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Abstract Let G be an undirected simple graph having n vertices and let f : V (G) →
{0, . . . , n − 1} be a function. An f -factor of G is a spanning subgraph H such that

dH(v) = f(v) for every vertex v ∈ V (G). The subgraph H is called a connected

f -factor if, in addition, H is connected. A classical result of Tutte (1954) is the

polynomial time algorithm to check whether a given graph has a specified f -factor.

However, checking for the presence of a connected f -factor is easily seen to gener-

alize HAMILTONIAN CYCLE and hence is NP-complete. In fact, the CONNECTED

f -FACTOR problem remains NP-complete even when we restrict f(v) to be at least

nǫ for each vertex v and constant 0 ≤ ǫ < 1; on the other side of the spectrum of

nontrivial lower bounds on f , the problem is known to be polynomial time solvable

when f(v) is at least n
3 for every vertex v.

In this paper, we extend this line of work and obtain new complexity results based

on restrictions on the function f . In particular, we show that when f(v) is restricted

to be at least n
(logn)c , the problem can be solved in quasi-polynomial time in general

and in randomized polynomial time if c ≤ 1. Furthermore, we show that when c > 1,

the problem is NP-intermediate.
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f(v) ≥ Complexity Class

nǫ, ∀ǫ ∈ [0, 1) NPC [6,5]
n

polylog(n)
QP (Theorem 2)

n

logn
RP (Theorem 3)

n

c
, ∀c ≥ 3 P (Theorem 1)

Table 1 The table depicting the known as well as new results on the complexity landscape of the CON-

NECTED f -FACTOR problem. Note that ǫ is an arbitrary constant in the given range.

1 Introduction

The concept of f -factors is fundamental in graph theory, dating back to the 19th

century, specifically to the work of Petersen [16]. In modern terminology, an f -factor

is defined as a spanning subgraph which satisfies degree constraints (given in terms

of the degree function f ) placed on each vertex of the graph [24]. Some of the most

fundamental results on f -factors were obtained by Tutte, who gave sufficient and

necessary conditions for the existence of f -factors [21]. In addition, he developed a

method for reducing the f -factor computation problem to the perfect matching [22]

problem, which gives a straightforward polynomial time algorithm for the problem

of deciding the existence of an f -factor. There are also several detailed surveys on

f -factors of graphs, for instance by Chung and Graham [4], Akiyama and Kano [1],

Lovász and Plummer [14].

Aside from work on general f -factors, substantial attention has been devoted to

the variant of f -factors where we require the subgraph to be connected (see for in-

stance the survey articles by Kouider and Vestergaard [13] and Plummer [18]). Unlike

the general f -factor problem, deciding the existence of a connected f -factor is NP-

complete [8,3]. It is easy to see that the connected f -factor problem (CONNECTED

f -FACTOR) generalizes HAMILTONIAN CYCLE (set f(v) = 2 for every vertex v),

and even the existence of a deterministic single-exponential (in the number of ver-

tices) algorithm is open for the connected f -factor problem [17], though there are

such algorithms for special cases like the HAMILTONIAN CYCLE [10,2].

The NP-completeness of this problem has motivated several authors to study the

CONNECTED f -FACTOR for various restrictions on the function f . Cornelissen et

al. [6] showed that CONNECTED f -FACTOR remains NP-complete even when f(v)
is at least nǫ for each vertex v and any nonnegative constant ǫ less than 1. Similarly,

it has been shown that the problem is polynomial time solvable when f(v) is at least
n
3 [15] for every vertex v. Aside from these two fairly extreme cases, the complexity

landscape of CONNECTED f -FACTOR based on lower bounds on the function f , has

largely been left uncharted.

Our results and techniques. In this paper, we provide new results (both positive and

negative) on solving CONNECTED f -FACTOR based on lower bounds on the range

of f . Since we study the complexity landscape of CONNECTED f -FACTOR through

the lens of the function f , it will be useful to formally capture bounds on the function

f via an additional “bounding” function g. To this end, we introduce the connected

g-Bounded f -factor problem (CONNECTED g-BOUNDED f -FACTOR) below:
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CONNECTED g-BOUNDED f -FACTOR

Instance: An n-vertex undirected simple graph G and a mapping

f : V (G) → N such that f(v) ≥ n
g(n) .

Task: Find a connected f -factor H of G.

First, we obtain a polynomial time algorithm for CONNECTED f -FACTOR when

f(v) is at least n
c

for every vertex v and any constant c > 1. This result generalizes

the previously known polynomial time algorithm for the case when f(v) is at least
n
3 . This is achieved thanks to a novel approach for the problem, which introduces

a natural way of converting one f -factor to another by exchanging a set of edges.

Here we formalize this idea using the notion of Alternating Circuits. These allow

us to focus on a simpler version of the problem, where we merely need to ensure

connectedness across a coarse partition of the vertex set. Furthermore, we extend

this approach to obtain a quasi-polynomial time algorithm for the CONNECTED f -

FACTOR when f(v) is at least n
polylog(n) for every vertex. To be precise, we prove the

following two theorems (see Section 2 for an explanation of the function g in formal

statements).

Theorem 1 For every function g(n) ∈ O(1), CONNECTED g-BOUNDED f -FACTOR

can be solved in polynomial time.

Theorem 2 For every c > 0 and function g(n) ∈ O((log n)c), CONNECTED g-

BOUNDED f -FACTOR can be solved in time n(logn)α(c)

where α(c) ∈ O(1).

Second, we build upon these new techniques to obtain a randomized polynomial

time algorithm which solves CONNECTED f -FACTOR in the more general case where

f(v) is lower-bounded by n
g(n) for every vertex v and g(n) ∈ O(log n). For this, we

also require algebraic techniques that have found several applications in the design

of fixed-parameter and exact algorithms for similar problems [7,23,9,17]. Precisely,

we prove the following theorem.

Theorem 3 For every function g(n) ∈ O(log n), CONNECTED g-BOUNDED f -

FACTOR can be solved in polynomial time with constant error probability.

We remark that the randomized algorithm in the above theorem has one-sided er-

ror with ‘Yes’ answers always being correct. Finally, we obtain a lower bound result

for CONNECTED f -FACTOR when f(n) is at least n
(logn)c for c > 1. Specifically,

in this case we show that the problem is in fact NP-intermediate, assuming the Ex-

ponential Time Hypothesis [11] holds. Formally speaking, we prove the following

theorem.

Theorem 4 For every c > 1 and for every g(n) ∈ Θ((log n)c), CONNECTED g-

BOUNDED f -FACTOR is neither in P nor NP-hard unless the Exponential Time Hy-

pothesis fails.

We detail the known as well as new results on the complexity landscape of CON-

NECTED f -FACTOR in Table 1.
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Organization of the paper. After presenting required definitions and preliminaries

in Section 2, we proceed to the key technique and framework used for our algorith-

mic results, which forms the main part of Section 3. In Section 3.2, we obtain both of

our deterministic algorithms, which are formally given as Theorem 1 (for the poly-

nomial time algorithm) and Theorem 2 (for the quasi-polynomial time algorithm).

Section 4 then concentrates on our randomized polynomial time algorithm, presented

in Theorem 3. Finally, Section 5 focuses on ruling out (under established complexity

assumptions) both NP-completeness and inclusion in P possibilities for CONNECTED

g-BOUNDED f -FACTOR for all polylogarithmic functions g in Θ((log n)c).

2 Preliminaries

2.1 Basic Definitions

We use standard definitions and notations from West [24]. The notation dG(v) de-

notes the degree of a vertex v in a graph G. Similarly, NG(v) represents the set of

vertices adjacent to v in G. A component in a graph is a maximal subgraph that is

connected. Note that the set of components in a graph uniquely determines a partition

of the vertex set. A circuit in a graph is a cyclic sequence v0, e1, v1, · · · , ek, vk = v0
where each ei is of the form {vi−1, vi} and occurs at most once in the sequence. A

cycle is a circuit where all the k − 1 vertices are distinct. An Eulerian circuit in

a graph is a circuit in which each edge in the graph appears. Any graph having an

Eulerian circuit is called an Eulerian graph.

Let V ′ be a subset of the vertices in the graph G. The vertex-induced subgraph

G[V ′] is the graph over vertex set V ′ containing all the edges in G whose endpoints

are both in V ′. Given E′ ⊆ E(G), G[E′] is the edge-induced subgraph of G whose

edge set is E′ and vertex set is the set of all vertices incident to edges in E′.

Given two subgraphs G1 and G2 of G, the graph G1 △ G2 is the subgraph

G[E(G1) △ E(G2)]. The union of the graphs G1, G2, . . . , Gr is the graph
⋃r

i Gi

whose vertex set is
⋃r

i V (Gi) and edge set is
⋃r

i E(Gi).

Given a partition Q = {Q1, Q2, . . . , Qr} of the vertex set of G, the quotient

graph G/Q is constructed as follows: The vertex set of G/Q is Q. Corresponding

to each edge (u, v) in G where u in Qi, v in Qj , i 6= j, add an edge (Qi, Qj) to

G/Q. Thus, G/Q is a multigraph without loops. For a subgraph G′ of G, we say G′

connects a partition Q if G′/Q is connected. Further, we address the graph G′ to be a

partition connector. A refinement Q′ of a partition Q is a partition of V (G) where

each part Q′ in Q′ is a subset of some part Q in Q. This notion of partition refinement

was used, e.g., by Kaiser [12]. A spanning tree of the quotient graph G/Q refers to a

subgraph T of G with |Q|-1 edges that connects Q. The following lemma will later

be used in the analysis of the error probability of our randomized algorithm.

Lemma 5 The following holds for every n, c ∈ N with n > c:

1−
(c⌈log n⌉)2

n2
≤

(

1−
1

n2

)c logn

4



Proof. Using simple term manipulations, we obtain

(

1−
1

n2

)c logn

=

(

n2 − 1

n2

)c logn

=
(n2 − 1)c logn

(n2)c logn
. (1)

Since n2−1
n2 < 1, it follows that

(n2 − 1)c⌈logn⌉

(n2)c⌈logn⌉
≤

(n2 − 1)c logn

(n2)c logn
. (2)

By using the binomial formula, we obtain

(n2 − 1)c⌈logn⌉ =

c⌈logn⌉
∑

i=0

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i(−1)i

= n2c⌈logn⌉ +

c⌈logn⌉
∑

i=1

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i(−1)i

= n2c⌈logn⌉ −

c⌈logn⌉
∑

i=1

−

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i(−1)i.

To obtain an upper bound on
∑c⌈logn⌉

i=1 −
(

c⌈logn⌉
i

)

(n2)c⌈logn⌉−i(−1)i, we show next

that the absolute values of the terms in the sum are decreasing with increasing i.

|

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i(−1)i| =

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i

≥
c⌈log n⌉

n2

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i

≥ c⌈log n⌉

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−(i+1)

≥

(

c⌈log n⌉

i+ 1

)

(n2)c⌈logn⌉−(i+1)

The first inequality above holds because n > c. Hence, we obtain

c⌈logn⌉
∑

i=1

−

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i(−1)i ≤

c⌈logn⌉
∑

i=1

(

c⌈log n⌉

i

)

(n2)c⌈logn⌉−i

≤ (c⌈log n⌉) · (c⌈log n⌉)(n2)c⌈logn⌉−1

= (c⌈log n⌉)2(n2)c⌈logn⌉−1.
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Fig. 1 The alternating circuit A11 illustrating that not every alternating circuit can be decomposed into

edge-disjoint alternating circuits that are cycles. Here the blue edges are marked with thick lines and the

red edges are thin.

Putting the above back into Equation (1) and using Inequality (2) together with the

expressions above, we obtain

(

1−
1

n2

)c logn

≥
(n2 − 1)c⌈logn⌉

(n2)c⌈logn⌉

=
n2c⌈logn⌉ −

∑c⌈logn⌉
i=1 −

(

c⌈logn⌉
i

)

(n2)c⌈logn⌉−i(−1)i

(n2)c⌈logn⌉

≥
n2c⌈logn⌉ − (c⌈log n⌉)2(n2)c⌈logn⌉−1

(n2)c⌈logn⌉

≥ 1−
(c⌈log n⌉)2

n2
.

The above concludes the proof of the lemma. ⊓⊔
The function g we deal with is always a positive real-valued function, defined on

the set of positive integers. For the cases we consider, the function always takes a

value greater than 1. Unless otherwise mentioned, g(n) is in O(polylog(n)). When-

ever g is part of the problem definition, the target set of the function f is the set of

integers {⌈n/g(n)⌉, . . . , n− 1}. Consequently, we have the following fact.

Fact 6 Let G be a graph and let f(v) ≥ n/g(n) for each v in V (G). If H is an

f -factor of G, then the number of components in H is at most ⌈g(n)⌉ − 1.

2.2 Colored Graphs, (Minimal) Alternating Circuits, and f -Factors

A graph G is colored if each edge in G is assigned a color from the set {red, blue}. In

a colored graph G, we use R and B to denote spanning subgraphs of G whose edge

sets are the set of red edges (E(R)) and blue edges (E(B)) respectively. We use this

coloring in our algorithm to distinguish between edge sets of two distinct f -factors

of the same graph G. A crucial computational step in our algorithms is to consider

the symmetric difference between edge sets of two distinct f -factors and perform

a sequence of edge exchanges preserving the degree of each vertex. The following

definition is used extensively in our algorithms.

Definition 7 A colored graph A is an alternating circuit if there exists an Eulerian

circuit in A, where each pair of consecutive edges are of different colors.
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Clearly, an alternating circuit has an even number of edges and is connected. Fur-

ther, dR(v) = dB(v) for each v in A. A minimal alternating circuit A is an alter-

nating circuit where each vertex v in A has at most two red edges incident to v. Note

that alternating circuits, as opposed to Eulerian circuits, cannot always be decom-

posed into edge-disjoint alternating circuits that are cycles. As an example, consider

for each r1, r2 ≥ 1 the alternating circuit Ar1r2 which consists of two (edge-disjoint)

cycles of length 2r1 + 1 and length 2r2 + 1, respectively, that share one common

vertex v. Let the coloring of the edges of Ar1r2 be as illustrated in Figure 2.2. In-

formally, the edges of both cycles are colored in an alternating manner along each

cycle so that the edges of the first cycle incident to v have the same color, which is

distinct from the color given to the edges incident with v in the second cycle. Every

alternating circuit in Ar1r2 contains all edges of Ar1r2 and cannot be decomposed

further into smaller alternating circuits.

Fact 8 Let S be a subset of E(G). An f -factor H of G containing all the edges in S,

if one exists, can be computed in polynomial time.

The fact follows from the observation that a candidate for H \ S can be computed

from an f ′-factor H ′ of the spanning subgraph G\S, where f ′(v) = f(v)−dG[S](v)
for each v ∈ V (G). Note that given a partition Q = {X,V \X} of V (G), one can

check for the existence of an f -factor connecting Q in polynomial time by iterating

over each edge e in the cut [X,V \ X]G and applying Fact 8 by setting S = {e}.

Further, this can be extended for any arbitrary partition Q of constant size, or when

we are provided with a spanning tree S of G/Q that is guaranteed to be contained in

some f -factor of G.

Definition 9 Let M and H be two subgraphs of G where each component in M is

Eulerian. Let c : E(M) → {red, blue} be the unique coloring function which colors

the edges in E(M) ∩ E(H) with color red and those in E(M) \ E(H) with color

blue. The subgraph M is called a switch on H if every component of the colored

graph obtained by applying c on M , is an alternating circuit.

Definition 10 For a subgraph M which is a switch on another subgraph H of G, we

define Switching(H ,M ) to be the subgraph M △H of G.

We use switching as an operator where the role of the second operand is to bring in

specific edges to the first, retaining the degrees of vertices by omitting some less sig-

nificant edges. One can easily infer that if the result of applying the coloring function

c to M is a minimal alternating circuit, then the switching operation replaces at most

two edges incident to each vertex v in H .

Fact 11 Let A be an alternating circuit and S be a subset of edges in A. There is a

polynomial time algorithm that outputs a set M of edge disjoint minimal alternating

circuits in A, each of which has at least one edge from S and such that every edge in

S is contained in some minimal alternating circuit in M.

It is not difficult to see the proof of Fact 11. A skeptical reader can refer [15, Lemma

6]. Note that given S and A, M is not unique.
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Fact 12 Let H be an f -factor of G and let Q be a partitioning of the vertex set of G.

If H/Q is connected and H[Q] is connected for each Q in Q, then H is a connected

f -factor.

Fact 12 implies that if H is not a connected f -factor and H/Q is connected then there

exists some Q ∈ Q such that H[Q] is not connected.

3 A Generic Algorithm for Finding Connected g-Bounded f -Factors

Our goal in this section is to present a generic algorithm for CONNECTED g-BOUNDED

f -FACTOR. In particular, we in a certain sense reduce the question of solving CON-

NECTED g-BOUNDED f -FACTOR to solving a related problem which we call PARTI-

TION CONNECTOR. This can be viewed as a relaxed version of the original problem,

since instead of a connected f -factor it merely asks for an f -factor which connects a

specified partitioning of the vertex set. A formal definition is provided below.

PARTITION CONNECTOR

Instance: An n-vertex graph G, f : V (G) → N, and a partition Q of V (G).
Task: Find an f -factor of G that connects Q.

The algorithms for solving PARTITION CONNECTOR are presented in the lat-

ter parts of this article. Specifically, a deterministic algorithm that runs in quasi-

polynomial time whenever g(n) = O(polylog(n)) (Section 3.2) and a randomized

polynomial time algorithm for the case when g(n) = O(log n) (Section 4) are given.

The majority of this section is devoted to proving the key Theorem 13 stated be-

low, which establishes the link between PARTITION CONNECTOR and CONNECTED

g-BOUNDED f -FACTOR.

Theorem 13 (a) Let g(n) ∈ O(polylog(n)). If there is a deterministic algorithm

running in time O∗(n2(|Q|−1))1 for PARTITION CONNECTOR, then there is a

deterministic quasi-polynomial time algorithm for CONNECTED g-BOUNDED f -

FACTOR with running time O∗(n2g(n)).
(b) Let g(n) ∈ O(log n). If there exists a randomized algorithm running in time

O∗(2|Q|) with error probability O(|Q|2/n2) for PARTITION CONNECTOR, then

there exists a randomized polynomial time algorithm for CONNECTED g-BOUNDED

f -FACTOR that has a constant one-sided error probability.

3.1 A generic algorithm for CONNECTED g-BOUNDED f -FACTOR

The starting point of our generic algorithm is the following observation.

Observation 14 Let G be an undirected graph and f be a function f : V (G) → N.

The graph G has a connected f -factor if and only if for each partition Q of the vertex

set V (G), there exists an f -factor H of G that connects Q.

1 We use O∗(f(n)) to denote O(f(n) · nO(1)), i.e., O∗ omits polynomial factors, for any function

f(n).
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We remark that for the running time analysis for our generic algorithm we assume

that we are only dealing with instances of CONNECTED g-BOUNDED f -FACTOR,

where the number of vertices exceeds 6g(n)4. As g(n) is in O(polylog(n)), this does

not reduce the applicability of our algorithms, since there is a constant n0 such that

n ≥ 6g(n)4 for every n ≥ n0; because g(n) is part of the problem description

and not the instance given, n0 does not depend on the input instance. Consequently,

we can solve instances of CONNECTED g-BOUNDED f -FACTOR where n < n0 by

brute-force in constant time. We will therefore assume without loss of generality in

the following that n ≥ n0 and hence n ≥ 6g(n)4.

Our algorithm constructs a sequence (H0,Q0), . . . , (Hk,Qk) of pairs which is

maximal (cannot be extended further) satisfying the following properties:

(M1) For 0 ≤ i ≤ k, each Qi is a partition of the vertex set V (G), and Q0 = {V (G)}.

(M2) For 0 ≤ i ≤ k, each Hi is an f -factor of G, and Hi connects Qi.

(M3) For each 1 ≤ i ≤ k, Qi is a refinement of Qi−1 satisfying the following:

a) Each part Y in Qi induces a component Hi−1[Y ] in Hi−1[Q], for some Q in

Qi−1.

b) Qi 6= Qi−1.

The following lemma links the existence of a connected f -factor to the properties

of maximal sequences satisfying (M1)–(M3).

Lemma 15 Let (G, f) be an instance of CONNECTED g-BOUNDED f -FACTOR and

let S = (H0,Q0), . . . , (Hk,Qk) be a maximal sequence satisfying (M1)–(M3). Then,

G has a connected f -factor if and only if Hk is a connected f -factor of G.

Proof. Towards showing the forward direction of the claim, let us suppose for a con-

tradiction that Hk is not a connected f -factor of G and that G does contain a con-

nected f -factor. Because Hk connects Qk (Property (M2)), it follows from Fact 12

that there is some part Q′ ∈ Qk such that Hk[Q
′] is not connected. Consider the

refinement Qk+1 of Qk (Qk+1 6= Qk) that splits each part Q in Qk into the parts

corresponding to the components of Hk[Q]. Further, because G has a connected f -

factor and Observation 14, we obtain that there exists a connected f -factor Hk+1 that

connects any partition Qk+1. Now, the sequence S could be extended by appending

the pair (Hk+1,Qk+1) to its end, a contradiction to our assumption that S was a

maximal sequence. The reverse direction is trivial. ⊓⊔
We deploy an algorithm that computes a maximal sequence S satisfying (M1)–

(M3) and thereby use the above lemma to solve the connected f -factor problem by

testing whether the last f -factor in the sequence is connected. This involves comput-

ing Qi+1 from Hi and Qi followed by the computation of Hi+1 connecting Qi+1.

However, if the number of parts in the last partition Qk is allowed to grow to n, then

such an algorithm would eventually have to solve the connected f -factor problem to

compute an Hk satisfying (M2). Our algorithm does the incremental computation of

the sequence S in such a way that lets us to establish a lower bound on the size of any

part Q ∈ Qi as a function of g. This implies we have an upper bound on the number

of parts in any partition Qi in S which in turn bounds the length of the sequence S
as a function of g.

9



The following lemma shows that given the recently computed pair (H,Q) =
(Hi,Qi) in the sequence, the partition Q′ = Qi+1 and a candidate H ′′ for Hi+1, one

can compute a better candidate H ′ for Hi+1 which is closer to Hi in the sense that

most of the neighbors of a vertex v in Hi are retained as it is in H ′. The properties

of H ′ then allow us to lower-bound the size of each part in Qi+2 as a function of the

size of the smallest part in Qi+1.

Lemma 16 Let (H,Q), (H ′′,Q′) be two consecutive pairs occurring in a sequence

satisfying properties (M1)–(M3). Then, there is an f -factor H ′ of G connecting Q′

such that |NH′(v)∩Q′| ≥ |NH(v)∩Q′|−2(|Q′|−1) for every Q′ ∈ Q′ and v ∈ Q′.

Moreover, H ′ can be computed from Q′, H , and H ′′ in polynomial time.

Proof. From the premise that H ′′ is an f -factor connecting Q′, we know that there

exists a spanning tree T of H ′′/Q′. Color the edges in H with color red and those in

H ′′ with color blue. Let A be the graph H △H ′′. Notice that each component in A
is an alternating circuit. Furthermore, note that the set S = E(T \H) of blue edges

is a subset of A as E(T ) is a subset of E(H ′′). Let Si be the set Ai ∩ S where Ai is

the ith component in A. We compute the set Mi of edge disjoint minimal alternating

circuits using Fact 11 for each (Ai, Si) pair. The size of the set Mi is at most |Si|
and hence there are at most |S| minimal alternating circuits in M =

⋃

i Mi. Let

MS =
⋃

M∈M M and H ′ be the f -factor defined as Switching(H ,MS). We argue

that this switching operation removes at most 2(|Q′|−1) edges incident to any vertex

v in H[Q′] for every Q′ ∈ Q′.

Considering the fact that the minimal alternating circuits in M are edge disjoint,

we visualize switching with MS as a sequence of switching operations on H each

with a distinct minimal alternating circuit M in M. In each such M , the number of

red edges incident to a vertex v that leaves H during switching is at most two and

the operation Switching(H ,MS) retains at least NH(v) − 2|M| neighbors of each

vertex. Thus, for any subset Q′ of V (G) if we consider the subgraph H[Q′] alone, it

must be the case that |NH[Q′](v) ∩NH′[Q′](v)| ≥ |NH[Q′](v)| − 2|M| for each v in

Q′. Furthermore, |M| is at most |S| = |Q′| − 1. Since the set E(T ) is a subset of

E(H ′), H ′ connects Q′. From Fact 11, the computation of M and hence of H ′ takes

polynomial time. This completes the proof of the lemma. ⊓⊔
By employing the above lemma, our algorithm ensures that the maximal sequence

(H0,Q0), . . . , (Hk,Qk) thus constructed satisfies the following additional property:

(M4) For every 1 ≤ i ≤ k, every Q ∈ Qi and v ∈ Q it holds that |NHi(v) ∩ Q| ≥
|NHi−1(v) ∩Q| − 2(|Qi| − 1).

This property plays a key role in the analysis of our algorithm as it allows us to bound

the number of parts in each partition Qi. Towards this aim we require the following

auxiliary lemma.

Lemma 17 Let S = (H0,Q0), . . . , (Hk,Qk) be a sequence satisfying properties

(M1)–(M4). Then, |NHi(v) ∩ Q| ≥ f(v) −
∑

1≤j≤i 2(|Qj | − 1) for every i with

1 ≤ i ≤ k, Q ∈ Qi and v ∈ Q.

Proof. We show the claim by induction on i starting from i = 1. Let Q ∈ Q1 and

v ∈ Q. Because H0 is an f -factor of G and Q is a component of H0, we obtain
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that |NH0(v) ∩ Q| = f(v). Using Property (M4) for i = 1, we obtain |NH1(v) ∩
Q| ≥ |NH0(v) ∩ Q| − 2(|Q1| − 1) = f(v) − 2(|Q1| − 1), as required. Hence

assume that the claim holds for i − 1 and we want to show the claim for i. Let

Qi ∈ Qi and v ∈ Qi and let Qi−1 be the part in Qi−1 containing Qi. Note that

v ∈ Qi−1. From the induction hypothesis we obtain that |NHi−1
(v) ∩ Qi−1| ≥

f(v)−
∑

1≤j≤i−1 2(|Qj | − 1). Because Qi is a component of Hi−1[Qi−1], it holds

that |NHi−1(v)∩Qi−1| = |NHi−1(v)∩Qi|. Hence together with Property (M4), we

obtain

|NHi
(v) ∩Qi| ≥ |NHi−1

(v) ∩Qi| − 2(|Qi| − 1)

= |NHi−1
(v) ∩Qi−1| − 2(|Qi| − 1)

≥ f(v)− (
∑

1≤j≤i−1

2(|Qj | − 1))− 2(|Qi| − 1)

= f(v)− (
∑

1≤j≤i

2(|Qj | − 1))

as required. This completes the proof of the lemma. ⊓⊔
Recall that f(v) is at least n/g(n) for each v ∈ V (G). Our next step is to show

that the length of the maximal sequence constructed by our algorithm does not exceed

g(n) + 1.

Lemma 18 Let S = (H0,Q0), . . . , (Hk,Qk) be a maximal sequence satisfying

properties (M1)–(M4). Then, |Qi| ≤ g(n) + 1 for every i with 0 ≤ i ≤ k. More-

over, the length of S is at most g(n) + 1.

Proof. The claim clearly holds for Q0. It also holds for Q1 because the parts in Q1

correspond to the components of H0, which are at most g(n) due to Fact 6. Assume

for a contradiction that the claim does not hold and let S = (H0,Q0), . . . , (Hk,Qk)
be a maximal sequence satisfying (M1)–(M4) witnessing this and let ℓ be the smallest

integer such that |Qℓ| > g(n) + 1. Then, ℓ > 1 and |Qℓ−1| ≤ g(n) + 1. Because

|Q0| = 1 and for every i, |Qi| is larger than |Qi−1|, we obtain that i ≤ |Qi| − 1
for every i. Hence, ℓ − 1 ≤ |Qℓ−1| − 1 ≤ g(n) + 1 − 1 = g(n) or in other words

ℓ ≤ g(n) + 1.

From Lemma 17, we obtain that

|NHℓ−1
(v) ∩Q| ≥ f(v)−

∑

1≤j<ℓ

2(|Qj | − 1)

≥
n

g(n)
−

∑

1≤j<ℓ

2(g(n))

≥
n

g(n)
− 2(ℓ− 1)g(n)

≥
n

g(n)
− 2(g(n))2

for every Q ∈ Qℓ−1 and v ∈ Q. This implies that every component of Hℓ−1[Q]
for some Q ∈ Qℓ−1, and hence also every part of Qℓ has size at least n/g(n) −
2g(n)2 + 1. Since |Qℓ| > g(n) + 1, we conclude that the number n of vertices of G
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is greater than (n/g(n) − 2g(n)2 + 1)(g(n) + 1). Rearranging for n we obtain that

n < 2g(n)4 + 2g(n)3 + g(n)2 + g(n) < 6g(n)4 which contradicts our assumption

that n ≥ 6g(n)4. Since Qi is a proper refinement of Qi+1 for every i with 1 ≤ i < k
and |Q0| = 1, we infer that the length of the sequence S is at most g(n) + 1. This

completes the proof of the lemma. ⊓⊔
We are now ready to prove the main theorem of this section which outlines how

the running time of CONNECTED g-BOUNDED f -FACTOR is dominated by the PAR-

TITION CONNECTOR module.

Proof of Theorem 13. We present an algorithm for CONNECTED g-BOUNDED f -

FACTOR that employs an algorithm for PARTITION CONNECTOR as a subroutine.

All parts of the algorithm apart from the subroutine PARTITION CONNECTOR will

be deterministic and run in polynomial time. The main idea is to construct a maximal

sequence S = (H0,Q0), . . . , (Hk,Qk) satisfying properties (M1)–(M4). Recall our

assumption that n ≥ 6g(n)4. Let (G, f) be an instance of CONNECTED g-BOUNDED

f -FACTOR. The algorithm starts by computing an arbitrary f -factor H0. If no f -factor

exists, then clearly the algorithm reports failure. If on the other hand the computed

f -factor H0 is already connected, then the algorithm returns H0 and exits.

Observe that (H0,Q0), where Q0 = {V (G)}, is a valid starting pair for a se-

quence S satisfying properties (M1)–(M4). Furthermore, the algorithm extends the

sequence S by adding successors as long as one exists. The sequence is extended

by invoking a recursive subroutine Restricted-f -factor with parameters (G, f) and

the most recently added pair (H,Q) to compute a new pair (H ′,Q′) that can be ap-

pended to the sequence, if one exists. Otherwise, the procedure concludes that S can

no longer be extended, in which case it either returns a connected f -factor of G or

reports nonexistence of one. The subroutine Restricted-f -factor works as follows.

The procedure starts by computing a refinement Q′ of Q containing one part

V (C) for every component C in H[Q] where Q is a part in Q. If Q′ = Q then be-

cause of Fact 12, H already constitutes a connected f -factor of G and the procedure

correctly returns H . Otherwise, the procedure calls the provided algorithm for PAR-

TITION CONNECTOR on G, f , and Q′ to obtain an f -factor H ′′ connecting Q′. Note

that if there does not exist an f -factor connecting Q′, then Observation 14 implies

that there does not exist a connected f -factor for G. Thus, if the provided algorithm

for PARTITION CONNECTOR returns failure, then our procedure also returns failure,

relying on Observation 14. Otherwise, observe that the pair (H ′′,Q′) already con-

stitutes a valid successor of the pair (H,Q) in any sequence satisfying properties

(M1)–(M3). To ensure Property (M4), the procedure now calls a polynomial time

subroutine on the pairs (H,Q) and (H ′′,Q′) to obtain the desired f -factor H ′ con-

necting Q′ and such that the pairs (H,Q) and (H ′,Q′) satisfy Property (M4). The

existence of such a polynomial time subroutine is from Lemma 16. The procedure

now calls itself on the pair (H ′,Q′). This completes the description of the algorithm.

Note that given the correctness of the algorithm for PARTITION CONNECTOR the

correctness of the algorithm follows from Lemma 15. Let us now analysis the running

time of the algorithm. Apart from the calls to the provided subroutine for PARTITION

CONNECTOR, all parts of the algorithm run in polynomial time. Because the algo-

rithm calls the provided algorithm for PARTITION CONNECTOR at most once for

12



every pair (H,Q) in a maximal sequence satisfying properties (M1)–(M4), we ob-

tain from Lemma 18 that the number of those calls is bounded by g(n)+1. Moreover,

from the same lemma, we obtain that the size of a partition Q given as an input to the

algorithm for PARTITION CONNECTOR is at most g(n) + 1. Hence, if PARTITION

CONNECTOR can be solved in time O∗(n2(|Q|−1)), then the algorithm runs in time

O∗(g(n)n2(g(n))) showing the first statement of the theorem. Similarly, if PARTI-

TION CONNECTOR can be solved in time O∗(2|Q|), then the algorithm runs in time

O∗(g(n)2g(n)+1). Thus given g(n) ∈ O(log n), we have the polynomial time algo-

rithm claimed in the second statement of the theorem. The following lemma (proved

in Section 4) completes the proof of the second part of the theorem.

Lemma 19 The PARTITION CONNECTOR can be solved by a randomized algorithm

with running time O∗(2|Q|) and error probability O(1− (1− 1
n2 )

|Q|).

It remains to show that the randomized algorithm has the stated error probability.

Towards this aim we calculate a lower bound on the success probability of the algo-

rithm, i.e., the probability that the algorithm returns a connected f -factor of G if such

an f -factor exists. Hence, let us suppose that G has a connected f -factor. It follows

from Observation 14 that G contains an f -factor connecting Q for every partition Q
of its vertex set. Hence every call to the subroutine Partition Connector is made for

a “Yes”-instance, which together with Lemma 19 implies that every such call suc-

ceeds with probability at least (1− 1
n2 )

|Q|. Because |Q| ≤ g(n) + 1 ∈ O(log n), we

obtain from Lemma 5 that this probability is at least (1− c⌈logn⌉2

n2 ) for some constant

c. Since there are at most g(n) + 1 = c log n such calls, the probability that the al-

gorithm succeeds for all of these calls is hence at least (1 − c⌈logn⌉2

n2 )c logn > 0, as

required. This completes the proof of the theorem. ⊓⊔

3.2 A Quasi-polynomial Time Algorithm for Polylogarithmic Bounds

In this section, we prove Theorem 1 and Theorem 2. In fact, we prove a more general

result, from which both theorems directly follow.

Theorem 20 For every c > 0 and function g(n) ∈ O((log n)c), the CONNECTED

g-BOUNDED f -FACTOR problem can be solved in O∗(n2g(n)) time.

We make use of the following simple lemma.

Lemma 21 Let G be a graph having a connected f -factor. Let Q be a partition of the

vertex set V (G). There exists a spanning tree T of G/Q such that for some f -factor

H of G, E(T ) ⊆ E(H). Furthermore, H can be computed from T in polynomial

time.

Proof. Let H ′ be a connected f -factor of G. For any partition Q of the vertex set, it

follows from Observation 14 that H ′/Q is connected. Consider a spanning tree T of

H ′/Q. Clearly, there exists at least one f -factor H containing E(T ) and hence H/Q
is connected. Once we have E(T ), H can be computed in polynomial time using Fact

8. ⊓⊔
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In light of Theorem 13, it now suffices to prove the following Lemma 22, from

which Theorem 20 immediately follows.

Lemma 22 PARTITION CONNECTOR can be solved in time O∗(n2(|Q|−1)).

Proof. It follows from Lemma 21 that we can solve PARTITION CONNECTOR by

going over all spanning trees T of G/Q and checking for each of them whether there

is an f -factor of G containing the edges of T . The lemma now follows because the

number of spanning trees of G/Q is at most
(

|E(G)|
|Q|−1

)

, which is upper bounded by

O(n2(|Q|−1)), and for every such tree T we can check the existence of an f -factor

containing T in polynomial time. ⊓⊔

4 A Randomized Polynomial Time Algorithm for Logarithmic Bounds

In this section we prove Theorem 3. Due to Theorem 13, it is sufficient for us to

provide a randomized algorithm for PARTITION CONNECTOR with running time

O∗(2|Q|) and error probability O(g(n)2/n2). This is precisely what we do in the

rest of this section (Lemma 19). As a first step, we design an algorithm for the “ex-

istential version” of the problem which we call ∃-Partition Connector and define as

follows.

∃-PARTITION CONNECTOR

Input: A graph G with n vertices, f : V (G) → N, and a partition Q of V (G).
Question: Is there an f -factor of G that connects Q?

We then describe how to use our algorithm for this problem as a subroutine in our

algorithm to solve PARTITION CONNECTOR.

4.1 Solving ∃-PARTITION CONNECTOR in Randomized Polynomial Time

The objective of this subsection is to prove the following lemma which implies a

randomized polynomial time algorithm for ∃-PARTITION CONNECTOR when g(n) ∈
O(log n).

Lemma 23 There exists an algorithm that, given the graph G, a function f : V (G) →
N, and a partition Q of V (G), runs in time O∗(2|Q|) and outputs

– NO if G has no f -factor connecting Q
– YES with probability at least 1− 1

n2 otherwise.

We design this algorithm by starting from the exact-exponential algorithm in [17]

and making appropriate modifications. During the description, we point out the main

differences between our algorithm and that in [17]. We now proceed to the details of

the algorithm. We begin by recalling a few important definitions and known results

on f -factors. These are mostly standard and are also present in [17], but since they

are required in the description and proof of correctness of our algorithm, we state

them here.
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Definition 24 (f -Blowup) Let G be a graph and let f : V (G) → N be such that

f(v) ≤ deg(v) for each v ∈ V (G). Let H be the graph constructed as follows:

1. For each vertex v of G, we add a vertex set A(v) of size f(v) to H .

2. For each edge e = {v, w} of G we add to H vertices ve and we and edges (u, ve)
for every u ∈ A(v) and (we, u) for every u ∈ A(w). Finally, we add the edge

(ve, we).

This completes the construction. The graph H is called the f -blowup of graph G.

We use Bf (G) to denote the f -blowup of G. We omit the subscript when there is no

scope for ambiguity.

Definition 25 (Induced f -blowup) For a subset S ⊆ V (G), we define the f -blowup

of G induced by S as follows. Let the f -blowup of G be H . Begin with the graph

H and for every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete

the vertices ve and we from H . Let the graph H ′ be the union of those connected

components of the resulting graph which contain the vertex sets A(v) for vertices

v ∈ S. Then, the graph H ′ is called the f -blowup of G induced by the set S and is

denoted by Bf (G)[S].

We now recall the relation between perfect matchings in the f -blowup and f -

factors (see Figure 2).

Lemma 26 ([22]) A graph G has an f -factor if and only if the f -blowup of G has a

perfect matching.

The relationship between the Tutte matrix and perfect matchings is well-known

and this has already been exploited in the design of fixed-parameter and exact algo-

rithms [23,9,17].

Definition 27 (Tutte matrix) The Tutte matrix of a graph G with n vertices is an

n × n skew-symmetric matrix T over the set {xij |1 ≤ i < j ≤ |V (G)|} of indeter-

minates whose (i, j)th element is defined to be

T (i, j) =







xij if {i, j} ∈ E(G) and i < j
−xji if {i, j} ∈ E(G) and i > j
0 otherwise

We use T (G) to denote the Tutte matrix of the graph G .

Following terminology in [17], when we refer to expanded forms of succinct

representations (such as summations and determinants) of polynomials, we use the

term naive expansion (or summation) to denote that expanded form of the polynomial

which is obtained by merely writing out the operations indicated by the succinct

representation. We use the term simplified expansion to denote the expanded form

of the polynomial which results after we apply all possible simplifications (such as

cancellations) to a naive expansion. We call a monomial m which has a non-zero

coefficient in a simplified expansion of a polynomial P , a surviving monomial of P
in the simplified expansion. Let det T (G) denote the determinant of the Tutte matrix

of the graph G.
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Fig. 2 An illustration of a graph G with a 2-factor H (the red dashed edges) and one possible correspond-

ing perfect matching in B(G) (thick edges). It is important to note that an edge e = (v, w) is not in H if

and only if the edge (ve, we) is present in the corresponding perfect matching.

Proposition 28 ([20]) det T (G) is identically zero when expanded and simplified

over a field of characteristic two if and only if the graph G does not have a perfect

matching.

The following basic facts about the Tutte matrix T (G) of a graph G are well-

known. When evaluated over any field of characteristic two, the determinant and the

permanent of the matrix T (G) (indeed, of any matrix) coincide. That is,

det T (G) = perm(T (G)) =
∑

σ∈Sn

n
∏

i=1

T (G)(i, σ(i)), (3)

where Sn is the set of all permutations of [n]. Furthermore, there is a one-to-one

correspondence between the set of all perfect matchings of the graph G and the sur-

viving monomials in the above expression for det T (G) when its simplified expan-

sion is computed over any field of characteristic two. We formally state and give a

proof of the latter fact for the sake of completeness and because we intend to use this

particular formulation of it.

Lemma 29 Let G be a graph and let T (G) be the Tutte Matrix of G as in Definition

27. Let det T (G) denote the determinant of T (G). Then the following statements

hold.

1. If M = {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)} is a perfect matching of G then the prod-

uct
∏

(ik,jk)∈M x2
ikjk

appears exactly once in the naive expansion of det T (G)
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as in Equation 3 and hence as a surviving monomial in the sum on the right-hand

side when expanded and simplified over any field of characteristic two.

2. Conversely, if det T (G) is expanded as in Equation 3 and if det T (G) is not

identically zero when simplified over any field of characteristic two, then each

surviving monomial in the simplified expansion of det T (G) must be of the form
∏

(ik,jk)∈M x2
ikjk

where M = {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)} is a perfect match-

ing of G.

Proof. For the first statement, consider the permutation σ ∈ Sn comprising precisely

the 2-cycles {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)}. The corresponding monomial given by

the definition of T (G) over a field of characteristic two is precisely
∏

(ik,jk)∈M x2
ikjk

.

For every other permutation σ′ ∈ Sn, the corresponding monomial given by the

definition of T (G) contains at least one variable xirjr where ir is not mapped to jr
in σ. This implies that no other monomial in the naive expansion of Equation 3 is

equal to
∏

(ik,jk)∈M x2
ikjk

even when considered over a field of characteristic two.

This completes the argument for the first statement.

We now consider the second statement. First of all, since we only consider simple

graphs, we have that for any permutation σ ∈ Sn with a fixed point, the correspond-

ing monomial is 0 since xii = 0 for every i ∈ |V (G)|. Let S≥3
n denote the set of all

permutations in Sn with a cycle of length at least 3. We now argue that for any per-

mutation σ ∈ S≥3
n , the corresponding monomial vanishes in the simplified expansion

of Equation 3. In order to do so, we give a bijection β : Sn → Sn such that (a) for

every σ ∈ Sn \ S≥3
n , β(σ) = σ, (b) for every σ ∈ Sn, β(β(σ)) = σ, and (c) for

every σ ∈ Sn, the monomials corresponding to σ and β(σ) are equal over any field

of characteristic two.

We first define β(σ) for a σ ∈ S≥3
n as follows. Note that we have already fixed

an ordering of the vertices of G. Let v be the first vertex of G in this ordering which

appears in a cycle of length at least 3 in σ and let C denote this cycle. We now define

β(σ) to be the permutation obtained from σ by inverting C and leaving every other

cycle unchanged. Finally, for every σ ∈ Sn \ S≥3
n , simply set β(σ) = σ.

It is straightforward to see that the resulting mapping β is indeed a bijection and

moreover, β(β(σ)) = σ for every σ ∈ Sn as required. Finally, it follows from the

definition of det T (G) that over a field of characteristic two, the factor of the mono-

mial corresponding to σ contributed by any cycle C is the same as that contributed

by the inverse of this cycle to the monomial corresponding to β(σ). Hence we have

the third property and conclude that for any permutation σ ∈ S≥3
n , the corresponding

monomial vanishes in the simplified expansion of Equation 3. This implies that the

only surviving monomials are those corresponding to permutations in Sn \S
≥3
n with-

out a fixed point, implying that these permutations comprise only 2-cycles. This in

turn implies that any such surviving monomial must correspond to a perfect matching

of G as required. This completes the proof of the lemma. ⊓⊔

Lemma 30 (Schwartz-Zippel Lemma, [19,25]) Let P (x1, . . . , xn) be a multivari-

ate polynomial of degree at most d over a field F such that P is not identically zero.

Furthermore, let r1, . . . , rn be chosen uniformly at random from F. Then,

Prob[P (r1, . . . , rn) = 0] ≤
d

|F|
.
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Definition 31 For a partition of V (G), Q = {Q1, . . . , Qℓ} and a subset I ⊆ [ℓ],
we denote by Q(I) the set

⋃

i∈I Qi. Furthermore, with every set ∅ 6= I ⊂ [ℓ], we

associate a specific monomial mI which is defined to be the product of the terms x2
ij

where i < j and {i, j} = {ve, we}, e = (v, w) ∈ E(G) crosses the cut (Q(I),Q(I))
and ve, we, are as in Definition 24 of the f -blowup B(G) of G. For I = [ℓ], we define

mI = 1.

From now on, for a set X ⊆ V (G), we denote by X the set V (G) \ X . Also,

since we always deal with a fixed graph G and function f , for the sake of notational

convenience, we refer to the graph Bf (G) simply as B. We now define a polynomial

PQ(x̄) over the indeterminates from the Tutte matrix T (B) of the f -blowup of G, as

follows:

PQ(x̄) =
∑

{1}⊆I⊆[ℓ]

(det T (B[Q(I)])) · (det T (B[Q(I)])) ·mI , (4)

where if a graph H has no vertices or edges then we set det T (H) = 1. In what

follows, we always deal with a fixed partition Q = {Q1, . . . , Qℓ} of V (G).

Remark 32 The definition of the polynomial PQ(x̄) is the main difference between

our algorithm and the algorithm in [17]. The rest of the details are identical. The main

algorithmic consequence of this difference is the time it takes to evaluate this poly-

nomial at a given set of points. This is captured in the following lemma whose proof

follows from the fact that determinant computation is a polynomial time solvable

problem.

Lemma 33 Given values for the variables xij in matrix T (B), the polynomial PQ(x̄)
can be evaluated over a field F of character 2 and size Ω(n6) in time O∗(2ℓ).

Proof. The algorithm to evaluate PQ(x̄) over the field F proceeds as follows. Given

the values for the variables xij in the matrix T (B), we go over all {1} ⊆ I ⊆ [ℓ]

and for each I , we evaluate det T (B[Q(I)]) and det T (B[Q(I)]) in polynomial time

via standard polynomial time determinant computation. Once this value is computed,

we multiply their product with the evaluation of the monomial mI . Since we go over

2ℓ possible sets I and for each I the computation takes polynomial time, the claimed

running time follows. ⊓⊔
Having shown that this polynomial can be efficiently evaluated, we will now turn

to the way we use it in our algorithm. Our algorithm for ∃-PARTITION CONNECTOR

takes as input G, f,Q, evaluates the polynomial PQ(x̄) at points chosen indepen-

dently and uniformly at random from a field F of size Ω(n6) and characteristic 2 and

returns YES if and only if the polynomial does not vanish at the chosen points. In

what follows we will prove certain properties of this polynomial which will be used

in the formal proof of correctness of this algorithm. We need another definition be-

fore we can state the main lemma capturing the properties of the polynomial. Recall

that for every v ∈ V (G), the set A(v) is the set of ‘copies’ of v in the f -blowup of

G. Furthermore, for a set X ⊆ V (G), we say that an edge e ∈ E(G) crosses the cut

(X,X) if e has exactly one endpoint in X .
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Definition 34 We say that an f -factor H of G contributes a monomial x2
i1j1

. . . x2
irjr

to the naive expansion of the right-hand side of Equation 4 if and only if the following

conditions hold.

1. For every e = (v, w) ∈ E(H), there is a u ∈ A(v), u′ ∈ A(w) and 1 ≤ p, q ≤ r
such that {u, ve} = {ip, jp} and {u′, we} = {iq, jq}.

2. For every e = (v, w) ∈ E(G) \E(H), there is a 1 ≤ p ≤ r such that {ve, we} =
{ip, jp}.

3. For every 1 ≤ p, q ≤ r, if {u, ve} = {ip, jp} and {u′, we} = {iq, jq} for some

e ∈ E(G), then e ∈ E(H).
4. For every 1 ≤ p ≤ r, if {ip, jp} = {ve, we} for some e ∈ E(G), then e /∈ E(H).

5. For every 1 ∈ I ⊆ [ℓ] such that H has no edge crossing the cut (Q(I),Q(I)),
there is a pair of monomials m1 and m2 such that m1 is a surviving monomial in

the simplified expansion of det T (B[Q(I)]), m2 is a surviving monomial in the

simplified expansion of det T (B[Q(I)]), and m1 ·m2 ·mI = x2
i1j1

. . . x2
irjr

.

Having set up the required notation, we now state the main lemma which allows

us to show that monomials contributed by f -factors that do not connect Q, do not

survive in the simplified expansion of the right hand side of Equation 4.

Lemma 35 Every monomial in the polynomial PQ(x̄) which is a surviving monomial

in the simplified expansion of the right-hand side of Equation 4 is contributed by an f -

factor of G to the naive expansion of the right-hand size of Equation 4. Furthermore,

for any f -factor of G, say H , the following statements hold.

1. If H does not connect Q then every monomial contributed by H occurs an even

number of times in the polynomial PQ(x̄) in the naive expansion of the right-hand

side of Equation 4.

2. If H connects Q, then every monomial contributed by H occurs exactly once in

the polynomial PQ(x̄) in the naive expansion of the right-hand side of Equation 4.

Proof. For the first statement, let m be a monomial which survives in the simpli-

fied expansion of the right-hand side of Equation 4. Then it must be of the form

x2
i1j1

. . . x2
irjr

and must correspond to a perfect matching of T (B). This is a direct

consequence of Lemma 29 (2). Let M be this perfect matching. We now define an

f -factor H based on M and argue that H indeed contributes this monomial m to

the naive expansion of the right-hand size of Equation 4 as per Definition 34. The

f -factor H is defined as follows. An edge (v, w) ∈ E(G) is in H if and only if the

edge (ve, we) is not in M . We now argue that H contributes m.

Consider the first condition in Definition 34. Since e = (v, w) ∈ E(H), it must

be the case that (ve, we) /∈ M . Since M is a perfect matching and the vertices ve and

we each have exactly one neighbor other than each other, it must be the case that M
contains edges e1 and e2 where e1 = (u, ve) for some u ∈ A(v) and e2 = (u′, we)
for some u′ ∈ A(w). The fact that the second condition is satisfied follows directly

from the definition of H . For the third condition, suppose that for some 1 ≤ p, q ≤ r,

and e = (u, v) ∈ E(G), it holds that {u, ve} = {ip, jp} and {u′, we} = {iq, jq}. The

fact that M corresponds to m implies that the edges (u, ve) and (u′, we) are in M ,

which in turn implies that the edge (ve, we) is not in M . Hence, by definition of H ,
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we conclude that e ∈ E(H). An analogous argument implies that the fourth condition

is satisfied as well. We now come to the final condition. Suppose that 1 ∈ I ⊆ [ℓ]
such that H has no edge crossing the cut (Q(I),Q(I)). Now, observe that for every

(v, w) ∈ E(G) which crosses the cut (Q(I),Q(I)) the edge e /∈ E(H), which

by definition implies that (ve, we) ∈ M . We define M̂ to be the subset of edges

(ve, we) ∈ M which cross the cut (Q(I),Q(I)). Hence, for every edge (ve, we) in

M \ M̂ , the vertices v and w lie on the same side of the cut (Q(I),Q(I)). We now

define a partition M ′ ⊎ M ′′ of M \ M̂ as follows. For v ∈ V (G) and u ∈ V (B),
an edge (u, ve) ∈ M is in M ′ if and only if v ∈ Q(I). Clearly, M ′ ⊎ M ′′ ⊎ M̂ is

now a partition of M . Furthermore, it is easy to see that M ′ is a perfect matching of

T (B[Q(I)]), M ′′ is a perfect matching of T (B[Q(I)]).
Due to Proposition 28, we know that M ′ corresponds to a surviving monomial m′

in the simplified expansion of det T (B[Q(I)]) and M ′′ corresponds to a surviving

monomial m′′ in the simplified expansion of det T (B[Q(I)]). Finally, let m̂ denote

the monomial
∏

(ik,jk)∈M̂
x2
ikjk

. It is easy to see that m = m′ ·m′′ · m̂. Furthermore,

m̂ = mI . Hence we conclude that m is indeed contributed by H and proceed to the

remaining two statements of the lemma. However, before we prove the remaining

statements, we need the following claim.

Claim Let 1 ∈ I ⊆ [ℓ].

1. If there is no edge of H crossing the cut (Q(I),Q(I)), then each monomial

contributed by H to the naive expansion of the polynomial det T (B[Q(I)]) ·
det T (B[Q(I)]) ·mI is contributed exactly once.

2. If there is an edge of H crossing the cut (Q(I),Q(I)) then H does not con-

tribute a monomial to the naive expansion of the polynomial det T (B[Q(I)]) ·
det T (B[Q(I)]) ·mI .

Proof. We begin with the proof of the first statement. By Definition 34 it holds that

every monomial contributed by H contains mI . Let H ′ be the subgraph of H induced

on Q(I) and let H ′′ be the subgraph of H induced on Q(I). Observe that H ′ is

an f -factor of G[Q(I)] and H ′′ is an f -factor of G[Q(I)]. By Proposition 28 and

Lemma 26, we know that every f -factor of G[Q(I)] (G[Q(I)]) appears exactly once

in the naive expansion of det T (B[Q(I)]) (det T (B[Q(I)])) (since it is nothing but a

perfect matching of the f -blowup induced by Q(I) or Q(I)).
Therefore, each monomial corresponding to a perfect matching of B[Q(I)] which

is equivalent to H ′ appears exactly once in the naive expansion of the polynomial

det T (B[Q(I)]); similarly, each monomial corresponding to a perfect matching of

B[Q(I)] which is equivalent to H ′′ appears exactly once in the naive expansion of

det T (B[Q(I)]). Since every monomial contributed by H to the naive expansion of

det T (B[Q(I)]) ·det T (B[Q(I)]) ·mI is a product of mI and a monomial each from

det T (B[Q(I)]) and det T (B[Q(I)]), and these monomials themselves occur exactly

once in the naive expansion of det T (B[Q(I)]) and det T (B[Q(I)]) respectively, the

first statement follows.

We now prove the second statement of the claim. Here, there must be vertices

v, w ∈ V (G) such that v ∈ Q(I), w ∈ Q(I) and (v, w) ∈ H . Therefore, by

Definition 34, we have that no monomial contributed by H has the term x2
jk where
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{j, k} = {ve, we}. However, mI contains the term x2
jk by definition. Therefore, H

does not contribute a monomial to det T (B[Q(I)]) ·det T (B[Q(I)]) ·mI . This com-

pletes the proof of the claim. ⊓⊔
Let α be the number of connected components of the graph H/Q. If H is an f -

factor of G that does not connect Q it must be the case that α > 1. Due to the above

claim, observe that there are exactly 2α sets I such that H contributes each of its

monomials exactly once to the simplified expansion of the right hand side of Equa-

tion 4 and H does not contributes any monomials to any other sets I . Since 2α is even

for α ≥ 1, we conclude that Statement 1 holds.

We now move on to Statement 2. That is, we assume that H is an f -factor that

connects Q. Due to the above claim, we know that H does not contribute a mono-

mial to any polynomial det T (B[Q(I)]) · det T (B[Q(I)]) ·mI where 1 ∈ I ⊂ [ℓ] is

such that H has an edge which crosses the cut (Q(I),Q(I)). However, since H
connects Q, it crosses every (Q(I),Q(I)) cut where 1 ∈ I ⊂ [ℓ]. But observe

that since H is an f -factor of G it will contribute a monomial to the polynomial

det T (B[Q(I)]) · det T (B[Q(I)]) · mI when I = [ℓ]. Hence, we conclude that any

monomial contributed by H occurs exactly once in the naive expansion of the right-

hand side of Equation 4, completing the proof of the lemma. ⊓⊔
This implies the following result, which is the last ingredient we need to prove

Lemma 23.

Lemma 36 The polynomial PQ(x̄) is not identically zero over F if and only if G has

an f -factor connecting Q.

Proof of Lemma 23. It follows from the definition of P (x̄) that its degree is O(n4)
since the number of vertices in the f -blowup of G is O(n2). As mentioned earlier,

our algorithm for ∃-PARTITION CONNECTOR takes as input G, f,Q, evaluates the

polynomial PQ(x̄) at points chosen independently and uniformly at random from a

field F of size Ω(n6) and characteristic 2 and returns YES if and only if the poly-

nomial does not vanish at the chosen points. Due to Lemma 36, we know that the

polynomial PQ(x̄) is identically zero if and only if G has an f -factor containing Q
and by the Schwartz-Zippel Lemma, the probability that the polynomial is not identi-

cally zero and still vanishes upon evaluation is at most 1
n2 . This completes the proof

of the lemma. ⊓⊔
Having obtained the algorithm for ∃-PARTITION CONNECTOR, we now return to

the algorithm for the computational version, PARTITION CONNECTOR.

4.2 Solving PARTITION CONNECTOR in Randomized Polynomial Time

Proof of Lemma 19. Consider the following algorithm A. Algorithm A takes as input

an n-vertex instance of PARTITION CONNECTOR with the partition Q = {Q1, . . . , Qℓ},

along with a separate set of edges F that have been previously selected to be included

in the partition connector. Let F be initialized as ∅. As its first step, Algorithm A
checks if ℓ = 1; if this is the case, then it computes an arbitrary f -factor H , and

outputs H ∪F . To proceed, let us denote the algorithm of Lemma 23 as A′. If ℓ > 1,
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then A first calls A′ and outputs NO if A′ outputs NO. Otherwise, it fixes an arbitrary

ordering E≤ of the edge set E and recursively proceeds as follows.

A constructs the set E1 of all edges with precisely one endpoint in Q1, and loops

over all edges in E1 (in the ordering given by E≤). For each processed edge e =
(v, w) between Q1 and some Qi (i 6= 1), it will compute a subinstance (Ge, fe,Qe)
defined by setting:

– Ge = G− e, and

– fe(v) = f(v)− 1, fe(w) = f(w)− 1 and fe = f for all the remaining vertices

of G, and

– Qe is obtained from Q by merging Q1 and Qi into a new set; formally (assuming

i < ℓ), Qe = {Qe
1 = Q1 ∪Qi, Q2, . . . , Qi−1, Qi+1, . . . , Qℓ}.

Intuitively, each such new instance corresponds to forcing the f -factor to choose the

edge e. A then queries A′ on (Ge, fe,Qe). If A′ answers NO for each such tuple

(Ge, fe,Qe) obtained from each edge e in E1, then A immediately terminates and

answers NO. Otherwise, let e be the first edge where A′ answered YES; then A
adds e into F . If |Qe| = 1 then the algorithm computes an arbitrary f -factor H of

(Ge, fe) and outputs H ∪ F . On the other hand, if |Qe| > 1 then A restarts the

recursive procedure with (G, f,Q) := (Ge, fe,Qe); observe that |Qe| ≤ |Q| − 1.

Before arguing correctness, we show that the algorithm runs in the required time.

Since each edge in the partitioning is processed at most ℓ times, the runtime of A
is asymptotically upper-bounded by its at most ℓ · n2 ≤ n3 many calls to A′. From

Lemma 23, we then conclude that the total runtime of A(G, f,Q) is upper-bounded

by 2ℓ · nO(1).

For correctness, let us first consider the hypothetical situation where A′ always

answers correctly. If no partition connector exists, then A correctly outputs NO after

the first call to A′. Otherwise, there exists a partition connector, and such a partition

connector must contain at least one edge in E1 at every recursion of the algorithm.

This implies that A′ would output YES for at least one edge e of E1. Moreover, it is

easily seen that for any partition connector T containing e, T \ {e} is also a partition

connector in (Ge, fe,Qe), and so by the same argument A′ would also output YES

for at least one edge in the individual sets E1 constructed in the recursive calls of

A. In particular, if A′ would always answer correctly, then A would correctly output

a partition connector H ∪ F at the end of its run. For further considerations, let us

fix the set F which would be computed by A under the assumption that A′ always

answers correctly; in other words, F is the lexicographically first tuple of edges in

E1 which intersects a partition connector.

We are now ready to argue that A succeeds with the desired probability; recall that

A′ only allows one-sided errors. So, if the input is a no-instance, then A is guaranteed

to correctly output NO after the first query to A′. Furthermore, by the definition of

F , for each edge e 6∈ F processed by A, the algorithm A′ must also answer NO

on (Ge, fe,Qe). So, assuming A′ always answers correctly, in total A′ would only

be called at most times on yes-instances, and in all remaining calls it receives a no-

instance. Given that A′ has a success probability of at least 1 − 1
n2 , the probability

that A′ is called at most |F |+1 = ℓ times on YES-instances (not counting the initial

call on G), and that it succeeds in all these calls, is at least (1− 1
n2 )

ℓ. Hence the error
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probability of the algorithm is at most 1− (1− 1
n2 )

ℓ. This completes the proof of the

lemma. ⊓⊔

5 Classification Results

In this section, we prove Theorem 4 which we restate for the sake of completeness.

Theorem 4 For every c > 1 and for every g(n) ∈ Θ((log n)c), CONNECTED g-

BOUNDED f -FACTOR is neither in P nor NP-hard unless the Exponential Time Hy-

pothesis fails.

The result relies on the established Exponential Time Hypothesis, which we recall

below.

Lemma 37 (Exponential Time Hypothesis (ETH), [11]) There exists a constant

s > 0 such that 3-SAT with n variables and m clauses cannot be solved in time

2sn(n+m)O(1).

We first show that the problem is not NP-hard unless the ETH fails. We remark

that we can actually prove a stronger statement here by weakening the premise to

“NP is not contained in Quasi-Polynomial Time”. However, since we are only able

to show the other part of Theorem 4 under the ETH, we phrase the statement in this

way.

Lemma 38 For every c > 1 and for every g(n) ∈ Θ((log n)c), CONNECTED g-

BOUNDED f -FACTOR is not NP-hard unless the Exponential Time Hypothesis fails.

Proof. Due to Theorem 2, we know that when g(n) ∈ Θ((log n)c), CONNECTED g-

BOUNDED f -FACTOR can be solved in quasi-polynomial time. Hence, this problem

cannot be NP-hard unless NP is contained in the complexity-class Quasi-Polynomial

Time, QP. Furthermore, observe that NP⊆ QP implies that the ETH is false. Hence,

we conclude that CONNECTED g-BOUNDED f -FACTOR is not NP-hard unless the

Exponential Time Hypothesis fails. ⊓⊔
Following lemma uses a reduction from HAMILTONIAN CYCLE to come up with

a hardness result.

Lemma 39 For every c > 1 and for every g(n) ∈ Θ((log n)c), CONNECTED g-

BOUNDED f -FACTOR is not in P unless the Exponential Time Hypothesis fails.

Proof. Assume for a contradiction that CONNECTED g-BOUNDED f -FACTOR is in

P for some g(n) ∈ Θ((log n)c) and c > 1. Let us fix this function g for the re-

mainder of the proof. In particular, there exists constants c1 and ǫ > 0 such that

g(n) ≥ c1(log n)
1+ǫ for sufficiently large n. The proof is structured as follows. First,

we present a subexponential time reduction from HAMILTONIAN CYCLE to CON-

NECTED g-BOUNDED f -FACTOR. We then show that such a reduction would imply

a subexponential time algorithm for HAMILTONIAN CYCLE, which is known to vio-

late ETH [11].
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The reduction algorithm Rǫ takes a graph G on z vertices as input, computes s =

2
( z
c1

)1/(1+ǫ)

z
, and outputs an n-vertex instance (G′, f) of CONNECTED g-BOUNDED

f -FACTOR which satisfies the following conditions:

1. f(v) ≥ n
c1(logn)1+ǫ for every v in G′.

2. n is upper-bounded by a subexponential function of z.

3. G has a Hamiltonian cycle if and only if (G′, f) contains a connected f -factor.

Crucially, observe that for sufficiently large z, we have s > z. The algorithm Rǫ

works as follows. Given a graph G, for each vertex v it constructs a clique Cv of size

⌈s⌉ − 1 and makes each vertex in Cv adjacent to v. This construction is very similar

in spirit to the hardness reduction in [5, Theorem 5.2]. For each vertex x ∈ Cv , it sets

f(x) = ⌈s⌉ − 1, while for v it sets f(v) = ⌈s⌉+ 1.

Next, we argue that (G′, f) satisfies conditions (1), (2) and (3). For Condi-

tion (1), we need to ensure that the bound on f holds for vertices in each Cv , meaning

that we need to verify that ⌈s⌉ − 1 ≥ n
c1(logn)1+ǫ = ⌈s⌉·z

c1(log(⌈s⌉·z))1+ǫ holds. By plug-

ging in the definition of s, we obtain

⌈s⌉ · z

c1(log(⌈s⌉ · z))1+ǫ
=

⌈s⌉ · z

c1(log⌈
2
( z
c1

)1/(1+ǫ)

z
⌉ · z)1+ǫ

.

Because s > z, we obtain

⌈s⌉ · z

c1(log(
2
( z
c1

)1/(1+ǫ)

z
· z))1+ǫ

≥
⌈s⌉ · z

c1(log(⌈
2
( z
c1

)1/(1+ǫ)

z
⌉ · z))1+ǫ

.

The following equation shows that ⌈s⌉ − 1 is at least equal to the left expression.

⌈s⌉ · z

c1(log(
2
( z
c1

)1/(1+ǫ)

z
· z))1+ǫ

=
⌈s⌉ · z

z · (log 2)1+ǫ
=

⌈s⌉

(log 2)1+ǫ

Since ⌈s⌉ − 1 ≥ ⌈s⌉
(log 2)1+ǫ , Condition (1) holds. For Condition (2), it suffices to

note that n = ⌈s⌉ · z = z · ⌈ 2
( z
c1

)1/(1+ǫ)

z
⌉, which is clearly a subexponential function.

Finally, for Condition (3), observe that every edge in each clique Cv must be used

in every connected f -factor of (G′, f). Furthermore, all the other edges in every such

connected f -factor must induce a connected subgraph of G with degree 2, which is a

Hamiltonian cycle. Hence there is a one-to-one correspondence between Hamiltonian

cycles in G and connected f -factors of (G′, f), and Condition (3) also holds.

To complete the proof, recall that we assumed that there exists a polynomial time

algorithm for CONNECTED g-BOUNDED f -FACTOR for our choice of g. Then, given

an instance G of HAMILTONIAN CYCLE, we can apply Rǫ on G followed by the

hypothetical polynomial time algorithm on the resulting instance (G′, f) (whose size

is subexponential in |V (G)|) to solve G in subexponential time. As was mentioned

earlier in the proof, such an algorithm would violate ETH. ⊓⊔
Lemmas 38 and 39 together give us Theorem 4.
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6 Concluding remarks

We have come up with new complexity results for CONNECTED f -FACTOR with re-

spect to lower bounds on the function f . As our main results, we have shown that

when f(v) is required to be at least n
(logn)c , the problem can be solved in quasi-

polynomial time in general and in randomized polynomial time if c ≤ 1. Conse-

quently, the problem can be solved in polynomial time when f(v) is at least n
c

for

any constant c. We complement the picture with matching classification results.

As a by-product we have obtained a generic approach reducing CONNECTED

f -FACTOR to the “simpler” PARTITION CONNECTOR problem. Hence future algo-

rithmic improvements of PARTITION CONNECTOR carry over to the CONNECTED

f -FACTOR problem. Finally, it would be interesting to investigate the possibility of

derandomizing the polynomial time algorithm for the case when g(n) = O(log n).
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