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Group Sparsity Based Localization for Far-Field

and Near-Field Sources Based on Distributed

Sensor Array Networks
Qing Shen, Wei Liu, Senior Member, IEEE, Li Wang, and Yin Liu

Abstract—A distributed sensor array network is studied, where
sub-arrays are placed on those distributed observation platforms.
In this model, bearing-only source localization is characterized
in terms of direction of arrival (DOA) if the sources are far
from the entire network, while their locations in the predefined
Cartesian coordinate system can be obtained for the near-field
case. For wideband signals, the focusing algorithm is applied
at each sub-array to form an equivalent single frequency signal
model. Then, a compressive sensing (CS) based DOA estimation
method employing the group sparsity concept is proposed for far-
field sources with the information acquired by all the platforms
processed as a whole. This concept is further extended to near
field, and a group sparsity based method to localize the near-
field sources is derived. The proposed solutions are applicable for
both uncorrelated and coherent signals, and the corresponding
Cramér-Rao Bounds (CRBs) are derived. Compared with the
maximum likelihood estimator (MLE) of forming the final result
through a fusion process, where separately estimated unreliable
bearing result at even one observation platform would spoil
the overall performance, improved performance is achieved by
both proposed methods. It is noted that only the covariance
matrix in lieu of data samples at each platform is required for
centralized processing, and therefore the increase of the data
exchange workload among platforms is rather limited.

Index Terms—Distributed sensor array network, group spar-
sity, localization, far-field and near-field sources, narrowband and
wideband.

I. INTRODUCTION

Source localization based on various sensor array networks

has attracted significant attentions over the past decade [2]–

[4]. Apart from some notable localization techniques based

on received signal strength (RSS) [5] and distance related

measurements such as time of arrival (TOA) [6], the angle

of arrival (AOA) based source localization, also known as

direction of arrival (DOA) based localization or bearing-only

localization, is an attractive candidate since the synchroniza-

tion among the distributed platforms is not required [7], and

it can be used in both active and passive sensing networks.
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The AOA based approach has been adopted in a wide range

of applications including multistatic radar [2], [8], distributed

massive MIMO [9], [10], and wireless sensor networks [11].

For far-field sources, AOA based approach can only be char-

acterized in terms of DOA of the sources [12]–[14]. On the

other hand, source locations can be uniquely determined in the

Cartesian coordinate system for the near-field case [15]–[17].

There are normally two steps in AOA based localization:

the incident angles are measured at all distributed observation

platforms in the first step, followed by triangulation to locate

the sources of interest in the second step. For each platform

to estimate the AOA information, an array of sensors can be

employed and many high-resolution methods can be applied

here, such as the subspace-based ones including MUSIC [18],

ESPRIT [19], and their extensions, while spatial smoothing is

usually employed for preprocessing coherent signals [20].

In addition to those subspace-based methods, sparse signal

representation, which is linked to the compressive sensing

(CS) framework, is also introduced for DOA estimation [21]–

[23]. A CS-based method for a single snapshot is presented

in [24], while for multiple snapshots, the ℓ2,1 mixed norm

is presented for the multiple measurement vectors (MMVs)

scenario, and ℓ1-SVD based on singular value decomposition

(SVD) is proposed with the advantages of smaller number of

data samples required and lower sensitivity to signal to noise

ratio (SNR) [24]. DOA estimation method based on a sparse

representation of array covariance vectors, referred to as ℓ1-

SRACV, is proposed in [25]. Both ℓ1-SVD and ℓ1-SRACV

require reduced computational cost than the well-known ℓ2,1
mixed norm, and are capable of handling coherent signals. The

theoretical guarantees for this joint sparse recovery problem

from MMVs developed in [26] (the overdetermined case) and

[27], [28] (the underdetermined case with sparse arrays and

uncorrelated sources) are based on a fixed deterministic mea-

surement matrix representing the steering matrix of an array

structure, which deviates from usual scenarios in compressed

sensing relying on the randomness of the measurement matrix,

while the support recovery for both the deterministic and

random measurement matrix is discussed in [29]. Based on

the fundamental ℓ2,1 mixed norm, the MMV atomic norm

approach [30] focusing mainly on the noiseless case and the

SPARROW approach [31] are proposed as variants capable of

incorporating the gridless optimization. However, in the noisy

case and the small number of snapshots case, the covariance

matrix of data samples is not guaranteed to be Toeplitz,

and the matrix approximation after the necessary Vander-
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monde decomposition may lead to performance degradation.

In [32], the sparse spectrum fitting (SpSF) method for both

uncorrelated sources (based on a vectorization process [33])

and coherent sources is proposed, and significant complexity

reduction can be achieved if the sources are known a priori to

be uncorrelated. The vectorization based methods [32], [33]

(also commonly referred to as the co-array based methods)

for prior-known uncorrelated sources are studied for the un-

derdetermined case where the number of sources exceeds the

number of physical sensors [34]–[39].

For wideband DOA estimation, the array received signals

can be decomposed into a series of narrowband signals using

the discrete Fourier transform (DFT), and some typical meth-

ods such as the incoherent signal subspace method (ISSM)

[40], the coherent signal subspace method (CSSM) [41],

and the test of orthogonality of projected subspaces (TOPS)

method [42] can be employed. Under the CS framework, a

more effective method, i.e., group sparsity based wideband

DOA estimation method, is proposed in [43], [44], where the

incident angles are estimated jointly across the frequencies of

interest. To reduce the computational complexity, the focusing

technique can be applied to the generated virtual array struc-

ture first, followed by CS-based DOA estimation [45], [46].

All the aforementioned DOA estimation methods are based

on a single array structure (either uniform or non-uniform

arrays), where the array sensors are part of a whole centred

system. For direction finding based on distributed sensor array

networks with widely separated subarrays, it is beneficial to

exploit the whole large aperture through coherent processing

algorithms [47], [48]. However, the raw data samples are

required at the processing center to compute the covariance

matrix including the inter-subarray ones, and the resultant

communication overhead at both subarray platforms and the

processing center are extremely high. On the contrast, non-

coherent DOA estimation methods [49]–[52] has attracted

great attentions due to their significantly reduced communica-

tion cost. Although the performance of the non-coherent DOA

estimation methods is inferior to that of coherent processing

ones, the computational load and also the communication over-

head are significantly reduced since only the DOA measure-

ments or the covariance matrices at subarrays are utilized in the

following fusion process [53], [54]. Moreover, the consensus

propagation concept can be employed in distributed fusion

strategy by fusing information from neighborhood [55]–[57],

and thus low communication overhead is feasible and the final

fusion center is no longer needed. Recently, the sparse signal

representation method (extended SPICE) based on covariance

matrices at subarrays was introduced as a solution to partly

calibrated sensor arrays [58] with Cramér-Rao Bound (CRB)

derived, but the statistical properties of the observed signals at

different subarrays are assumed to be identical, which may not

be satisfied in practice especially for near-field source local-

ization where the spatial diversity and different propagation

attenuation cannot be ignored; for example, the equivalent

source power after taking into propagation attenuation will be

different for different subarrays and different subarrays could

work on different frequencies; in the active sensing case, the

radar cross section (RCS) or similar parameters of the targets

may be different for different subarrays.

Source localization can also be achieved by a distributed

sensor array network, where multiple sensors or sensor arrays

are distributed in widely separated spatial locations and the

DOA results obtained by each of them can then be combined

together to obtain the location of the source across the dis-

tributed platforms when near-field sources are considered [4],

[10], [59]. The maximum likelihood estimator (MLE) has been

adopted to minimize the total errors of the noise-corrupted

angle measurements among all distributed platforms under the

least square sense [8], [60]. However, the angle measurements

are nonlinearly related to source locations and the objective

function is non-convex [3], [60], [61], leading to a difficult

optimization problem. Instead of the time-consuming grid

search method for the MLE, a number of low-complexity

iterative methods can be employed [62], but their performance

is sensitive to the initializations and a globally optimal solution

cannot be obtained in many cases due to the non-convex

objective function. To further reduce the complexity, some

closed-form location estimators have also been proposed [7],

[11], [63].

However, by using the maximum likelihood (ML) criteria

to minimize the root mean square errors (RMSEs) of the angle

measurements, the performance of the MLE is dependent on

the angle measurements obtained at all platforms, and even

one worse AOA estimation result at a certain platform can

lead to serious performance degradation. How to further im-

prove the estimation performance by processing the collected

information across the observation platforms jointly in lieu of

fusing the separately measured angle results at all platforms

is still a challenge.

In this paper, we study the source localization problem for

wideband signals based on a distributed sensor array network

consisting of multiple receivers as in [64], where a linear sub-

array is placed on each observation platform. However, the

proposed approach is also applicable to narrowband sources by

simply removing the focusing part, as they can be considered

as a special case.

In the first task, we focus on DOA estimation for far-field

sources whose wave-fronts arriving at the distributed sensor

array network can be considered as a plane. The propagation

coefficients of the same source observed at different receivers

may not be the same due to the different radial distances and

relative movements, or the radar cross section (RCS) fluctua-

tions in the active sensing case. For complexity reduction, the

focusing algorithm is applied to deal with the wideband signals

at each observation platform and a combined equivalent single

frequency signal model can be obtained. An efficient CS-

based method employing the group sparsity concept, which is

applicable for both uncorrelated signals and coherent signals,

is proposed to exploit all the acquired information across

distributed sub-arrays jointly, leading to improved estimation

performance compared with that of existing DOA estimation

method based on a single receiver.

Then, we consider the case of relatively near-field sources

compared to the entire distributed sensor array network, while

the sources are still far-field compared to each sub-array

aperture. For a given source, there is a unique incident angle
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observed at each sub-array, and it is possible to localize the

source by enforcing common sparsity for all receivers in the

predefined Cartesian coordinate system, leading to our pro-

posed solution for localization of near-field sources based on

the focused signal models. Instead of fusing the independent

DOA estimation results provided by all receivers and then

form a final localization result of the sources, the proposed

solution is able to exploit the information collected by all the

sub-arrays in the whole network, offering better performance

than the MLE through fusing the pre-processed AOA results

at all platforms. Moreover, one advantage associated with the

aforementioned solutions is that, only the covariance matrix at

each sub-array in lieu of all the data samples is required for

centralized processing, and therefore the increase of the data

exchange workload among platforms is limited compared with

those AOA-based fusion methods.

The main contribution in this work is to present a general

group-sparsity based approach capable of handling narrow-

band/wideband, far-field/near-field, and uncorrelated/coherent

sources with potential frequency and spatial diversity, which

are not fully considered in the literature. The proposed ap-

proach is flexible, as the different subarrays are not required

to be synchronised and can work on different frequencies,

the statistical properties of the sources can be different for

different subarrays, and sensor numbers, rotation angles, and

observed signals of different sub-arrays do not need to be the

same. To our best knowledge, the proposed approach is the

first one to be able to effectively deal with the above scenario

in one step with closed-form CRB derived, in comparison with

the two-step AOA-based fusion methods.

This paper is structured as follows. The considered dis-

tributed sensor array network is presented in Sec. II. The

developed group sparsity based DOA estimation method for

far-field sources is proposed in Sec. III, and the near-field

case is dealt with in Sec. IV. The CRBs for both far-field and

near-field cases are derived in Sec. V. Simulation results are

provided in Sec. VI, and conclusions are drawn in Sec. VII.

II. SYSTEM MODEL FOR DISTRIBUTED SENSOR ARRAY

NETWORKS

A distributed sensor array network consisting of M
sub-arrays with each fixed on a observation platform and

K sources is shown in Fig. 1, where Um(xm, ym) and

Tk(xTk
, yTk

) represent the locations of the m-th receiver and

the k-th source in a predefined Cartesian coordinate system,

respectively. The general array structure of the m-th receiver

consisting of an Lm-sensor linear sub-array is shown in Fig.

2, and the sensor position set Sm of the sub-array is given as

Sm = {~ml d, 0 ≤ l ≤ Lm − 1, l ∈ Z} , (1)

where Z is the set of all integers, ~ml d represents the position

of the l-th sensor, and d is the unit spacing.

Assume that all the sources are far-field compared to

each sub-array aperture, and φm,k, m = 1, 2, . . . ,M , k =
1, 2, . . . ,K, is the incident angle of the k-th source measured

between the direction of the impinging signal on the m-th

x

y

o

U1 (x1, y1)

UM (xM, yM)

The 1-st Source

Impinging 
Signals

Impinging 
Signals

U2 (x2, y2)

The K-th Source
T ( , )K KK T Tx y

1 11( ,T )T Tx y

Fig. 1. A general model for a distributed sensor array network.
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Fig. 2. A general array structure for the m-th sub-array carried by the
corresponding observation platform.

sub-array and the y-axis, given by

φm,k = arctan 2(∆xm,k,∆ym,k)

=



































arctan(
∆xm,k

∆ym,k
), ∆ym,k > 0,

arctan(
∆xm,k

∆ym,k
) + π, ∆xm,k ≥ 0,∆ym,k < 0,

arctan(
∆xm,k

∆ym,k
)− π, ∆xm,k < 0,∆ym,k < 0,

+π
2 , ∆xm,k > 0,∆ym,k = 0,

−π
2 , ∆xm,k < 0,∆ym,k = 0,

undefined, ∆xm,k = 0,∆ym,k = 0,

(2)

where arctan 2(a, b) ∈ (−π, π] represents the four-quadrant

inverse tangent of a and b, with arctan(a
b
) being the inverse

tangent of a
b

, ∆xm,k = xTk
− xm, and ∆ym,k = yTk

− ym.

Denote sm,k(t) as the wideband signal received at the m-th

sub-array, and ϕm is the rotation angle of the m-th receiver,

measured between the end-fire direction of the linear sub-array

and the x-axis. Then we have θm,k = φm,k + ϕm, with θm,k

representing the incident angle of the impinging signal from

the k-th source based on the m-th sub-array.

We use xm(t) to represent the Lm×1 array observed signal

vector, and the array output model at frequency f is given by

Xm(f, t) = Am(f,θm)Sm(f, t) +Nm(f, t) , (3)

where Xm(f, t), Sm(f, t), and Nm(f, t) are the components

at frequency f regarding to xm(t), the signal vector sm(t),
and the noise vector n̄m(t), respectively. The noises observed

at different sensors are uncorrelated, and they are assumed

to be white Gaussian and uncorrelated with the sources.
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x

y

o

Um (xm, ym)

The k-th Source
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Fig. 3. The time delay.

Sm(f, t) = [bm,1(f, t)Sm,1(f, t), . . . , bm,K(f, t)Sm,K(f, t)]
T

consists of all the received signals at the sub-array, and {·}T
denotes the transpose operation. bm,k(f, t) is the propagation

coefficient of the k-th source corresponding to the m-th sub-

array which is related to the distance between the source and

the platform, and may be time-varying due to relative motion

between the source and the platform. In the active sensing

network, bm,k(f, t) is also related to radar cross section (RCS)

fluctuations incorporating spatial and frequency diversity.

Am(f,θm) = [am(f, θm,1),am(f, θm,2), . . . ,am(f, θm,K)]
is the Lm × K steering matrix, with its k-th column vector

a(f, θm,k) being the steering vector corresponding to the k-th

source, expressed as

am(f, θm,k)

=
[

e
−j

2π~
m
0

d

λf
sin(θm,k)

, . . . , e
−j

2π~
m
Lm−1

d

λf
sin(θm,k)]T

,
(4)

with λf = c
f

and c being the wave propagation speed.

In the distributed sensor array network, the spacing between

platforms is usually larger than the signal wavelength, and

therefore for each frequency, the difference between those

received signals across sub-arrays should be considered as a

time delay instead of a phase shift in general. Define RAB as

the distance between positions A and B, and then the time

delay between the m-th sub-array at Um and the reference

point at the origin O(0, 0) (as shown in Fig. 3) is expressed

as

∆τm,k = −ROTk
−RUmTk

c

= −
√

x2

Tk
+y2

Tk
−

√
(xTk

−xm)2+(yTk
−tm)2

c
.

(5)

Denote the signal observed at the origin O(0, 0) as so,k(t)
with So,k(f, t) representing its component at frequency f , k =
1, 2, . . . ,K. Then, Sm(f, t) by taking O(0, 0) as the reference

is updated to

Sm(f, t)

= [bm,1(f, t)Sm,1(f, t), . . . , bm,K(f, t)Sm,K(f, t)]
T

,
(6)

where

Sm,k(f, t) = So,k(f, t−∆τm,k) . (7)

Furthermore, denote the set of incident angles in the Carte-

sian coordinate system as φk = {φm,k,m = 1, 2, . . . ,M}.

If max(φk) − min(φk) is small enough (the appropriate

bound would be related to the maximum tolerable error in

applications), with max(·) returning the maximum value of

the input arguments and min(·) giving the minimum one, the

source will be considered as a far-field one compared with

the distributed sensor array network, and we have φk ≈ φm,k,

∀m = 1, 2, . . . ,M . In practice, with the region of interest

known, the geometric dilution of precision (GDOP) is helpful

to decide which method (DOA estimation for far-field sources

or localization for near-field sources) should be applied, and

also useful for maintaining good layout of the platforms

in the network [65]. Usually, for source localization in the

distributed sensor array networks, a priori knowledge of the

problem falling into either the far-field case or the near-field is

needed before applying the appropriate method, with the aid

of the known possible spatial area of interest of the targets;

otherwise, a reasonable choice is to apply localization first and

then DOA estimation if it fails [12].

III. DOA ESTIMATION FOR FAR-FIELD SOURCES

In this section, we consider far-field sources with all φm,k,

m = 1, 2, . . . ,M , approximately the same, i.e., φk ≈ φm,k.

This problem is the same as the non-coherent DOA estimation

with fully/partly calibrated subarrays [12], [49]–[52], and a

global optimum can be obtained without ambiguous solutions.

However, since the sensor numbers, the rotation angles, and

the observed signals of different sub-arrays may not be the

same, the signal models at different sub-arrays cannot be

combined in a straightforward way. The uniqueness of the

DOAs can be guaranteed due to the same φm,k to be estimated

across subarrays by forcing the same spatial support within the

incident angle range of interest.

A. Focusing for the Wideband Case

For the wideband case where the received signals share

the same bandwidth, we first divide those received signals

after sampling (with a sampling frequency fs) into P non-

overlapping groups with their length fixed at L, and then an

L-point discrete Fourier transform (DFT) is applied to obtain

the wideband array signal model, given as

Xm[l, p] = Am(l,θ)Sm[l, p] +Nm[l, p] , (8)

with the lm-th entry in Xm[l, p], Sm[l, p], and Nm[l, p] as

Xm,lm [l, p] =
∑L−1

i=0
xm,lm [L · (p− 1) + i] · e−j 2π

L
il ,

Sm,lm [l, p] =
∑L−1

i=0
sm,lm [L · (p− 1) + i] · e−j 2π

L
il ,

Nm,lm [l, p] =
∑L−1

i=0
n̄m,lm [L · (p− 1) + i] · e−j 2π

L
il ,

where for the m-th sub-array, Xm[l, p], Sm[l, p], and Nm[l, p]
represent the DFT of xm[i], sm[i], and n̄m[i] at the l-th
frequency bin and the p-th group (l = 0, 1, . . . , L − 1,

p = 1, 2, . . . , P ). Am(l,θ) = [am(l, θm,1), . . . ,am(l, θm,K)]
is the steering matrix at fl =

l
L
fs corresponding to the l-th

frequency bin, with each column vector am(l, θm,k) the same

as (4) except for a replacement of f by fl.
The focusing algorithm [45] can be adopted to deal with

the wideband signals. Denote fr (corresponding to the lr-th

frequency bin) as the reference frequency for focusing, and the

rotational signal-subspace (RSS) focusing matrix Tm[l] of the
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m-th sub-array can be obtained by optimizing the following

problem [45], [66]:

min
Tm[l]

‖Am(lr,θF )−Tm[l]Am(l,θF )‖F
subject to TH

m[l]Tm[l] = ILm
,

(9)

and thus we have

Tm[l] = Vm[l]UH
m[l] , (10)

where θF holds the angles involved for focusing, ‖·‖F denotes

the Frobenius norm, {·}H denotes the Hermitian transpose,

and ILm
is the Lm×Lm identity matrix. The column vectors

in Um[l] and Vm[l] are the left and right singular vectors of

the matrix Am(l,θF )Am
H(lr,θF ), respectively.

Then, for the m-th sub-array, the focused array model at

the l-th frequency bin is obtained by

ym[l, p] = Tm[l]Xm[l, p]

= Tm[l]Am(l,θ)Sm[l, p] +Tm[l]Nm[l, p]

≈ Am(lr,θ)Sm[l, p] +Tm[l]Nm[l, p] .

(11)

Assume that there are J frequency bins of interest with

index lj , j = 0, 1, . . . , J−1. We can combine the array models

at different frequencies of interest into a equivalent model at

frequency fr, given by

ȳm[p] =
∑J−1

j=0
ym[lj , p]

= Am(lr,θ)um[p] +
∑J−1

j=0
Tm[lj ]Nm[lj , p] ,

(12)

where um[p] =
∑J−1

j=0 Sm[lj , p] is the Lm×1 equivalent signal

vector.

Remark 1: For the wideband case, the group sparsity based

method [43] can also be adopted and then extended to estimate

the DOAs of far-field sources and localize the positions of

near-field sources. However, its high computational complexity

would be problematic when processing the information across

multiple platforms.

B. The Optimal Choice of the Focusing Frequency

In [41], [66], the center frequency of the source spectrum is

suggested to be the focusing frequency, and unitary focusing

matrices are advocated. It has been proved that unbiased DOA

estimates can be obtained for a single source scenario with the

central frequency bin chosen as the focusing frequency [67].

For the multi-source scenario, the criterion of minimizing the

subspace fitting error can be employed for focusing frequency

selection [68]. The subspace fitting error (focusing error) is

defined as

C(lr) =
1

P

M
∑

m=1

J−1
∑

j=0

‖Qm(lr, lj ,θF ) · Sm[lj ]‖2F

=

M
∑

m=1

J−1
∑

j=0

tr
{

Qm(lr, lj ,θF )RSm
[lj ]Q

H
m(lr, lj ,θF )

}

,

(13)

where Sm[lj ] = [Sm[lj , 1], . . . ,Sm[lj , P ]], Qm(lr, lj ,θF ) =
Am(lr,θF ) − Tm[lj ]Am(lj ,θF ), RSm

[lj ] is the covariance

matrix of the source signals, and tr{·} is the trace operator.

According to the submultiplicavity property (also known as

the mutually consistency property) of the Frobenius matrix

norm with ‖AB‖F ≤ ‖A‖F ‖B‖F , we have

C(lr) ≤
M
∑

m=1

J−1
∑

j=0

‖Qm(lr, lj ,θF )‖2F · 1

P
‖Sm[lj ]‖2F

=

M
∑

m=1

J−1
∑

j=0

‖Qm(lr, lj ,θF )‖2F ·
K
∑

k=1

σ2
m,k[lj ]

=Cmax(lr) ,

(14)

where σ2
m,k[lj ] is the k-th source power at the m-th sub-

array and the lj-th frequency bin, and 1
P
‖Sm[lj ]‖2F =

1
P
tr{Sm[lj ]S

H
m[lj ]} =

∑K
k=1 σ

2
k.

The subspace fitting error is upper bounded by Cmax(lr),
and it is related to the source powers. For uncorrelated

sources with high input SNRs,
∑K

k=1 σ
2
k can be estimated by

1
Lm

tr{Rym
[lj ]} with Rym

[lj ] being the covariance matrix of

ym[l, p].
If the source spectrums are known a priori, then the optimal

focusing frequency can be obtained by solving the following

optimization problem:

min
lr

Cmax(lr) subject to Am(lr,θF ) ∈ A(θF ) , (15)

with A(θF ) = {Am(lj ,θF ) | j = 0, 1, . . . , J − 1} being the

set of all steering matrices of interest for the focusing angles.

Consider the cases where all the source spectrums are

identical with known distributions (although the exact received

source powers at subarrays are unknown), only the normalized

weights w[lj ] proportional to the signal powers at different fre-

quencies are of interest for solving (15), with
∑J−1

j=0 w[lj ] = 1

and
∑K

k=1 σ
2
m,k[lj ] replaced by w[lj ].

C. DOA Estimation Based on Sparse Representation of Array

Covariance Vectors for a Single Sub-Array

Based on the focused model in (12), the covariance matrix

is obtained by

Rȳm
= E

{

ȳm[p]ȳH
m[p]

}

= Am(lr,θm)Rum
AH

m(lrθm) + σ2
mTm ,

(16)

where E{·} is the expectation operator, and Rum
=

E
{

um[p]uH
m[p]

}

is the covariance matrix of the equivalent

received signals. Under the white Gaussian noise assumption

where σ2
m[lj ] = σ2

m, ∀j = 0, 1, . . . , J − 1, we have σ2
mTm =

∑J−1
j=0 σ2

m[lj ]Tm[lj ]T
H
m[lj ] = σ2

m

∑J−1
j=0 Tm[lj ]T

H
m[lj ].

Defining Pm = Rum
AH

m(lr,θm), we have

Rȳm
= Am(lr,θm)Pm + σ2

mTm . (17)

Under the CS framework, a search grid of Kg (Kg ≫ K)

potential incident angles θg,0, θg,1, . . . , θg,Kg−1 is first gen-

erated, and an overcomplete representation of Am(lr,θg) is

then constructed, given by

Am(lr,θg) =
[

am(lr, θg,0), . . . ,am(lr, θg,Kg−1)
]

. (18)
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By applying the group sparsity concept, the ℓ1-SRACV [25]

method is formulated as

min
Pg,m,σ2

m

∥

∥p◦

g,m

∥

∥

1

subject to
∥

∥Rȳm
−Am(lr,θg)Pg,m − σ2

mTm

∥

∥

F
≤ ε ,

(19)

where ‖·‖1 is the ℓ1 norm, and Pg,m is a constructed Kg×Lm

matrix with p
kg
m being its kg-th row vector, representing the

potential signals at the corresponding incident angle. ε is the

allowable error bound, and p◦

g,m = [pT
g,m, σ2

m]T is a (Kg +
1)× 1 column vector with

pg,m =
[∥

∥p0
m

∥

∥

2
,
∥

∥p1
m

∥

∥

2
, . . . ,

∥

∥pKg−1
m

∥

∥

2

]T
, (20)

where ‖·‖2 is the ℓ2 norm.

The elements in pg,m are the corresponding DOA esti-

mation results over the Kg search grids, while σ2
m is also

considered as an unknown variable to be estimated. Denote

the obtained DOA results from solving (19) as θ̃m, and they

can be converted to the predefined Cartesian coordinate system

by φ̃m = θ̃m − ϕm.

Remark 2: It is noted that although the number of elements

to be estimated in the optimization problem (19) is increased

compared with the ℓ1-SVD method [24], the prior knowledge

of the rank of Rsm is not required and better estimation results

can be obtained especially for low input signal to noise ratios

(SNRs) due to involvement of the noise power estimation in

the optimization.

D. Group Sparsity Based DOA Estimation across All Obser-

vation Platforms

Due to different propagation delays, rotation angles, and

propagation coefficients among sub-arrays, it is difficult to

merge those signal models at all sub-arrays together through

traditional methods. However, all the array signal models share

the same spatial support for far-field sources based on the

predefined Cartesian coordinate system, but with different

angle offsets equal to their rotation angles. To exploit the

information acquired by all the sub-arrays jointly, we force

a common sparsity of the DOAs across all the distributed

platforms, and the group sparsity concept can be employed

again for DOA estimation.

Denote φg =
[

φg,0, φg,1, . . . , φg,Kg−1

]T
as a search grid

of Kg potential incident angles in the Cartesian coordinate

system. Then, the equivalent search grid based on each rotated

sub-array is θg,m = φg + ϕm, m = 1, 2, . . . ,M . As a

result, we can rewrite the signal model from the sparse signal

reconstruction perspective as

Rȳm
= Am(lr,θg,m)Pg,m + σ2

mTm , (21)

where the search grid employed in Am(lr,θg,m) and Pg,m is

replaced by θg,m.

For far-field sources where the incident angles of the same

source on different sub-arrays are considered to be the same,

we can estimate the DOAs of the sources jointly by extending

the group sparsity concept across all the sub-arrays due to

the same spatial support, although the array models may have

TABLE I
PROCEDURE OF THE PROPOSED GS-SRACV METHOD

Step 1) Apply the focusing algorithm in (11) to form a combined
signal model (12) with reduced dimension. For the selection
strategy of θF , please refer to Remark 5, and similar
strategy given in Table II can be employed with associated
changes.

Step 2) Based on each Rȳm with the size of Lm×Lm, the DOAs
of the far-field sources can be estimated by applying the
proposed GS-SRACV method in (25).

Output The first Kg elements of the column vector u
◦

g
are the

corresponding DOA estimation results over the Kg search
grids in φg .

varying values in the matrix Pg,m, m = 1, 2, . . . ,M to

be estimated, and different steering vectors caused by the

rotation angles as well as the possible different sub-array

sensor numbers.

To facilitate the formulation, we vectorize the covariance

matrix of the m-th sub-array as

zm = vec {Rȳm
} = vec

{

Am(lr,θm)Pm + σ2
mTm

}

. (22)

Under the CS framework, we denote the column vector

bg,m as

bg,m = vec
{

Am(lr,θg,m)Pg,m + σ2
mTm

}

. (23)

Then, we construct a
∑M

m=1 L
2
m × 1 column vector z and

a Kg × L matrix Ug by

z =
[

zT1 , z
T
2 , . . . , z

T
M

]T
,

Ug = [Pg,1,Pg,2, . . . ,Pg,M ] ,
(24)

with L =
∑M

m=1 Lm and row vector u
kg
g , 0 ≤ kg ≤ Kg , as

the kg-th row of the matrix Ug.

Finally, the DOA estimation method employing the group

sparsity concept based on ℓ1-SRACV (referred to as GS-

SRACV) across all distributed platforms is formulated as

follows

min
Ug,σ2

m

∥

∥u◦

g

∥

∥

1
subject to ‖z− bg‖2 ≤ ε , (25)

where the column vector u◦

g is formed by applying ℓ2 norm

to each row vector u
kg
g and the noise terms across all the

sub-arrays, expressed as

u◦

g =
[

∥

∥u0
g

∥

∥

2
,
∥

∥u1
g

∥

∥

2
, . . . ,

∥

∥u
Kg−1
g

∥

∥

2
, σ2

n̄

]T

, (26)

with

σ2
n̄ =

∥

∥

[

σ2
1 , σ

2
2 , . . . , σ

2
M

] ∥

∥

2
(27)

being the ℓ2 norm of all the noises at different sub-arrays, and

bg =
[

bT
g,1,b

T
g,2, . . . ,b

T
g,M

]T
.

Note that all noise powers are considered as unknown

variables to be estimated. The first Kg elements of the column

vector u◦

g are the corresponding DOA estimation results over

the Kg search grids in φg . The procedure of the proposed

GS-SRACV method is summarized in Table I.
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Fig. 4. A typical localization geometry for near-field sources.

IV. LOCALIZATION FOR NEAR-FIELD SOURCES

For near-field sources, the incident angles of the same

source for different sub-arrays are not the same and may be

quite different, i.e., φm1,k 6= φm2,k for m1 6= m2. However, all

the sources are still assumed to be relatively far-field compared

to each sub-array aperture. As a result, the DOA estimation

method for far-field sources can not be applied directly due to

their different DOA support. In this section, the group sparsity

concept is further extended to the two-dimensional (2-D) case

to solve the near-field source localization problem.

A. Group Sparsity Based 2-D Localization for Near-Field

Sources

Ideally in the noiseless case, the source position can be

uniquely determined by the intersection of the lines-of-sight

associated with the AOAs from two or more subarrays. In

the presence of noise, the triangulation or fixing methods are

required to ensure the unique localization [4], [12] without

ambiguous solutions. A typical localization geometry for near-

field sources is shown in Fig. 4, where for a given source

position Tk(xTk
, yTk

), there is a unique incident angle θm,k

for each sub-array. We can localize the sources by forcing

a common sparse structure in the predefined Cartesian coor-

dinate system across all sub-arrays, and an effective group

sparsity based 2-D localization method (GS-Localization) is

proposed through jointly exploiting the information acquired

by all sub-arrays.

Without loss of generality, the area of interest in the

Cartesian coordinate system is assumed to be a square shape,

and it is divided into KxKy grids, where Kx is the number

of grids along the x-axis, while Ky is the number along

the y-axis. Denote G(xkx
, yky

), kx = 0, 1, . . . ,Kx − 1 and

ky = 0, 1, . . . ,Ky − 1, as the position of the (kx, ky)-th
search grid. Then, we generate its corresponding incident angle

θg,m(kx, ky) based on the m-th sub-array, expressed as

θg,m(kx, ky) = arctan 2(∆xm,kx
,∆ym,ky

) + ϕm , (28)

with

∆xm,kx
= xkx

− xm , ∆ym,ky
= yky

− ym . (29)

We construct a KxKy × 1 column vector consisting of

all potential incident angles by stacking θg(kx, ky), kx =

0, 1, . . . ,Kx − 1 and ky = 0, 1, . . . ,Ky − 1, given by

θ̃g,m =
[

θg,m(0, 0), θg,m(0, 1), . . . , θg,m(0,Ky − 1),

θg,m(1, 0), θg,m(1, 1), . . . , θg,m(1,Ky − 1),

. . . . . .

θg,m(Kx − 1, 0), . . . , θg,m(Kx − 1,Ky − 1)
]T

.
(30)

Then for each sub-array, the focusing algorithm is still

applied first to deal with the wideband signals as presented

in Sec. III-A, and the array model after focusing under the CS

framework can be represented as

Rȳm
= Am(lr, θ̃g,m)P̃g,m + σ2

mTm , (31)

where each row vector in the KxKy×Lm matrix P̃g,m is the

signals corresponding to the grid at the same row in θ̃g,m.

The 2-D grids in the predefined Cartesian coordinate system

is converted to the incident angle domain, and sparsity can

be forced in the area of interest for source localization due

to the uniqueness of the incident angle group θg,m(kx, ky),
m = 1, 2, . . . ,M for each grid.

Similarly, vectorizing the signal covariance matrix of the

m-th sub-array yields

z̃m = vec {Rȳm
} = vec

{

Am(lr,θm)Pm + σ2
mTm

}

.
(32)

Under the CS framework, denote

b̃g,m = vec
{

Am(lr, θ̃g,m)P̃g,m + σ2
mTm

}

, (33)

and then a KxKy × L matrix Ũg is generated by

Ũg =
[

P̃g,1, P̃g,2, . . . , P̃g,M

]

, (34)

with row vector ũ
kg
g , 0 ≤ kg ≤ KxKy − 1, as the kg-th row

of the matrix Ũg.

Based on the generated grids, the entries in each row vector

ũ
kg
g are associated with the same location G(xkx

, yky
), where

kg = kx · Kx + ky , and therefore share the same two-

dimensional support. By applying ℓ2 norm to u
kg
g and the

noise terms across all the sub-arrays, we have

ũ◦

g =
[

∥

∥ũ0
g

∥

∥

2
,
∥

∥ũ1
g

∥

∥

2
, . . . ,

∥

∥ũ
KxKy−1
g

∥

∥

2
, σ̃2

n̄

]T

, (35)

with

σ̃2
n̄ =

∥

∥

[

σ2
1 , σ

2
2 , . . . , σ

2
M

] ∥

∥

2
. (36)

Considering all the noise terms and the matrix Ũg as

unknown variables to be estimated, the group sparsity based

2-D localization problem (GS-Localization) can be formulated

as

min
Ũg,σ2

m

‖ũ◦

g‖1 subject to ‖z̃− b̃g‖2 ≤ ε , (37)

where z̃ and b̃g are both KxKyL × 1 column vectors given

by

z̃ =
[

z̃T1 , z̃
T
2 , . . . , z̃

T
M

]T
,

b̃g =
[

b̃T
g,1, b̃

T
g,2, . . . , b̃

T
g,M

]T

.
(38)
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The first KxKy elements of the column vector ũ◦

g are the

corresponding localization results over the KxKy search grids,

which are finally translated to the source positions in the

Cartesian coordinate system.

Remark 3: In the proposed solution GS-SRACV (25) for

the far-field sources and the GS-Localization (37) for near-

field sources, the information collected by the entire distributed

array network is utilized directly in solving the optimization

problems. Compared with the MLE where only the separate

DOA estimation results obtained by sub-arrays are involved in

the RMSE minimization problem, improved performance and

robustness can be achieved by our proposed solutions.

Remark 4: It is worth nothing that only the covariance

matrix with the size of Lm × Lm for each sub-array instead

of all the data samples is required for centralized processing,

and therefore the additional data exchange workload is rather

limited compared with those AOA-based fusion methods.

B. Grid Refining Strategy for Complexity Reduction

The GS-Localization method finds the common sparsity in

the 2-D Cartesian coordinate system, and the computational

complexity would be extremely high if a large number of grids

are involved for a more accurate result. Therefore, instead of

employing a universally fine search grid, we extend the idea

of adaptively refining the search grid in DOA estimation to

the 2-D case for complexity reduction without sacrificing the

performance.

Denote αq as the step size in the q-th step, θ̃q
g,m is the vector

of updated incident potential angles associated with the refined

search grid in the q-th step, and T̃ q
k (x̃

q
Tk
, ỹqTk

) is the estimated

position of the k-th source in the q-th step. For a Q-Step grid

refining strategy, we first generate a search grid with a large

step size α1 in the entire area of interest, and coarse position

estimates of the sources can be found by applying the proposed

GS-Localization method in (37), expressed as T̃ 1
k (x̃

1
Tk
, ỹ1Tk

).
Next we focus on the areas around the positions estimated,

and an updated search grid is generated in x̃1
Tk

− α1 ≤ x ≤
x̃1
Tk

+ α1 and ỹ1Tk
− α1 ≤ y ≤ ỹ1Tk

+ α1 with a smaller step

size α2 = α1

γ
. Then the θ̃2

g,m corresponding to the new search

grid is obtained, and the GS-Localization method is applied

again with the refined search grid to obtain the localization

results T̃ 2
k (x̃

2
Tk
, ỹ2Tk

). The aforementioned step is repeated Q
times to ensure the grid is fine enough, where at the q-th step,

the search grid refined in the updated areas

x̃q−1
Tk

− αq−1 ≤ x ≤ x̃q−1
Tk

+ αq−1 ,

ỹq−1
Tk

− αq−1 ≤ y ≤ ỹq−1
Tk

+ αq−1 ,
(39)

is employed, where k = 1, 2, . . . ,K and αq =
αq−1

γ
.

The procedure of the grid refining strategy is summarized

in Table II.

Remark 5: Note that for the narrowband case with J = 1,

the proposed solutions for both far-field and near-field sources

in Sec. III and Sec. IV are still effective without the focusing

process. As well-known, the performance of focusing is sensi-

tive to the initial DOAs θF , which can be updated iteratively

to obtain a good performance [46], [66], or we can simply use

the refined grids in each step as the focusing angles [45].

TABLE II
PROCEDURE OF THE PROPOSED GS-LOCALIZATION METHOD WITH GRID

REFINING STRATEGY

Step 1) Initialize q = 1 and generate a coarse search grid in the
entire area of interest with a large step size α1.

Step 2) Apply the focusing algorithm in (11) to form a combined
signal model (12) with reduced dimension. For the selection
strategy of θF , please refer to Remark 5.

Step 3) Estimate the source locations by applying the proposed
GS-Localization method in (37) with the results given as

T̃
q
k
(x̃q

Tk
, ỹ

q
Tk

).

Step 4) Set q = q + 1, an updated search grid is generated in the

refined areas in (39) with a smaller step size αq =
αq−1

γ
.

Step 5) Re-focusing if necessary (See Remark 5 and also [45], [46],
[66]).

Step 6) Based on the θ̃
q
g,m associated with the newly updated

search grid, solve the localization problem by applying
the GS-Localization method to obtain the source locations
T̃

q
k
(x̃q

Tk
, ỹ

q
Tk

).

Step 7) Repeat steps 4) to 6) until q = Q, and T̃k(x̃
Q
Tk

, ỹ
Q
Tk

),
k = 1, 2, . . . ,K, are the final estimation results of the
source locations.

Output T̃k(x̃
Q
Tk

, ỹ
Q
Tk

), k = 1, 2, . . . ,K, are the final estimation

results of the source locations.

V. CRAMÉR-RAO BOUNDS

For far-field sources, the CRB in the wideband scenario

based on subarray systems or distributed sensor array networks

has not been studied yet. For near-field sources, existing CRB

is derived from corrupted AOA/DOA measurements instead of

the original data samples. Therefore, we derive the CRBs for

far-field sources and near-field sources in this section.

A. CRB for the Far-Field Case

Based on the stochastic model, the sources and noises are

assumed to be zero-mean Gaussian processes, and the noises

are spatially uncorrelated. For each sub-array, the time duration

of each data group with L samples is usually much larger than

the correlation time of the source signals and noise, and thus

P non-overlapping groups yield P independent and identically

distributed (i.i.d.) frequency snapshots [69], [70].

Denote w(Xm[lj , p];α) as the probability density function

(p.d.f.) of Xm[lj , p], which depends on the vector α holding

real-valued unknown parameters. Then, the joint p.d.f. of all

frequency domain samples can be expressed as

w̄ =
∏M

m=1

∏J

j=1

∏P

p=1
w(Xm[lj , p];α) . (40)

The Fisher Information Matrix (FIM) for Xm[lj , p] is de-

fined as [71]

Fm[lj , p] , −E

[

∂2lnw(Xm[lj , p];α)

∂α ∂αT

]

. (41)

Since the P frequency snapshots are i.i.d., we have

{Fm[lj , p]}Pp=1 = Fm[lj ]. Combining (40) and (41), the FIM

obtained from the distributed sensor array network within the

frequency bins of interest is expressed as

F̄ = P
∑M

m=1

∑J

j=1
Fm[lj ] . (42)
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Denote the covariance matrix of Xm[lj , p] as RXm
[lj ].

Then, Fm[lj ] is given by [72]

Fm[lj ] = tr
(

R−1
Xm

[lj ]
∂RXm [lj ]

∂αT R−1
Xm

[lj ]
∂RXm [lj ]

∂αT

)

=
(

Wm[lj ]
∂rm[lj ]
∂αT

)H (

Wm[lj ]
∂rm[lj ]
∂αT

)

,
(43)

where

Wm[lj ] = (RT
Xm

[lj ]⊗RXm
[lj ])

−
1

2 ,

rm[lj ] = vec{RXm
[lj ]} ,

(44)

with ⊗ denoting the Kronecker product.

In the far-field case, α is given by

α = αfar = [φ̃T , q̃T ,σT ]T , (45)

where

φ̃ = [φ1, . . . , φK ]T , q̃ = [q̄T
1 , . . . , q̄

T
M ]T ,

q̄m = [qT
m[l1], . . . ,q

T
m[lJ ]]

T , σ = [σ2
1 , . . . , σ

2
M ]T ,

(46)

and qm[lj ] contains the real and imaginary parts of the upper

triangular elements in RSm
[lj ], which is the covariance matrix

of Sm[lj , p].
To calculate the derivatives of rm[lj ] w.r.t. α, we rewrite

rm[lj ] as

rm[lj ] = Cm[lj ]Ψqm[lj ] + σ2
mim , (47)

where

Cm[lj ] = A∗

m(lj ,θm)⊗Am(lj ,θm) ,

im = vec{ILm
} ,

(48)

and Ψ is a K2 ×K2 nonsingular matrix satisfying [72]

vec{RSm
[lj ]} = Ψqm[lj ] . (49)

For the far-field case, the first block of
∂rm[lj ]
∂αT is

∂rm[lj ]

∂φ̃T
= Ċm[lj ] , (50)

where

Ċm[lj ] = [A∗

m(lj ,θm)⊗ Ȧm(lj ,θm)]Em[lj ]

+ [Ȧ∗

m(lj ,θm)⊗Am(lj ,θm)]E′

m[lj ],

Em[lj ] =
[

vec{f1fT1 RSm
[lj ]}, · · · , vec{fKfTKRSm

[lj ]}
]

,

E′

m[lj ] =
[

vec{RSm
[lj ]f1f

T
1 }, · · · , vec{RSm

[lj ]fKfTK}
]

,

Ȧm(lj ,θm) = [ȧm(lj , θm,1), · · · , ȧm(lj , θm,K)] ,

ȧm(lj , θm,k) =
∂am(lj ,θm,k)

∂φk
,

(51)

with fk being a K × 1 vector containing a one at the k-th

position and zeros elsewhere. The v-th (v = 0, 1, . . . , Lm)

element of ȧm(lj , θm,k) is given by

[ȧm(lj , θm,k)]v = −j
2π~m

v d

λf
cos(θm,k)e

−j
2π~

m
v d

λf
sin(θm,k)

.

The second block can be expressed as

∂rm[lj ]
∂q̃T = ē(m−1)J+lj ⊗ {Cm[lj ]Ψ} , (52)

where ē(m−1)J+lj is a 1×MJ vector containing a one at the

[(m− 1)J + lj ]-th position and zeros elsewhere.

The third block is given by

∂rm[lj ]
∂σT = em ⊗ im , (53)

with em denoting a 1×M vector containing a one at the m-th

position and zeros elsewhere.

By substituting (50), (52), (53) into (43), we can obtain the

FIM in (42) for far-field sources, and the CRB is given by

B = F̄−1 , (54)

where we are only interested in the first principal K × K
sub-matrix in B corresponding to DOAs [70].

Although (54) can be used to calculate the CRB, it is rather

complicated and only the DOA-related block of the CRB

matrix is of interest.

To derive a closed-form CRB for the DOA part, we first

introduce the following notations.

W̄m = blkdiag{Wm[l1], . . . ,Wm[lJ ]} ,

¯̇
Cm =

[

ĊT
m[l1], . . . , Ċ

T
m[lJ ]

]T

, īm = 1J ⊗ im ,

C̄m = blkdiag{Cm[l1]Ψ , . . . ,Cm[lJ ]Ψ} ,

(55)

where blkdiag{·} is the block diagonalization operation, and

1J is a J × 1 all-one vector.

We combine all the sub-array components as follows.

W̃ = blkdiag{W̄1, . . . ,W̄M}, ˜̇
C = [ ¯̇CT

1 , . . . ,
¯̇
CT

M ]T ,

C̃ = blkdiag{C̄1, . . . , C̄M}, ĩ = blkdiag{̄i1, . . . , īM}.
(56)

Then, F̄ can be rewritten as

F̄ = P

[

GH

∆H

]

[G,∆] , (57)

where

G = W̃
˜̇
C , ∆ = W̃[C̃, ĩ] . (58)

Using the standard result on the inversion of a partitioned

matrix [73], we can obtain the closed-form CRB expression

for DOAs alone in the far-field case:

Bθ = (PGHΠ⊥

∆G)−1 , (59)

where Π⊥

∆ = IJ
∑

M
m=1

L2
m
−∆(∆H∆)−1∆H is the orthog-

onal projector onto the null space of ∆H .

B. CRB for the Near-Field Case

In the near-field case, the positions of the sources are

represented by Tk = (xTk
, yTk

), k = 1, · · · ,K. Thus, the

unknown parameter vector is

α = αnear = [T̄T
x , T̄

T
y , q̃

T ,σT ]T , (60)

where

T̄x = [xT1
, · · · , xTK

]T , T̄y = [yT1
, · · · , yTK

]T . (61)

Calculating the derivatives of the v-th element of

am(lj , θm,k) w.r.t. xTk
and yTk

respectively yields
[

∂am(lj ,θm,k)
∂xTk

]

v

=− j
2π~m

v d

λf
cos(θm,k)

∆ym,k

∆x2

m,k
+∆y2

m,k

e
−j

2π~m
v d

λf
sin(θm,k)

,

(62)



10

[

∂am(lj ,θm,k)
∂yTk

]

v

=j
2π~m

v d

λf
cos(θm,k)

∆xm,k

∆x2

m,k
+∆y2

m,k

e
−j

2π~m
v d

λf
sin(θm,k)

.

(63)

Using the notations in (51), we can write

∂rm[lj ]

∂T̄T
x

= Ċm[lj ] , (64)

but ȧm(lj , θm,k) is computed by (62). Similarly, we have

∂rm[lj ]

∂T̄T
y

= Ċm[lj ] , (65)

with ȧm(lj , θm,k) computed by (63).

Substituting (64), (65), (52), (53) and (43) into (42), and

then the near-field CRB can be calculated by (54).

Similarly, following the derivation steps in the far-field case,

we can obtain the closed-form CRB expression for DOAs

alone in the near-field case which also fits into (59), whereas

the matrix G in (58) is updated to

G = W̃[ ˜̇Cx,
˜̇
Cy] . (66)

Here,
˜̇
Cx and

˜̇
Cy are similarly defined as

˜̇
C in (56), but

their corresponding submatrices are replaced by (64) and (65),

respectively.

VI. SIMULATION RESULTS

In this section, as a comparison, the direct grid search

method is employed for the MLE to minimize the total

errors of the noise-corrupted angle measurements among all

distributed platforms under the least square sense, where all

the potential source locations are tried for the best fit of the

measurements. The optimization problems of GS-SRACV in

(25) and the GS-Localization (37) are solved using a software

package called CVX [74], and the allowable error bound ε is

chosen to give the best estimation results through trial-and-

error in every experiment 1. For comparison among different

estimation methods, focusing is applied as a pre-processing

step for the wideband signals and the actual incident angles

are used for focusing without loss of generality.

A. DOA Estimation for Far-Field Sources

Consider an acoustic example, where a distributed sensor

array network consisting of M = 3 sub-arrays placed on

three receivers is employed, and each sub-array is a uniform

linear array with Lm = 6 sensors, ∀m = 1, 2, 3. The

frequency range of interest is from 7.5 kHz to 10 kHz with the

reference frequency fr = 8.75 kHz at the center frequency,

and the normalized frequencies with a sampling frequency

fs = 20 kHz cover the range from 0.75π to π. The adjacent

sensor spacing in each sub-array is d = λr/2, where λr is

1In [75], a suggested value is given to ensure the robustness of the global
matched filter since it is challenging to obtain the optimal value of the
regularization parameter. When the noise statistics are known or can be
estimated in advance, the discrepancy principle can be employed to select
the regularization parameter value and appropriate regularization parameter
choices are provided for reasonably small noise levels [24]. Unfortunately,
without prior knowledge of the source and noise statistics, and the source
number, the choice of the regularization parameter is still an open problem
[24], [25], [43], and ε is usually determined by simulation-based approach.

(a) Uncorrelated signals. (b) Coherent signals.

Fig. 5. DOA estimation results for two far-field sources.

the wavelength corresponding to the reference frequency, the

signal propagation speed c = 340 m/s, and DFT of L = 64
points is applied. The locations of the three sub-arrays are

U1(25, 10), U2(0,−50), and U3(−70, 90), while their rotation

angles are 6◦, 0◦, and −21◦, respectively. Here all the location

coordinates are measured in metres. The spacings among the

distributed platforms are 65.00 m, 124.20 m, and 156.52
m, respectively, and all of them are much larger than the

largest signal wavelength λmax = 0.0453m. The propagation

coefficients bm,k(t) are randomly generated constant complex

values for all sub-arrays. Without loss of generality, we are

interested in the far-field sources in front of the distributed

sensor array network with the incident angles from −90◦ to

90◦ in this case. A search grid φg including Kg = 3601
potential angles is generated within the full range with a step

size of 0.05◦.

For the first set of simulations, we consider the case of

K = 2 far-field sources with incident angles of −10◦ and

10◦, respectively. We set the input SNR as 0 dB and the

number of snapshots is 1000. The DOA estimation results

obtained by the proposed GS-SRACV method across all sub-

arrays for uncorrelated impinging signals and coherent signals

are shown in Fig. 5(a) and Fig. 5(b), respectively. It is clear

that the incident angles of the two sources have been resolved

successfully in both cases. In other words, the proposed

method is capable of handling both uncorrelated and coherent

signals.

For the next set of simulations, we take the uncorrelated

case as an example and focus on the estimation performance

by comparing the RMSE results of different methods. Fig. 6

gives the RMSE results with respect to input SNRs, where

the number of snapshots is fixed at 1000. Then, we fix the

SNR at 0 dB, and the RMSE results versus the number of

snapshots are shown in Fig. 7. GS-SRACV (fr) and MLE (fr)

represent the application of the GS-SRACV method and the

MLE method based on a single frequency at fr, respectively.

GS-SRACV (fr) performs better than the MLE (fr), and the

estimation accuracy of this single frequency case is the worst

among all the three considered cases. The performances of

the ℓ1-SRACV method and the MUSIC method based on a

single receiver (the first receiver located at U1) are close to

each other, with that of ℓ1-SRACV a little better. Obviously,

the proposed GS-SRACV and the MLE have outperformed

the ℓ1-SRACV and MUSIC by a big margin in both figures

due to exploitation of the information acquired by the entire

distributed sensor array network, with the best performance
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Fig. 6. RMSE versus input SNR for two far-field sources.

Fig. 7. RMSE versus number of snapshots for two far-field sources.

achieved by the proposed GS-SRACV method.

The RMSE results obtained by the ℓ1-SRACV, the co-

array based method with a priori knowledge of uncorrelated

sources where the vectorization process is conducted [32],

[33], [36], [39], [43] (a special case of the SpSF method),

and the SpSF method, are shown in Fig. 8. Clearly, in practice

where the array output covariance matrix is estimated from the

observed samples, the recovery of the approximated diagonal

source covariance matrix in the co-array based method results

in degradation in performance as verified in Fig. 8. The

SpSF method outperforms the co-array based method, but

its performance as well as computational complexity is still

worse than the ℓ1-SRACV method due to a more complicated

optimization with significantly increased number of unknown

parameters where the whole Kg × Kg entries of the source

covariance matrix are to be optimized. Furthermore, the co-

array based methods fail to deal with coherent sources.

Then, we consider two other scenarios by changing the

rotation angle of the third sub-array. In Scenarios 2 (S2), the

rotation angle of interest is set to −41◦, while it is rotated

by another 10◦ to −51◦ in Scenarios 3 (S3). The RMSE

results with respect to the input SNRs and the number of

snapshots are given in Figs. 9 and 10, respectively, where

the RMSE results of the above scenario 1, referred to as

S1, are provided as a benchmark. Clearly, the performance

of the MLE degrades significantly with the increase of the

incident angle θm,k observed at the third sub-array (caused

Fig. 8. RMSE versus input SNR for different Narrowband DOA estimation
methods.

Fig. 9. RMSE versus input SNR for different scenarios in the far-field case.

by the large rotation angle), while a better performance can

always be obtained by our proposed GS-SRACV method.

Next, we further compare the RMSE results in different

scenarios with the corresponding CRBs derived in Sec. V, as

shown in Fig. 11. Obviously, the RMSE results of the proposed

solution are close to the CRBs, while for sufficiently large

input SNR with extremely low RMSE results, the estimation

performance will be asymptotic to a constant due to the

focusing approximation errors [46].

Fig. 10. RMSE versus number of snapshots for different scenarios in the
far-field case.
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Fig. 11. Comparison between RMSE and CRB in the far-field case.

B. Localization for Near-Field Sources

We still consider the distributed sensor array network with

M = 3 sub-arrays placed on the corresponding platforms,

and the sub-array structure and the platform positions remain

the same as in the previous setting. There are two sources

considered in our simulations with positions T1(−10,−10)
and T2(0, 5). The incident angles φm,k from the first source

position to all the sub-arrays in the Cartesian coordinate

system are −119.74◦, −14.04◦, and 149.04◦, while the in-

cident angles from the second source are −101.31◦, 0◦, and

140.53◦, respectively. With φm1,k−φm2,k > 100◦ (m1 6= m2,

m1,m2 = 1, 2, 3), the sources should be considered as

near-field ones. On the other hand, the sub-array aperture is

(Lm−1)d ≈ 0.1 m, and therefore those sources are relatively

far-field compared to each sub-array aperture. The rotation

angles of the sub-arrays are set as 110◦, 0◦, and −135◦,

respectively, and the area of interest in the Cartesian coordinate

system is −20 ≤ x ≤ 20 m and −20 ≤ y ≤ 20 m.

A two-step 2-D search grid refining strategy is used, where

for the first step, a search grid with a larger step size of 1 m

is considered within the full range of interest, i.e., the square

area with −20 ≤ x ≤ 20 m and −20 ≤ y ≤ 20 m, while

the search area is refined to x̃Tk
− 1 ≤ x ≤ x̃Tk

+ 1 m and

ỹTk
− 1 ≤ y ≤ ỹTk

+ 1 m with a much smaller step size of

0.05 m in the second step, where T̃k(x̃Tk
, ỹTk

) is the detected

source locations in the first step.

First, we fix the input SNR at 0 dB and the number of

snapshots as 100. The localization results obtained by the

proposed GS-Localization method is shown in Fig. 12, where

the results for the first step with a larger step size is given in

Fig. 12(a), while the results for the second step with a smaller

step size is provided in Fig. 12(b), and the two peaks resolved

represent the positions of the detected sources. We can see

clearly that the detected source positions are very close to

the actual source coordinates, which shows that the proposed

method is capable of localizing the sources effectively. Similar

to the far-field case, the proposed method is also capable of

handling both uncorrelated and coherent signals.

In Figs. 13 and 14, we give the RMSE results of the different

methods with respect to the input SNR and the number of

snapshots, respectively. Clearly, the higher the input SNR or

the number of snapshots, the higher its estimation accuracy.

(a) Estimation results for the first step.

(b) Estimation results for the second step.

Fig. 12. Localization results for two near-field sources.

The proposed GS-Localization method is able to localize the

sources over a wide range of input SNRs and number of

snapshots with high accuracy, and offers better estimation

results than the MLE for both the narrowband case (only

the reference frequency bin is exploited for localization) and

the wideband case. Furthermore, the estimation performance

based on the wideband case outperforms the narrowband case

consistently due to the exploitation of all the frequencies of

interest. It is noted that for low input SNRs, the estimation

accuracy of the angle measurements estimated independently

at platforms decreases, and therefore worse localization results

are obtained via MLE, which is easily affected by the bearings

involved in the fusion procedure. However, in the proposed

solution, the positions of the sources are calculated jointly

with the involvement of the data collected by all sub-arrays,

and thus outperforms the MLE consistently.

For the above simulations, focusing at actual DOAs is

applied as a pre-processing step for wideband signals with-

out loss of generality to make comparisons among different

estimation methods. In Fig. 15, we further compare the perfor-

mance of different focusing strategies, where the actual DOAs

are used as the focusing angles for the ideal focusing case,

while the iterative re-focused strategy in [46] is updated with

refined grids centered by the estimated position T̃ q
k (x̃

q
Tk
, ỹqTk

)
at the q-th iteration. Clearly, the performance employing the

iterative re-focused strategy with two iterations (parameters

remain the same as introduced at the beginning of Sec. V-

B) is slightly worse than but close to the one with ideal
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Fig. 13. RMSE versus input SNR for two near-field sources.

Fig. 14. RMSE versus number of snapshots for two near-field sources.

focusing angles. More iterations are required for high-accuracy

estimation result with increased SNR.

Next, we consider two other scenarios by rotating the third

sub-array at U3. Compared with the aforementioned scenario,

referred to as Scenario 1 (S1), we change the rotation angle

of the third sub-array as −115◦ (Scenario 2, S2) and 105◦

(Scenario 3, S3), and then the incident angles θ3,k of the two

sources observed at the third sub-array become 34.04◦ and

25.53◦ in scenario 2, while they are 44.04◦ and 35.53◦ in

scenario 3. The RMSE results versus the input SNRs and the

number of snapshots are shown in Figs. 16 and 17, respec-

tively. Obviously, for the same scenario, the proposed GS-

Fig. 15. RMSE versus input SNR for different focusing strategies.

Fig. 16. RMSE versus input SNR for different scenarios in the near-field
case.

Fig. 17. RMSE versus number of snapshots for different scenarios in the
near-field case.

Localization method outperforms the MLE. Furthermore, the

performance of the MLE degrades sharply compared with the

previous scenario due to the worse angle estimation involved

in the final fusion process caused by the relatively large

incident angle of the sources observed at the corresponding

sub-array. Therefore, the performance of the MLE is sensitive

to the angle measurements. On the contrary, better localization

results are achieved for all scenarios by our proposed GS-

Localization solution with all the information collected by the

entire network processed as a whole.

Fig. 18 shows the RMSE results and the derived CRBs

with respect to input SNRs. Similar to the far-field case,

the RMSE results of the proposed localization method are

close to the corresponding CRBs, while for sufficiently large

input SNR with extremely low RMSE results, the estimation

performance will be asymptotic to a constant due to the

focusing approximation errors [46].

In summary, platforms providing worse angle measurements

can spoil the overall performance of the MLE, while the pro-

posed GS-Localization method can still achieve good estima-

tion results in the same scenario. Overall, the GS-Localization

method is a more effective solution to the localization problem.

VII. CONCLUSIONS

In this paper, the source localization problem based on a

distributed sensor array network consisting of sub-arrays has
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Fig. 18. Comparison between RMSE and CRB in the near-field case.

been studied. After the applications of DFT and focusing to

deal with the wideband signals, the far-field sources were

first considered, and a CS-based estimation method employing

the group sparsity concept was proposed for DOA estimation

by exploiting all the information collected by distributed

platforms simultaneously. Then the near-field case (near-field

compared to the whole distributed sensor array network, and

still far-field from each sub-array perspective) was studied, and

a group sparsity based 2-D localization method was proposed

to localize the sources in the 2-D Cartesian coordinate system.

It is noted that only the covariance matrix at each sub-array

in lieu of all the data samples is required for centralized

processing, and therefore the increase of the data exchange

workload among platforms is limited. It has been shown by

simulations that the proposed DOA estimation method for

far-field sources and the localization method for near-field

sources outperform the existing MLE consistently, and are

more effective than the MLE, especially for the cases where

some of the individual sub-array estimation results are not

reliable.

For the localization problem of widely spread wideband

sources, where the DOA of each source is not a single value,

but spread over a continuous area centered to some assumed

angle/location, the proposed approach is not designed and will

not work for such a scenario and a different signal model is

needed. We will further investigate this scenario in our future

research work.
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approximation subspace tracking based on consensus propagation,” in
Proc. IEEE International Workshop on Computational Advances in

Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2009, pp. 340–
343.

[56] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace
estimation in wireless sensor networks,” IEEE Journal of Selected Topics

in Signal Processing, vol. 5, no. 4, pp. 725–738, 2011.
[57] W. Suleiman, M. Pesavento, and A. Zoubir, “Decentralized direction

finding using partly calibrated arrays,” in Proc. European Signal Pro-

cessing Conference (EUSIPCO). IEEE, 2013, pp. 1–5.
[58] W. Suleiman, P. Parvazi, M. Pesavento, and A. M. Zoubir, “Non-

coherent direction-of-arrival estimation using partly calibrated arrays,”
IEEE Trans. Signal Process., vol. 66, no. 21, pp. 5776–5788, 2018.

[59] Z. Wang, J.-A. Luo, and X.-P. Zhang, “A novel location-penalized
maximum likelihood estimator for bearing-only target localization,”
IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6166–6181, Dec. 2012.

[60] C. Wang, F. Qi, G. Shi, and X. Wang, “Convex combination based target
localization with noisy angle of arrival measurements,” IEEE Wireless

Communication Letters, vol. 3, no. 1, pp. 14–17, Feb. 2014.
[61] T. Erseghe, “A distributed and maximum-likelihood sensor network

localization algorithm based upon a nonconvex problem formulation,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 1, no. 4, pp. 247–258, Dec. 2015.

[62] J.-P. Le Cadre and C. Jaetffret, “On the convergence of iterative methods
for bearings-only tracking,” IEEE Trans. Aerosp. Electron. Syst., vol. 35,
no. 3, pp. 801–818, Jul. 1999.

[63] K. Dogancay, “Bias compensation for the bearings-only pseudolinear
target track estimator,” IEEE Trans. Signal Process., vol. 54, no. 1, pp.
59–68, Jan. 2006.

[64] Q. Shen, W. Liu, L. Wang, and Y. Liu, “Adaptive beamforming for target
detection and surveillance based on distributed unmanned aerial vehicle
platforms,” IEEE Access, vol. 6, pp. 60 812–60 823, 2018.

[65] C. Wann, “Mobile sensing systems based on improved gdop for target
localization and tracking,” in Proc. IEEE SENSORS, 2012, pp. 1–4.

[66] H. Hung and M. Kaveh, “Focussing matrices for coherent signal-
subspace processing,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 36, no. 8, pp. 1272–1281, Aug. 1988.

[67] D. N. Swingler and J. Krolik, “Source location bias in the coherently
focused high-resolution broad-band beamformer,” IEEE transactions on

acoustics, speech, and signal processing, vol. 37, no. 1, pp. 143–145,
1989.

[68] S. Valaee and P. Kabal, “The optimal focusing subspace for coherent
signal subspace processing,” IEEE Trans. Signal Process., vol. 44, no. 3,
pp. 752–756, 1996.

[69] P. M. Schultheiss and H. Messer, “Optimal and suboptimal broad-band
source location estimation,” IEEE Trans. Signal Process., vol. 41, no. 9,
pp. 2752–2763, 1993.

[70] Y. Liang, Q. Shen, W. Cui, and W. Liu, “Cramér-rao bound for wideband
DOA estimation with uncorrelated sources,” in Proc. IEEE Global

Conference on Signal and Information Processing (GlobalSIP), 2019.
[71] R. A. Fisher, “On the mathematical foundations of theoretical statistics,”

Philosophical Transactions of the Royal Society of London, Series A, vol.
222, pp. 309–368, 1922.

[72] P. Stoica, E. G. Larsson, and A. B. Gershman, “The stochastic CRB for
array processing: A textbook derivation,” IEEE Signal Process. Lett.,
vol. 8, no. 5, pp. 148–150, 2001.

[73] P. Stoica and R. L. Moses, Spectral Analysis of Signals. Upper Saddle
River, NJ, USA: Pearson Prentice Hall, 2005.

[74] M. Grant and S. Boyd. (2013, Dec.) CVX: Matlab software for
disciplined convex programming, version 2.0 beta, build 1023.
[Online]. Available: http://cvxr.com/cvx

[75] J.-J. Fuchs, “On the application of the global matched filter to DOA
estimation with uniform circular arrays,” IEEE Trans. Signal Process.,
vol. 49, no. 4, pp. 702–709, 2001.



16

Qing Shen received his B.S. degree in 2009 and
Ph.D. degree in 2016, both from the Beijing Institute
of Technology, Beijing, China. He then worked as
a Postdoctoral Researcher with the Beijing Institute
of Technology, where he is currently an Associate
Professor. From 2013 to 2015 and from 2018 to
2019, he was a Sponsored Researcher with the De-
partment of Electronic and Electrical Engineering,
University of Sheffield, Sheffield, UK. His research
interests include sensor array signal processing, and
its various applications such as acoustics, radar,

sonar, and wireless communications. He was the recipient of two Excellent
Ph.D. Thesis Awards from both the Chinese Institute of Electronics and the
Beijing Institute of Technology in 2016. He was also the recipient of the
Second-Class Prize of the National Award for Technological Invention in
2019, the First-Class Prize of the Science and Technology (Technological
Invention) Award from the Chinese Institute of Electronics in 2018, and the
Second-Class Prize of the Ministerial Level Science and Technology Progress
Award in 2014.

Wei Liu (S’01-M’04-SM’10) received his BSc and
LLB. degrees from Peking University, China, in
1996 and 1997, respectively, MPhil from the Univer-
sity of Hong Kong in 2001, and PhD from the School
of Electronics and Computer Science, University of
Southampton, UK, in 2003. He then worked as a
postdoc first at Southampton and later at the De-
partment of Electrical and Electronic Engineering,
Imperial College London. Since September 2005,
he has been with the Department of Electronic and
Electrical Engineering, University of Sheffield, UK,

first as a Lecturer and then a Senior Lecturer. He has published more than
300 journal and conference papers, five book chapters, and two research
monographs titled “Wideband Beamforming: Concepts and Techniques” (John
Wiley, March 2010) and “Low-Cost Smart Antennas” (by Wiley-IEEE, March
2019), respectively. His research interests cover a wide range of topics in
signal processing, with a focus on sensor array signal processing and its vari-
ous applications, such as robotics and autonomous systems, human computer
interface, radar, sonar, satellite navigation, and wireless communications.

He is a member of the Digital Signal Processing Technical Committee of
the IEEE Circuits and Systems Society (Secretary from 2020) and the Sensor
Array and Multichannel Signal Processing Technical Committee of the IEEE
Signal Processing Society (Vice-Chair from Jan 2019). He was an Associate
Editor for IEEE Trans. on Signal Processing (March 2015-March 2019) and
is currently an Associate Editor for IEEE Access, and an editorial board
member of the Journal Frontiers of Information Technology and Electronic
Engineering.

Li Wang received his B.Sc. and M.Sc. degrees
in Electronic and Electrical Engineering from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2000 and 2008, respec-
tively. He is currently pursuing his Ph.D. degree
in Sichuan University, Chengdu, China. He is the
director of the Key Laboratory, Southwest China
Institute of Electronic Technology. His research in-
terests include distributed array signal processing
and adaptive signal processing.

Yin Liu received his B.Sc., M.Sc. and Ph.D. degrees
in electronic engineering from Xidian University,
Xi’an, China, in 2002, 2005 and 2012, respectively.
He is a researcher at the Southwest China Institute of
Electronic Technology. He was a visiting researcher
at the University of Sheffield sponsored by the China
Scholarship Council. His research interests include
array signal processing, sparse signal recovery, and
MIMO radar signal processing.


