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Abstract

Iris validation is a Python package created to represent comprehensive per-

residue validation metrics for entire protein chains in a compact, readable and

interactive view. These metrics can either be calculated by Iris, or by a third-

party program such as MolProbity. We show that those parts of a protein model

requiring attention may generate ripples across the metrics on the diagram,

immediately catching the modeler's attention. Iris can run as a standalone tool,

or be plugged into existing structural biology software to display per-chain

model quality at a glance, with a particular emphasis on evaluating incremen-

tal changes resulting from the iterative nature of model building and refine-

ment. Finally, the integration of Iris into the CCP4i2 graphical user interface is

provided as a showcase of its pluggable design.
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1 | INTRODUCTION

Macromolecular structure determination primarily
involves building an atomic model that best fits
experimentally-observed data from practical methods,
such as X-ray crystallography (MX) and electron cryo-
microscopy (cryo-EM). At every step of the structure
solution pipeline loom unavoidable uncertainties, from
the experimental errors introduced in the early stages,
to the subjective decisions made during model building.
The intertwined steps of refinement and validation at the
end of the process play a crucial role in mitigating
against this.

Refinement and validation are performed with the
help of validation metrics, which provide information
about various aspects of the atomic model. They may per-
tain just to small sections of the model (local criteria) or
to the model as a whole (global criteria). The calculation

of validation metrics may require only a model, or a
model and experimental data (reflection data in the case
of MX). Model-only metrics inform about aspects such as
the geometric plausibility of the atomic model as a
standalone entity, covering deviations from ideal bond
lengths, angles, planes or dihedrals. These geometric ana-
lyses result in the detection of outliers: arrangements of
atoms that are rare and deemed unlikely to occur, which
are either the result of an improbable but true feature of
the protein structure, or an error in the protein model.
The only way to distinguish between these two possibili-
ties is to compare the atomic model to the experimentally
derived electron density, to assess the likelihood that a
particular set of atoms is modeled correctly, given the
data. Judgments like these are typically made by manu-
ally reviewing the questionable area in molecular model-
ing packages like Coot1 or CCP4MG,2 but can also be
helped by local reflections-based metrics, which take the
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experimental data into account, such as the Debye–
Waller factor (B-factor) and measures of electron density
fit quality. The most commonly used measures of local fit
quality are the real space R and real space correlation
coefficient, both of which have been demonstrated to
show individual biases in assessing the accuracy of a
model.3

Today, these validation metrics can be produced
either by validation-specific software within software
suites like CCP44 and PHENIX,5 independent web ser-
vices, or by options and plugins in molecular modeling
packages. The number of different routes for model vali-
dation has exploded in recent years, having developed
from nothing just a few decades ago. Indeed, there is an
ever increasing demand for new validation metrics and
better refinement procedures,6 one most certainly fuelled
by periodic realizations that the models in the Protein
Data Bank (PDB) are not always perfect.7–12

In the early days of macromolecular crystallography,
refinement was an impossibility; the necessary computa-
tional power was simply not available. It was not until
1971 that Robert Diamond published the first automated
least-squares refinement algorithm.13 At this stage, the
only available validation metrics were global indicators,
including resolution and R-factor.

The introduction of restraints and constraints to the
least-squares refinement process in software—both in
small molecule14,15 and macromolecular16,17

crystallography—brought a significant leap forward by
reducing the size of the least-squares matrix most pro-
grams used for their minimization calculations, thus
reducing the computational requirement of model refine-
ment. These restraints—ideal bond lengths, angles, pla-
narities and sometimes also torsions angles—did more
than just keep the whole process stable; they were about
to become very useful metrics to flag up geometric distor-
tions in a protein model. Those distortions may either be
a consequence of modeling errors, thus the model should
be inspected and corrected, or the product of genuine
chemical interactions, meaning the model should be
inspected and respected.

As further developments were made, and the amount
of computing power available to crystallographers
increased exponentially, so too did the amount of avail-
able software for macromolecular structure determina-
tion. The 1990s saw the inception of the first validation
software suite, PROCHECK,18 which produced a number
of summary outputs, including a page containing
residue-by-residue plots of stereochemical analyses.
Though basic, these local analyses proved exceptionally
useful to users, providing immediate direction toward
areas of the model that were likely to be in need of fur-
ther refinement or review.

Similarly, the WHAT IF19 check report,
WHAT_CHECK,11 performed an array of geometric vali-
dation calculations, including some analyses that were
not available in PROCHECK, for example, unsatisfied
donors and acceptors, and suggested side-chain flips.20

In 2004, Coot1 took interactive output one step for-
ward from that of O,21 adding scrollable self-updating
charts as the result of its comprehensive array of inte-
grated validation tools. These included residue-by-residue
geometric and reflections-based analyses in the form of
pop-up interfaces. Many of these analyses were based on
the Clipper C++ libraries.22

MolProbity,23 which produces high-quality geometric
analyses of protein models using their proprietary
hydrogen-placement and all-atom contact analysis,
quickly became and still is one of the most ubiquitous
pieces of validation software today. MolProbity defines
itself as a “structure-validation web service,” and in addi-
tion to the web-based MolProbity servers that produce
geometry-based validation metrics reports, the MolProbity

libraries are also found in suites like CCP4 and PHENIX.
In these implementations, the MolProbity server is run
locally to calculate the metrics on the back-end, which
are then used by the package-integrated validation soft-
ware to generate a report to be shown to the user.

PHENIX's Polygon24 provided a way to graphically
represent any combination of the available validation
metrics meaningfully, in a single view, by plotting multi-
ple quality indicators alongside one another from a
shared origin. The one-shot view of a model's overall
quality, combined with the use of percentiles for context,
proved very successful and has since inspired other
multi-metric reports (vide infra).

In January 2014, the Worldwide Protein Data Bank
partnership (wwPDB) introduced the OneDep system,25

designed in part to provide “preliminary validation
reports for depositor review before deposition.” This
incorporated the well-known summary quality sliders,
featured on the summary page for every structure in the
PDB, which show a model's percentile rankings for a
number of whole-model validation metrics. The full vali-
dation report also contains residue sequence plots which
flag geometry outliers.

Each of the pieces of software mentioned so far has
brought something new and valuable to the field
(Table 1). But, owing to the differences between them, a
typical workflow will often involve running different
programs—for example, Coot, then MolProbity or Poly-

gon, and finally the wwPDB validation server—to obtain
the desired array of metrics and paint a complete picture
of the outcome of refinement.

Movement away from manual model building and
refinement, and toward an automated iterative process,
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has been a long-time target in the field. Since the early
1990s, software like O, and the programs working in con-
junction with it, like OOPS,26 have made it possible to
automate a significant amount of the building process,
requiring reduced user input. The release of the ARP/

wARP27 software suite, which aimed to produce essen-
tially complete models from electron density maps alone,
paved the way for full automation by coupling the model
building and refinement processes together. In recent
years, this goal has been almost completely realized by
software like PHENIX's AutoBuild,28 which performs
many cycles of refinement and rebuilding to automati-
cally produce a relatively complete model. With fully
automated systems like AutoBuild, the latest model file
can be exported at each refinement iteration, enabling
the user to follow the progress of the automated proce-
dure by comparing models from different stages in the
overall refinement process. And a useful way of tracking
progress is by seeing their validation results side by side.

Novel validation software not only need to be able to
calculate both model-only and reflections-based analyses
at a per-residue level, but also to be compatible with the
recent advances in automation, by having the capacity
for integration within new and existing pipelines as an
automated task with, ideally, minimal run time.

Iris is a pluggable standalone validation software
designed to address the specific needs described here: to
provide an all-in-one package that calculates its own per-
residue validation metrics—but also allows the incorpo-
ration of metrics from other validation services such as
MolProbity—and displays them in a compact, interactive
graphical interface that enables at-a-glance comparison
between stages of automated model building, and finally,
that runs quickly enough to be used either interactively

or at the end of a pipeline with imperceptible time
penalty.

In the present work, we will discuss the rationale
behind the design of Iris's graphics, how its metrics com-
pare to those calculated by other programs such as
MolProbity and Coot, and introduce, as an example, the
implementation of our component into the CCP4i229

graphical user interface.

2 | METHODS

2.1 | Component design

Python was the language of choice for the Iris validation
package. Increasingly prevalent in the field, the Python
interpreter is a component of all the major crystallo-
graphic software packages. Python code is naturally easy
to read and write, and because the Iris code was written
specifically with maintainability and customizability in
mind, it is especially easy for anyone who wants to use
the package to edit the source code for their needs. The
built-in metrics calculations are based on the fast Clip-
per22 libraries, thanks to the Clipper-Python C++ bind-
ings.30 The Iris module also hooks C++ functions from
libraries like NumPy31 and the Computational Crystallog-

raphy Toolbox (CCTBX),32 providing the computational
efficiency of strongly typed C++ code, combined with
the simplicity of a scripting language like Python. Despite
reaching its official end-of-life date on January 1, 2020,
Python 2 is still the only version available in some crys-
tallographic packages, and such is the case of the CCP4

suite. Consequently, Iris was written to be compatible
with both Python 2 and Python 3.

TABLE 1 An overview of some of the validation tools mentioned

Software

Geometric

analysis

Density fit

analysis

Per-residue

analysis

Supports

integration

All-in-one

graphics Interactive

Coot (validation menus) Yes Yes Yes Yes No Yes

MolProbity (web server
report)

Yes No Yes Yes No No

Polygon (comprehensive
validation)

Yes Yes No No Yes No

wwPDB (validation
sliders)

Yes Yes No No Yes No

Iris Yes Yes Yes Yes Yes Yes

Note: All the programs mentioned have longer run times than Iris, which are exacerbated in some cases by simple, but mandated, manual
input. Coot performs all the desired analyses, but provides them in individual horizontally-scrolled bar charts, rather than an all-in-one
graphic. Similarly, MolProbity, which performs excellent per-residue geometric (but not reflections-based) analyses, provides its output as a
vertically-scrolled table. Polygon and wwPDB both provide an all-in-one overview for a model, but not one with residue-by-residue analyses.
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The Iris validation package has two major compo-
nents: the metrics module, responsible for the back-end
validation analyses, and the interface module, which gen-
erates the front-end user-interface.

2.2 | Metrics

The validation metrics chosen for the Iris metrics genera-
tion module are those that are most commonly selected
in a typical workflow. Based on the class cascade from
the Clipper MiniMol library (Figure S1), the metrics were
implemented with the goal of producing the most accu-
rate results possible with minimal run time. The core
analyses can be broken down into three categories: B-fac-
tors, geometry, and electron density fit.

B-factor analyses are performed by taking the values
directly from the Clipper MiniMol object. The B-factor for
each atom is listed within the model (coordinates) file,
and is loaded as an attribute of each Clipper MAtom

object upon initialisation. For each residue, the metrics
module calculates the minimum, maximum, mean, and
SD of the B-factor values of its constituent atoms.

The geometry calculations in Iris include bond length
and torsion angles, which are used to analyze backbone
conformation (Ramachandran likelihood) and side-chain
conformation (rotamer likelihood). The bonds geometries
themselves are calculated with simple matrix calculations
using atom coordinate data from the MAtom objects. To
produce meaningful validation metrics, these bond angles
are turned into both a continuous probability score and a
discrete classification (favored, allowed, or outlier), using
reference data. The Richardson lab has published a public
repository of reference data for different types of residue
geometry, based on thousands of high-resolution, quality-
filtered protein chains, called Top8000.33

In the case of backbone conformation, the Clipper

Ramachandran class already implements the relevant
data from the Top8000 database, accessible through a
selection of calculators which output a probability value
for a pair of backbone torsion (phi, psi) angles, sampled
from the relevant Ramachandran distribution. This value
is used as Iris' continuous score metric, and is also
directly used to produce the discrete classification, by
applying the same thresholds as those used in Coot.

In the case of side-chain conformation, there is no
Clipper class to do the work. To generate a validation
metric from the side-chain torsion (chi) angles, the data
had to be implemented manually. The Richardson lab's
rotamer data is provided for each of the rotameric canon-
ical amino acids in two forms: (a) a multidimensional
contour grid that maps out the feasible chi space in dis-
crete intervals, plotting a “rotamericity” value at each

point; and (b) a set of “central values,” which lists the
mean and SD of the bond torsions for each recognized
rotamer.34

The most accurate way to produce a continuous
rotamer score would be to implement the raw data from
the contour grids with an interpolating lookup function,
but this poses two difficulties. The first is that even if the
data from these grids are stored in a data structure opti-
mized for multidimensional search like a k-d tree,
looking up and interpolating these data for each angle in
every residue in a model would elicit an unacceptably
long run time. This could be mitigated against by per-
forming the interpolation in pre-processing, or by omit-
ting it entirely, given that the contour grids are already
fairly high resolution. But, the second and more signifi-
cant difficulty is that these contour grid files are large,
totaling 39 megabytes in all. As a consequence, directly
loading these data results in a long initial load time and
significantly increases the file size of the package; these
factors would only be exacerbated if interpolation were
implemented in the lookup function. Because of this, the
Iris rotamer score is based on the central values data,
which have a much smaller footprint. The score is calcu-
lated by modeling each of a rotamer's chi dimensions as
Gaussian distributions, calculating a z-score in each
dimension, and taking the quadratic mean (Equation 1).

Score=min
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

n=1

χn−μ
χin

σχin

 !2
v

u

u

t ð1Þ

Equation (1): formula used to calculate a continuous
rotamer score from the central values lists. Where i is the
index that enumerates the recognized rotamers for a resi-
due, N is the number of chi dimensions applicable to a
particular residue, χn is the nth chi angle of the residue,
and μ

χin
,σχin are the mean and SD of the indexed rotamer,

respectively.
The rotamer classification, in contrast to the Ram-

achandran one, is not just calculated by placing thresholds
on the continuous score. Instead, a more accurate solution
was devised, which involves using a compressed version of
the contour grids to achieve a compromise between accu-
racy and load time (Figure 1). To compress the data, the
point values were first converted from the very high-
precision floating-point values in the contour grids to a
low bit-width integer classification. In order to maintain
concordance with the MolProbity rotamer analyses, based
on the same data, the same thresholds for categorization
were applied, that is, let ≤0.3% define “outlier” rotamers,
let ≥2.0% define “favored” rotamers, and let values in
between define “allowed” rotamers. This reduced the size
of the data substantially, but still the most significant
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factor in the size of the data persisted, which was storing
all the coordinates as keys. To maximize the compression,
the data for each amino acid were flattened to a unidimen-
sional array of values. This way, the index of each value
corresponds to the calculable index of its coordinate in a
theoretical ordered array of coordinates (Equation 2). It is
only possible to store the data in this way when there is a
uniform distance between each point in every dimension,
and when there is a value for every possible point in the
dimension. In the original data, the latter criterion is not
met. To enable flattening, an extra value had to be allo-
cated for “unknown” data points, thus filling every point
on the contour grid, and bringing the number of discrete
classifications up to four. If these four classifications are
treated as integers in the interval [0, 3] each coordinate
point only requires a precision of 2-bits, which means four
values can be stored per byte of data. Reducing each classi-
fication in the flattened arrays to a 2-bit value and com-
pressing the result with gzip leads to a file size of
147 kilobytes for the entire library, a 265x reduction from
the original data. Upon initialisation of the module, the

library loading function can decompress this file and load
the library to memory on the millisecond scale, with simi-
larly fast point recall. The compression process is illus-
trated in Figure 1.

index =
X

N

n=1

nint
χn−Χn0

Χn1 −Χn0

� �

�
Y

N

m=n+1

dim Χmð Þ

" #

ð2Þ

Equation (2): formula used to calculate the relevant
index in the compressed rotamer library for a given array
of chi angles. Where N is the number of chi dimensions
applicable to a particular residue, χn is the nth chi angle
of the residue, Χn is the regularly spaced array of chi
values known in the nth chi dimension for that residue
type, thus (Χn1 − Χn0) represents the width of the spacing
in that dimension, and dim(Χm) is the number of known
points in the mth dimension for that residue type. nint is
the nearest-integer rounding function.

Electron density fit scores for each residue are calcu-
lated by applying methods of the Clipper crystallographic

FIGURE 1 Visualization of the rotamer library compression. The topmost figure shows a contour grid for a hypothetical amino acid
with two side-chain torsion angles. Grid points are colored red for “outlier” values, yellow for “allowed” values, green for “favored” values,
and gray for “unknown”—where a coordinate is not listed in the original contour grid file. The bottom figure illustrates the compression
process: starting with the conversion from floating point to integer data points, followed by the type conversion from dictionary to integer
array, which includes the addition of zeros to represent null data points, and lastly the compression of Python integers to two-bit binary
values. It should be noted that the original contour grid values are given to a much higher precision than is shown here
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map (Xmap) class. Firstly, a map is calculated from the
list of reflection data using a fast Fourier transform, and
is stored in memory. Then, to score the fit of each atom,
the map density at its coordinates is used to calculate an
atom fit score (Equation 3). A residue's fit score is calcu-
lated by taking the average of the fit scores of its constitu-
ent atoms. Average density fit quality for the backbone
and side-chain atoms alone are also calculated.

Scoreatom = − log NormCDF
ρatom−μ

ρmap

σρmap

 !" #

ð3Þ

Equation (3): formula used to calculate the density fit
score for an individual atom. Where NormCDF is the
cumulative density function of the standard Gaussian dis-
tribution, ρatom is the electron density at the coordinate
of a particular atom, normalized by its proton number,
and μmap, σmap are the mean and SD of the map electron
density respectively.

The final step in the construction of the metrics module
was the generation of a percentiles library. This enables the
final report to be able to provide a sense of scale to each of
the metric values, which is necessary if metrics are going to
be displayed alongside one another in a meaningful way.
Some metrics would otherwise have to be presented in arbi-
trary, incomparable units. To generate the library, the met-
rics generation functions were run for every structure in the
PDB-REDO database,35,36 in which every model is accompa-
nied by its experimental data. To ensure the library was
based on models generated using modern standards, data
from structures deposited before 2010 were discarded. The
resulting data are based on the analysis of over 66,500 struc-
tures and more than 47 million individual residues. The
structures analyzed and their respective metrics values were
divided into 10 non-uniform resolution bins. For each bin,
thresholds were calculated at each integer percentile for all
relevant metrics. The percentile calculations were also per-
formed for all the data together, to be applied to models
based on data of unknown resolution. The result of these
percentile calculations is a set of highly accurate distribu-
tions which can be used to normalize the distributions for
any of the continuous metrics.

3 | INTERFACE

3.1 | Graphical panel

The centerpiece of the Iris report is its graphical panel,
which comprises a chain-view display and residue-view
display presented alongside one another. Both of these
are scalable vector graphics (SVGs) that can respond

dynamically to user interaction, handled by JavaScript
(JS) functions. This SVG/JS format was chosen because it
is natively compatible with all modern browsers, even
the most basic. Report-specific SVG and JS code is gener-
ated programmatically within the interface module.

3.2 | Chain-view display

The Iris report was designed around its chain-view, which
illustrates a number of local validation metrics for every
amino acid of a protein chain in a single compact display.
The graphic went through a number of designs before
reaching its final form (Figure 2). In the finalized design,
each segment of the circle represents an individual residue,
and each of the concentric ring axes represent a different
metric. The idea behind this design is that areas of poor pro-
tein structure will often cause fluctuations in multiple valida-
tion metrics together, making them especially easy to spot.
This design is robust to even extremely low or high residue-
counts. Each ring can either represent a continuous metric,
with a radial line graph, or a discrete metric, with a traffic
light-based (red, amber, green) segment coloring system. By
default, the two innermost rings are discrete representations
of Ramachandran and rotamer favorability, and the outer
four rings are continuous representations of B-factors and
electron density fit. The axis arrangement can be configured
to produce any combination of metrics by editing the defini-
tions file in the root directory of the package.

The continuous axes are individually scaled to collec-
tively emphasize the regions with the poorest validation
scores relative either to the rest of the chain or the model,
depending on the user's settings. To enable this, the
polarity of each axis is set such that the inward direction
on the axis represents poorer values for that metric. For
example, a higher B-factor represents a less-desirable
value, so the polarity of the B-factor axes is inverted,
causing areas of higher B-factor values to appear as tro-
ughs, facing toward the center of the plot. Once the
polarities have been unified, the axes are skewed to stress
the areas on the inward-facing side of each.

The chain-view has the ability to show and compare
two different versions of the same model, an extremely
useful feature in the era of automated iterative refinement
pipelines like AutoBuild. If Iris is supplied with model data
from a prior iteration in addition to the latest, both
datasets will be analyzed together, and the collation func-
tions of the report submodule will align the chains and
sequences of the two versions using pairwise alignment.
This way, the results from both versions can be presented
in the same graphic, even if changes have been made to
the chains' arrangements or their amino acid sequences.
Originally, the two versions were going to be shown
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concurrently, with the previous dataset represented by a
gray shaded “ghosting” area around each axis. Testing
showed that this would often make the graphic look too
crowded, and some areas would require close examination
to understand the changes that had taken place between

iterations. In the final design, the different datasets are
transitioned between with a toggle switch at the top of the
report pane, which triggers an animation that warps
between the two model versions, far more intuitively
highlighting the areas of greatest change.

FIGURE 2 The evolution
(top) and final design (bottom)
of the Iris chain-view display. In
its first iterations, based on
existing residue-by-residue
displays, the chain-view was a
radial bar chart, with multiple
bars stacked on top of one
another within a segment. The
problem with these initial
designs was that in chains with a
high number of residues, the
chart would become unclear.
The third image of the second
generation of iterations shows
the original “ghosting”
implementation. The bottom
picture shows an instance of the
final design, produced using
synthetic data. At the one
o'clock position is the residue
selector, highlighting an
individual residue segment. The
patch of 10 residues at the two
o'clock position illustrates the
indicators of “poor” residues for
each feature of the chain-view
graphic. The discrete axes show
amber or red segments, the
continuous axes show an
exaggerated dip toward the
center, and MolProbity clash
indicators appear around
the edge
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The chain-view is highly extensible, and can be easily
adapted to include any metrics added to the metrics mod-
ule, as well as data from other validation tools. If
MolProbity analyses are run alongside Iris, clash markers
from MolProbity's all atom contacts analysis will be dis-
played around the edge of the circle, and the more accu-
rate MolProbity Ramachandran and rotamer outliers will
be shown (See CCP4i2 implementation).

The residue-selector arm of the chain-view is used to
select any individual residue for more detailed informa-
tion, to be shown in the residue-view.

3.3 | Residue-view display

The default residue-view (Figure 3, left) has a grid-based
layout which has one section dedicated to discrete metrics,
illustrated with traffic light checkboxes, and another
section containing bar charts to represent the percentile
values for the continuous metrics, which are the B-factors
and density fit scores. The bar charts also contain individ-
ual spectra, which show the minimum, maximum, mean,

and SD of each of the continuous metrics within the
selected chain and model. This way, you get a comprehen-
sive understanding of the quality of a residue, and a chain's
distribution of residues, at a glance. The percentile value
tells you the quality of the selected residue relative to all
other residues of similar-resolution structures, the position
of the marker within each bar's spectrum tells you the met-
ric quality of the selected residue relative to the other resi-
dues in the chain, and the distribution of each bar's
spectrum tells you the overall quality of the selected chain
relative to other similar-resolution structures.

A radar chart is also available (Figure 3, right), which
displays all of the metrics on a continuous percentile
scale, including Ramachandran probability and the afore-
mentioned rotamer score.

3.4 | Reports

The Iris validation report is a single HTML file, with the
chain-view and residue-view implemented as integrated
SVG elements. Other linked files include either one or

FIGURE 3 The Iris residue-view displays: default layout (left) and radar chart (right). In the default layout, the top section contains the
discrete metrics, and the bottom section contains the continuous metrics. Of the three dashed lines on each bar, the middle line represents
the mean percentile for the selected chain, and the other two lines represent one SD from the mean in each direction. The top and bottom of
each bar represent the minimum and maximum percentile for the selected chain. The radar chart option shows all the metrics as continuous
scores, on the percentile scale. In this chart, the color of the circle corresponding to each metric represents the position of that particular
value within its distribution. Hovering over any of these circles produces a pop-up bubble containing both the absolute and percentile values
for a particular metric. The shape of the chart is updated automatically based on the number of metrics selected
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two stylesheet (CSS) files, and the JS files responsible for
chart interactivity.

Iris will produce one of two types of report: a full vali-
dation report, containing both the graphical panel and
further sections of additional validation data, or a mini-
mized report, containing just the graphical panel. The
full report provides the ability to test and customize Iris
as a standalone entity, or to implement it as an addition
to a bespoke Python-based model pipeline. The intended
purpose of the minimized report is to facilitate the inte-
gration of Iris within new or existing software suites, to
be rendered by the package's own integrated browser,
either on its own or via insertion into another HTML
page. The simplest way to do this is by using an iframe,
to maintain CSS separation.

CCP4i229 is the latest version of the graphical user
interface for the CCP4 suite, and will be the first package
to feature Iris as an integrated validation plugin. The
native CCP4i2 validation routine is the Multimetric Model

Validation task, which has been renovated with a new
structure and design (Figure 4) to feature the Iris graphi-
cal panel. Despite the widely-supported nature of the Iris
SVG/JG format, the CCP4i2 browser originally failed to
parse the native Iris JS code, as some of the keywords
were unsupported. It was also unable to render the SVG
graphics within an iframe. The integrated browsers found
in many other crystallographic software packages are
similarly outdated. So, a backwards-compatibility mode
was added in which the modern keywords in the Iris JS
code are replaced with archaic, but well supported ones,
and the CSS is modified such that the Iris HTML can be
inserted directly into an existing HTML document with-
out causing any style conflicts. This mode is what is used
within the CCP4i2 implementation of Iris.

At the bottom of the CCP4i2 validation task is a but-
ton that launches the Coot software with a “guided tour
of issues” raised in the validation report. Because Coot

and Iris both use the same data and thresholds for the
detection of Ramachandran and rotamer outliers, the
outliers flagged in the CCP4i2 validation report directly
correspond to those that would be detected in Coot, mak-
ing for a seamless transition from the CCP4i2 validation
report to the Coot guided tour.

3.5 | Package overview

The following is an example of the most basic way to
generate a standalone Iris report, by importing the
generate_report function from the top of the package.
The process triggered by calling this function is illus-
trated in Figure S2.

from iris_validation import generate_report

generate_report (latest_model_path = ‘latest.pbd’,
previous_model_path = ‘previous.pbd’,
latest_reflections_path = ‘latest.mtz’,
previous_reflections_path = ‘previous.mtz’,
output_dir = ‘Iris_output/’,
mode = ‘full’)

4 | RESULTS AND DISCUSSION

4.1 | Metric quality tests

Ramachandran and rotamer classifications were tested
against MolProbity (Figure 5). Because the thresholds
applied for rotamer classification are the same as
those applied by MolProbity, but those applied for
Ramachandran classification were those used by Coot,
the rotamer classifications show higher agreement
with MolProbity than the Ramachandran classifications
within the outlier and allowed categories. The Iris
Ramachandran classifications will be in complete agree-
ment with those from Coot.

4.2 | User interface tests

To showcase Iris's functionality, example reports were gen-
erated for a number of structures using models from the
PDB-REDO database. In these tests, the PDB-REDO refined
models were used as the “latest” inputs and the originally
deposited models were used as the “previous” inputs.

4.3 | Analyzing the structure of a beta-
galactosidase mutant (PDB code 3VD3)

This structure37 was chosen due to its high residue count
and the fact that the resolution of the experimental data
is not high. Looking first at the chain-view display
(Figure 6), the outer axes reveal two troughs around the
eight o'clock position in all the continuous metrics,
which correspond to the low-end of the distributions
shown on the residue-view spectra. The first is from
B/681–689, in which the selected residue lies, and the
second is from B/727–737. These areas both correspond
to random coils on the very outside of the molecule,
regions which often have quite low fit quality. The two
innermost rings reveal some geometry outliers, though
not an alarming number given the resolution of 2.80 Å.
Their distributions are quite clear: the Ramachandran
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FIGURE 4 The design (top) and flow (bottom) of the CCP4i2 validation report before and after Iris graphics panel integration with the
minimized panel mode. The most noticeable difference to the design is that the Iris graphical panel is now the first view presented to the
user when the page is loaded, and fills the viewport to maximize the size of the chain-view display. The flow of the task has changed more
significantly; where the old task performed simple B-factor and Ramachandran analyses, then executed MolProbity analyses and compiled
the results all on the same thread, the new version of the task uses Python's multiprocessing library to run concurrent MolProbity analyses
on separate threads while the Iris calculations are performed on the main thread. This significantly reduces the run time, despite doubling
the number of analyses being performed. Because the Iris metrics are all calculated within the same cascade, the task only has to perform
one set of (slow) Python loops, as opposed to the serial repeats of loops in the original report, hence the newly-structured report has a
shorter run time both with and without MolProbity enabled. Timings are not to exact scale, see results section for accurate timing analysis
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outliers are mostly spread out, and there is a cluster of
rotamer outliers around the nine o'clock position.

Turning to the residue-view display, the spectra on
the bar charts show that this chain has quite high-quality
distributions of the continuous metrics, both with a high
mean and low SD. However, both distributions have
quite low minima, indicating a small number of residues
with particularly high B-factor and poor fit quality. This
is likely to correspond to the two troughs seen on the
chain-view display, including the selected residue, which
has poor continuous metrics relative to the chain's distri-
bution, and to other models in the percentile bin. Finally,
the residue's Ramachandran and rotamer conformations
are both in the “allowed” category, indicating unusual
conformations for both backbone and side-chain.

The model visualization shows the random coil
corresponding to the first trough on the chain-view dis-
play (B/681–689). Here, the relevant residues are shown
in a ball-and-stick view with each atom colored by B-fac-
tor. The density has been contoured at 1σ, and clipped
around these residues.

4.4 | Automated model building:
Watching progress and identifying regions
for manual intervention

This case was taken from the “rnase” tutorial that comes
bundled with CCP4i2. After phasing the data by molecular
replacement with Phaser38 using PDB code 3A5E39 as
model, the Autobuild Protein pipeline was launched, which
runs alternate iterations of Buccaneer40 and REFMAC5,41

and extracted the coordinates resulting from the first and
last iterations of the pipeline. The results obtained by Iris
on these two structures can be seen in Figure 7.

The sequence of the first iteration of the model is
three residues shorter than in the final iteration, due to
Buccaneer being unable to model this section. Pairwise
alignment enables Iris to determine that the missing resi-
dues are the final three of the chain, which is represented
on the chain-view with the black spots in the segments
around the edge of the ring. Looking first at the inner
two rings, it is evident that the Ramachandran and
rotamer torsion angles improved significantly, with non-
favored Ramachandran residues decreasing from nine to
three, and non-favored rotamers decreasing from four-
teen to nine. On the outer four rings, changes are more
subtle, and much easier to make out with the live anima-
tion (please refer to our Supporting Information Video
S1). At around the seven and eight o'clock positions,
there is some improvement in both B-factor and density
fit quality. Because Iris emphasizes the poorer areas on
the chain, this change appears very slight. More notice-
able are the areas of poor quality that have developed
between the two versions, for example, a trough devel-
oped in all four rings at the third residue, where appar-
ently fit quality and B-factor were sacrificed in order to
swap the rotamer for a more favorable conformation.

4.5 | Timings

A random selection of 20,000 models from PDB-REDO

was run through three different versions of the CCP4i2

FIGURE 5 Confusion matrices for Ramachandran (left) and rotamer (right) classification agreements between Iris and MolProbity.
Figures in brackets are the number of residues. Percentages are given as a proportion of the sum of each Iris classification. In the case of
rotamer classifications, discrepancies between MolProbity and Iris arise as a result of the different formats of the reference data; MolProbity

has access to the entire original dataset, allowing for very accurate interpolation for each case, whereas the compression Iris uses to store the
reference data yields slightly less precise classifications, especially at the interfaces between classifications (i.e., borderline cases).
Discrepancies in the Ramachandran classifications are partly due to the differing interpolation methods applied by MolProbity and Clipper,
but more significantly to the fact that the thresholds are arbitrary; and those selected for iris are the ones that are used in Coot, to facilitate
the transition between an Iris report and the Coot validation tools. These are not necessarily the same as those used by MolProbity
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validation task: (a) the old version of the task, with
MolProbity analyses enabled; (b) the new Iris-implemented
version of the task, with MolProbity analyses enabled;
(c) the new Iris-implemented version of the task, with
MolProbity analyses disabled. It is important to note that
the old version of the task only analyses the originally
deposited model, whereas the Iris-implemented task ana-
lyses both the original and optimized versions together.
The results are shown in Figure 8.

Timings were calculated on an Intel i9-9900k (eight
cores, sixteen threads) at stock frequency, with eight

CCP4i2 instances running in parallel. Because each
instance of CCP4i2 can have up to three intensive pro-
cesses running at once (one main thread plus two
MolProbity threads) the processor thread count will have
led to bottlenecking at times.

The implementation of the Python 2 multiprocessing
module in the CCP4i2 task is not supported under Win-
dows. Hence, when the CCP4i2 validation task is run
under Windows, MolProbity analyses have to be run
sequentially on the main thread, without parallelization,
the same as in the old task. Because of this, if two models

FIGURE 6 Example Iris report
for structure 3VD3 (top) and
accompanying model visualization
(bottom). The screenshot shows an
Iris report for 3VD3, with chain B,
residue 684 selected. The version
slider in the “previous” position,
corresponding in this case to the
originally-deposited model, before
refinement by PDB-REDO. The
selected chain comprises more than
1,000 residues, demonstrating the
robustness of the design to high
residue-counts. For the bottom
panel, the model has been colored
by B-factor (blue for low values, red
and then white for high relative
values) to highlight the mobility of
this region. The map shows 2mFo-
DFc density contoured at 1σ; the fact
that the map does not cover all the
residues at this level hints at the
region's mobility and/or disorder
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are provided, and MolProbity is enabled, validation may
take significantly longer than it otherwise would on a
unix-based operating system like Linux or MacOS. Forth-
coming updates to the CCP4 package instating Python
3 will solve this issue in the near future.

5 | CONCLUSIONS AND
FUTURE WORK

Our main aim at this stage was to demonstrate the bene-
fits of using an interactive multi-metric per-residue dis-
play; the fact that problematic regions in a model create
ripples across the different metrics helps spot those parts
of a model requiring further attention.

In the near future, MolProbity analyses will be
implemented directly within the Iris metrics module
using the CCTBX Python package. This way, the user will
be able to choose either Iris or MolProbity analyses when
using Iris in any context, including as a standalone solu-
tion, rather than having to choose an implementation of
Iris that makes MolProbity analyses available, such as
CCP4i2.

The Iris metrics module cascade is an ideal candidate
for multithreading. Residue analyses could be para-
llelized for a significant reduction in run time. Unfortu-
nately, the way that Python 2 requires multiprocessing
processes to return a class that can be serialized with
Python's built-in serialization module makes this

infeasible at the moment. In the longer term, the Iris
code will be restructured to realize this goal.

The calculation used for electron density fit score is
quite oversimplified for the sake of reducing computa-
tional intensity. If other optimizations are made, like
multithreading, then more processor time can be spent
on more comprehensive density fit calculations. Alterna-
tively, we could incorporate the ability to parse output
from programs like EDSTATS,3 which is bundled with
the CCP4 suite.

Owing to its modularity and portability, we expect
to make Iris available to a number of structural biology
programs, including CCP4mg,2 Coot1 and ChimeraX.42

These graphical programs will also provide a 3D view
that can be centered upon clicking on individual residues
in the Iris report. The mechanism we envision for this
task has already been tested in the implementation of
Glycoblocks,43 which communicated the Privateer44 carbo-
hydrate validation software and CCP4mg through hyper-
links on SVGs.

The most pressing development however is to expand
the number of metrics available that can be generated by
the Iris metric module. Like with the compressed Iris
rotamer library, a compressed library for CaBLAM45,46

could be generated and integrated using the Richardsons'
group data.33 CaBLAM C-alpha evaluation can be useful
in the refinement and validation of models derived from
cryo-EM data, which are becoming increasingly preva-
lent. Support for such data will be added soon, through

FIGURE 7 Example chain-views for the first (left) and last (right) iterations of a model from the Autobuild Protein pipeline (CCP4i2).
The pink shaded area on the left Iris plot illustrates an area of missing residues—not modeled by Buccaneer
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application of the Clipper NXmap class. Other traditional
metrics to be included will cover planarity and chirality
favorability.

However, all the aforementioned metrics are easily
targeted by restrained refinement, potentially devaluing
them as validation criteria. A longer, more challenging
project will involve the inception of a new set of valida-
tion metrics that remain as separate from the refinement
process as possible, opening the door to a truly indepen-
dent evaluation of the quality of a protein model.

6 | REPRODUCIBILITY AND
AVAILABILITY

Iris validation is available from GitHub (https://github.
com/wrochira/iris-validation), and soon, as a regular
Python package installable with the pip install iris-
validation command. A forthcoming CCP4 update will
distribute the component and its CCP4i229 interface.

The scripts used to generate and test any of the data
implemented in the package can be found in the Iris
tools companion module within the same repository.
Therefore, if any customizations are made to the metrics
module, the percentiles library can be regenerated
with ease.

ACKNOWLEDGMENTS

William Rochira is a Masters by Research student in the
Department of Chemistry, University of York. Jon Agirre
is a Royal Society Olga Kennard Research Fellow (award
number UF160039). The authors would like to thank Prof
K. Cowtan (University of York, UK) for insightful
discussions.

AUTHOR CONTRIBUTIONS

Will Rochira: Conceptualization; data curation; funding
acquisition; investigation; methodology; software; visuali-
zation; writing-original draft; writing-review and editing.
Jon Agirre: Conceptualization; methodology; supervi-
sion; validation; writing-original draft; writing-review
and editing.

ORCID

William Rochira https://orcid.org/0000-0002-2009-5129
Jon Agirre https://orcid.org/0000-0002-1086-0253

REFERENCES

1. Emsley P, Cowtan K. Coot: Model-building tools for molecular
graphics. Acta Crystallogr. 2004;D60:2126–2132.

2. McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting
your structures: The CCP4mg molecular-graphics software.
Acta Crystallogr. 2011;D67:386–394.

3. Tickle IJ. Statistical quality indicators for electron-density
maps. Acta Crystallogr. 2012;D68:454–467.

4. Collaborative Computational Project, Number. The CCP4 suite:
Programs for protein crystallography. Acta Crystallogr. 1994;
D50:760–763.

5. Adams PD, Afonine PV, Bunkoczi G, et al. PHENIX: A com-
prehensive Python-based system for macromolecular structure
solution. Acta Crystallogr. 2010;D66:213–221.

6. Read RJ, Adams PD, Arendall WB III, et al. A new generation
of crystallographic validation tools for the protein data bank.
Structure. 2011;19:1395–1412.

7. Kleywegt GJ, Jones TA. Where freedom is given, liberties are
taken. Structure. 1995;3:535–540.

8. Weichenberger CX, Pozharski E, Rupp B. Visualizing ligand
molecules in twilight electron density. Acta Crystallogr. 2013;
F69:195–200.

9. Crispin M, Stuart DI, Yvonne Jones E. Building meaningful
models of glycoproteins. Nat Struct Mol Biol. 2007;14:354–-
discussion 355.

10. Agirre J, Davies G, Wilson K, Cowtan K. Carbohydrate anoma-
lies in the PDB. Nat Chem Biol. 2015;11:303.

11. Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein
structures. Nature. 1996;381:272.

FIGURE 8 Boxplots illustrating the distribution of average
(n = 5 repeats) times taken to run models (both coordinates and
reflection data) through different versions of the CCP4i2 Multimetric
Validation task. The median value of each distribution is labeled

14 ROCHIRA AND AGIRRE



12. Joosten RP, Womack T, Vriend G, Bricogne G. Re-refinement
from deposited X-ray data can deliver improved models for
most PDB entries. Acta Crystallogr. 2009;D65:176–185.

13. Diamond R. A real-space refinement procedure for proteins.
Acta Cryst. 1971;A27:436–452.

14. Sheldrick GM. SHELX-76, Program for Crystal Structure Deter-
mination. University of Cambridge, Cambridge, UK; 1986.

15. Sheldrick GM. A short history of SHELX. Acta Cryst. 2008;A64:
112–122.

16. Sussman JL, Holbrook SR, Church GM, Kim S-H. A structure-
factor least-squares refinement procedure for macromolecular
structures using constrained and restrained parameters. Acta
Crystallogr. 1977;A33:800–804.

17. Dodson EJ, Isaacs NW, Rollett JS. A method for fitting satisfac-
tory models to sets of atomic positions in protein structure
refinements. Acta Crystallogr. 1976;A32:311–315.

18. Laskowski RA, MacArthur MW, Moss DS, Thornton JM.
PROCHECK: A program to check the stereochemical quality of
protein structures. J Appl Cryst. 1993;26:283–291.

19. Vriend G. WHAT IF: A molecular modeling and drug design
program. J Mol Graph. 1990;8(52–56):29.

20. Wilson KS, Butterworth S, Dauter Z, et al. Who checks the
checkers? Four validation tools applied to eight atomic resolu-
tion structures. J Mol Biol. 1998;276:417.

21. Jones TA. Interactive electron-density map interpretation:
From INTER to O. Acta Crystallogr. 2004;D60:2115–2125.

22. Cowtan K. The Clipper C++ libraries for X-ray crystallography.
IUCr Comput Commiss Newslett. 2003;2:9.

23. Davis IW, Leaver-Fay A, Chen VB, et al. MolProbity: All-atom
contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007;35:W375–W383.

24. Urzhumtseva L, Afonine PV, Adams PD, Urzhumtsev A. Crys-
tallographic model quality at a glance. Acta Crystallogr. 2009;
D65:297–300.

25. Young JY, Westbrook JD, Feng Z, et al. OneDep: Unified
wwPDB system for deposition, biocuration, and validation of
macromolecular structures in the PDB archive. Structure. 2017;
25:536–545.

26. Kleywegt GJ, Jones TA. OOPS-a-daisy. CCP4/ESF-EACBM
Newslett Protein Crystallogr. 1994;30:20–24.

27. Lamzin VS, Perrakis A, Wilson KS. ARP/wARP—Automated
model building and refinement. Volume F: Crystallography of
biological macromolecules. Chester, England: International
Union of Crystallography, 2012; p. 525–528.

28. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, et al. Itera-
tive model building, structure refinement and density modifica-
tion with the PHENIX AutoBuild wizard. Acta Crystallogr.
2008;D64:61–69.

29. Potterton L, Agirre J, Ballard C, et al. CCP4i2: The new graphi-
cal user interface to the CCP4 program suite. Acta Crystallogr.
2018;D74:68–84.

30. McNicholas S, Croll T, Burnley T, et al. Automating tasks in
protein structure determination with the clipper python mod-
ule. Protein Sci. 2018;27:207–216.

31. van der Walt S, Colbert SC, Varoquaux G. The NumPy array: A
structure for efficient numerical computation. Comput Sci Eng.
2011;13:22–30.

32. Grosse-Kunstleve RW, Sauter NK, Moriarty NW, Adams PD.
The computational crystallography toolbox: Crystallographic

algorithms in a reusable software framework. J Appl Cryst.
2002;35:126–136.

33. Richardson Laboratory reference_data. Github. Available from:
https://github.com/rlabduke/reference_data

34. Hintze BJ, Lewis SM, Richardson JS, Richardson DC.
Molprobity's ultimate rotamer-library distributions for model
validation. Proteins. 2016;84:1177–1189.

35. Joosten RP, Joosten K, Murshudov GN, Perrakis A.
PDB_REDO: Constructive validation, more than just looking
for errors. Acta Crystallogr. 2012;D68:484–496.

36. van Beusekom B, Touw WG, Tatineni M, et al. Homology-
based hydrogen bond information improves crystallographic
structures in the PDB: Homology-based H-bond restraints
improve PDB entries. Protein Sci. 2018;27:798–808.

37. Wheatley RW, Kappelhoff JC, Hahn JN, et al. Substitution for
Asn460 cripples β-galactosidase (Escherichia coli) by increasing
substrate affinity and decreasing transition state stability. Arch
Biochem Biophys. 2012;521:51–61.

38. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD,
Storoni LC, Read RJ. Phaser crystallographic software. J Appl
Cryst. 2007;40:658–674.

39. Nick Pace C, Huyghues-Despointes BMP, Fu H, Takano K,
Scholtz JM, Grimsley GR. Urea denatured state ensembles con-
tain extensive secondary structure that is increased in hydro-
phobic proteins. Protein Sci. 2010;19:929–943.

40. Cowtan K. The buccaneer software for automated model building.
1. Tracing protein chains. Acta Crystallogr. 2006;D62:1002–1011.

41. Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for
the refinement of macromolecular crystal structures. Acta
Crystallogr. 2011;D67:355–367.

42. Goddard TD, Huang CC, Meng EC, et al. UCSF ChimeraX:
Meeting modern challenges in visualization and analysis. Pro-
tein Sci. 2018;27:14–25.

43. McNicholas S, Agirre J. Glycoblocks: A schematic three-
dimensional representation for glycans and their interactions.
Acta Crystallogr. 2017;D73:187–194.

44. Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS,
Cowtan KD. Privateer: Software for the conformational validation
of carbohydrate structures. Nat Struct Mol Biol. 2015;22:833–834.

45. Williams CJ. Using C-alpha geometry to describe protein sec-
ondary structure and motifs; 2015. Available from: http://
dukespace.lib.duke.edu/dspace/bitstream/handle/10161/9968/
Williams_duke_0066D_12985.pdf?sequence=1.

46. Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: More
and better reference data for improved all-atom structure vali-
dation. Protein Sci. 2018;27:293–315.

SUPPORTING INFORMATION

Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Rochira W, Agirre J.
Iris: Interactive all-in-one graphical validation of
3D protein model iterations. Protein Science. 2020;
1–15. https://doi.org/10.1002/pro.3955

ROCHIRA AND AGIRRE 15


	Iris: Interactive all-in-one graphical validation of 3D protein model iterations
	1  INTRODUCTION
	2  METHODS
	2.1  Component design
	2.2  Metrics

	3  INTERFACE
	3.1  Graphical panel
	3.2  Chain-view display
	3.3  Residue-view display
	3.4  Reports
	3.5  Package overview

	4  RESULTS AND DISCUSSION
	4.1  Metric quality tests
	4.2  User interface tests
	4.3  Analyzing the structure of a beta-galactosidase mutant (PDB code 3VD3)
	4.4  Automated model building: Watching progress and identifying regions for manual intervention
	4.5  Timings

	5  CONCLUSIONS AND FUTURE WORK
	6  REPRODUCIBILITY AND AVAILABILITY
	ACKNOWLEDGMENTS
	  AUTHOR CONTRIBUTIONS
	REFERENCES


