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An Adaptive General Type-2 Fuzzy Logic

Approach for Psychophysiological State Modelling

in Real-Time Human-Machine Interfaces
Changjiang He, Mahdi Mahfouf, and Luis A. Torres-Salomao, Member IEEE

Abstract—In this research paper, a new type-2 fuzzy-based
modelling approach is proposed to assess human operators’ psy-
chophysiological states for both safety and reliability of human-
machine interface systems. Such a new modelling technique
combines type-2 fuzzy sets with state tracking to update the
rule base through a Bayesian process. These new configurations
successfully lead to an adaptive, robust and transparent com-
putational framework that can be utilised to identify dynamic
(i.e., real time) features without prior training. The proposed
framework was validated on mental arithmetic cognitive real-
time experiments with ten (10) participants. It was found that the
proposed framework outperforms other paradigms (i.e., an adap-
tive neuro-fuzzy inference system and an adaptive general type-
2 fuzzy c-means modelling approach), in terms of disturbance
rejection and learning capabilities. The proposed framework
achieved the best performance compared to other models that
have been presented in the related literature. Therefore, the
new framework can be a promising development in human-
machine interface systems. It can be further utilised to (i)
develop advanced control mechanisms, (ii) investigate the origins
of human compromised task performance and (iii) identify and
remedy psychophysiological breakdown in the early stages.

Index Terms—Human-machine interface, type 2 fuzzy sets,
psychophysiology, modelling, real time, adaptive.

I. INTRODUCTION

TODAY’S automatic systems have been widely imple-

mented in diverse areas, from daily life to global regula-

tions. The combination of an automatic system and a human

operator can have several advantages, including fast reaction

to and processing of a large amount of concurrent informa-

tion [1]. Due to this revolutionary intelligent power, automatic

systems are currently commonly adapted in many important

management and operation systems , such as manufacturing,

transportation and clinical medicine [2], [3].

There are, however, many barriers yet to be broken for

such a combination to fulfil its full potential advantages and

reach its theoretical efficiency. The lack of trust and over-

trust with high expectations towards automatic systems have

compromised the overall performance of this combination,

whereas the increases in operational demands of human opera-

tors threaten the reliability and safety of the whole system [1],

[2]. Therefore, it is of paramount importance to introduce a
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mechanism that can bridge the communication gap between

the automatic system and the so-called ‘human in the loop’.

Humans respond to environmental stimuli through condi-

tioned reflex and subject to personal experience and psy-

chophysiological state [4]. human-machine interface (HMI)

consists of communications at three different levels, direct

technical, emotional and mental. Collaboration at different

levels and diverse dynamic individual states lead, as a result,

to networks with high complexity and uncertainty [1]. This

requires a shift from traditional modelling approaches primar-

ily depending on mathematical expressions and physical laws

towards data-driven modelling approaches led by powerful

pattern recognition of fast data mining. These techniques, such

as artificial neural networks and fuzzy logic systems, exhibit an

extraordinary ability to generate and apply conditional patterns

under uncertain environments with limited quantities of data.

For the safety of HMI systems, the critical thinking and

reasoning of human operators should always be an intrinsic

part of the final decision and cannot be fully replaced by au-

tomation. The decision of splitting the workload into automatic

systems and human operators leads to human-centred mod-

elling to estimate the operator’s psych-physiological state [2],

[5]–[19]. The existing approaches for predicting the human

psychophysiological state within HMI systems mainly rely

on data-driven methods. The commonly used frameworks

include the adaptive neuro-fuzzy inference system (ANFIS),

type-1 Mamdani fuzzy model, proportional integral Mamdani

fuzzy model, type-2 fuzzy model and support vector machines

(SVMs). The majority of the presented models have fixed

configurations based on off-line training sessions. This model

structure limits the models to those who share similar patterns

to the training samples. As a result, the prediction accuracy

continuously decreases with time due to a lack of flexibility.

Therefore, self-organising and adaptive learning have been

explored in some newly developed modelling approaches of

this research area (e.g., the A-GT2-FCM framework [16]).

However, the nonlinear changes in psychophysiological

state and the lack of flexible weight adjustment for inter-

and intra-uncertainty compromise the accuracy performance of

these models. Failures are commonly associated with extreme

psychophysiological states such as breakdown, multitasking

and fatigue; model performance is either compromised or

severely lagging because of them. It is worth noting that

current frameworks and models [5]–[19] cannot fulfil one or

more of the following essential requirements for HMI systems:

1) Adaptability: the ability to reconfigure themselves con-
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sistently according to real-time system changes.

2) Intelligence: specifically refers to the ability to interpret

the system state and modify its inference engine corre-

spondingly.

3) Robustness: the ability to handle inter- and intra-

uncertainty and being generalised to any human oper-

ator.

4) Being Explicit: the ability to summarise the learning

experiences via easy to understand logical statements.

It is important to address the abovementioned features in

predicting the human operator psychophysiological state. To

balance the HMI system, a more sophisticated model using

easy-to-access psychophysiological data in addition to existing

models and frameworks is required.

This paper is organised as follows: Section II introduces

the HMI system simulation, explains the experimental con-

figurations and presents the selection of psychophysiological

biomarkers applied in this research. A new adaptive general

type-2 fuzzy modelling system is proposed in Section III.

The comparison of experimental results with other models is

provided in Sections IV. The last section concludes this study

and suggests future areas of the research.

II. HUMAN-MACHINE INTERFACE EXPERIMENT

A. Human-Machine Interface Simulation

The priority of the human-machine interface (HMI) sim-

ulation experiment is to challenge the participants’ problem-

solving ability in a similar manner to real-world HMI situa-

tions. In contrast to human-human interfaces, human partic-

ipants from the HMI demonstrate lower emotional intensity

over less diverse feelings [1], [20]. Therefore, the simulation

should be able to introduce adequate adjustable stimuli. Var-

ious observable psychophysiological alterations triggered by

these stimuli should resemble those in real-life situations [1].

The most frequently used HMI simulations in the field of

published research are Stroop colour-word interference, mental

arithmetic and virtual vehicle operation [16], [21]–[26]. In

this research, mental arithmetic has been selected as the HMI

simulation for the following reasons:

1) Effectiveness: Compared to mental arithmetic, the psy-

chophysiological changes triggered by the stimuli of

Stroop colour-word interference are less significant and

influenced by inherent human body regulation [21]–

[24]. Additionally, different from the mental arithmetic,

the simulation environment and the maintenance of the

virtual vehicle operation can significantly influence the

system effectiveness [27], [28].

2) Simplicity: Unlike mental arithmetic, the use and repro-

ductivity of virtual vehicle operation can be compro-

mised by its cost and complexity [25], [26].

3) Intuitiveness: Mental arithmetic only requires basic

knowledge of arithmetic regardless of the most inter-

and intra-individual differences.

B. Data Acquisition

The data of the selected psychophysiological biomarkers for

this experiment are collected from four major measurements:

electroencephalogram (EEG), electrocardiogram (ECG), pupil

sizes and facial temperatures. EEG and ECG are recorded by

the Biosemi®ActiveTwo system with a sampling frequency

of 2,048 Hz. EEG signals are collected from the 32-channel

system according to the standard Biosemi 10/20 layout. ECG

signals are collected from the triangle 3-lead system covering

the heart area. The initial filtering and reconstruction of signals

are processed by Biosemi®ActiView software. Pupil move-

ments are monitored with a Gazepoint eye-tracking camera,

and the sizes are calculated by the Gazepoint software. Facial

temperatures are based on infrared imaging recordings from an

FLIR E40bx thermal imaging camera at a sampling frequency

of 10 Hz. The data recording methods follow the experimental

frameworks in [12], [14]–[16], [29], [30].

The mental arithmetic applied in this research is based on

the MATLAB®GUI app similar to the app used in [15], [16],

[29], [30]. The participants in this research are ten (10) healthy

students from the University of Sheffield aged from 22 to

30. The selected subjects include both genders from different

countries and backgrounds. The participants are advised to

abstain from taking any medication, coffee or alcohol at least

two hours before the experiment to avoid any bias in task

performance and psychophysiological measurements.

C. Modelling Experiment Configuration

For the modelling configuration, the psychophysiological

data are recorded from the participants during the premeditated

HMI simulation sessions. The predictions of subjects’ task

performances are generated by the computational framework

of the adaptive general type-2 fuzzy model based on the

recordings in real time.

The whole prediction experiment for one subject lasts

approximately 30 minutes, including two 12-minute mental

arithmetic test sessions and a 5-minute break in the inter-

val. The participants are required to complete a two-number

multiplication within a certain amount of time in the mental

arithmetic test. In each test session, there are four 3-minute

phases with different difficulty levels. The first difficulty level

requires the subjects to answer the multiplication questions of

two random one-digit numbers within ten seconds. Compared

with the first difficulty level, the second difficulty level only

provides five seconds for each question. The third and fourth

levels follow the same answering time pattern as the first

and second levels except for switching the questions to the

multiplication of a one-digit number and a two-digit number,

both randomly generated. The order of the difficulty levels is

different between two mental arithmetic sessions for checking

the adaptiveness of the model, with incremental difficulty

levels in the first session and randomised difficulty levels in

the second session. The task performance is measured with

the accuracy of 12 continuous operations.

D. Psychophysiological Biomarkers

The psychophysiological biomarkers applied for the model

prediction are heart rate variables (HRV), task load indices

(TLI), pupil diameter marker (PMD) and facial temperatures.
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They are correspondingly based on ECG, EEG, eye-tracking

camera and thermal camera measurements.

Heart rate variables are connected with the respiratory cycle,

blood pressure and heartbeat fluctuation, which are under

the control of the central nervous system [31]. The HRV

indicators HRV1 and HRV2 in this research have already been

used in previous experiments and studies of the University of

Sheffield [9], [13]–[16], [30]. HRV1 represents the 0.1 Hz

component of the ECG signal, and it is measured by averaging

the power spectrum of frequency components from 0.07Hz–

0.14Hz in a time period of 30 seconds. HRV2 is the ratio

between the standard deviation and the mean value of the ECG

signal in the same time frame.

Task load indices are designed as the measurements for

the working memory, which corresponds to one’s ability to

maintain attention to a specific event while ignoring any other

disturbance [5], [32], [33]. In this research, the two selected

TLIs are TLI1 and TLI2, and they are calculated with the

following equations:

TLI1 =
Pθ,Fz

Pα,Pz

,

TLI2 =
Pθ,AFz

Pα,CPz,POz

,

(1)

where Pθ and Pα are the energy from the theta band 4Hz–

7.5Hz and the alpha band 8Hz–12.5Hz. The energy is

measured by averaging the specific frequency range of the

power spectrum over 30 seconds. The electrodes of Fz , Pz ,

AFz and the combination of CPz and POz follow the Biosemi

10/20 system [9], [13]–[16], [30].

The dilation and constriction of the pupil are dominated

by the sympathetic and parasympathetic nerves from the

autonomic nervous system [34]. Therefore, the pupil diameter

marker PDM has been recommended as a credible indicator

for psychophysiological state estimation in HMI studies [29],

[34], [35]. In this research, the generated pupil size is the mean

value from 30-second image frameworks. It is generated from

the mean value of both eyes, based on a pixel calculation,

relative distance measurement and head movement scale factor

from captured images. Previous studies have found that psy-

chophysiological change can impact human thermoregulation

and lead to perceptible changes in skin temperature [36],

[37]. This research focuses on the temperature information ex-

tracted from the forehead, periorbital and nasal regions of the

participants. The psychophysiological biomarkers developed

based on these data are the mean forehead temperature T̄f ,

the maximum facial temperature Tmaxf and the mean nasal

temperature T̄n. The effectiveness and efficiency of these facial

temperature biomarkers in HMI were validated in [30]. The

sampling frequency of the thermal camera is 10 Hz, and the

values of the biomarkers are the averages in a 15-second period

window.

III. ADAPTIVE GENERAL TYPE-2 FUZZY MODELLING

The psychophysiological state of a subject in HMI consists

of both inner consciousness and outer behaviour. This requires

the model to be adaptive to continuous observations and self-

adjust its structures and parameters as the participant’s psy-

chophysiological states evolve with time. Therefore, it would

be difficult to find the associated conventional mathematical

model representations. Existing models and frameworks for

predicting the psychophysiological state include the adaptive

neuro-fuzzy inference system (ANFIS), Mamdani-type fuzzy

model, proportional integral Mamdani fuzzy model, type-2

fuzzy model and support vector machines (SVMs) [5]–[7],

[10], [12], [14], [16], [17]. ANFIS models often suffer from

overfitting problems because of a lack of adaptation. SVM

models need to specify kernel functions for individuals to

optimise feature extraction. Mamdani-type fuzzy models are

transparent and more efficient in describing the subjective part

of the state. Compared to the other models, the type-2 fuzzy

models have achieved the best prediction results so far because

they can handle uncertainty with a lower data requirement and

are usually less prone to overfitting.

Fuzzy logic models are capable of handling a large amount

of uncertainty and demonstrate great flexibility in modelling

nonlinear systems [5]–[7], [9]–[18], [38], [39]. A type-2 fuzzy

model is capable of dealing with the heuristic or linguistic

uncertainty within the system. Additionally, it can also be

tolerant of random uncertainties that limit current predictive

approaches. The systems based on type-2 fuzzy sets are

effective in cases where there are uncertainties in both the

rule and the measurement [38], [40], [41].

The human psychological responses to the same stimulus

are individual dependent. Hence, an adaptive general type-

2 fuzzy framework is selected and devised to exploit the

advantage of type-2 fuzzy logic to handle the intra- and

inter-uncertainty while achieving fast adaptive learning with

Bayes’ theorem. The model first predicts the trend of the

subject’s future performance based on the latest records. The

type-2 fuzzy framework takes psychophysiological data as

the input and uses the centre-of-sets (COS) type-reduction

method to generate the initial prediction of each fired fuzzy

rule that can be easily interpreted by humans. The final

prediction of modelling combines all the predictions with the

performance trend. When the final prediction varies from the

actual observed value, the selected fuzzy rule from the rule

base is recursively updated with the observation in a Bayesian

function [42].

One example fuzzy rule of the adaptive general type-2

fuzzy model (GT2FM) before the experiment is illustrated in

Figure 1, where the shaded area represents the footprint of the

first degree uncertainty, and its corresponding linguistic form

reads as follows:

Rule 1: IF T̄n is large, T̄f is medium, Tmaxf is small,

HRV1 is small, HRV2 is large, TLI1 is large, TLI2 is small,

and PDM is large, THEN the task accuracy is small.

The first degree of uncertainty of the fuzzy rule remains

fixed during the inference, whereas the second degree of uncer-

tainty keeps varying with the current state. Table I summarises

two sample fuzzy rules of the adaptive general type-2 fuzzy

model, which describe the relationships between the inputs and

output under the condition of the same difficulty level (data

based on the previous research in [30]). The linguistic labels
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TABLE I
RULE BASE OF GT2FM FOR THE FIRST STATE

Inputs Output

T̄n T̄f Tmaxf HRV1 HRV2 TLI1 TLI2 PDM DifficultyLevel TaskAccuracy

Rule 1 Large Medium Small Small Large Large Small Large 0.25 Small
Rule 2 Medium Large Medium Large Small Medium Medium Small 0.25 Large

TABLE II
LINGUISTIC LABELS OF THE INPUTS AND OUTPUT FOR THE FIRST STATE

Linguistic Labels T̄n T̄f Tmaxf HRV1 HRV2 TLI1 TLI2 PDM TaskAccuracy

Small <33.5 <33.9 <36.0 <0.37 <0.18 <0.18 <0.28 <0.14 <0.72
Medium 33.5-34.1 33.9-34.1 36.0-36.1 0.37-0.53 0.18-0.23 0.18-0.29 0.28-0.30 0.14-0.16 0.72-0.97
Large >34.1 >34.1 >36.1 >0.53 >0.23 >0.30 >0.30 >0.16 >0.97
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Fig. 1. Example initial rule of GT2FM for the first state

applied in the fuzzy rules are illustrated in Table II.

The following steps explain the inference mechanism lead-

ing to an output:

1) Calculate the latest transition matrix P for each state;

in a period of time, different task performance ranges

indicate different K states of the subject (the states

describe the performance in descending order). The

entries in the first row of the transition matrix P
represent the probability for the adjacent two states 0
& 2 and the same state 1 following the first state 1 (task

performance measurement is continuous), and similarly

for the remaining rows:

P =











P(1,0) P(1,1) P(1,2)

P(2,1) P(2,2) P(2,3)

...

P(K,K−1) P(K,K) P(K,K+1)











, (2)

P(Sn=i,Sn+1=j) = P(Sn+1=j|Sn=i) · P(Sn=i), (3)

where P(i,j) is estimated via Equation 3 in a certain

amount of time, except P(1,0) = P(K,K+1) = 0. P(Sn=i)

represents the total probability of initial state i, and

P(Sn+1=j|Sn=i) represents the probability of state j
given the initial state i.

2) Perform the state estimation E for the current time t
with the transition matrix P . The following gives the

expectation of each state to be presented at the time t:

Et =
[

E(t,1) . . . E(t,i) . . . E(t,K)

]

, (4)

Et = Et−1 · Pt−1, (5)

where E(t,i) denotes the expectation of state i at the

time t.
3) Compute the upper and lower membership functions F

& F for firing the fuzzy rules. The rule base R consists

of 4K fuzzy rules describing each state with M different

difficulty levels:

R =







R(1,1) . . . R(1,K)

...
. . .

R(M,1) R(M,K)






, (6)

where R(i,j) represents the fuzzy rule describing the

state j at the difficulty level i. The input values of

each rule are range values with means µx and standard

deviations σx, representing the measurement uncertainty

and individual difference. The firing of the fuzzy rules

involves the K fuzzy rules covering every state of the

participants for the difficulty levels that they currently

experience. The inference between the input values and

one firing fuzzy rule depends on Gaussian functions,

and for simplification, the functions have the same

standard deviation value from that rule. The following

summarises the inference processes to find the upper and
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lower membership functions f & f for one single input

x and one firing fuzzy rule:

a) if x < µx − σx, then find m and n that satisfy:

f(m|x, σ2
x) = f(m|µx + σx, σ

2
x),

f(n|x, σ2
x) = f(n|µx − σx, σ

2
x),

(7)

where

f(x̄|µ, σ2) =
1

σ
√
2π

e−(x̄−µ)2/2σ2

, (8)

which gives

f =
f(m|x, σ2

x)

f(x|x, σ2
x)

,

f =
f(n|x, σ2

x)

f(x|x, σ2
x)

;

(9)

b) if µx−σx ≤ x ≤ µx+σx, then find l that satisfies:

f(l|x, σ2
x) = f(l|µx, σ

2
x), (10)

which gives

f =
f(l|x, σ2

x)

f(x|x, σ2
x)

,

f = 1;

(11)

c) if µx + σx < a, then find m and n that satisfy:

f(m|x, σ2
x) = f(m|µx − σx, σ

2
x),

f(n|x, σ2
x) = f(n|µx + σx, σ

2
x),

(12)

which gives the result presented in equation 9.

In this way, the final membership functions for one firing

fuzzy rule F & F are

F =
{

max(f
i
)|∀i ∈ L

}

,

F =
{

max(f i)|∀i ∈ L
}

,
(13)

where L represents the number of inputs.

4) Find the initial prediction of each firing fuzzy rule with

the transition matrix P and the membership functions

F . Similar to the input values, each fuzzy rule has a

range for the output values ∀y ∈ [y, y]. The following

summarises the type-reduction processes to find the

prediction value yk for one firing fuzzy rule k with the

transition matrix P and membership function F (sort y
& y in ascending order):

a) if P(k,k−1) < P(k,k+1) or for the fuzzy rule

representing the last state P(k,k−1) < P(k,k), then

yk =

∑k
n=1 F

n · yn +
∑K

n=k+1 F
n · yn

∑k
n=1 F

n
+
∑K

n=k+1 F
n

, (14)

b) if P(k,k+1) < P(k,k−1) or for the fuzzy rule

representing the first state P(k,k+1) < P(k,k), then

yk =

∑k−1
n=1 F

n · yn +
∑K

n=k F
n · yn

∑k−1
n=1 F

n +
∑K

n=k F
n , (15)

c) if P(k,k−1) = P(k,k+1) or for the fuzzy

rule representing any middle state P(k,k) >
max(P(k,k−1), P(k,k+1)) or for both fuzzy rules

representing two end states P(k,k) = P(k,k−1) +
P(k,k+1), then

y(k,l) =

∑k
n=1 F

n · yn +
∑K

n=k+1 F
n · yn

∑k
n=1 F

n
+
∑K

n=k+1 F
n

,

y(k,h) =

∑k
n=1 F

n · yn +
∑K

n=k+1 F
n · yn

∑k
n=1 F

n +
∑K

n=k+1 F
n ,

yk =
y(k,l) + y(k,h)

2
.

(16)

The main idea of the type-reduction algorithm is to keep

the prediction consistently corresponding to the tendency

measured from the state tracking. Taking Equation (15)

as an example, yk is a maximised prediction. Since

the probability of switching to a better state dominates,

the likelihood for yn from a back state decreases, and

for yn from a front state increases. For n < k, the

yk calculation uses the lower membership weights; for

n ≥ k, the yk calculation uses the upper membership

weights. This algorithm ensures that the prediction is

maximised by the transition matrix.

5) Generate the final prediction ŷt from the state estima-

tions Et and the initial predictions y(t,k). The following

gives the final prediction of the model at time t:

Yt =
[

y(t,1) y(t,2) . . . y(t,K)

]

, (17)

ŷt = Yt · ET

t , (18)

where Yt denotes the set of all individual predictions

from every firing fuzzy rule at time t.

The adaptive general type-2 fuzzy modelling algorithm uses

two fuzzy membership sets for the prediction computation.

The primary membership represents the individual difference

and measurement uncertainty. The type-reduction in the pri-

mary membership weights is based on participant state track-

ing, which forms the secondary membership sets of the model.

This membership is computed by comparing the input vector

to the selected fuzzy rules, and the prediction is generated

based on the latest state information. The modelling algorithm

utilises a simplified inference to combine the statistical esti-

mation and the fuzzy logic mechanism. Thus, it considers the

data uncertainty and aligns this uncertainty with the forecast

without a computationally expensive type-reduction algorithm

that limits the use of general type-2 fuzzy logic sets [40].

In addition, intra-uncertainty is integrated with the framework

by a simplified learning algorithm. Intra-uncertainty develops

with time and gradually reduces the reliability of the model.

Therefore, an adaptive learning algorithm based on the Bayes’

theorem [42] is implemented for updating the rule base.

The adaptive learning algorithm follows the following steps:

1) Calculate the prediction error and check it with the

maximum error tolerance ETmax. The adaptive learning

algorithm is only applied if the error between the predic-

tion ŷt−1 and the observation ot−1 at time t-1 exceeds

the limitation:

‖ŷt−1 − ot−1‖ > ETmax (19)
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2) When the learning algorithm is needed, update the

selected fuzzy rule with the observation ot−1 using the

Bayes’ theorem [42]. The selected fuzzy rule has the

same subject state under the same difficulty level as the

observation ot−1, with the means µt−1 and the standard

deviations σt−1 for the inputs and output. The obser-

vation ot−1 is described with Gaussian functions with

the means µo,t−1 and the standard deviations σo,t−1.

The posterior mean and the posterior standard deviation

of the conjugate prior for the normal distribution are

calculated as follows:

E(µt|µo,t−1) =
σ2
t−1 · µt−1 + σ2

o,t−1 · µo,t−1

σ2
t−1 + σ2

o,t−1

,

V ar(σt|σo,t−1) =
σ2
t−1 · σ2

o,t−1

σ2
t−1 + σ2

o,t−1

,

(20)

where σo,t−1 is equal to the initial value of standard

deviations of the fuzzy rule, considering the individual

difference and measurement uncertainty is time indepen-

dent.

3) Calculate the distance between the new fuzzy rule and

the observation and check it with the maximum distance

tolerance DTmax:

a) if ‖µt − µo,t−1‖ > DTmax, replace µt−1 & σt−1

with µt & σt and repeat the Bayesian update;

b) else if ‖µt − µo,t−1‖ ≤ DTmax, stop the learning

algorithm and replace the old fuzzy rule with the

new rule.

IV. EXPERIMENTAL RESULTS

This section focuses on the prediction results of the adaptive

general type-2 fuzzy framework mentioned in Sections III. The

model is implemented in HMI mental arithmetic experiments

for online real-time predictions. This section also includes the

prediction results of a generalised off-line ANFIS model and

the real-time A-GT2-FCM model based on the same experi-

mental data for comparison. The evaluations and summaries

of the experimental results in the following section should

demonstrate the performance of the system.

A. Model Configuration

The adaptive general type-2 fuzzy model (GT2FM) was

built using the computational frameworks of MATLAB®. The

HMI mental arithmetic experiment includes four different

difficulty levels M = 4. In this research, the input vector

for the system is I(t) = [HRV1(t), HRV2(t), TLI1(t),
TLI2(t), PDM(t), T̄n(t), T̄f (t), Tmaxf (t), DL(t)]. The

corresponding output of the HMI simulation system is the

actual accuracy o(t), which is also recorded as the observation

for the prediction at time t + 1. The prediction output of

the model is the predicted accuracy ŷ(t). Figure 2 shows

the diagram of the GT2FM that was designed for the HMI

simulation.

The GT2FM model starts to generate the prediction 30

seconds after the experiment begins. The computational frame-

work consists of a total of eight (8) fuzzy rules, which leads

Fig. 2. Diagram of the GT2FM for the HMI simulation experiment (controller
and other sections in - - are the subject of the following study)
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Fig. 3. Membership for the performance function fA(T̄n, T̄f )

to two (2) fuzzy rules per difficulty level and divides the

operator task performance into two states. The root mean

square standardised error ermsse is introduced to evaluate the

complexity of the model and to compare it with the real HMI

simulation results as follows:

ermsse =

√

∑n
i=1[(ŷi − oi)/σ̂o]2

n
, (21)

where σ̂o is the standard error of the observations, and n is

the length of the data. The mean error for ten participants is

eRMSSE = 0.1376 < 1, which indicates that the variability

of the model should satisfy the HMI prediction with no need

for dividing any extra state to introduce a more fuzzy rule.

The generalised off-line ANFIS model is constructed and

trained with the MATLAB®built-in functions genfis and anfis.

The model implements fuzzy c-means (FCM) for each partic-

ipant, dividing 5 clusters for each input. The ANFIS model

is trained with all the experimental data from the first session

and then validated with the individual data from the second

session for each participant. The real-time A-GT2-FCM model

is the same model applied in previous research [16]. The error

tolerance ETmax of the A-GT2-FCM model is set to 0.01, the

same as the GT2FM model.
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B. Modelling Results

As described in Section II, one experiment consists of

two HMI mental arithmetic sessions for real-time modelling.

The participant undergoes the first session with incremental

difficulty levels and then the following second session with

randomised difficulty levels, with a 5-minute interval.

The model framework starts with an initial rule base from

the generalised results in the previous experiment [30], with

the first state estimation matrix E1 = [1 0] and the first

transition matrix P = [1 0; 0 1]. Figure 3 shows the mem-

bership function between the task performance and two facial

temperature readings T̄n and T̄f , which is based on the two

initial fuzzy rules for describing the first state. The shadow

plot of the example fuzzy rule from the GT2FM after the

experiment is presented in Figure 4. The adaptive learning

algorithm thereupon calculates the new state estimation and

elicits the new individual dependent fuzzy rules according to

the psychophysiological recordings and the observations.

The Pearson correlations c and the root mean squared error

ermse are introduced to assess the prediction of the adaptive

general type-2 fuzzy model. Table III shows the correlations

and the errors between the observations and the predictions

for each participant in each session. The calculations of these

indices for n samples are via the following equations:

cŷ,o =
1

n− 1

n
∑

i=1

(
ŷi − µŷ

σŷ

)(
oi − µo

σo

),

ermse = 100 ·
√

∑n
i=1(ŷi − oi)2

n
,

(22)

where µŷ and σŷ are the mean and standard deviation of the

prediction ŷ, respectively, and µo and σo are the mean and

standard deviation of observation o. The sampling rate for the

model is 1 Hz, so the total number of samples for one session

is n = 690.

Tables III, IV and V summarise the prediction results for

all the participants from the real-time online modelling of

GT2FM and A-GT2-FCM and the off-line generalised ANFIS.

In Table III, it can be seen that the mean correlations and

the mean errors of the GT2FM remain consistent. Compared

to the A-GT2-FCM (Table IV) and the ANFIS models (Ta-

ble V), the prediction results of GT2FM have the highest

correlations and the lowest error rates across all participants.

Overall, the GT2FM model performs well and consistently

throughout the entire experiment. Based on the prediction

outcome, the GT2FM model presents an excellent predictive

ability due to the forecast prediction of the participant’s state.

The learning algorithm is capable of fast individual feature

extraction without any prior knowledge or specific training.

To further evaluate the ability of the model, Figures 5 and 6

show the detailed time sequences of the prediction and the

psychophysiological biomarkers for participant no. 08 in both

sessions.

From the task performance plot of Figure 5, compared to

the A-GT2-FCM and ANFIS model, the predictions of the

GT2FM match the actual performance of the participant the

most. It can be seen how fast the adaptive general type-2 fuzzy

model adjusts itself at the beginning of the experiment. This

TABLE III
CORRELATIONS AND ROOT MEAN SQUARED ERRORS (RMSE) FOR REAL

ACCURACY VERSUS PREDICTED ACCURACY OF GT2FM

Participant Correlation (%) Root Mean Squared Error (%)
Session 1 Session 2 Session 1 Session 2

01 98.75 99.55 3.628 2.430
02 98.33 98.85 1.725 1.476
03 99.52 99.42 2.265 2.237
04 99.60 99.40 2.205 1.982
05 98.19 98.69 4.109 3.635
06 99.50 99.37 2.504 2.773
07 98.91 99.07 2.081 2.208
08 98.62 99.12 2.276 2.392
08 98.29 98.96 2.365 1.972
10 98.67 99.22 2.192 1.706

Mean 98.84 99.17 2.535 2.281

TABLE IV
CORRELATIONS AND ROOT MEAN SQUARED ERRORS (RMSE) FOR REAL

ACCURACY VERSUS PREDICTED ACCURACY OF A-GT2-FCM

Participant Correlation (%) Root Mean Squared Error (%)
Session 1 Session 2 Session 1 Session 2

01 97.06 98.15 5.536 4.977
02 95.43 97.34 2.931 2.375
03 98.21 97.70 4.957 4.541
04 98.67 97.53 4.201 4.159
05 95.66 96.76 6.505 5.995
06 98.80 97.95 3.965 5.086
07 97.04 98.50 3.583 2.877
08 96.45 97.19 3.710 4.398
08 96.69 97.25 3.397 3.387
10 97.39 98.19 3.178 2.758

Mean 97.14 97.66 4.198 4.058

plot also shows the GT2FM model capability of handling high-

frequency state change from the last phase. The psychophysi-

ological inputs for all the models are presented in Figure 5. It

is worth noting that all the psychophysiological biomarkers

suffer from a certain degree of delay in representing the

participant’s inner state. However, the GT2FM model can still

maintain the delay within 1 to 2 seconds throughout all partic-

ipants in this research despite the intra-parameter variations.

Merging the existing fuzzy rules and the observations keeps

the rule base simple and up-to-date. It ensures the efficiency

and effectiveness of the prediction inference process.

The psychophysiological biomarker readings (HRV1,
HRV2, TLI1, TLI2, PDM, T̄n, T̄f , Tmaxf and DL) in

Figures 5 and 6 have been normalised for the purpose of

TABLE V
CORRELATIONS AND ROOT MEAN SQUARED ERRORS (RMSE) FOR REAL

ACCURACY VERSUS PREDICTED ACCURACY OF ANFIS

Participant Correlation (%) Root Mean Squared Error (%)
Session 1 Session 2 Session 1 Session 2

01 80.63 72.27 13.740 18.590
02 70.02 57.24 6.828 52.290
03 84.88 59.18 12.280 22.800
04 96.76 73.32 6.223 47.430
05 80.74 72.89 12.800 20.460
06 90.99 -32.54 10.800 82.180
07 75.95 91.37 9.326 8.505
08 75.97 22.89 8.987 23.640
08 84.38 79.68 7.793 15.350
10 93.12 56.76 4.961 37.030

Mean 83.34 61.81 9.374 32.828
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Fig. 4. Example final rule of GT2FM for the first state

illustration only. The adaptive general type-2 fuzzy model does

not require any type of normalisation to operate.

C. Adaptive Learning of the Adaptive General Type-2 Fuzzy

Model

Table III, Figures 5, 6 and 7 illustrate the adaptive learning

of the adaptive general type-2 fuzzy model via comparisons

between the predictions and the observation. As already stated

in Section III, the GT2FM combines the inter- and intra-

uncertainty within the type-2 fuzzy sets. The state tracking

algorithm finalises the prediction according to the trend esti-

mation and the probability. The learning algorithm keeps the

fuzzy rule configuration consistent with the current situation.

In this research, the adaptive learning of the adaptive general

type-2 fuzzy model can be interpreted as follows.

The model can self-organise in real time. In the task

performance plots of Figures 5, 6 and 7, it can be observed that

the model quickly adjusts at the beginning of the experiment

and when the participant’s performance becomes unstable.

The psychophysiological indices of the participants vary with

multiple factors in addition to the task load. Thus, the

psychophysiological recordings demonstrate clearly different

patterns even for the same person with the same difficulty level

(e.g., the psychophysiological recordings plots of Figures 5

and 6). However, similar performances from all participants

suggest that the learning and self-organising abilities of the

model are sufficient for this intra-uncertainty.

The model is generalised for every participant. The model

does not require individual-based calibration or off-line train-

ing for operation. The initial rule base, the first state estimation

matrix and the first transition matrix are universal for all the

participants. It is worth noting that the initial rule base is based

on sample mathematical estimations from previous inputs and

output data. The initial statistical means and deviations only

influence the speed of the convergence rather than itself.

Despite having uncertainty from participant to participant and

among participants, the model succeeds in extracting these

uncertainties and transferring them into recognisable patterns.

For example, comparing the psychophysiological biomarker

recordings in Figures 6 and 7, there are significant differences

between these biomarker values even when participants 03

and 08 are under the same experimental conditions. It can

also be observed that participant 08 shows higher values than

participant 03 in all the facial temperature indicators T̄n,
T̄f and Tmaxf . HRV 1 provides another evident inter-subject

variation. Compared with the indicators from participant 03,

these HRV 1 values of participant 08 are doubled. This can

explain the performance differences within the participants

based on the work-memory theory. Inter-differences in the

predicted accuracy at the beginning of the prediction in the

task performance plot are also obvious. This suggests that the

initial rule base describes participant 03 more precisely than

for participant 08.

The model can manage temporal information loss and noise.

In the real-time HMI simulation experiment, information

losses occasionally occur because of sudden disconnections

between the electrodes and the subject. Additionally, noise

is introduced with task-irrelevant events such as unconscious

movement. The red circles in Figures 6 and 7 represent the

cases of information loss. The noise within the recordings

can be conspicuous and might be persistent throughout the

whole session. One extreme example can be found in the

psychophysiological recording plots for PDM in Figure 6; the

value drops to nearly 0 during the first phase, which is clearly

impossible for pupils and can only be a misinterpretation

for something else. However, the model manages to maintain

high accuracy during these periods from the task performance

plots of Figures 6. The combination of different biomarkers

provides the model with the ability to quickly switch the

lead biomarkers, it depends on and maintains the consistency

of the model prediction. In some extreme cases where all

the facial temperature biomarkers T̄n, T̄f and Tmaxf are

removed from the model input vector, the time lag between

the model prediction and the observation still remains within

three seconds.

V. CONCLUSION

This study focused on the prediction of the human operator

psychophysiological state in the HMI system. Mental arith-

metic was selected as the simulation of HMI systems for 10
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(a) Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PDM, T̄n, T̄f , Tmaxf )
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(b) Accuracy performance from participant 08 and from the adaptive general
type-2 fuzzy model prediction

Fig. 5. Real-time experiment results and model predictions for participant 08
in session 2

participants. In addition to the previous psychophysiological

biomarkers TLI, HRV and pupil diameter, new facial tempera-

ture indicators were introduced and integrated with others for

assessing the operators’ psychophysiological state.

A new modelling approach named adaptive general type-2

fuzzy modelling was proposed to predict human psychophys-

iological state based on real-time experiments. Such a new

modelling approach integrated system uncertainty with type-2

fuzzy sets and state tracking with defuzzification to estimate

the human psychophysiological state. The model prediction

results were compared to participant-specific ANFIS and A-

GT2-FCM, and it was found that the proposed model out-

performed the other models presented in the related litera-

ture. The design of an adaptive learning algorithm based on

(a) Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PDM, T̄n, T̄f , Tmaxf )
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(b) Accuracy performance from participant 08 and from the adaptive general
type-2 fuzzy model prediction

Fig. 6. Real-time experimental results and model predictions for participant
08 in session 1

Bayes’ theorem proved its ability to extract patterns from

observations in real time. With the estimation and classification

of psychophysiological state, high accuracy and reasonable

correlation were achieved even for breakdown periods.

In summary, the results of this study provided an evaluation

for applying adaptive general type-2 fuzzy modelling to sys-

tems similar to HMI. Furthermore, it created the foundation

for more advanced control mechanisms for HMI systems and

can be applied for the exploration of the origins of human

operator compromised performance in the future.
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(a) Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PDM, T̄n, T̄f , Tmaxf )
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(b) Accuracy performance from participant 03 and from the adaptive general
type-2 fuzzy model prediction

Fig. 7. Real-time experiment results and model predictions for participant 03
in session 1
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