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Response of residential water demand 

to dynamic pricing: 

Evidence from an online experiment 

 
Riccardo Marzano, Charles Rougé, Paola Garrone, Julien J. Harou, Manuel Pulido-

Velazquez 

Abstract  

Urban water demand management is key to water supply sustainability in high-density, 

water-stressed areas throughout the world, and emerging technologies could transform it. In 

particular, smart metering could allow for conserving water by dynamically changing prices 

to reflect water scarcity and supply cost variability. Yet, little is known on end-users’ 

reaction to short-term price changes, an essential determinant of the effectiveness and 

acceptability of dynamic water pricing. This paper reports on the design and results of an 

online experiment that measures end-users’ water consumption decisions when confronted 

with time-varying prices, and investigates the interaction between pricing and water scarcity 

awareness. We design a series of treatments where players must indicate their shower length 

given different water prices, price variations, and scarcity scenarios. Beyond corroborating 

the theory that higher prices lower usage, the experiment finds evidence of a dynamic 

pricing effect: users respond more strongly to a given price if they have been exposed to a 

lower price before. This suggests short-term residential price increases could be effective at 

boosting water conservation.  

 

Keywords: dynamic pricing; urban water; online experiment; water scarcity  
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1. Introduction 

Are time-varying prices an effective water conservation measure? This question has been of 

little practical value until recently in a sector where price changes over time were the 

exception rather than the norm (Olmstead and Stavins, 2009). However, recent technological 

advances such as “smart” meters make it possible to manage water demand by moving from 

time-invariant to time-varying volumetric prices, known as dynamic pricing (Pérez-Urdiales 

and García-Valiñas, 2016; Lopez-Nicolas et al., 2018; Rougé et al., 2018; Vesal et al., 

2018). Smart meters gather household’s water consumption data on sub-daily basis (e.g., a 

few minutes to an hour), thanks to the installation of high resolution sensors and their 

integration in utility’s data systems, making possible the transmission of detailed feedbacks 

to users (Cominola et al., 2015).1 Examples of cities that have deployed smart meters on a 

large scale include San Francisco and London.2  

Dynamic prices aim to enhance water use efficiency because they reflect real-time variations 

of water supply costs and incentivize water conservation among customers. Several time-

varying factors influence water supply costs, including demand peaks, demand trends, water 

scarcity, and opportunity costs related to alternative human and ecosystem-related water 

uses (Brelsford and Abbott, 2017). In principle, dynamic pricing could help better consider 

these factors and help manage residential water demand (Rougé et al., 2018). In particular, 

increasing water prices during scarcity scenarios could send end users a signal on water 

value, leading to a decrease in demand and more efficient water allocation across time and 

                                                             

1 Smart meters will also facilitate the integration of electricity and water demand side management (Maas et 
al., 2020). 
2 Further information can be retrieved from the websites of The San Francisco Public Utilities Commission 
(https://sfwater.org/index.aspx?page=386) and Thames Water (https://www.thameswater.co.uk/help/water-
meters/getting-a-water-meter). 

https://sfwater.org/index.aspx?page=386
https://www.thameswater.co.uk/help/water-meters/getting-a-water-meter
https://www.thameswater.co.uk/help/water-meters/getting-a-water-meter
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among uses (Pulido-Velazquez et al., 2008; Pulido-Velazquez et al., 2013; Macian-Sorribes 

et al., 2015). Recent work has demonstrated it is possible to design such tariffs for 

residential users in drought-prone Valencia, Spain, while balancing economic efficiency 

with other tariff objectives such as cost recovery and equity (Lopez-Nicolas et al., 2018). 

Frequent price variations over time are commonplace in many industries, from travel to 

online and traditional retail. In recent years, electricity utilities also experimented with 

dynamic pricing policies, linking the unit price charged to end users with variations in the 

marginal costs of electricity supply (Faruqui and Sergici, 2010; Ito et al., 2018; Joskow and 

Wolfram, 2012; Wolak, 2010). Yet, political resistance to time-varying prices and 

unavailability of cheap enabling technologies (Dutta and Mitra, 2017) have proved to be 

important hurdles to the implementation and diffusion of dynamic pricing in the electricity 

sector. These barriers may prove even higher in the water sector where time-varying prices 

could be considered as an infringement on the essential right to water.  

What is more, impacts of dynamic pricing on water use are uncertain due to contrasting 

evidence from the economic literature. Established wisdom suggests that price elasticity of 

demand should be lower in the short run than in the long one (Hicks, 1939). The common 

rationale for this is that it takes time for consumers to become fully aware of a price increase 

and adapt their choices. This is true for goods as varied as gasoline (Espey, 1998; Sterner, 

2007; Brons et al., 2008; Havranek et al., 2012) and electricity (Holtedahl and Joutz, 2004; 

Halicioglu, 2007) or cigarettes (Becker et al., 1994). For residential water use, short-term 

price elasticity may be even lower because end users may find it difficult to fully adjust to 

the new price if price variations are sudden or expected to be frequent.  

That being said, different mechanisms can lead end users to respond to dynamic pricing. 

First, end users may over-react to sudden changes in water price. Adaptation-level theory 
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holds that agents judge a stimulus relative to the level to which they have become adapted 

(Helson 1964). Consumers immediately compare a new price to the past reference price 

(Mizutani et al., 2018), i.e., to a predictive price expectation that is shaped by past 

purchasing experiences and the current context (Briesch et al. 1997; Kalyanaram and Winer 

1995; O'Donoghue and Sprenger 2018). Second, water consumers may become more 

sensitive if prices were to change more frequently. Agents incrementally react to repeated 

stimulation, because a sensitization process drives the behavioral outcome of a sequence of 

stimuli (Groves and Thompson, 1973). 

Empirical evidence for price elasticity of residential water demand upholds the intuitive idea 

that demand is more elastic in the long run (e.g., Espey, 1997; Marzano et al., 2018; Nauges 

and Thomas, 2003). In some studies, the price-driven reduction of consumption has been 

estimated in the short run by exploiting the introduction of increasing block rates (Wichman, 

2014) or an additional price block (Nataraj and Hanemann, 2011). However, they were one-

off price shocks, perceived by customers as persistent. Accordingly, the estimated price 

responses can hardly be conceivable as dynamic pricing effects. Besides, a recent study 

(Schleich and Hillenbrand, 2019) has provided evidence that the short-term effect of a price 

increase was stronger than that of a price decrease, and showed that computing a unique 

short-run elasticity for both types of price changes amounted to underestimating the short-

term impacts of tariff hikes. This contrasting evidence suggests the possible impacts of 

dynamic pricing on demand are not a foregone conclusion and require further investigation. 

These dynamic water price changes can also continue on the long term, making it debatable 

whether they are exclusively short-term in nature. Further complicating the picture, price 

information magnifies water demand response when it is available (Gaudin, 2006), so that 
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the possibility to inform end users of their consumption-related costs in real time could 

impact effectiveness of smart-meter-enabled dynamic pricing. 

This work investigates the role of dynamic pricing in residential water demand management. 

The paper tests (1) whether the price effect is larger (or smaller) when end users face 

dynamic pricing, and (2) how water scarcity awareness moderates price effects. It answers 

both questions through an experimental setting. We recruit 424 players and ask them to use 

a small endowment to buy some running water and take a hypothetical shower. A group of 

players faces an increase in the unit price of water, whereas a control group is allowed to 

buy water at a steady price. Our experimental setting allows us to discriminate between the 

effect of static pricing (lower showertime associated to a higher price) and the effect of 

dynamic pricing (showertime reduction associated to a price increase). In addition, for each 

of the two groups, a subgroup is exposed to a hypothetical water scarcity scenario, which 

makes it possible to determine if water scarcity awareness magnifies or lessens the dynamic 

price effect (Garrone et al., 2019).    

We contribute to the literature on the use of economic measures to foster resource 

conservation. In this field experimental studies have been drawing increasing attention. Most 

of them focus on electricity consumption and examine a wide range of time-varying price 

schemes, such as time of use, critical peak pricing, peak-time rebate, real-time price, and 

variable peak pricing (Faruqui and Sergici, 2011; Faruqui et al., 2014; Herter and Wayland, 

2010; Ida et al., 2013; Qiu et al., 2018). There are field experiments that exploit pilots 

carried out in different geographical settings, but mostly in the United States (Aubin et al., 

1995; Faruqui and Sergici, 2010; Pellerano et al., 2017; Wolak, 2007). In the realm of water 

economics, some field as well as natural experiments have been conducted to assess the 

effect of water tariffs and other policy instruments (Brent and Ward, 2019; Castledine et al., 
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2014; Ferraro et al., 2011; Wichman, 2014). To the best of our knowledge, this is the first 

experiment to attempt to study the effect of dynamic pricing on residential water 

consumption. Though relying on hypothetical water use, it exposes end users to price 

variations that are perceived as closely as possible to dynamic price changes. We do this by 

asking players to envisage a scenario in which a dynamic pricing policy would be adopted 

and try to answer truthfully, by exposing them to information they are likely to be exposed 

to along with the adoption of dynamic pricing policies, and by charging them for water 

usage. We find end users who face a price increase reduce water consumption to a greater 

extent than the consumption difference predicted by a static demand curve. Moreover, our 

findings suggest that water scarcity awareness neither amplifies nor depresses the dynamic 

pricing effect.  

The rest of this paper is organized as follows. Section 2 presents the experiment’s rationale, 

including a treatment of potential experimental pitfalls. Section 3 presents the experimental 

data. Section 4 analyses the results and describes evidence supporting the existence of a 

dynamic pricing effect. Section 5 adds robustness checks to the results to address potential 

concerns with the experimental setting. Section 6 discusses the findings and Section 7 offers 

conclusions and recommendations. 

2. Experiment  

The aim of the experiment is to measure the effect of dynamically changing the price on 

residential water consumption. To achieve this, our experiment allows us to decompose the 

overall response of water consumption to a change of price, or price effect, in two 

components. The static (or long-run) price effect is defined as the difference observed in 

water demand between end users who face different prices without having experienced price 
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variations since long. When the price faced by end users is the outcome of a sudden price 

variation over time, the experiment is separating this static price effect from additional 

variations in water consumption. If they exist, we will call this second effect the dynamic 

pricing component. 

Our treatment is dynamic pricing, as we expose treated players to an increase in the unit 

price of water. They go from a baseline question about their water consumption choice, 

where price is set to 𝑝𝑙𝑜𝑤, to an endline question on water consumption choice, where price 

is set to 𝑝ℎ𝑖𝑔ℎ. In order to control for any potential factor that may induce players to change 

their behaviors going from the baseline to the endline question, we maintain a control group 

with players who are not exposed to any price variations over time. Players in the control 

group face a unit price of water set to 𝑝ℎ𝑖𝑔ℎ both in the baseline and in the endline setting. 

The control group provides a counterfactual, a scenario where we ask players about their 

water consumption without contextual changes.     

We confront players with a single specific water use, showering, for reasons explained in 

detail in Section 2.2, so that water consumption is represented by shower time. 𝑆𝑇(𝑝.) is the 

shower time chosen by players for water price 𝑝..  
The price effect (𝑃𝐸) is the so-called “difference in differences” obtained by subtracting the 

average shower time change in the control group to that in the treatment (dynamic pricing) 

group:  𝑃𝐸(𝑝𝑙𝑜𝑤 , 𝑝ℎ𝑖𝑔ℎ) = [𝑆𝑇(𝑝𝑙𝑜𝑤) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑒𝑛𝑑𝑙𝑖𝑛𝑒] 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  
                                                    −[𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑒𝑛𝑑𝑙𝑖𝑛𝑒] 𝐶𝑜𝑛𝑡𝑟𝑜𝑙          (1) 

The average treatment effect computed by differencing the answers of the two treatment 

groups for the baseline question provides us with the static price effect (𝑆𝑃𝐸): 
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𝑆𝑃𝐸(𝑝𝑙𝑜𝑤 , 𝑝ℎ𝑖𝑔ℎ) = [𝑆𝑇(𝑝𝑙𝑜𝑤) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒] ∨ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − [𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒] ∨ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙(2) 

The overall price effect (𝑃𝐸) is therefore the sum of the static pricing effect (𝑆𝑃𝐸) and an 

additional dynamic pricing component (𝐷𝑃𝐶: 

 𝑃𝐸(𝑝𝑙𝑜𝑤 , 𝑝ℎ𝑖𝑔ℎ) = 𝑆𝑃𝐸(𝑝𝑙𝑜𝑤 , 𝑝ℎ𝑖𝑔ℎ) + 𝐷𝑃𝐶(𝑝ℎ𝑖𝑔ℎ) ,  (3) 

where the dynamic pricing component is: 𝐷𝑃𝐶(𝑝ℎ𝑖𝑔ℎ) = [𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑒𝑛𝑑𝑙𝑖𝑛𝑒] 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − [𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑒𝑛𝑑𝑙𝑖𝑛𝑒] 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (4) 

2.1. Online survey platform and sample 

We implemented the experiment through Microworkers (www.microworkers.com), for its 

popularity and ease of use (Crone and Williams, 2017). We conducted preliminary tests to 

determine what would be a large enough pool of English language respondents with cultural 

homogeneity on the Microworkers website. According to these tests, which mirrored those 

from previous assessments (e.g., Hirh et al., 2011), respondents were chosen in the pool of 

Microworkers participants from the USA and Canada. We tailored the phrasing of questions 

to fit that audience. 

The task on Microworkers redirected respondents to a multi-part questionnaire that 

comprises survey and experimental parts (see Section 2.2 for details). We used 

SurveyMonkey to design the questionnaire because of the availability of advanced logic 

tools and survey customization options. These tools enabled us to set up the experiment with 

two four-digit PIN numbers that players had to enter as proof that they had gone through all 

the steps of the game. The first PIN number is dependent on the answer to the experimental 

question: the reported value determines the player’s final payoff. The second PIN number is 

only available upon completion of the totality of the survey’s question. A total of 424 survey 
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points were obtained of which 415 had no missing values and were usable in the empirical 

analyses. 

2.2. Experimental design 

We focus on a single specific water use, showering, for three reasons. First, there is evidence 

that showering is one of the most water consuming actions in a household, accounting for a 

residential water consumption share that ranges from 19% to 25% (see Mayer et al., 1999; 

Beal & Stewart, 2011; Energy Saving Trust, 2013). Second, unlike many other water uses, 

showering is performed by the vast majority of the potential players, and showering time is 

under their full control. They experience the action of showering directly and are 

accordingly well aware of the satisfaction this brings them, if any. Third, unlike flushing the 

toilet (which competes with the shower for being the largest water consuming action in a 

household), the use of water to shower is not discrete, but can be continuously adjusted by 

the player. This gives us the possibility to measure the effect of pricing more effectively.  

The game had four parts: 1) a pre-experiment survey, 2) a baseline shower time choice, 3) an 

endline shower time choice, where the player’s final monetary payoff is determined, and 4) a 

post-experiment survey. As mentioned before, the design was both within-subject (we have 

both pre-price-change and post-price-change choices) and between-subject (players receive 

different price treatments). Each player was randomly assigned to Treatment or Control, and 

within them to two sub-treatments. These group assignments determined which initial unit 

water price the player would receive and under which water scarcity scenario she would be 

exposed when making an endline shower time choice. Table I shows the distribution of 

respondents across the four treatments. Each treatment features at least 100 respondents. 

[Insert Table I about here] 



10 

 

We exposed players in the treatment groups to a price per minute of shower time of 5 cents 

when asked to make their baseline choice, whereas the price went up to 10 cents per minute 

of shower when players had to choose their endline shower time. The control groups, 

instead, were exposed to a price per minute of shower time of 10 cents when choosing both 

their baseline and endline shower times. These monetary amounts are not meant to strictly 

reproduce actual water tariffs in North American urban areas, but rather, to introduce an 

easily intelligible monetary incentive. This was a reason for sticking to a unique price of 

water that is tangible to respondents. Note that implied water prices are not very far from the 

range of water service tariffs in the United States. These range between USD 3 and 25 per 

kGal for water and wastewater services, depending on the municipality (US Department of 

Energy). Assuming an average flow rate of 2 gallons (7.6L) per minute, the price of water 

per minute of shower ranges between 0.6 and 5 cents per minute. If we also add to that the 

actual energy costs of heating the water (0.2 kWh for 2gal for the shower, priced at 13 cents 

per kWh on average: 2.6 cents per minute of shower), that makes our 5 cent estimate very 

reasonable.  

The water scarcity sub-treatment is presented both by using the wording: “Now assume that 

there currently is a severe drought in your area, similar to the recent drought in California 

(see pictures)” and by showing two pictures that recall a drought scenario (see the Appendix 

A2). 

Coming to the monetary incentive, respondents are informed that, at the end of the 

experiment, they will be rewarded for saving money from an initial $1.5 endowment, and 

for getting satisfaction from their shower (see Appendix A2). Therefore they can understand 

that they will be paid “well” if they manage to balance expense reduction (shorter showers) 
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and personal comfort (longer showers). However they do not know the analytical expression 

of the payoff function. 

Actually, the underlying payoff function penalizes ridiculously low shower times, and 

rewards median shower times that give the best trade-off between cost and comfort (the 

longer the shower, the larger the expenditure, but the greater the satisfaction). A minimum 

of $2 is allocated for completing the survey, and the variable part depends on the response to 

the experimental question; shower times from 6 to 8 minutes yields the maximal payoff of 

$2.40. The shape on the payoff function, displayed in Figure 1, deliberately does not depend 

on the treatment, as we have been operating under the null hypothesis that treatment would 

not change behavior.  

[Insert Figure 1 about here] 

When asked to choose their showertime, respondents are unlikely to focus exclusively on 

earning maximization, and to neglect their true preference, owing to general reasons and to 

specific features of our experiment. First, recent literature has shown that people tend not to 

lie when confronted with the choice between answering truthfully and maximizing payoffs, 

even in anonymous experiments like ours (see Abeler et al., 2019). Second, we argue that in 

our setting the balance is further tipped in favor of reporting the true preference. Players can 

only guess the answer that maximizes the reward, since they only have some hints on the 

analytical payoff function without knowing it, that is, the outcome of any possible 

maximization is uncertain. Additionally, while the prospect of rich payoffs could 

overshadow lying costs, here only a limited amount of money is at stake.  

The low average payoff may also create an issue as it could be argued that players may not 

take the experiment seriously enough. Besides mitigating the concern related to the payoff 

maximizing behavior just discussed, there is a key reason that led us to set low payoffs: 
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payoffs should mirror costs and benefits at stake when making decisions that our experiment 

seeks to reproduce. Water prices are low and the benefits of taking a shower should be on 

the same scale: this puts constraints on the range of possible payoffs to which players should 

be exposed. The maximal payoff compares with the expense born by US users. Besides, 

despite payoffs that are 10 times smaller, experiments run on an online platform (Amazon 

Mechanical Turk) are shown to replicate the results of experiments with the same design run 

in a physical laboratory (Horton et al., 2011).   

2.3. Addressing experiment design challenges 

The literature has long cautioned about superficially comparing results obtained by relying 

on contextual judgments. These are common in a within-subject design where the difference 

between a subject’s behavior in two different settings is of interest. It has also warned about 

responses based on decisions made in isolation, as it is the case in a between-subject design 

– where the average difference between two sets of subjects in two different settings is of 

interest. Scholars argue that decision framing may significantly impact choices in both 

situations (Tversky and Kahneman, 1986; Andreoni, 1995).  

In particular, a within-subject design is susceptible to carry-over, demand and sensitization 

effects (Charness et al., 2012). Carry-over effects involve the possibility that the exposure to 

the first setting may affect the behavior in the subsequent setting (Greenwald, 1976), or in 

other words, that answering an experiment’s baseline question affects the answer to the 

endline question. The demand effect consists in the bias induced in the players’ responses by 

the natural inclination to satisfy what they perceive to be the experimenter’s expectations, be 

it consciously or not (Rosenthal, 1976; White, 1977). Despite the potential presence of 

demand effects both in between- and within-subject designs, they are likely to be stronger in 
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the latter, where moving the player from one setting to another makes her starkly aware of 

the change to the experimental environment. Sensitization effects come from over-

sensitivity to repeated stimuli stemming from a change in parameters as a result of a non-

associative learning process in which repeated administration of an inducement leads to a 

progressive amplification of a response (Shettleworth, 2010).  

The proposed experimental design is both within-subject (with both pre-price-change and 

post-price-change choices) and between-subject (players receive different price treatments). 

Without understating the caveats above, experiments such as the one proposed in this paper 

have relevance that stems from their external validity. Indeed, the context where an 

individual faces an abrupt price increase is naturally reproduced by a within-subject design. 

Besides, some of the psychological factors that are often held responsible for the 

disagreement between results obtained using within- and between-subject designs are the 

same that can explain the emergence of what we call the dynamic component (𝐷𝐶) in the 

response to price change. As a result, they should not be treated as spurious elements but as 

cognitive mechanisms which could make dynamic pricing instruments distinct from fixed-

price policies in that they elicit a different demand response – as indicated by evidence from 

cases where water utilities increased the volumetric fare (e.g., Inman and Jeffrey, 2006). 

This holds true for carry-over and sensitization effects, but leaves out the demand effect, 

which has to do with the peculiarity of the experimental setting and not with the pricing 

treatment itself.  

Therefore, the experiment comprises robustness checks to tackle the issue of demand effect 

and boost its internal validity. First, we ask players about the perceived intent of the 

experiment and check whether the latter is able to significantly predict the assignment of 

players to the Treatment group. Second, we check whether players who are more able to 
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detect the intent of the study as well as more willing to change their choices given the 

experimenter's intent react to a different extent when they are in the Treatment group. 

Additionally, we address the concern that the 𝐷𝐶  of price effect may have been 

overestimated because of unobservable differences between the Treatment and the Control 

groups (for details on the robustness checks, please see Section 5). 

3. Data: survey and experiment 

We use a set of pre-experimental questions identical across all treatments to provide a series 

of controls to experimental data. This part consists of two subsections. The first subsection 

checks on sample representativeness and controls for sample heterogeneity by asking 

players basic questions about their gender, age and level of education, along with basic 

information about their household (number of adults/children) and accommodation (property 

type, tenure and number of bathrooms). The second subsection includes questions about the 

players’ water consumption habits and their perception of consumption and prices. Players 

have to estimate their households’ daily water consumption as well as the monthly water 

bill, compare their household’s water consumption with that of similar households in the 

area, and guess what activity consumes the most water on a monthly basis. Players are then 

invited to provide information on the frequency of their showers and baths on a weekly basis 

and on their shower time. To control for the fact that respondents might bias their answer 

based on what they perceive to be the experiment’s intent (e.g., by selecting a lower shower 

time if they believe experimentalists want to reward conservation), we checked the 

perceived intent in post-experiment questions. 

Table II reports the distribution of the players by gender, age and education. The sample is 

evenly distributed between male and female with a slight predominance of the latter gender 
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group (213 vs. 202). The most populated age range of respondents is between 21-30 

(47.4%); the sample also includes players below 20 (12.0%) and more than 50 (7.4%). Two 

hundred and twenty-nine players out of 418 (54.8%) have a degree which is higher than or 

equivalent to the university degree, whereas only approximately 43.5% of the players have 

reported to have a certificate which is below or equivalent to the high school degree. It is 

worth mentioning that since we control for the demographic characteristics of the players in 

our regression models, stratification based on gender, age and/or education does not cause 

any problems of consistency. 

[Insert Table II about here] 

Table III shows the descriptive statistics relative to the players’ shower and bath habits. On 

average, the sampled players take 5.67 showers per week, with a reported maximum number 

of 11. Before the experiments, we also request players to provide an estimate of the time 

they spend in the shower. They were free to enter any integer value between 0 and 60 

minutes. We call this variable Satisfaction to differentiate it from the Shower time indicated 

in the experimental section of the survey. Its mean value across the sample is 11.2 minutes 

while its median value is 10 minutes.  

[Insert Table III about here] 

As far as the experiment is concerned, reported shower time (𝑆𝑇) can range from 1 to 15 

minutes. When only baseline questions are considered, the variable has a mean value of 8.12 

minutes and a standard deviation of 3.34 minutes; the mean value goes down to 6.33 

minutes (with a standard deviation of 2.91 minutes) in response to endline questions. We 

can also look at the variations in the showertime when going from the baseline to the endline 

question for Treatment and Control groups. Figure 2 shows the boxplots of the showertime 



16 

 

also discriminating subgroups confronted with the water scarcity scenario from those that 

faced a regular one.  

[Insert Figure 2 about here] 

The preliminary evidence is that both treatment (dynamic change in the water price) and 

water scarcity condition lead to a decrease in the showertime. Moreover, the two 

mechanisms seem not to reinforce each other. Though we randomly assigned players to 

groups, this evidence should be handled with caution as we are not controlling for 

confounding factors (gender, age, education, water-using habits,…) that may introduce 

heterogeneity across groups. We will do that by estimating the regression models (see 

Section 4).     

The first post-experiment survey section is about players’ environmental concerns. Thus, 

players have to rate their personal environmental attitudes and report their most recent 

exposure to informational campaigns on water conservation issues (e.g. messages from 

conventional or social media). The second section aims to elicit players’ perceived intent of 

the experiment, as well as their willingness to change behaviours based on that perceived 

intent. As explained above, this information is useful to perform robustness checks, and in 

particular to control for demand effects. 

4. Results 

Table IV presents the results obtained using both baseline and endline choices. We use a 

difference-in difference (DID) approach and estimate the following model: 𝑆𝑇𝑖𝑡 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛽2𝐸𝑛𝑑𝑙𝑖𝑛𝑒𝑡 + 𝛽3(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 ∗ 𝐸𝑛𝑑𝑙𝑖𝑛𝑒𝑡) +𝛽4𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦𝑖 + 𝛽5(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 ∗ 𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦𝑖) + 𝛿𝑋𝑖 + 𝜀𝑖𝑡                   (5)                                                 
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The dependent variable (𝑆𝑇𝑖𝑡)  is the reported shower time in minutes by player 𝑖  when 

answering to question𝑡 = (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒; 𝑒𝑛𝑑𝑙𝑖𝑛𝑒). The explanatory variables are: 

 Treatment: the treatment dummy taking the value 1 for players assigned to the 

treatment groups and 0 for players assigned to the control groups;  

 Endline: a dummy taking the value 1 for endline choices and 0 for baseline ones, 

standing alone and interacted with Treatment (Treatment*Endline);  

 Scarcity: a dummy referring to the scarcity scenario, standing alone and 

interacted with Treatment (Treatment*Scarcity).  

Recall that scarcity is only introduced in endline questions. The model also includes a vector 

of controls at the player level 𝑋𝑖 along with a error term𝜀𝑖𝑡. 
Columns (1-3) report the panel tobit estimates. We use tobit as our dependent variable is 

censored from above at 15 minutes (i.e., we may observe showertime equal to 15 minutes 

for some players whose preference was to shower for longer than 15 minutes). For the sake 

of comparison, we also report linear panel estimates in column (4). 

We can refer to Equations (1-4) for the interpretation of the coefficients𝛽𝑘 with𝑘 = 0,… ,5. 𝛽0is the constant of the model and represents the estimated value of [𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒] ∨
𝐶𝑜𝑛𝑡𝑟𝑜𝑙; 𝛽1 is the difference in𝑆𝑇 between players in the treatment group and those in the 

control group at the baseline question(𝐸𝑛𝑑𝑙𝑖𝑛𝑒 = 0), i.e.  [𝑆𝑇(𝑝𝑙𝑜𝑤) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒] ∨ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 −[𝑆𝑇(𝑝ℎ𝑖𝑔ℎ) 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒] ∨ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 . This is, according to Equation (2), the effect of a static price 

change 𝑆𝑃𝐸  when we are in a scenario characterized by regular water availability (𝑆𝑐𝑎𝑟𝑐𝑖𝑡𝑦 = 0). Coefficient 𝛽2  captures the drift induced by being confronted with the same 

choice one more time. 𝛽3   is the overall price effect, 𝑃𝐸 , defined by Equation (1) as a 

difference-in-differences response to price change. 𝛽4  accounts for the effect of being 
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exposed to a water scarcity scenario for control group players. Finally, coefficient 𝛽5 is the 

incremental effect of water scarcity for treatment group players. 

The estimates that refer to specifications which include only the treatment dummies are 

reported in column (1) in Table IV. A first set of controls, i.e. the respondents’ shower 

habits (number of showers per week (Showers)) and the satisfaction from showering 

(Satisfaction), are considered in column (2). Additional player-specific controls, i.e., gender 

(Female), age (Age), age-squared (Age^2), and education level (Education) are added in 

column (3). 

[Insert Table IV about here] 

The coefficient associated with Treatment (𝛽1 ), is statistically significant in all three 

specifications. It is positive, suggesting that players choose to buy more water for showering 

when they face the lower price 𝑝𝑙𝑜𝑤  in the baseline question, i.e. when they are in the 

Treatment group and before being exposed to a price variation. This is the static price effect 

(𝑆𝑃𝐸) (Equation (2)). Its magnitude, which represents the average shower time reduction 

with a higher price, ranges from 0.54 to 0.62 across the specifications, with the higher 

reduction corresponding to the most complete specification, i.e., last column on Table IV.  

The overall effect of a change in the unit price of water (PE) is given by the coefficient 𝛽3 of 

the interaction term Treatment*Endline (Equation (1)). Irrespective of the specification, PE 

is negative and statistically significant at the 1% level. This means that players in the 

Treatment group, i.e., those who have been exposed to the price increase over time, reduce 

their shower time when switching from the lower price 𝑝𝑙𝑜𝑤 to the higher price 𝑝ℎ𝑖𝑔ℎ. The 

magnitude of the effect is similar across specifications with an average shower time 

reduction of 1.27 minutes. Since the average shower time in the baseline question in the 

treatment group is 8.39 minutes, the price variation from 5 to 10 cents reduces water 
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consumption by about 15%. Importantly, the overall effect of changing the price (𝑃𝐸) is 

stronger than the one relative to the static price (𝑆𝑃𝐸) both in magnitude and in significance. 

The difference has been tested to be significantly different from 0 at the 10% statistical 

level. This result suggests the existence of a dynamic pricing component (𝐷𝑃𝐶) which 

accounts for the difference between the two effects. This would suggest that a dynamic price 

increase would have a stronger impact on water conservation than a static price difference.  

In obtaining this result, we controlled for effects that could have led players to 

systematically give answers in the endline setting that are different from those given in the 

baseline one. In fact, the use of a Control group allows to capture the drift induced by 

making the same choice twice, through the coefficient 𝛽2. This coefficient is negative and 

statistically significant, suggesting that players have reduced their shower time also when 

the price has remained unchanged.     

Results also give indications on how price policy and water scarcity interact with each other. 

The combined evidence of a negative and statistically significant coefficient 𝛽4 associated 

with Scarcity and a non-significant coefficient  𝛽5  associated with the interaction term 

Treatment*Scarcity suggests that players would take shorter showers as a reaction to an 

announcement of water shortage whatever the price they face. The magnitude of this scarcity 

effect is large, leading them to reduce shower time by 1.69 minutes on average according to 

the most thorough specification (column (3) of Table IV). It is present regardless of whether 

the scarcity scenario is introduced alongside a price measure or not. Evidence of this is the 

lack of statistical significance for coefficient 𝛽5  at any conventional level in all the 

specifications. Accordingly, water scarcity and price policy seem to be two independent 

mechanisms that can be used together for maximal demand response. 
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5. Robustness checks 

As discussed in Section 2.3, demand effects might arise in our design. This means that 

players’ answers might be impacted by their desire to comply with or defy the perceived 

intent of the experiment. We address demand effects in two ways. 

First, demand effects are less likely if players are not able to recognize the intent of the 

study. The post-experiment survey asked players what they thought the intent of the study 

was. Results available in Table V show that there is no significant correlation between 

perceived intent and both the assignment of players to the Treatment group (column 1) and 

their reduction in showertime going from the baseline to the endline choice (column 2). It 

suggests that there is no one clear way in which demand effects might act. 

[Insert Table V about here] 

Second, if demand effects are present, they should differently affect players who are more 

able to detect the intent of the study and are more willing to change their choices given the 

experimenter's intent. We proxy for this ability using the Self-Monitoring Scale (Snyder 

1974), and find no evidence that self-monitoring ability moderates the treatment effect. 

We asked consumers to respond to each of the following four statements on a five-point 

Likert scale, from Strongly Agree to Strongly Disagree. The statements are: 

 “It's important to me to fit in with the group I'm with.” 

 “My behavior often depends on how I feel others wish me to behave.” 

 “My behavior is usually an expression of my true inner feelings, attitudes, and 

beliefs.” 

 “I would NOT change my opinions (or the way I do things) in order to please 

someone else or win their favor.” 
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SMS Factor provides a synthetic indicator of the willingness to change choices to comply 

with the experimenter's intent. In order to construct the indicator, we performed a principal 

component analysis using the variables relative to the four dimensions of self-monitoring 

reported above. The analysis identifies one dominant factor, which alone accounts for 42% 

of the total variance. It loads positively on the first two dimensions and negatively on the 

last two. For each player, we define the variable SMS Factor by the factor score coefficient 

resulting from principal component analysis. Accordingly, a higher value of SMS Factor 

indicates a higher willingness to comply with the perceived experimenter’s intent.  

[Insert Table VI about here] 

As evidenced in Table VI, none of the interacting terms between our treatment dummies and 

SMS Factor is statistically significant. In addition, the coefficients of Treatment, 

Treatment*Endline, Endline and Scarcity ( 𝛽1, 𝛽2, 𝛽3, 𝛽4 ) preserve sign and statistical 

significance.   

Another concern with the results reported in Table IV is that the dynamic pricing component 

(𝐷𝑃𝐶) may have been overestimated as a consequence of unobservable differences between 

the treatment and the control groups. Indeed, suppose that the players in the treatment group, 

exposed to 𝑝𝑙𝑜𝑤 in the baseline setting and to 𝑝ℎ𝑖𝑔ℎ in the endline one, have had reasons to 

report shorter shower times than players in the control group (who are exposed to 𝑝ℎ𝑖𝑔ℎ both 

in the baseline and the endline setting). Then, the idiosyncratic differences between the two 

groups would have led to an underestimation of the static price effect (𝑆𝑃𝐸) and, in turn, to 

the emergence of a difference between the overall price effect (𝑃𝐸) and the 𝑆𝑃𝐸, which we 

refer to as the dynamic pricing component (𝐷𝑃𝐶) of the price effect.  
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In order to rule out this issue, we quasi-externally validate our results using an additional 

sample of players whom we recruited for a pilot wave of the experiment. Since we used the 

pilot wave to refine our experimental design, it differs in some features from the final design 

described in the paper. The two most important differences in the pilot wave are the lack of 

an endline setting and the possibility for players to choose their shower time in a range of 1-

10 minutes rather than 1-15. 

With these differences in mind, we can use the pilot wave to show that the estimated 𝑆𝑃𝐸 

using the final sample is not biased by unobservables. In fact, since both players in the pilot 

and final waves are exposed to the same 𝑝ℎ𝑖𝑔ℎ and 𝑝𝑙𝑜𝑤 , depending on having being assigned 

to the treatment and control group, we can compute the two 𝑆𝑃𝐸s and confirm that they do 

not differ across samples. Table VII shows the results of this additional test. 

[Insert Table VII about here] 

As expected, coefficient 𝛽1 associated with Treatment is positive and statistically significant, 

reflecting the increase in shower time when players are exposed to 𝑝𝑙𝑜𝑤 . More interestingly, 

for the purpose of the test, is the coefficient of Treatment*Pilot. It is not statistically 

significant, suggesting that the estimated difference between the 𝑆𝑃𝐸s relative to the two 

samples is not statistically different from 0, thus confirming that our results are not driven 

by idiosyncratic players’ behaviors. Not surprisingly, players in the pilot wave reported, on 

average, shorter shower times as a consequence of the narrower range they could use to give 

their answers (see the negative and statistically significant coefficient of the variable Pilot). 

6. Discussion and policy implications 

In our experimental setting, results show that residential water consumers respond to a price 

increase by lowering consumption. Besides that expected finding, experimental findings also 
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suggest that a sudden price variation from a baseline price to an endline price causes a larger 

average demand response than what would be predicted by the difference between average 

consumptions for the same price difference in situations where there has been no price 

change. This is a significant result as it indicates the existence of an effect associated to the 

dynamic price change itself. By definition, in the experiment the price change is also 

immediately communicated to end users. For water planners, this means that dynamic water 

pricing, when accompanied with real-time communication on price variations, could be a 

viable option for short-term water conservation gains in critical situations caused by water 

scarcity or demand peaks. An immediate consequence is that smart, two-way devices are to 

be installed if consumers have to make an informed decision. A careful design of dynamic 

pricing programs is necessary to generate those benefits that may sustain the costs for rolling 

out the new advanced infrastructure (Wolak, 2010).  

Nevertheless, a broad diffusion of smart meters is not sufficient for the dynamic pricing 

benefits to materialize. While a perfectly informed consumer should react to marginal price, 

most consumers will not devote much time or effort to study the tariff structure or changes 

in rates because of information costs (Arbues et al., 2003). In the electricity sector, evidence 

suggests consumers suffer from inattention issues when confronted with dynamic pricing. 

For instance, they have been shown to be insensitive to the magnitude of the price change 

(Gillan, 2018). Automation fosters the response of end users to changes in prices (Dutta and 

Mitra, 2017), but it does not solve the attention problems (Gillan, 2018). New research 

efforts are necessary to identify information and communication technologies (e.g. social 

media, machine learning) that enable end users to fully capture dynamic pricing benefits in a 

cost-effective way. Research should also factor in the water and electricity sectors’ differing 

contexts: for instance, insensitivity to the magnitude of a price increase could be used for 
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water conservation if future research confirmed the existence of a dynamic pricing effect. 

Indeed, the (non-dynamic) price elasticity of residential water demand is generally low in 

part because water bills are often relatively inexpensive (Espey et al., 1997; Dalhuisen et al., 

2003; Marzano et al., 2018). Inattention from the public to the magnitude of a price increase 

could then enable a dynamic pricing effect to foster short-term water conservation regardless 

of its limited effects on households’ finances. 

The paper also showed the pricing effect is also present when players are notified that the 

price increase was caused by water scarcity (Garrone et al., 2020). Price policies appear not 

to interfere with awareness campaigns and other information policies aimed at producing 

water savings during water scarce periods. To the contrary, experimental results suggest that 

impacts of information measures on water consumption would add up to the dynamic 

pricing effect, meaning that a multi-pronged approach to water conservation during water 

scarce periods could be most effective. What is more, a coordinated set of policies would 

likely reach a larger audience than any of these demand management measures alone.  

The water conservation potential of dynamic pricing should be confirmed (or questioned) by 

further studies, and research efforts should also focus on understanding which 

accompanying measures enable the policy implementation on a wider scale. Research is also 

necessary to better gauge how technological, institutional and cultural specificities interact 

with cognitive decision-making from end-users, and how they react to information (Vatn, 

2010).   

Literature from the electricity sector also teaches a few lessons on the political conditions 

for implementing dynamic pricing programs. Since dynamic pricing passes through cost 

variations to end users, the latter are likely to experience a greater bill volatility relative to 

the case of time-invariant prices (Wolak, 2010). Besides, dynamic pricing may have adverse 
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distributional effects, because low-income residential users have higher price elasticities and 

could reduce water demand disproportionately, jeopardizing the lifeline uses and cutting 

back their lifestyle (Agthe and Billings, 1987). These facts suggest that opposition from 

consumer associations and resistance from lawmakers and regulators are likely, but also 

highlights possible solutions, and the water sector has started exploring both. Thus, 

appropriate pricing schemes must redistribute money in a way that aligns with residents’ 

concerns (Kallbekken and Aasen, 2010), yet more prosaically, price increases are a way for 

utilities to recover revenue losses from scarcity-induced reductions in consumptions (Sahin 

et al., 2016). It has been demonstrated that in theory, scarcity pricing schemes can satisfy the 

requirements of revenue equity and revenue sufficiency while sending residential users a 

clear signal on the resource’s status. This being said, further research is necessary to support 

water utilities and regulators in the design and implementation of possible remedies to the 

price risks and equity issues that are associated to dynamic pricing, such as the voluntary 

opt-in participation (Borenstein, 2013) or the prioritization of rebate schemes (Olmstead and 

Stavins, 2009, Wolak, 2010). 

7. Conclusions 

This study described the design and results of an online experiment that ascertains and 

measures the contribution of dynamic pricing to the demand-side management of residential 

water. The experiments’ subjects were recruited in the United States and Canada via an 

online working platform and online surveys. We exposed simulated consumers to treatments 

that differ in terms of the unit price of water and of whether the water is being taken from 

the environment under stress (Tembata and Takeuchi, 2018). Players chose their shower 

length given price changes and environmental conditions. The experiment suggests that 
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consumers would respond to increases of unit prices over time by lowering consumption. It 

also found evidence of a dynamic pricing effect, i.e., that water consumers respond to a 

greater extent to price variations that are sudden and close in time and for which they have 

received a communication. This suggests variation of water prices could be effective at 

reliably securing water conserving behavior. A decrease in water use in water scarcity 

scenarios was observed in the experiment even without dynamic pricing, leading the authors 

to conclude that if these findings are confirmed, a conservative utility interested in 

parsimoniously introducing time-varying water charges to test its effectiveness might first 

try time-of-day pricing as reductions of water use during drought may be achievable by 

other means.  

We acknowledge that the evidence we provide needs confirmation in separate field studies, 

which we don’t pretend to replace. Rather, we point out a need for carefully crafted field 

studies to pave the way for successful dynamic pricing strategy (environmentally effective, 

socially equitable and economically efficient). 
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FIGURES 

Figure 1 

Payoff as a function of showertime 
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Figure 2 

Boxplots of showertime for Treatment and Control groups 

 

The figure displays the variations in showertime (in minutes) going from the baseline to the 
endline question for Treatment and Control groups (both with and without scarcity). Each 
boxplot shows median, minimum, maximum, first and third quartiles (excluding outliers). 
Players in the Control groups pay 10 cents per minute of shower under both the baseline and 
the endline question. Players in the Treatment groups pay 5 cents per minute of shower 
under the baseline question and 10 cents per minute of shower under the endline question. 
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TABLES 

Table I 

Treatment and Control groups 

Distribution of players across Treatment and Control groups 

 Water availability scenarios 

 Scarcity Regular TOTAL 

Treatment 108 105 213 

Control 105 106 211 

TOTAL 213 211 424 

The table illustrates the distribution of players across four groups generated by the 
combination of the Treatments and Control groups with two water availability scenarios. 
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Table II 

Players  

Distribution of players across age, gender and education 

Age  Gender  Education    

 
 

Female Male 
 Doctoral 

degree 

Master/Professional 

School degree  

University 

degree  

Associate 

degree 

High School 

degree 

Apprenticeship 

or equivalent 

No  

degree 

 
Total 

 

≤ 20  23 26  0 2 6 0 40 0 2  50  

21-30  94 103  3 36 75 2 74 2 6  198  

31-40  59 45  2 22 40 4 30 1 5  104  

41-50  20 15  2 13 9 1 9 1 0  35  

 50  16 14  0 8 11 0 10 1 1  31  

TOTAL  212 203  7 81 141 7 163 5 14  418  

The table illustrates the distribution of players by gender and education along the columns and by age ranges along the rows. 
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Table III 
Showers and baths  

       

 Obs Mean Median Sd Max Min 

Pre-experiment survey       

Showers per week 415 5.669 6.5 2.496 11 0.5 

Satisfaction  415 11.166 10 5.907 60 0 

Baths per week 415 1.376 0 2.277 8 0 

Experiment       

ST (baseline answers) 414 8.118 8 3.337 15 1 

ST (endline answers) 413 6.332 6 2.910 15 1 

The table illustrates the descriptive statistics relative to the number of showers per week, the 
shower time, satisfaction from showering and the baths per week. 
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Table IV 

Main models estimates 

Dependent variable: ST Tobit panel Linear panel 

 (1) (2) (3) (4) 

Treatment (β1) 0.574* 0.537* 0.620** 0.591** 

 (0.321) (0.296) (0.298) (0.284) 

Endline (β2) 

 

-0.579** 

(0.247) 

-0.530** 

(0.245) 

-0.540** 

(0.246) 

-0.503** 

(0.235) 

Treatment*Endline (β3) 

 

-1.238*** 

(0.349) 

-1.271*** 

(0.346) 

-1.276*** 

(0.348) 

-1.252*** 

(0.333) 

Scarcity (β4) 

 

-1.593*** 

(0.333) 

-1.691*** 

(0.327) 

-1.689*** 

(0.329) 

-1.676*** 

(0.315) 

Treatment*Scarcity (β5) 

 

0.656 

(0.470) 

0.719 

(0.462) 

0.739 

(0.465) 

0.759* 

(0.445) 

Showers 

 

 -0.082 

(0.054) 

-0.096* 

(0.055) 

-0.087* 

(0.052) 

Satisfaction  

 

 0.208*** 

(0.023) 

0.214*** 

(0.024) 

0.205*** 

(0.022) 

Female 

 

  0.017 

(0.278) 

0.006 

(0.266) 

Age 

 

  0.065 

(0.074) 

0.064 

(0.070) 

Age^2 

 

  -0.001 

(0.001) 

-0.001 

(0.001) 

Education 

 

  0.147 

(0.103) 

0.142 

(0.098) 

Constant 7.922*** 

(0.227) 

6.080 

(0.441) 

4.206*** 

(1.308) 

4.205*** 

(1.249) 

Observations 827 827 821 821 

Players 414 414 411 411 

The table reports the results of tobit and simple panel regressions using both baseline and endline 
choices. The dependent variable is the shower time indicated by the players. The explanatory 
variables in all the regressions are the treatment dummies that define our treatment groups. 
Depending on the specification, we control for the number of showers per week, the satisfaction 
from showering, gender, age and education. Standard errors are reported in parentheses. *, ** and 
*** denote statistical significance at 10%, 5% and 1% levels, respectively.  
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Table V 

Perceived intent of the experiment 

 Player in the 

treatment 

group 

Showertime 

reduction 

 (1) (2) 

Intent:   

   

Measure whether people make consistent choices when it comes to waterconsumption 

 

-0.641 

(0.761) 

0.048 

(1.531) 

Promote water conservation 

 

-0.416 

(0.760) 

-0.011 

(1.530) 

Test whether people are able to quantify water costs 

 

-0.305 

(0.774) 

0.117 

(1.560) 

Understand how much people are concerned with water resources exploitation 

  

-0.877 

(0.768) 

-0.264 

(1.543) 

Understand the impact of water price on your decisions 

 

-0.154 

(0.757) 

-0.311 

(1.521) 

Understand what lifestyle people have 

 

-0.431 

(0.870) 

0.792 

(1.764) 

Constant 

 

0.431 

(0.749) 

-1.667 

(1.504) 

Players 413 413 

The table reports the results of a probit regression in column 1 and OLS in column 2. In column 
1, the dependent variable is a dummy variable set equal to 1 for players assigned to the Treatment 
group and 0 for players assigned to the Control group. In column 2, the dependent variable is the 
showertime reduction going from the baseline to the endline question. The independent variables 
are a set of dummies set equal to 1 for players who responded that the intent of the study was as 
listed in the leftmost column and 0 otherwise.  
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Table VI 

Controlling for self-monitoring scale 

Dependent variable: ST  

 (1) (2) (3) 

Treatment (β1) 0.530* 0.504* 0.584** 

 (0.320) (0.295) (0.297) 

Endline (β2) 

 

-0.588** 

(0.247) 

-0.536** 

(0.245) 

-0.544** 

(0.246) 

Treatment*Endline (β3) 

 

-1.218*** 

(0.348) 

-1.251*** 

(0.346) 

-1.248*** 

(0.348) 

Scarcity (β4) 

 

-1.578*** 

(0.332) 

-1.679*** 

(0.327) 

-1.676*** 

(0.328) 

Treatment*Scarcity (β5) 

 

0.667 

(0.469) 

0.735 

(0.462) 

0.743 

(0.465) 

Treatment*SMS Factor 

 

-0.180 

(0.320) 

-0.353 

(0.296) 

-0.292 

(0.300) 

Treatment*Endline*SMS Factor 

 

0.099 

(0.348) 

0.108 

(0.345) 

0.128 

(0.353) 

Treatment*Scarcity*SMS Factor 

 

0.293 

(0.471) 

0.271 

(0.463) 

0.246 

(0.470) 

Endline*SMS Factor 

 

0.112 

(0.242) 

0.077 

(0.240) 

0.075 

(0.241) 

Scarcity*SMS Factor 

 

-0.293 

(0.329) 

-0.225 

(0.324) 

-0.235 

(0.325) 

SMS Factor 

 

0.034 

(0.224) 

0.218 

(0.207) 

0.254 

(0.210) 

Players characteristics 

Players’ shower habits 

No 

No 

No 

Yes 

Yes 

Yes 

Observations 826 826 820 

Players 413 413 410 

The table reports the results of panel tobit regressions using both baseline and endline choices. 
The dependent variable is the shower time indicated by the players. The explanatory variables in 
all the regressions are the treatment dummies that define our treatment groups, stand alone and 
interacted with a factor measuring the attitude of players in a self-monitoring scale. Depending on 
the specification, we control for the number of showers per week, the satisfaction from 
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showering, gender, age and education. Standard errors are reported in parentheses. *, ** and *** 
denote statistical significance at 10%, 5% and 1% levels, respectively. 
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Table VII 

Controlling for unobservables 

Dependent variable: ST  

 (1) (2) (3) 

Treatment 0.749** 0.691** 0.771*** 

 (0.328) (0.296) (0.298) 

Pilot 

 

-1.795*** 

(0.387) 

-1.468*** 

(0.349) 

-1.536*** 

(0.350) 

Treatment*Pilot 

 

0.438 

(0.507) 

0.567 

(0.456) 

0.565 

(0.457) 

Scarcity 

 

-1.287*** 

(0.440) 

-1.336*** 

(0.394) 

-1.246*** 

(0.395) 

Players characteristics 

Players’ shower habits 

No 

No 

No 

Yes 

Yes 

Yes 

Players 825 825 822 

The table reports the results of panel tobit regressions using only baseline choices. The dependent 
variable is the shower time indicated by the players. The explanatory variables in all the 
regressions are the treatment dummy that define our treatment groups, stand alone and interacted 
with a dummy identifying the experiment wave in which players have been recruited and a 
dummy set equal to 1 if players have been exposed to a scarcity scenario and 0 otherwise. 
Depending on the specification, we control for the number of showers per week, the satisfaction 
from showering, gender, age and education. Standard errors are reported in parentheses. ** and 
*** denote statistical significance at 5% and 1% levels, respectively. 
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Appendices 

Appendix A1 - Players by geographic origin 

Table A.1 

Distribution of players by geographic origin 

Canada 

Province # % Province # % 

Alberta 7 1.67 Ontario 11 2.63 

British Columbia 7 1.67 Prince Edward 

Island 

1 0.24 

Manitoba 2 0.48 Quebec 3 0.72 

Nova Scotia 1 0.24 TOTAL 32 7.66 

The United States 

State # % State # % 

Alabama 7 1.67 Montana 1 0.24 

Arizona 7 1.67 Nevada 7 1.67 

Arkansas 2 0.48 New Hampshire 2 0.48 

California  35 8.37 New Jersey 9 2.15 

Colorado 6 1.44 New Mexico 2 0.48 

District of Columbia 1 0.24 New York 22 5.26 

Florida 29 6.24 North Carolina 14 3.35 

Georgia 24 5.74 Ohio 17 4.07 

Idaho 4 0.96 Oklahoma 6 1.44 

Illinois 12 2.87 Oregon 5 1.20 

Indiana 6 1.44 Pennsylvania 14 3.35 

Kansas 4 0.96 South Carolina 6 1.44 

Kentucky 9 2.15 Tennessee 11 2.63 

Louisiana 6 1.44 Texas 44 10.53 

Maine 1 0.24 Utah 3 0.72 

Maryland 4 0.96 Vermont 1 0.24 

Massachusetts 6 1.44 Virginia 9 2.15 

Michigan 18 4.31 Washington 8 1.91 

Minnesota 7 1.67 Wisconsin 8 1.91 

Mississippi 3 0.72 Wyoming 1 0.24 

Missouri 5 1.20 TOTAL 386 92.34 
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Appendix A2 - Online experiment questionnaire 

In what follows, each of the subsections represents one page of the survey, and each title 
corresponds to the page title in the survey. 

 

Page 1: “Welcome!” 

[The experiment involves different rewards for individuals that fulfilled their task equally well – 
but that replied differently to the experimental question. Usually in crowdsourcing sites, 
including Microworkers, rewards are rather targeted to workers who perform better than others. 
Therefore, a disclaimer was introduced on the survey’s first page to avoid potential complaints 
from online workers (Figure A2.1). We have had to handle 0 complaint throughout the 
experiment. 

Figure A2.1 gives this first page for versions A and C, corresponding to “static” pricing. In 
versions B and D, the phrase “depending on your answer to a question on a page” is replaced 
with “depending on your answer to the second question on a page”]. 

Figure A2.1. First page of the survey, including visual layout. 
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Page 2: “General questions” 

 

We start this questionnaire with a series of questions about you. 

 

Q2. In what country do you currently reside? 

 United States 
 Canada 

 

Q3. In what state / province do you currently reside? 

[Textbox where respondents enter response] 

 

Q4. What is your gender? 

 Female 
 Male 
 Other 

 

Q5. How old are you? 

[Textbox where respondents enter their age] 

 

Q6. How many adults currently live in your household (including you)? 

 1 
 2 
 3 
 4 
 5 or more 

 

Q7. How many children and teenagers, by age, currently live in your household? Please 

enter a number for each age group. 

Aged 0-4 [number entered in textbox] 

Aged 5-9 [number entered in textbox] 

Aged 10-14 [number entered in textbox] 

Aged 15-18 [number entered in textbox] 

 

Q8. What is the highest level of education you have completed? 

 No Degree 
 Apprenticeship or equivalent 
 High School Degree 
 Professional School Degree 
 University Degree 
 Master Degree 
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 Doctoral Degree 
 Other (please specify) 

[textbox] 

 

Q9. Do you own or rent the property you currently live in? 

 I own it 
 I rent it 
 Other (please specify) 

[textbox] 

 

Q10. In which type of housing do you currently live? 

a. Single-family home 
b. Shared home 
c. Apartment 
d. Other 

 

Q11. How many bathrooms are there in your home? 

 0 
 1 
 2 
 3 
 More than 3 

 

Page 3: “Your water consumption” 

 

We continue with questions about your water consumption. 

 

Q12. How much do you estimate your household’s daily water consumption to be? 

 Less than 200 litres per day 
 201-300 litres per day 
 301-400 litres per day 
 401-500 litres per day 
 More than 500 litres per day 
 I don’t know 

 

Q.13 Do you know your household’s monthly bill? 

 Yes, precisely 
 Yes, more or less 
 No 
If you know it, you can enter amount here: 

[textbox] 
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Q14. How much water do you think your household consumes compared to the average 

household in your area? 

 Much more 
 Somewhat more 
 Same as average 
 Somewhat less 
 Much less 

 

Q15. Which of the following activities do you think conumes the most water on a monthly 

basis? 

 Bath 
 Shower 
 Washing machine 
 WC 
 Garden irrigation 
 Dishwasher 
 Tap 

 

Q16. How many baths do you personally take every week? 

 I do not take baths 
 Less than 1 
 1-3 
 4-5 
 6-7 
 More than 7 

 

Q17. How many showers do you personally take every week? 

 Less than 1 
 1-3 
 4-5 
 6-7 
 8-9 
 10 or more 

 

Q18. On average, how long do you personally spend showering (with the water running)? 

 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
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 8 minutes 
 9 minutes 
 10 minutes 
 More (please specify) 

[textbox] 

 

Q19. On a scale from 1 to 10, how would you rate your personal satisfaction depending on 

the time spent showering? 1 is minimal satisfaction while 10 is maximal satisfaction. 

 
 

Page 4: “Experiment” 

 

Version A: 

 
You are given $1.5 to spend on showering. Assume that having the shower running costs 10 cents 
per minute. 
 

You want to keep money on your $1.5, but you also get satisfaction from showering, and this 
satisfaction increases with shower time. So you will have to find a compromise between saving 
money and personal satisfaction! 

 

Q20. What shower length do you choose, given the price per minute given above, and your 

own satisfaction from showering? Please choose how long you would have the shower 

running, between 1 and 15 minutes. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
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You still have $1.5, like in question 20. Assume that your water utility keeps the water price at 

10 cents per minute despite the need to reduce consumption. 

 
You are paid depending on how much money is left on your $1.5, but also depending on how 
much satisfaction you get from your shower (and your satisfaction still increases with shower 
time).  

 

Q21. What is your new shower length, between 1 and 15 minutes? 

 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
 8 minutes 
 9 minutes 
 10 minutes 
 11 minutes 
 12 minutes 
 13 minutes 
 14 minutes 
 15 minutes 

 
 

Version B: 

 
You are given $1.5 to spend on showering. Assume that having the shower running costs 5 cents 
per minute. 

 
You want to keep money on your $1.5, but you also get satisfaction from showering, and this 
satisfaction increases with shower time. So you will have to find a compromise between saving 
money and personal satisfaction! 

 

Q20. What shower length do you choose, given the price per minute given above, and your 

own satisfaction from showering? 

 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
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 8 minutes 
 9 minutes 
 10 minutes 
 11 minutes 
 12 minutes 
 13 minutes 
 14 minutes 
 15 minutes 

 
 
You still have $1.5, like in question 20. Now assume that your water utility doubles the water 

price to 10 cents per minute in order to reduce consumption. 

 
You are paid depending on how much money is left on your $1.5, but also depending on how 
much satisfaction you get from your shower (and your satisfaction still increases with shower 
time).  

 

Q21. What is your new shower length, between 1 and 15 minutes? 

 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
 8 minutes 
 9 minutes 
 10 minutes 
 11 minutes 
 12 minutes 
 13 minutes 
 14 minutes 
 15 minutes 
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Version C: 

 

You are given $1.5 to spend on showering. Assume that having the shower running costs 10 cents 
per minute. 
 

You want to keep money on your $1.5, but you also get satisfaction from showering, and this 
satisfaction increases with shower time. So you will have to find a compromise between saving 
money and personal satisfaction! 

 

Q20. What shower length do you choose, given the price per minute given above, and your 

own satisfaction from showering? Please choose how long you would have the shower 

running, between 1 and 15 minutes. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 

 

You still have $1.5, like in question 20. Now assume that there currently is a severe drought in 
your area, similar to the recent drought in California (see pictures). Assume also that your water 
utility keeps the water price at 10 cents per minute despite the need to reduce consumption. 
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You are paid depending on how much money is left on your $1.5, but also depending on how 
much satisfaction you get from your shower (and your satisfaction still increases with shower 
time).  

 

Q21. What is your new shower length, between 1 and 15 minutes? 

 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
 8 minutes 
 9 minutes 
 10 minutes 
 11 minutes 
 12 minutes 
 13 minutes 
 14 minutes 
 15 minutes 

 

 

Version D: 

 

You are given $1.5 to spend on showering. Assume that having the shower running costs 5 cents 
per minute. 

 
You want to keep money on your $1.5, but you also get satisfaction from showering, and this 
satisfaction increases with shower time. So you will have to find a compromise between saving 
money and personal satisfaction! 

 

Q20. What shower length do you choose, given the price per minute given above, and your 

own satisfaction from showering? 

 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
 8 minutes 
 9 minutes 
 10 minutes 
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 11 minutes 
 12 minutes 
 13 minutes 
 14 minutes 
 15 minutes 

 

You still have $1.5, like in question 20. Now assume that there currently is a severe drought in 
your area, similar to the recent drought in California (see pictures). Assume also that your water 
utility doubles the water price to 10 cents per minute in order to reduce consumption. 

 

 
 
You are paid depending on how much money is left on your $1.5, but also depending on how 
much satisfaction you get from your shower (and your satisfaction still increases with shower 
time). 

 

Q21. What is your new shower length, between 1 and 15 minutes? 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 

 



57 

 

Pages 5 to 9 

[Each response to the experimental question leads to a different page. Each page has a different 
PIN number. There is a correspondence between experimental response (showertime), PIN 
number, page redirected, and final payoff.]  

 

Figure A2.2 First PIN number page. (The screenshot is from the “Test survey” mode, 
respondents do not have the possibility of hitting “Prev”) 

 

 

 

Page 10: “Last three questions” 

[These are questions 21 to 23 for versions A and C only; for versions B and D these are questions 
22 to 24. Yet questions, answers and surrounding text are strictly identical]. 

 

Q22. A recent study has shown that an 8-minute shower uses almost as much water and 

energy (for water heating) as the average bath. This means it produces almost the same 

associated greenhouse gas emissions.  

What would your shower time from the previous question have been after knowing this 

information? 
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 1 minute 
 2 minutes 
 3 minutes 
 4 minutes 
 5 minutes 
 6 minutes 
 7 minutes 
 8 minutes 
 9 minutes 
 10 minutes 
 More (please specify) 

[textbox] 

 

Q23. How would you rate your environmental attitude? 

 I am extremely environmentally friendly 
 I am very environmentally friendly 
 I am fairly environmentally friendly 
 I am slightly environmentally friendly 
 I am not environmentally friendly at all 

 

Q24. In the last three months, did you hear/read/see information campaigns on water 

conservation? 

(for instance, TV or newspaper ads, billboards, etc) 

 Very often 
 Often 
 Sometimes 
 Rarely 
 Never  

 

Page 11 

 

Figure A2.3. Final page of the survey, with the second PIN number. [The screenshot is from 

the “Test survey” mode, respondents do not have the possibility of hitting “Prev”]  
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