariable model, partici-

pants who did not develop disease on primary exposure were also less likely to be diagnosed

on re-challenge after adjusting for prior vaccine status, time since primary challenge, age, sex

and challenge agent/group. No other factors were independently associated with diagnosis in

this model (Table 4).

Compared with naïve controls, participants in the S. Typhi homologous re-challenge group

who did not develop typhoid on primary exposure were less likely to develop typhoid on re-

challenge than naïve controls (4/15 vs. 12/19; RR 0.42 (0.17–1.05); p = 0.04; S8 Fig, S9 Fig).

Baseline antibody levels to O-, H- and Vi-antigens were comparable between naïve and re-

challenge participants, and did not differ between those who went on to develop disease com-

pared with those who did not (S10 and S11 Figs). Consistent with previous studies, serum

antibody to serovar-specific O-antigens were more pronounced in individuals who developed

typhoid and paratyphoid fever, as compared with those who did not develop disease after chal-

lenge (Fig 3A and 3B). Challenge with S. Typhi was not associated with a significant anti-Vi

and anti-Hd IgG response (S12 Fig). There was no demonstrable antibody booster effect when

we compared the fold-change of anti-O serum naïve and re-challenge groups were compared

(Fig 3).

Table 3. Comparison of attack rates in re-challenge cohorts according to outcome of primary challenge (nNo previous disease/nprevious disease).

No Previous Disease on Primary Challenge Previous Disease on Primary Challenge RR (95% CI) P

All 10/38 (26%) 25/37(68%) 0.38 (0.22–0.69) 0.0005

ST-ST 4/15 (27%) 8/12(67%) 0.40 (0.16–1.01) 0.06

ST-ST: No previous vaccine 2/9 (22%) 5/7 (71%) 0.31 (0.08–1.15) 0.13

ST-ST: previous vaccine 2/6 (33%) 3/5 (60%) 0.56 (0.14–2.12) 0.57

SPT-ST 1/3 (33%) 6/7(86%) 0.39 (0.08–1.98) 0.18

SPT-SPT 2/7(29%) 1/5(20%) 1.43 (0.17–11.76) 0.99

ST-SPT 3/13(23%) 10/13(77%) 0.30 (0.11–0.85) 0.02

https://doi.org/10.1371/journal.pntd.0008783.t003

Table 4. Multivariable log-binomial model displaying adjusted relative risk of diagnosis in re-challenged participants (n = 75). ST = S. Typhi, SPT = S. Paratyphi.

Parameter Adjusted RR (95% CI) p

Years since primary challenge Per Year 1.01(0.85–1.20) 0.91

Challenge agent ST 1.21 (0.74–1.97) 0.44

SPT Ref. -

Challenge group Homologous re-challenge 0.75 (0.45–1.23) 0.25

Heterologous re-challenge Ref. -

Sex Male 1.17 (0.69–1.98) 0.55

Female Ref. -

Age Per year older 1.01 (0.98–1.04) 0.41

Previous diagnosis Yes 2.09 (1.25–3.48) 0.0048

No Ref. -

Previous vaccine (any) Yes 1.05 (0.70–1.60) 0.80

No Ref. -

https://doi.org/10.1371/journal.pntd.0008783.t004
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Discussion

In this study, we have described the application of a controlled human infection model to

study the impact of prior exposure to S. Typhi and Paratyphi on the rate of infection on re-

challenge. Overall, our data are consistent with surveillance data and modelling studies, which

suggest that a single prior exposure to S. Typhi/Paratyphi A induces partial but incomplete

protection against subsequent disease. Intriguingly, we observed that individuals who did not

develop enteric fever on primary exposure were more likely to be protected on re-challenge,

compared with individuals diagnosed on primary exposure. A major caveat to these observa-

tions is the low statistical power owing to small sample size within each sub-group. This not-

withstanding, these data suggest that a single previous exposure to S. Typhi and S. Paratyphi

was associated with an approximately 36% and 57% reduced risk of typhoid or paratyphoid

disease on re-challenge, respectively. Heterologous re-challenge with S. Paratyphi or Typhi

was not associated with a reduced rate of infection. In those participants who did develop dis-

ease, the clinical and microbiological features of naïve and re-challenge participants were

indistinguishable.

The protective effect of prior S. Typhi challenge was notably similar to that observed in pre-

vious studies describing infection-derived immunity to typhoid fever in different epidemiolog-

ical settings and patient populations. Marmion and colleagues describe a 35% relative risk

reduction in previously infected patients in the context of two consecutive typhoid outbreaks

[12], and Dupont and colleagues report a 30% relative risk reduction in a human challenge

study[13]. No participants (0/3) who had previously received a Vi-tetanus toxoid conjugate

vaccine[22] developed typhoid fever on re-challenge. Comparisons between historical and

contemporary typhoid challenge studies are complicated by key methodological differences,

particularly relating to study population, challenge dose and mode of administration. New

insights from our study include a substantially longer interval between challenge and re-chal-

lenge compared with previous studies (median 38 months vs.�12months), and the inclusion

of participants who did not develop disease on primary exposure[12,13]. Overall, these data

support the view that a single episode of typhoid infection induces moderate, but incomplete,

protection against subsequent disease. Given this, it is reasonable to recommend that a history

of prior typhoid disease should not preclude typhoid vaccination where it is clinically indi-

cated—either when typhoid vaccines are used as part of vaccine campaigns in endemic coun-

tries or for travellers to high-risk areas.

Prior S. Paratyphi exposure was associated with a slightly greater protective effect within

the context of the challenge model (57%) but did not meet the significance threshold due to

the small sample size within the homologous re-challenge group (n = 12). We also observed a

longer time to disease onset in the S. Paratyphi re-challenge group compared with the naïve

group, however the prolongation was not significant. The estimate of protective effect from

prior paratyphoid exposure is comparable to that conferred by Vi-conjugate vaccines follow-

ing typhoid challenge [22] and is likely to be an underestimate owing to the strict diagnostic

endpoint applied.[22] These observations raise the possibility that prior paratyphoid infection

Fig 3. Antibody response to Salmonella Typhi and Paratyphi A challenge/re-challenge. Serum IgG response to O9:LPS
following Salmonella Typhi challenge (a) and O2:LPS following Salmonella Paratyphi challenge (b) grouped according to outcome
(ED =Met criteria for enteric fever diagnosis. nED = Did not meet criteria for enteric fever diagnosis); Comparison of serum IgG
response to O9:LPS (c) and O2:LPS (d) according to challenge/re-challenge group. Coloured lines connect median values for each
timepoint. Grey lines connect paired samples across timepoints; p =Wilcoxon signed rank test; Magnitude of anti-O9:LPS IgG
following Salmonella Typhi challenge (e) and anti-O2:LPS IgG following Salmonella Paratyphi challenge (f) expressed as log10 fold
change from baseline at Day 28 and Day 90, p =Mann-Whitney U test; ST = S. Typhi naïve; ST-ST = Homologous S. Typhi re-
challenge. SPT-ST = Heterologous S. Typhi re-challenge. SPT = S. Paratyphi naïve; SPT-SPT = Homologous S. Paratyphi re-
challenge. ST-SPT = Heterologous S. Paratyphi re-challenge.

https://doi.org/10.1371/journal.pntd.0008783.g003
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could confer at least partial immunity against re-infection and would be supportive of an

approach to test live-attenuated oral paratyphoid vaccines in this model (e.g. CVD-1902[43]).

Differences in the magnitude of protection associated with prior S. Typhi or S. Paratyphi chal-

lenge might be explained by differences between the serovars (e.g. lack of Vi-capsule expres-

sion by S. Paratyphi A), challenge dose (103 vs 104CFU) or a longer interval between challenge

episodes (38 vs. 17 months) associated with waning immunity. The precision of these observa-

tions is limited by the small sample size in each study sub-group and will require further vali-

dation in field studies or future challenge studies.

This study also represents the first description of heterologous re-challenge with S. Typhi

and S. Paratyphi A with the aim of studying cross-protection between these closely related ser-

ovars.[44] When individuals previously challenged with S. Typhi were re-challenged with S.

Paratyphi A, the attack rate was comparable with that in naïve controls (52% vs. 56%; RR0.93

[0.54–1.68]; p = 0.99). Patients with typhoid fever and individuals vaccinated with oral

typhoid-vaccines have detectable cross-reactive humoral immune responses against Paratyphi

A in vitro.[14–16] However, field studies in highly endemic areas have shown that Ty21a does

not appear to protect against S. Paratyphi A,[18] but there is evidence for moderate protection

against S. Paratyphi B from a retrospective analysis (49% efficacy; 95%CI 8–73%)[17]. Whilst

these comparisons are also underpowered, these data suggest that prior exposure to S. Typhi is

not associated with a significant protection against S. Paratyphi A infection within the context

of the challenge model.

The effect of previous S. Paratyphi A infection on protection against S. Typhi disease has

been less extensively studied. The attack rate in the S. Typhi heterologous re-challenge group

was similar to naïve controls challenged with S. Typhi, albeit in a small sample of volunteers

(n = 10). As these serovars are co-endemic and share a primary mode of transmission, an

improved understanding of cross-reactive immune responses between these two serovars will

be important in future disease control efforts–particularly in the context of the impending

deployment of Vi-conjugate vaccines that offer no protection against S. Paratyphi A.

Whilst in our study previous exposure to S. Typhi and Paratyphi A was associated with a

moderate protection against disease on re-challenge, the clinical presentation in re-challenged

participants was comparable to those with no prior exposure. Modelling studies postulate a

spectrum of hypothetical immune states following prior typhoid infection, ranging from sterile

immunity through to clinical immunity to complete susceptibility[10,11]. In particular, a state

of clinical immunity is proposed to be characterised by milder infection, with or without shed-

ding, that is less likely to require clinical attention. There are no validated metrics of typhoid/

paratyphoid severity. When measured using a range of clinical and microbiological endpoints,

we observed no difference in the observable clinical syndrome between naïve and re-challenge

groups, although early treatment initiation limits the conclusion that can be drawn from these

endpoints. Data from this study suggest that prior exposure is not demonstrably associated

with an attenuated clinical phenotype and clinical immunity compared with naïve exposure,

although the significance of this to field settings is as yet unclear.

Intriguingly, we observed that individuals who did not develop enteric fever on primary

exposure were more likely to be protected on re-challenge, compared with individuals diag-

nosed on primary exposure. Only 49% of those recruited into the re-challenge groups had

developed disease on primary exposure, suggesting a slight recruitment bias towards those

who were protected on primary exposure. Host factors might explain why apparent suscepti-

bility to typhoid infection differs between individuals. For example, genome wide association

studies in Vietnam and Nepal have identified variation at HLA-DRB1 to be strongly associated

with resistance to enteric fever[45]. Additional risk factors associated with susceptibility to

enteric fever include variations in the cftr locus [46,47] and carriage ofHelicobacter pylori
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[48,49]. The effect of the host microbiome on susceptibility to enteric fever is currently the

subject of further study[50].

It is unclear if the development of clinical immunity following S. Typhi/Paratyphi challenge

requires the development of clinical disease/bacteraemia, or whether immunity can develop

following asymptomatic exposure. Our previous studies, have shown that the majority of par-

ticipants challenged with S. Typhi produce a transient peak in cytokine production as early as

12 hours after challenge, which is independent of the subsequent development of typhoid dis-

ease, suggesting that early innate interactions occur in most challenged participants.[51] How-

ever, in the challenge model, effective priming of the adaptive immune system appears to

require the development of symptomatic infection and/or bacteraemia, as individuals who did

not develop typhoid/paratyphoid disease after challenge failed to mount a humoral or cellular

response to S. Typhi/Paratyphi antigens[19,20,52–56].

These observations raise the possibility that the protection observed following homologous

re-challenge is not mediated by a classical adaptive memory immune response following pri-

mary exposure. Differences in infection rates after re-challenge may instead be accounted for

by inter-host variation in genetic or epigenetic factors impacting innate immune responses or

the development of trained innate immunity after primary infection[57]. Alternatively, protec-

tion may be mediated by adaptive immune responses that have yet to be measured–such as

those mediated by T- and B-cells at the gastrointestinal mucosa[58].

We acknowledge the limitations of our experimental approach. The study was broadly

underpowered to detect anything other than large differences in attack rates between naïve

and re-challenge groups and the protective effects were non-significant, with wide confidence

intervals, due to the small sample size in the re-challenge arms. We cannot exclude that any

apparent protective effect driven by participants in the re-challenge arm who were vaccinated

in earlier studies, although the sub-group analysis does not support this. No formal sample size

calculations were made in the design of this study as the size of the re-challenge cohort was

dependent on the number of participants who were willing and consented to take part in a sec-

ond challenge. However, we contend that the protective effect of prior exposure may represent

an underestimate of the likely protective effect observed in field settings. As an example, the

efficacy of typhoid conjugate vaccine in the human challenge model was 52%[22] as compared

with 1-year efficacy of 81.6% in an randomised control trial in Nepal[59], which likely reflects

the stringent diagnostic criteria and regularity of blood culture in the challenge model. Safety

considerations in the design of this study, including early initiation of rescue therapy, limit the

extent that our findings can be extrapolated to endemic settings[60]. It is plausible that some

individuals who did not develop enteric fever during the 14-day observation period may have

progressed to symptomatic disease/bacteraemia had antibiotic treatment not been initiated in

all participants. Conversely, some participants who were diagnosed based on bacteraemia in

the absence of clinical signs of disease may not be representative of typhoid fever in the field–

indeed, spontaneous clearance of asymptomatic S. Typhi bacteraemia in the absence of treat-

ment has been described[61].

As only a single strain from each serovar was used in this study we cannot conclusively rule

out a strain-specific effect for our observations. However, the NVGH308 strain is a recent clin-

ical isolate from a symptomatic case with bacteraemia, and is closely related to currently circu-

lating strains [20]. The Quailes strain of S. Typhi is also related to other known disease causing

isolates[19,62]. Both S. Typhi and S. Paratyphi A are clonally monomorphic pathogens con-

taining limited genomic variation17, suggesting that the pathogenicity and immune response

to both the Quails and NVGH308 strains should translate to other wild-type strains.

It could be speculated that a larger protective effect would have been observed had we

employed a shorter interval between challenge episodes. Other re-challenge studies of enteric
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pathogens have typically used an interval of 1-�12months [24–33]. The minimum interval

between primary challenge and re-challenge in this study was set at 12 months, which was

defined primarily to ensure the safety and comfort of study participants in mind.

The overarching aim of this study was to investigate the mechanisms and determinants of

immunity following natural infection with S. Typhi and Paratyphi. To address this within the

context of the challenge model, the study incorporated a re-challenge group to approximate

individuals with prior immunological priming. Re-challenged participants were compared

with ostensibly “immunologically naïve” individuals from a non-endemic country with no

known prior exposure to typhoidal Salmonella. In reality, both the naïve and re-challenge

groups are internally heterogenous with respect to baseline immune status, with a degree of

overlap between groups. This was the illustrated by the elevated baseline anti-Vi IgG in the

naïve cohort (S10 Fig), presumably reflecting undisclosed/undocumented travel vaccination

or cross-reactive immune responses from exposure to other serotypes. Re-challenge studies

aim to approximate of the extent of immunity conferred by prior exposure to a pathogen.

However, a single discrete exposure to a high pathogen load is unlikely to be representative of

the exposure dynamics in typhoid and paratyphoid fever in endemic settings, where immunity

is thought to be acquired through multiple exposure episodes over time. In addition, the age-

distribution of participants enrolled in the challenge studies (Table 1) was not representative

of those who acquire typhoid/paratyphoid fever in many endemic settings. In order for find-

ings from challenge studies to inform studies of transmission and vaccine development in

countries with the highest burden of disease, it will be necessary to compare findings from

challenge studies with naturally occurring disease in an endemic setting. To that end, prospec-

tive studies comparing the response to natural infection in typhoid endemic countries are

ongoing.

In this study we have described the application of a controlled human infection model to

study infection derived immunity to S. Typhi and Paratyphi infection. By comparing groups of

individuals who have been previously exposed to these pathogens, this approach aims to assess

the contribution of infection-derived protection in the prevention (or otherwise) of subse-

quent disease. This approach has proven valuable in vaccine development for other enteric

pathogens, such as Shigella spp[63] and Vibrio Cholerae[24,25], and could potentially acceler-

ate the development of vaccines for S. Paratyphi A. Improved understanding of infection-

induced immunity could provide valuable data to refine modelling of transmission dynamics

and vaccine impact measures, in addition to aiding the identification of correlates of protec-

tion to expedite vaccine development for S. Typhi and Paratyphi.
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