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Abstract—For a uniform linear array (ULA) with specially
designed spacing and system settings, the received signals are first
decomposed into different frequency bins via discrete Fourier
transform (DFT). By grouping the frequencies of interest into
several pairs, a generalized complexity reduction method is
proposed to merge the redundant entries in both the auto-
correlation matrices at each frequency and the cross-correlation
matrices across different frequencies, followed by the group
sparsity based low-complexity method to find the directions
of arrival (DOAs) of the impinging signals. Simulation results
demonstrate that significantly reduced complexity and improved
performance can be achieved by the proposed method.

I. INTRODUCTION

By resolving more sources than the number of physical

sensors, underdetermined DOA estimation has attracted great

attentions in the research community [1]–[4]. Nested arrays

[2], co-prime arrays [3], CADiS [5], super nested arrays [6],

and thinned co-prime array [7] are representative examples,

offering increased degrees of freedom (DOFs) based on the

difference co-array concept. By exploiting the high-order

statistics, specially designed sparse array structures including

multiple nested arrays (ML-NAs) [8], simplified and enhanced

ML-NAs (SE-ML-NAs) [9], and other fourth-order cumulant

based extensions [10]–[12] have been proposed for underde-

termined DOA estimation with improved resolution capacity.

In the narrowband scenario, the co-array MUSIC [2], [13]

and the compressive sensing (CS) based method [9], [14] can

be employed to exploit the co-array equivalence, and virtual

array interpolation [15], [16] can be applied for performance

improvement. For underdetermined wideband DOA estima-

tion, group sparsity based methods within the CS framework

[17], [18] and focusing based approaches [19], [20] have been

proposed, with the Cramér-Rao bound derived in [21].

Among all the aforementioned methods, sparse array con-

figurations are adopted, but the frequency information are not

involved for DOFs improvement. In [22], a pair of co-prime

frequencies is employed with a single ULA behaving like

two equivalent sub-arrays in a co-prime array. This idea is

further extended to the wideband case [23], [24] with a higher

number of DOFs achieved. However, in that work, the group

sparsity concept is utilized twice, generating a block diagonal

sensing matrix with a very large dimension, and therefore
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the extremely high computational complexity becomes an

associated problem.

In this paper, after reviewing the formulation for each

frequency pair in [23], we first merge the redundant entries

in the auto-correlation matrices at each frequency bin for

dimension reduction. The combination process of redundant

entries in cross-correlation matrices across frequency bins is

more complicated due to different selection of the frequency

pairs, and a generalized complexity reduction method is then

presented, leading to a solution with a lower computational

complexity without sacrificing the performance. Then, a group

sparsity based low-complexity method is presented, and as will

be shown in the simulations, the performance of the proposed

method is further improved by optimizing a simplified formu-

lation with a better estimation of the statistics compared with

the existing method, and also a shorter computation time is

required.

This paper is organized as follows. The system model is

presented in Section II. The proposed group sparsity based

low-complexity DOA estimation method is proposed in Sec-

tion III. Simulation results are provided in Section IV, and

conclusions are drawn in Section V.

II. SYSTEM MODEL DESIGN

For wideband DOA estimation exploiting the co-arrays in

the spatio-spectral domain, the correlation property among

different frequencies is required, and thus the LFMCW signal

[23] and mult-frequency signal [24] are preferred as the

transmitted waveform to ensure this property.

In this paper, the LFMCW signal is employed as an exam-

ple, and the LFMCW signal with a bandwidth B is

s(t) = Aej(2πfct+πα·mod(t,T )2+ϕ) , (1)

where A is the signal amplitude, fc is the initial frequency,

α = B/T is the chirp rate with T being the modulation period,

ϕ is the initial phase, and mod(t, T ) is the modulo operation.

We simply consider an M -sensor ULA with the inter-

element spacing d, and its sensor position set is given as

S = {md, 0 ≤ m ≤ M − 1,m ∈ Z} . (2)

The echo signal observed at the m-th sensor is

xm(t) =
∑K

k=1
γk(t) · s [t− τm(θk)] + n̄m(t) , (3)



where γk(t) is the time-varying reflection coefficient owing to

both target motion and radar cross section (RCS) fluctuations.

Since the phase delay varies with frequency and the target

reflectivity may be different across the signal bandwidth, γk(t)
is in general frequency-dependent. Take the zeroth position as

the reference, τm(θk) represents the time delay of the k-th

signal impinging from θk arriving at the m-th sensor of the

array.

Each received signal is divided into non-overlapping groups

with length L. Then, the output array signal model at the l-th
frequency bin and the p-th DFT group after an L-point DFT

can be expressed as

X[l, p] = A(l,θ)S[l, p] +N[l, p] , (4)

where S[l, p] =
[
S1[l, p], . . . , SK [l, p]

]T
with Sk[l, p] being

the DFT of the received echo signals γk[i]s[i]. The steering

vector in the steering matrix A(l,θ) is

a(l, θk) =
[
1, e

−j 2πd
λl

sin(θk), . . . , e
−j

2π(M−1)d
λl

sin(θk)
]T

.

For a certain array structure with a given inter-element

spacing d, we design the frequency interval f∆ to satisfy

f∆ = fs
L

= c
2d , (5)

Accordingly, a(l, θk) can be updated to

a(l, θk) =
[
1, e−jπl sin(θk), . . . , e−jπ(M−1)l sin(θk)

]T
. (6)

III. UNDERDETERMINED LOW-COMPLEXITY DOA

ESTIMATION BASED ON DIFFERENCE CO-ARRAYS

A. Difference co-array generation in the spatio-spectral do-

main

Assume that the bandwidth of the echo signals covers Q
frequency bins in the DFT domain with indexes lq ∈ Φl, 0 ≤
q ≤ Q − 1. These frequency bins of interest are divided into

N pairs, with ln1
and ln2

being the frequency components of

the n-th pair (ln1
∈ Φl, ln2

∈ Φl, and ln1
6= ln2

).

Denote α, β ∈ {ln1
, ln2

}, and we use α and β for conve-

nience of formulations at a later stage. The correlation matrices

(including both auto-correlation matrices and cross-correlation

matrices) of the two frequencies can be obtained by

Rx[α, β] = E
{
X[α, p] ·XH [β, p]

}

=

K∑

k=1

σ2
k[α, β]a(α, θk)a

H(β, θk) + σ2
n̄[α, β]IM · δ(α− β) ,

where IM is the M × M identity matrix. For α = β,

the parameters σ2
k[α, α], representing both σ2

k[ln1 , ln1 ] and

σ2
k[ln2

, ln2
], denotes the power of the k-th signal at the α-

th frequency bin, whereas σ2
n̄[α, α] is the corresponding noise

power. For α 6= β, σ2
k[α, β] is not zero due to correlation

among different frequencies offered by the LFMCW wave-

forms, and σ2
n̄[α, β] = 0. δ(α − β) is the Kronecker delta

function.

It is worth nothing that both σ2
k[α, α] and σ2

n̄[α, α] are real

and positive, while σ2
k[ln1

, ln2
] and σ2

k[ln2
, ln1

] are in general

complex values owing to the phase shift between different

frequency bins caused by the LFMCW echo signal and the

reflection coefficient.

Since Rx[ln1 , ln2 ] = R
H
x
[ln2 , ln1 ], we only use the former

in the estimation process for complexity reduction.

Vectorizing Rx[α, β] yields a virtual array model

z[α, β] = vec {Rx[α, β]}

= Ã[α, β ]̃s[α, β] + σ2
n̄[α, β ]̃IM2 · δ(α− β) ,

(7)

with the equivalent steering matrix

Ã[α, β] = [ã(α, β, θ1), . . . , ã(α, β, θK)] , (8)

where ã(α, β, θk) = a
∗(β, θk) ⊗ a(α, θk) with ⊗ as the

Kronecker product, and s̃[α, β] =
[
σ2
1 [α, β], . . . , σ

2
K [α, β]

]T
.

ĨM2 = vec{IM} is an M2 × 1 column vector.

For α = β, (7) characterize a virtual array model corre-

sponding to the self-difference co-array lags

{(αm1 − αm2), 0 ≤ m1,m2 ≤ M − 1} , (9)

while for α 6= β, the cross-difference co-array lags in the

spatio-spectral domain is generated as

{±(αm1 − βm2), 0 ≤ m1,m2 ≤ M − 1} . (10)

It is noted that by exploiting the co-arrays in (9) and (10) for

DOA estimation, more sources than the number of sensors can

be resolved due to a larger number of virtual sensors compared

with the physical sensor number M . Specifically, ln1
and ln2

can be chosen to be co-prime, and then the decomposed signals

at two frequency bins are equivalent to the received signals of

two uniform linear sub-arrays in a co-prime array with 2M −
1 − floor{ M−1

max(ln1 ,ln2 )
} sensors [22], where floor{·} returns

the largest integer not exceeding the argument and max{·}
returns the maximum value of the input vector.

B. Complexity reduction

s̃[ln1 , ln1 ], s̃[ln2 , ln2 ], and s̃[ln1 , ln2 ] are in general different

and therefore the three virtual array models characterized by

(7) are unique and should be treated separately. Furthermore,

s̃[ln1 , ln2 ] is generally complex, indicating that the entries re-

lated to the opposite co-array lags in the spatio-spectral domain

are also unique. As a result, the redundancies combination

method in [17] can not be adopted.

Note that the auto-correlation matrix Rx[α, α] is both Her-

mitian and Toeplitz. Since Rx[α, α] = R
H
x
[α, α], the complex

conjugate part can be removed for complexity reduction.

Further complexity reduction can be achieved by averaging

the redundant entries with the same lag along the diagonal

direction according to the Toeplitz property to form a more

accurate estimation of the statistical expectation.

After removing the redundant lags in Rx[α, α], we obtain

a column vector zc[α, α] with its merged m-th entry given by

zmc [α, α] =
∑M−1

m̂=m
Rm̂,m̂−m

x [α, α] , (11)

where m = 0, 1, . . . ,M − 1, and the superscripts of matrices

denotes the corresponding row and column indexes.



The m1-th row and m2-th column of the cross-correlation

matrix Rm1,m2
x [ln1

, ln2
] is given by

Rm1,m2
x [ln1

, ln2
] =

K∑

k=1

σ2
k[ln1

, ln2
]e−jπ(ln1m1−ln2m2) sin θk .

For the indexes (m1,m2) and (m̂1, m̂2), R
m1,m2
x [ln1

, ln2
]

and Rm̂1,m̂2
x [ln1

, ln2
] are equal if and only if ln1

m1−ln2
m2 =

ln1
m̂1 − ln2

m̂2, which can be modified into

ln1
(m1 − m̂1) = ln2

(m2 − m̂2) , (12)

where 0 ≤ m1,m2, m̂1, m̂2 ≤ M − 1.

Assume that ηn is the greatest common divisor between ln1

and ln2
, and then (12) can be updated to

ln1

ηn
(m1 − m̂1) =

ln2

ηn
(m2 − m̂2) , (13)

where
ln1

ηn
and

ln2

ηn
are co-prime.

The necessary and sufficient condition of (13) is

m1 − m̂1 = k̄
ln2

ηn

⋂
m2 − m̂2 = k̄

ln1

ηn
, k̄ ∈ Z . (14)

Then, we have

Rm̂1,m̂2
x [ln1

, ln2
] = Rm1,m2

x [ln1
, ln2

]

= R
k̄

ln2
ηn

+m̂1,k̄
ln1
ηn

+m̂2

x [ln1
, ln2

] .
(15)

Thus, we can obtain a new smoothed cross-correlation

matrix Rc[ln1
, ln2

] by combining the equal entries together,

with its m1-th row and m2-th column given by

Rm1,m2
c [ln1 , ln2 ] =

∑k̂max
k̄=k̂min

R
k̄

ln2
ηn

+m1,k̄
ln1
ηn

+m2
x [ln1 ,ln2 ]

k̂len

,
(16)

with

k̂len = k̂max − k̂min + 1 ,

k̂min = ceil
{
max

{
−m1ηn

ln2
, −m2ηn

ln1

}}
,

k̂max = floor
{
min

{
ηn(M−1−m1)

ln2
, ηn(M−1−m2)

ln1

}}
,

(17)

where ceil{·} returns the smallest integer exceeding the argu-

ment, while min{·} returns the minimum value.

Define two sets of indexes (m1,m2), m1,m2 ∈ Z, given

by

ΦM = {(m1,m2), 0 ≤ m1,m2 < M} ,

Φ̃n =
{
(m1,m2),

ln2

ηn
≤ m1 < M

⋂
ln1

ηn
≤ m2 < M

}
.

Note that Φ̃n = ∅ is an empty set when
ln2

ηn
≥ M

⋃ ln1

ηn
≥

M . Then, the set Φn = ΦM−Φ̃n represents the unique entries

without redundancy in the smoothed cross-correlation matrix

Rc[ln1
, ln2

]. For the n-th frequency pair, the number of unique

entries without redundancy in Rc[ln1
, ln2

] is

Mn =

{
M(ln1

+ln2
)

ηn
−

ln1 ln2

η2
n

, Φ̃n 6= ∅,

M2, Φ̃n = ∅.
(18)

C. Group sparsity based low-complexity DOA estimation

According to (11), the auto-correlation matrix Rx[α, α] is

simplified into a vector, rewritten as

zc[α, α] = Ac[α, α]̃s[α, α] + σ2
n̄[α, α]vM , (19)

where Ac[α, α] = [a(α, θ1), . . . ,a(α, θK)], and vM has a size

of M × 1, being all zeroes except for a 1 at the zeroth entry.

By vectorizing Rc[ln1 , ln2 ], we obtain

zc[ln1
, ln2

] = vec {Rc[ln1
, ln2

]}

= Ã[ln1 , ln2 ]̃s[ln1 , ln2 ] .
(20)

where Ã[ln1
, ln2

] is given in (8).

For the n-th frequency pair, with the same search grid of

Kg potential incident angles θg,0, · · · , θg,Kg−1, we construct

Ãcg[α, α] =
[
a(α, θg,0), . . . ,a(α, θg,Kg−1)

]
. (21)

We use zc,m̄[ln1
, ln2

], 0 ≤ m̄ ≤ M2 − 1, to de-

note the m̄-th entry in the column vector zc[ln1 , ln2 ], and

row vectors ãr,m̄[ln1
, ln2

] and ãg,m̄[ln1
, ln2

] are the m̄-

th row of the matrices Ã[ln1
, ln2

] and Ãg[ln1
, ln2

] =[
ã(ln1 , ln2 , θg,0), . . . , ã(ln1 , ln2 , θg,Kg−1)

]
, respectively.

Denote m̄m0
∈ φn, 0 ≤ m0 ≤ Mn − 1 as the row

indexes corresponding to the unique co-array lags without

redundancy, where φn = {m1 +m2M, (m1,m2) ∈ Φn} with

Mn elements. By keeping all the row indexes m̄m0
associated

with unique entries, the following matrices can be generated

z̄c[ln1
, ln2

] =
[
zc,m̄0

[ln1
, ln2

], . . . , zc,m̄Mn−1
[ln1 , ln2 ]

]T
,

Ãc[ln1
, ln2

] =
[
ã
T
r,m̄0

[ln1
, ln2

], . . . , ãT
r,m̄Mn−1

[ln1
, ln2

]
]T

,

Ãcg[ln1
, ln2

] =
[
ã
T
g,m̄0

[ln1 , ln2 ], . . . , ã
T
g,m̄Mn−1

[ln1 , ln2 ]
]T

.

Therefore, the model in (20) can be simplified into

z̄c[ln1 , ln2 ] = Ãc[ln1 , ln2 ]̃s[ln1 , ln2 ] . (22)

After constructing a block diagonal matrix Ãcg[n] =

blkdiag
{
Ãcg[ln1 , ln1 ], Ãcg[ln2 , ln2 ], Ãcg[ln1 , ln2 ]

}
, and a

Kg×3 matrix S̃g[n] with each column vector representing the

potential signals over the predefined search grid, we obtain the

low-complexity virtual array model under the CS framework,

given by

zc[n] = Ãcg[n]̃sg[n] +Vw[n] = Ã
◦

cg
[n]̃s◦

g
[n] , (23)

where zc[n] =
[
z
T
c
[ln1

, ln1
], zT

c
[ln2

, ln2
], z̄T

c
[ln1

, ln2
]
]T

. The

matrix V = [ṽ1, ṽ2]
T

has a size of (2M + Mn) × 2 with

ṽ1 =
[
v
T
M ,0T

M ,0T
Mn

]T
and ṽ2 =

[
0
T
M ,vT

M ,0T
Mn

]
, where

0
T
M denotes an M × 1 column vector consisting of all zeros.

Ã
◦

cg
[n] =

[
Ãcg[n],V

]
, s̃g[n] = vec

{
S̃g[n]

}
, w[n] =[

σ2
n̄[ln1

, ln1
], σ2

n̄[ln2
, ln2

]
]T

, and s̃
◦

g
[n] =

[
s̃
T
g
[n],wT [n]

]T
.

For DOA estimation across the frequency range of interest

with N pairs, a Kg × 3N matrix Rg, and a (3Kg + 2)N × 1
column vector r◦

g
, are constructed as

Rg =
[
S̃g[0], S̃g[1], . . . , S̃g[N − 1]

]
,

r
◦

g
=

[
s̃
◦T
g

[0], s̃◦T
g

[1], . . . , s̃◦T
g

[N − 1]
]T

.
(24)



TABLE I
NUMBER OF ENTRIES IN VECTORS/MATRICES

Vector / Matrix
Theoretical results Example

Existing method (Single Pair) LC method (Single Pair) Existing method (Single Pair) LC method (Single Pair)

s̃◦
g
[n] 3Kg + 2 3Kg + 2 5405 5405

zc[n] 3M2 2M +Mn 147 61

Ã◦

cg
[n] 3M2(3Kg + 2) (2M +Mn)(3Kg + 2) 794535 329705

Existing method (Wideband) LC method (Wideband) Existing method (Wideband) LC method (Wideband)

r◦
g

(3Kg + 2)N (3Kg + 2)N 27025 27025

zcg 3M2 ·N 2MN +
∑N

n=1
Mn 735 259

B̃◦

cg
3(3Kg + 2)(MN)2 (2MN+

∑N
n=1

Mn)(3Kg+2)N 19863375 6999475
Computation Time 116.5474 s 55.2154 s

Denote r̂g =
[∥∥rg,0

∥∥
2
,
∥∥rg,2

∥∥
2
, . . . ,

∥∥rg,Kg−1

∥∥
2

]T
with

the row vector rg,kg
, 0 ≤ kg ≤ Kg − 1 representing the kg-th

row of the matrix Rg. Finally, the group sparsity based low-

complexity wideband DOA estimation method for multiple

frequency pairs can be expressed as

min
r◦
g

‖r̂g‖1, subject to

∥∥∥zcg − B̃
◦

cg
r
◦

g

∥∥∥
2
≤ ε , (25)

where zcg =
[
z
T
c
[0], zT

c
[1], . . . , zT

c
[N − 1]

]T
. ‖·‖1 is the ℓ1

norm, ‖·‖2 is the ℓ2 norm, and the (2MN +
∑N−1

n=0 Mn) ×

(3Kg + 2)N block diagonal matrix B̃
◦

cg
is generated by

B̃
◦

cg
= blkdiag

[
Ã

◦

cg
[0], Ã◦

cg
[1], . . . , Ã◦

cg
[N − 1]

]
. (26)

IV. SIMULATION RESULTS

Consider an example of ULA with M = 7 sensors, and

a DFT of L = 64 points is applied with the inter-element

spacing and the frequency interval f∆ chosen according to

(5). The bandwidth of the employed LFMCW signals is B =
10f∆, covering Q = 10 frequency bins with the index set

Φl = [1, 2, . . . , 10].
The frequency pair consisting of the 5-th and the 6-th fre-

quency bins is utilized as the single pair case for comparison,

while for the wideband case, these Q = 10 frequency bins are

divided into N = 5 pairs with 5 and 6, 1 and 10, 2 and 7, 3 and

9, as well as 4 and 8. Under the CS framework, a search grid

of Kg = 1801 incident angles is formed within the angle range

from −90◦ to 90◦, where the step size is 0.1◦. The allowable

error bound ε is chosen to give the best result through trial-

and-error in every experiment, and the CVX package [25],

[26] is used to solve these optimization problems.

Table I shows the number of entries in the vectors/matrices

involved in different DOA estimation methods. Clearly, the

number of entries of the proposed low-complexity (LC) solu-

tion is less than that of the existing method, leading to reduced

complexity due to less multiplicative and additive operations

in solving these formulations. The computation time under the

environment of Intel CPU I5-3470 and 16GB RAM using the

CVX package is also listed in Table I. Obviously, a shorter

computation time has been achieved by our group sparsity

based LC method for both the single frequency pair case and

the wideband case.

Then, we set K = 16 targets with incident angles uniformly

distributed between −60◦ and 60◦. The root mean square error

(a) RMSE results vs input SNR. (b) RMSE results vs snapshot number

Fig. 1. RMSE results obtained by different estimation methods.

(RMSE) results based on 500 Monte-Carlo simulation runs

with respect to the input SNR are shown in Fig. 1(a), where

the number of snapshots in the frequency domain is 2000,

and Fig. 1(b) gives the RMSE results versus the number of

snapshots with the input SNR fixed at 0 dB. Owing to a more

precise covariance matrix estimation and less optimization

effort requirements in the LC solution, it is clear that a

better performance has been achieved by the proposed low-

complexity methods in both the single frequency pair case

and the wideband case compared with the existing methods.

V. CONCLUSION

An underdetermined low-complexity DOA estimation

method based on the group sparsity concept has been pro-

posed employing a widebnad ULA. The received signals

were first decomposed into different frequencies by DFT, and

these frequency bins were divided into several pairs for co-

array generation in the spatio-spectral domain. A generalized

complexity reduction method was then proposed to merge

the redundant entries in both the auto-correlation matrices

at each frequency and the cross-correlation matrices across

frequencies, leading to a series of simplified virtual array mod-

els with reduced dimension, followed by the group sparsity

based method for wideband DOA estimation with reduced

complexity achieved. As shown by simulations, the proposed

low-complexity estimation method outperformed the existing

method in terms of both estimation accuracy and computation

time.
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