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Abstract 

The concept of right-first-time production is an essential feature for a successful 

product development process and for companies to be competitive and profitable. However, 

achieving such a concept is a tricky exercise across a wide spectrum of industrial domains 

includes the pharmaceutical industry where granulation and tableting processes are considered 

to be the most critical operations in the production line. Therefore, this research paper presents 

a new approach that integrates a particle swarm optimization algorithm with a fuzzy logic 

system in order to implement a new framework by which right-first-time production of granules 

and tablets is ascertained systematically. The proposed approach consists of inverting the 

models that were previously developed. Through this control technique, one can identify the 

optimal operating conditions to produce the required granules and tablets, and can minimize 

the waste and recycling ratios. All frameworks have been successfully validated via real 

laboratory-scale experiments that include measurement tolerances. 

Keywords: Fusion model; Fuzzy logic system; Hybrid model; Incorporated model; 

Right-first-time production. 
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1. Introduction 

Developing a cost-effective product, improving supply chain management, achieving just-

in-time inventory, minimizing the waste and recycling ratios and managing a new product 

development process are the main features that enable companies and industries to be 

successful, profitable and also retaining leverage in what has become a highly competitive 

environment. Achieving all the aforementioned features systematically is not a trivial task, 

particularly for those industrial applications where one can identify the most crucial unit 

operations that predominantly influence the quality of the final product. In the pharmaceutical 

industry, for instance, achieving these features is considered to be even a more difficult and 

challenging task compared to other industries, because of the nature of the final product (i.e. 

pharmaceutical tablet) and its direct impact on customer health and well-being. Because of its 

short processing time, mainly due to the fast densification and growth mechanisms, the high 

shear granulation (HSG) process has been extensively utilized [1]. Although good powder 

properties are usually obtained and maintained, using such a process makes it difficult to 

control the production line leading, as a result, to high recycling ratios and inefficient 

operations [2]. Recently, a good number of books and research papers has been devoted to 

modelling and control the granulation process [1-4]. For instance, the Quality by Design (QbD) 

concept has been implemented in order to control the process and the variables affecting it. 

However, such an implementation was based on experimental studies only [5]. Therefore, 

developing a model that provides a better understanding of the granulation process and its 

mechanisms, and predicts the granule properties accurately is necessary to systematically 

control such a process [6].  

Various modelling approaches have hitherto been developed to model the granulation 

processes [6-9]. These paradigms are either physical based models, data-driven models or 



models that integrate both of them [6]. Such approaches were utilized to predict the granule 

properties and to provide a good understanding of the process at different levels. However, to 

the best of the authors’ knowledge, none of these modelling paradigms was exploited in a right-

first-time framework to systematically control the granulation process by inverting the models 

that were developed and implemented. The reason for this may be due to the fact that it is not 

necessarily straightforward to invert nonlinear high dimensional models in order to obtain a 

unique optimal solution. In this research work, the modelling paradigms; the model presented 

in [3], which will be referred to as the incorporated model, the hybrid model presented in [6], 

and the fusion model, which integrates the predictions from the incorporated model with the 

ones from the hybrid model, as described in [6], are exploited within  such a framework to 

determine the optimal operating conditions for both the granulation and the tableting processes 

as well as the optimal granule properties to produce a tablet with the desired properties. Since 

inverting these models may lead to more than one possible set of operating conditions [10], 

especially when multiple conflicting objective functions need to be taken into consideration, 

robust optimization algorithms are commonly utilized to define such an optimal set of operating 

conditions [10].  

A plethora of multi-objective optimization algorithms, including but not limited to 

Evolutionary and Genetic algorithms, have been developed and applied to define a set of 

optimal solutions, the so-called Pareto optimal set, which may also be called non-inferior or 

non-dominated set [11]. In particular, particle swarm optimization (PSO), as a stochastic 

population based approach, has been successfully and extensively implemented in many 

research areas, such as those associated with industrial, academic and medical applications [12-

20], this being due to its computational efficiency [11]. Despite the huge body of research that 

addresses different issues of the multi-objective optimization, it remains a subject of active 

research. The reason behind this is that there are still many open questions that need to be 



addressed. One of these issues is the definition of the single optimal solution. Various 

algorithms have been proposed in the open literature (e.g. the weighted sum method) [21], 

however, there is hitherto no universally accepted algorithm that can be used to define a single 

optimal solution for the multi-objective optimization problems (MOPs), instead the concept of 

Pareto optimal is used to propose a set of non-dominated solutions from which the user 

normally selects one or more pragmatic alternative solutions [11].   

In this research paper, a new approach that integrates a multi-objective PSO (MOPSO) 

algorithm with a fuzzy logic system (FLS) is proposed. First, a MOPSO algorithm is 

implemented to find the Pareto optimal set. Such a choice was motivated by the fact that 

MOPSO is able to effectively define the optimal solutions for highly nonlinear, mixed integer 

real-world optimization problems, and also it is considered to be a computationally efficient 

algorithm (i.e. fast convergence speed and less function evaluations) compared to other 

algorithms such as Genetic algorithms [12-20]. A FLS is then utilized to determine the 

membership function values for each solution in the set, the estimation of these values being 

based on user-defined criteria. The predictive performance of a forward model is considered to 

be a good criterion for the development of the right-first-time modelling framework. This 

choice is motivated by the fact that the proposed framework will be accurate and reliable only 

when the predictive performance of the modelling framework is acceptable. In this research 

paper, the root mean square error (RMSE) and the coefficient of determination (R2) values, as 

modelling performance measures, are employed to represent the predictive performance of the 

forward models. Determining the membership function step is followed by applying the set of 

fuzzy logic operations to define the single optimal solution, which corresponds to the maximum 

membership function value. 

2. Experimental Work 



Calcium Carbonate (CaCO3, D50=85µm) was granulated using the high shear Eirich mixer 

(1 Litre vertical axis granulator with a top-driven impeller, Maschinenfabrik Gustav Eirich 

GmbH & Co KG, Hardheim, Germany). Polyethylene Glycol (PEG 1000, with a melting point 

of approximately 40ºC), as a binder, was added to the moving powder during the granulation 

process while both the vessel and the impeller were rotating in the same direction (clockwise). 

It is worth mentioning that the binder was melted, and the powder was pre-heated to 

approximately 35ºC before the start of the granulation experiment, to make sure that the binder 

would not solidify before completing the granulation process. The Eirich granulator is equipped 

with a scrapper and impellers with different shapes, the impellers not being in the centre of the 

16cm diameter vessel. Four input parameters were examined, namely, impeller shape (two 

different impellers were used), impeller speed (from 1000 to 6000 rpm), granulation time (6, 

10 and 15 min), and liquid to solid (L/S) ratio (13, 14 and 15%). Such parameters were 

investigated using a full factorial design of experiments resulting in 108 experiments. It is 

worth emphasising that the speed of the vessel was kept constant at 170 rpm for all experiments. 

Once the granulation experiment was completed, the granules were left at room-temperature to 

allow the binder to solidify. The granules produced were, then, characterized in terms of size, 

binder content and porosity. The size of the granules was measured using the Retsch Camsizer 

(Retsch Technology GmbH, Haan, Germany). The porosity and the binder content of the 

granules were measured for different size classes in the size range (180-2000µm) using a 

Pycnometer [22] and the method discussed in [23], respectively.  

Once the granules produced were classified and characterized, the granules in the size 

ranges (500-710μm) and (710-1000μm) were compressed using a 10mm diameter set of die 

and punch to produce tablets. A compression force of approximately 30KN and speed of 

approximately 0.05mm/min were used during the compression process. All the operating 

conditions of Instron (3369 dual column, Buckinghamshire, The United Kingdom) were kept 



constant. Thus, only the effects of the properties of the granules were investigated. Finally, the 

strength of the tablets produced was measured using Zwick/Roell Z0.5 (Zwick/Roell, 

Germany). It is worth mentioning at this stage that five tablets were produced from each size 

class for each experiment, and the average strength value was used in this research. 

3. Modelling of the High Shear Granulation Process  

3.1. Model Development  

Developing a modelling framework for the granulation processes, in particular, the HSG 

process, is not a trivial task. The reason behind this can be attributed to the complex nature of 

such a process, and also to the lack of physical representations for its mechanisms [6]. In 

addition, such a process can be significantly affected by controllable and uncontrollable factors; 

by uncontrollable factors here one means both the unknown and the very difficult to control 

factors, these factors may also be interdependent with reverse effects. Therefore, three different 

new models were previously proposed to predict the properties of the granules produced by the 

HSG process, and also to provide the necessary understanding of such a process, as presented 

in [3, 6]. In this research work, these models, which are very effective as what they can be 

exploited for, will be used to systematically control the granulation and the tableting processes 

by developing a right-first-time approach to produce granules and tablets with the desired 

properties. Therefore, such models are briefly described in this research paper to help the reader 

get to grips with the optimization algorithm proposed. 

3.1.1 The Incorporated Model 

The incorporated model is a data-driven topology, which includes an integrated network 

and a Gaussian mixture model (GMM) [3]. First, the integrated network is used to represent 

the complex relationships between the inputs and the outputs of the granulation process. Such 



a network predicts the granule properties using two phases, as shown in Figure 1. In the first 

phase, the granulation parameters (xn) and the target (i.e. experimental) granule properties (yT) 

are utilized to train M models, the predicted outputs from these models (yP1, yP2… yPM) and 

the targets are then utilized to train a single model in the second phase to lead to the final 

predicted outputs ( Py ). Using an artificial neural network (ANN)-radial basis function (RBF) 

model in the two phases, the final predicted output can simply be expressed as a combination 

of composition and superposition of the basis functions as follows [3]: 
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where i
 , w and w0 are the basis function, the weights and the bias, respectively. The 

superscript number is utilized to distinguish the parameters of the first phase from the ones of 

the second phase. 

Figure 1. The architecture of the integrated network [3]. 

The majority of the developed data-driven and physical based modelling approaches, 

including the integrated network, implicitly assume that the error residuals are normally 

distributed, which is an invalid assumption in most of the real-world applications. Therefore, 

the GMM is employed to characterize the error residuals, and, consequently, to improve the 

performance of the integrated network. Generally, the GMM, as a stochastic model, can be 

presented as a linear combination of Gaussian functions, where each function has its own 

parameters (i.e. mean and covariance). The optimal values of these parameters are usually 

found by maximizing the log likelihood function [24]. The estimated conditional mean can 

then be added to the predicted output to compensate for the potential bias, as described in [25]. 

 



3.1.2 The Hybrid Model 

A hybrid model that integrates physical based models with data based modelling topologies 

was presented previously in [6]. Such a model consists of three separate components, namely; 

a computational fluid dynamics (CFD) model, a three-dimensional population balance model 

(PBM) and an ANN-RBF model. The iterative scheme of such a model is depicted in Figure 2. 

A CFD model is initialized using the granulation input parameters, such as the properties of 

the materials used and the process operating conditions. The output parameters (e.g. impact 

velocity) from such a model are then utilized to implement the PBM. Estimating the empirical 

parameters is also required to implement the PBM. Thus, the ANN-RBF model is developed 

to estimate these parameters, where each parameter is expressed as a function of the granulation 

input variables. Once the granule parameters are predicted using the PBM, the size of the 

granules is then utilized to re-evaluate the parameters estimated by the CFD model. Such a step 

is followed by re-evaluating the outputs of both the PBM and the ANN-RBF model. These 

steps are repeated until the difference between two consecutive steps becomes equal to or 

smaller than a predefined value, or alternatively a satisfactory performance is achieved. 

Figure 2. The hybrid model for the HSG process [6]. 

3.1.3 The Fusion Model 

Information fusion is one of the basic concepts of human cognition. Generally, integrating 

data from different sources should improve the reliability and the degree of accuracy of the 

information provided to generate the best decisions [26]. Hence, information fusion has been 

extensively and successfully applied in many areas [26-27]. Various algorithms (e.g. Bayesian 

inference) for information fusion have been presented in the related literature [27]. However, 

to develop a more reliable model for information fusion, three different types of uncertainties, 

namely, uncertainty due to probabilities, uncertainty due to lack of specification and 



uncertainty due to fuzziness, should be taken into account [27]. Therefore, a fusion model that 

integrates the Dempster-Shafer (DS) theory with a FLS was previously presented in [6]. Such 

an approach combines the predicted outputs from the incorporated model with the ones from 

the hybrid model in order to resolve any potential conflict, and also to improve the prediction 

performance, in particular, in those areas where the performance was not as good as desired 

[6].  

First of all, the granulation input parameters and the error residuals that result from both 

the incorporated model and the hybrid one are clustered, followed by determining the 

membership function value for each data point. In order to integrate the predicted outputs from 

both models, the DS theory is used, where the mass function values for all the examined 

hypotheses are estimated using the fuzzy membership function values. The mass function can 

simply be expressed as follows [27]: 
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where η is the maximum membership function value, Jmax is the number of hypothesis, and 

t
m  is the mass function for the tth hypothesis. It is worth mentioning that special cases are 

usually considered when the number of clusters is either two or three [27]. Then, the hypotheses 

can be combined by using the Dempster’s rule of combination as follows [27]: 
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where the subscripts FM, HM and IM are used to distinguish the mass functions for the 

hypotheses of the fusion, hybrid and incorporated models, respectively. The parameter K, 

which is a measure of the conflict between two sources, is used to evaluate the normalization 

factor (1-K). A hypothesis of the incorporated model is commonly merged with the hypotheses 

of the hybrid model that have better or the same degree of accuracy, and vice versa. It is worth 

emphasizing at this stage that a high degree of conflict is assumed between a hypothesis and 

another less accurate one. Consequently, the fusion model should improve the overall 

predictive performance. Once the combined mass function values are evaluated, the 

membership function values for the hypotheses of the fusion model can be estimated by solving 

the set of equation in (2). Finally, the predicted outputs are evaluated using the height 

deffuzzifier method [28]. 

3.2 Model Implementation and Results 

The models that were briefly described above were used to predict the final granule 

properties. The incorporated model was employed to represent the granulation process, where 

an integrated network based on 10 ANN-RBF models having different structures in the first 

phase, and a single ANN-RBF model in the second phase was developed. For each ANN-RBF 

model, the final number of RBFs that was selected was the one that led to the minimum error 

measured via the RMSE index. It is worth mentioning that the scaled conjugate gradient (SCG) 

algorithm was utilized for training the ANN-RBF models. Once the outputs of the integrated 

model were estimated, the GMM was employed to characterize the error resulted from the 

integrated network and improve the predictive performance. The average R2 and RMSE values 

of the incorporated model were summarized in [3]. In addition to the incorporated model, the 

hybrid model briefly described in Section 3 was also employed to represent the granulation 

process, where the flow of the granules was first studied using the CFD model developed using 



ANSYS software (ANSYS Inc., US, Release 16.1). In such a model, the gas-solid flow was 

investigated be employing a two-fluid model inspired from the kinetic theory behind the 

granular flow model. In such a model, the materials properties were chosen to simulate the 

properties of air and granules produced using 500gm of CaCO3 and three mass values of PEG 

1000. The rest of the parameters were selected to simulate the actual experiments as described 

in Section 2 (e.g. the vessel speed was kept constant at 170rpm clockwise). Once the CFD 

model converged, a three-dimensional PBM was developed by discretising the three-

dimensional population into a number of bins represented as finite volumes. The parameters of 

the PBM (e.g. aggregation kernel) were estimated to match the experimental results, then, they 

were mapped to the granulation inputs by using a single ANN-RBF model. Using the estimated 

parameters, the properties of the granules were predicted, and utilized to update the parameters 

of the CFD model. The steps of the hybrid model were repeated until the difference between 

the predictions for two consecutive steps became very small. Finally, the fusion model was 

utilized to combine the predicted outputs of the hybrid model with that of the incorporated 

model. Such a task was performed by, first, clustering the input variables and the error residuals 

of both the hybrid and the incorporated models into a number of clusters using the K-means 

clustering algorithm. Such a step was followed by determining the parameters of each cluster 

[6]. Since the number of clusters is subjective and depends significantly on the process 

investigated, in this research work, the best number of clusters that was selected was the one 

that led to the minimum RMSE (i.e. the maximum predictive performance). The membership 

functions were then determined and the predicted outputs of the hybrid and incorporated 

models were combined using Equations (2) and (3). It is worth mentioning that the set of 

Equations in (3) was solved numerically, since the analytical solution was computationally 

expensive, particularly, when a large number of clusters was used. The average R2 and RMSE 

values of the hybrid and fusion models were summarized in [6].  



The incorporated model was also utilized to represent the tableting process. First, the 

integrated network based on 10 ANN-RBF models in the first phase and a single ANN-RBF 

model in the second phase was established. The granules properties and the strength of the 

tablets produced were used as the inputs and the output of the integrated network, respectively. 

Such a model was followed by including the GMM framework, where the binder content and 

the porosity of the granules and the error residuals were utilized to develop such a model. The 

incorporated model performance for the strength is R2 (training, testing) = [0.84, 0.82], as 

shown in Figure 3. It is worth noting that most of the predictions (85%) lie within a 90% 

confidence interval. The predictive performance for the strength was actually worse than the 

one for the granule size, but better than the ones for the binder content and porosity. Such a 

relatively low performance was actually expected because of the uncertainties in both the inputs 

and the output of the model that was developed for the tableting process. To elucidate further, 

the heterogeneous distributions of the binder content and air (i.e. porosity) of the granules 

seemed to affect only the outputs of the models that represent the granulation process, this 

being due to the fact that the inputs of the models developed for the granulation process are the 

process parameters (i.e. impeller shape, impeller speed, granulation time and L/S ratio) and the 

outputs are the granule size, the binder content and porosity. Accordingly, the uncertainties that 

stemmed from the heterogeneous distribution of the binder content and porosity affected the 

outputs of the models developed for the granulation process. However, the inputs of the model 

developed for the tableting process are the outputs of the granulation process (i.e. the granule 

size, the binder content and porosity) and the output of such a model is the tablet strength that 

is mathematically represented as a function of the inputs. Accordingly, the uncertainties that 

stemmed from the heterogeneous distribution of the binder content and porosity affected both 

the inputs and the output of the models developed for the tableting process. It is also worth 

mentioning at this stage that the performance of the incorporated model measured by the R2 



value was approximately four times and twice the performances of the single ANN-RBF model 

and the ensemble model, which was developed using 10 ANN-RBF models, respectively.  

Thus, these models were not utilized to model the tableting process. 

Figure 3. The incorporated model for the tablet strength: (a) Training and (b) 

Testing (with 10% band). 

4. The Right-First-Time Framework  

4.1 Model Development 

Recently, nature-inspired optimization algorithms have attracted a great deal of interest [11-

12]. Several algorithms, such as Genetic and Evolutionary algorithms, have been proposed and 

applied to tackle nonlinear, multimodal and discontinuous real-world problems [12-21]. In 

particular, particle swarm optimization (PSO) algorithms, which mimic the competitive and 

cooperative behaviours of fish schooling and bird flocking, have been widely used, this being 

due to their computational efficiency (i.e. fast convergence speed) and, more often than not, 

their effectiveness in locating the global optima [11]. Various PSO algorithms have been 

presented in the related literature to solve single optimization problems (SOPs) [11]. The 

promising results that were obtained via these algorithms were the main motivation behind 

extending the PSO to deal with multi-objective optimization problems (MOPs) [20-21]. Unlike 

SOPs, solving MOPs leads to a set of alternative solutions. Such a set is optimal, in the wider 

sense, no other set of solutions is superior to it when all the objective functions are taken into 

consideration [10]. Such a set is usually known as Pareto optimal, non-inferior or non-

dominated set [11].  

Many algorithms, such as ranking objective functions and weighted sum methods, have been 

utilized to identify a single optimal solution for the MOPs [11, 21]. However, as already stated 

there is hitherto no universally accepted definition for such a single solution. In this research 



work, a new algorithm that integrates the PSO with a fuzzy logic system is proposed to solve 

MOPs.  

Generally, a continuous and unconstrained MOP can simply be written as follows [11]: 

 1 2( ) ( ), ( ),... ( )N
x

Min F x f x f x f x


                                                                               (4) 

where x is a l-dimensional vector of decision variables, which are usually bounded by the 

decision space ( ). In many cases, the decision vector must satisfy a set of equality and 

inequality constraints [10, 21]. 

To identify the set of Pareto optimal solutions, a PSO algorithm is utilized. In the PSO, 

particles are randomly initialized within the feasible (i.e. search) space. Each particle represents 

a potential solution. A particle i is usually described by its position, xi = (xi1, xi2, …, xil), and 

velocity, vi = (vi1, vi2, …, vil). During the search, the position and the velocity of each particle 

are updated according to the particle’s experience and the experience of the neighbour particles. 

For the ith particle, these parameters can be updated using the following set of equations [20]: 
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where r1 and r2 are random numbers generated uniformly in the range of 0 to 1. The parameter 

t stands for the iteration number. The parameters c1 and c2, the so-called learning factors, 

represent the degree of influence of the local and global best solutions, respectively. The 

velocity value is usually bounded within a predefined range of vmin to vmax to prevent the 

particles from flying out of the feasible space [11].        

The set of equations in (5) is only applicable when the decision variables are continuous. For 



discrete variables, the velocity vector is first transformed into a probability one through the 

sigmoid function as follows [20]: 
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where 
t

ij
  represents the probability that the value of the jth element of the position vector is 1, 

and vij represents the particle velocity as per (5). Hence, the position of the discrete particle can 

be updated as follows [20]: 
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where R is a random number in the range of 0 to 1.  

Once the Pareto optimal set is defined, the single optimal solution can be found using the 

FLS. First of all, and based on predefined criteria (e.g. the predictive performance of a model), 

a number of clusters can be defined in the feasible space. The membership function value for 

each point in the set can then be estimated as follows [28]: 
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where i
  represents the membership function value for the ith solution. The parameters M and 

σ stand for the mean and the standard deviation of a cluster, respectively. Because of the 

continuity and smoothness of the Gaussian function, it is utilized, in this research work, to 

estimate the membership function. The parameter 
ix

P  represents the performance of the ith 

solution estimated using the predefined criteria. It is worth noting at this stage that the number 



of criteria may not necessarily be equal to the number of the objective functions considered.  

Once the membership function values are calculated, they can be combined for each 

solution using the set of fuzzy logic operations. Various operations, such as minimum and 

product, can be used for this purpose. Selecting the appropriate set of operations depends on 

the problem under investigation. 

4.2 Model Implementation and Results  

The models, which were introduced previously [3, 6] and briefly described above, were 

exploited within a right-first-time framework that was used to facilitate the implementation of 

the proposed optimization algorithm. Figure 4 illustrates the development of this framework 

for the granulation and tableting processes. As shown in Figure 4, such a framework was 

implemented in two stages. In the first stage, the target properties of the tablets were used to 

define the best granule properties, which were utilized to identify the optimal operating 

conditions of the HSG process in the second stage of the framework.  

Figure 4. Modelling and optimization frameworks for the granulation and tableting 

processes. 

Since the main property of the tablet that was considered in this research work is the 

strength, the input parameters for the tableting process (i.e. the properties of the granules 

produced) were identified using a single objective PSO optimization method. The optimization 

problem for the tableting process can be written as follows: 
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                                                                                      (9) 



where S represents the strength of the tablet, and xij represents the jth element of the position 

vector of the ith particle. The subscripts are used to distinguish the predicted strength value (P) 

from the target (i.e. desired) one (T). The constraints ensure that all of the granule properties, 

namely, size (500-1000µm), binder content (8-17%) and porosity (4-20%), are located between 

their minimum and maximum values. To elucidate, suppose that the target strength value of 

the tablet is 0.75 MPa. To illustrate, the optimization model in (9) can now be rewritten as 

follows: 
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1
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x
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                                                                                            (10) 

The optimization problem presented in (10) was solved using an SOPSO algorithm, where 

300 particles were randomly initialized. It is worth mentioning that the maximum number of 

iterations was 300. The optimal granule properties that were obtained by the SOPSO algorithm 

are: the granule size is in the range of 710 to 1000µm, the binder content is 11.75% and the 

porosity is 10.53%. Such properties were used as final target properties that need to be obtained 

from the granulation process.  

For the granulation process, two objective functions should be considered; minimizing the 

difference between the target and the predicted values for both the binder content and the 

porosity, and maximizing the amount of the granules in the desired size range, in other words, 

minimizing the waste and the recycling ratio. The optimization problem for such a process can 

be mathematically described as follows: 



1

min max
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1
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, 1
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 
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
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

                                                       (11) 

where γi represents the ith property of the granules, and xij represents the jth element of the 

position vector of the ith particle. Similarly to above, such subscripts should distinguish the 

predicted (P) from the target (T). The parameter T
  represents the volume fraction of the 

granules that are in the required size range. The first set of constraints ensures that all the input 

variables of the granulation process are within the investigated ranges, as listed in Section 2, 

whereas the second constraint ensures that the impeller type is considered as a discrete or binary 

variable. To illustrate, the optimization model in (11) can now be rewritten as follows: 

(710 1000)
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                                                                      (12) 

where BC stands for Binder Content. Figure 5 shows the behaviour of the two objective 

functions in the search area of the three continuous parameters, namely, impeller speed, 

granulation time and L/S ratio. It is noticeable that the two objectives are in conflict, in other 

words, any improvement in one of the objectives leads to a deterioration in the other one. For 

instance, when both the impeller speed and the granulation time are medium, the first objective 



function is increasing while the second one is decreasing.    

Figure 5. The 3D surfaces relating to the two objective functions: (a) Minimizing the 

waste and recycling ratio, and (b) Obtaining the pre-defined properties (the arrows 

show the location of the optimal solution, as selected by the fuzzy system, for a tablet 

with a 0.75 strength value). 

The optimization approach presented in this research paper was implemented to find the 

single optimal solution. First, the MOPSO algorithm was applied to find the Pareto optimal set 

for the model presented in (12). The MOPSO process was run using 300 particles, which were 

initialized randomly, for 300 iterations. It is worth mentioning at this stage that the incorporated 

model was used to estimate the objective function values for the 300 iterations, whereas the 

hybrid and the fusion models were used on the last iteration only, this being due to the 

computational effort that is required by the hybrid model [6]. Since the size of the Pareto 

optimal set can be potentially large, the results are rather displayed on a Cartesian plot, such a 

set being shown in Figure 6. This figure proves that the two objectives are indeed conflicting. 

Figure 6. The normalized best performance obtained by MOPSO algorithm (Tablet 

strength is 0.75 MPa, the final single optimal solution, as selected by the fuzzy system, is 

highlighted (o)). 

Defining the Pareto set was followed by selecting the single optimal solution. Various 

criteria can be selected based on the designer’s priorities and preferences. However, in the 

right-first-time framework, one may consider the performance of the predictive models and 

their behaviours at different areas in the feasible space. In this research paper, the predictive 

performances of the fusion model for the three granule properties were chosen as criteria. 

Therefore, the granulation input variables and the error residuals that resulted from the fusion 

model were utilized to determine the predictive performance of such a model in the 

optimization feasible space. It is worth emphasizing, at this stage, that the predictive 



performance of the fusion model depends on the predictive performance values of the 

incorporated and the hybrid models. Based on the number of clusters that was defined by the 

fusion model as described in Section 3 and by using 5 clusters, Figure 7 illustrates how the 

fusion model performed in one of the space areas of the binder content. Such a figure shows 

that the performance of the fusion model is good when the impeller is of type I, the impeller 

speed is medium, the granulation time is small and the L/S ratio is medium. 

Figure 7. An example of the fusion model performance in the space area of the binder 

content. 

The membership function values for each point in the Pareto optimal set were estimated 

using Equation (8). For each cluster, each solution had membership function values for the 

size, binder content and porosity. These values were combined using the set of fuzzy logic 

operations. The minimum operation was used to combine the binder content and porosity. The 

product operation was then utilized to combine the minimum value with the membership 

function value for the size. The solution that corresponds to the maximum membership function 

value was finally selected. The best set of the operating conditions for the granulation process 

is: impeller type is of type I, impeller speed is 3879 rpm, granulation time is 6 minutes and L/S 

ratio is 13.74%. The single optimal point is highlighted in Figure 6. The location of this point 

is also highlighted by arrows in Figure 5, where it can be seen that any shift in this point may 

lead to a deterioration in one of the objective functions. An actual granulation experiment was 

conducted, where the input variables were assigned to be as close as possible to the optimal set 

of the operating conditions. The granules produced were characterized in terms of size, binder 

content and porosity. This was followed by producing tablets from the granules in the size 

range of 710 to 1000µm, and measuring the strength of these tablets. The target and the 

experimental properties of the granules and the tablets are summarized in Table 1. 



Table 1. The target and the predicted values of the granule and tablet properties. 

To prove the efficiency and the effectiveness of the proposed algorithm at different areas 

of the feasible space, two strength values, 0.45 MPa and 0.6 MPa, were also used to test the 

right-first-time framework. It is worth mentioning that these values, in addition to the 0.75 

strength value, are examples that were selected from different areas of the feasible space. The 

experimental and the target values of the properties for these values are listed in Table 1. 

It is noticeable that there is a difference between the target and the predicted values for all 

the investigated properties. Such a difference is relatively high for the strength of the tablets 

(approximately 10%) when compared to the differences for the granule properties. The actual 

reasons behind this can be attributed to one or more of the following reasons: 

 The heterogeneity of the granules: It has been demonstrated in the open literature that 

the granules from the same batch but different size classes are heterogeneous [29-30]. 

In addition, the granules from the same size class may not be homogeneous, particularly 

when the size class is wide. 

 Measurement uncertainties: Laboratory apparatus and techniques, which were used to 

characterize the granules and the tablets, involved uncertainties. Although each 

measurement was repeated a number of times, such uncertainties could not be 

eliminated. Moreover, the propagation of uncertainties might affect the models, in 

particular, the model that was developed for the tableting process.  

 Simplifying the optimization model: As mentioned previously, only the incorporated 

model was used to estimate the objective function values for the 300 iterations, whereas 

the hybrid and the fusion models were used on the last iteration only. Since the 

predictive performances of the incorporated model for the binder content and porosity 



were not as good as the ones for the hybrid and the fusion models, this assumption 

might negatively affect the performance of the right-first-time framework.  

 For comparison purposes and in order to prove the effectiveness and efficiency of the 

proposed algorithm, the well-known PSO algorithm that was incorporated with a fitness 

assignment approach was utilized to identify the optimal granules’ properties and the optimal 

operating conditions for the granulation process to produce tablets with the same predefined 

strength values. Then, actual granulation and tableting experiments were carried-out, and the 

granules’ properties and the strength of the tablets were measured. The target and the 

experimental results are summarized in Table 1, where it is obvious that the proposed algorithm 

outperforms the PSO one, this is being due to its ability to take account of the predictive 

performance of the modelling framework. 

In summary, the MOPSO algorithm and the FLS play complementary roles in the 

optimization process, where the former was utilized to define the set of Pareto optimal solutions 

and the latter was used to identify the single optimal solution by considering the predictive 

modelling performances of the forward models. It is worth mentioning at this stage that the 

FLS alone cannot be used to identify the Pareto optimal solutions for an MOP. On the other 

hand, the PSO algorithm was not able to consider the predictive performances of the forward 

models. Therefore, integrating these two approaches has combined the strengths of these 

approaches in a way that the single optimal solution can be successfully identified. The 

proposed approach was successfully implemented to produce granules and tablets right from 

the first time. Such an approach can be further improved to be more robust to the uncertainties 

and the propagation of uncertainties. A type-2 fuzzy set can be integrated with the PSO 

algorithm. The choice of such a set is motivated by the fact that the type-2 fuzzy set can deal 

with uncertainties more efficiently compared to its counterpart type-1 fuzzy set. However, it is 



well known that a type-2 fuzzy system is computationally demanding when compared to type-

1. Therefore, further investigation should be performed to explore the advantages and the 

potential limitations of integrating such a more complex topology.  

5. Conclusions  

In the pharmaceutical industry, producing granules and tablets right from the first time may 

be a ‘tricky’ exercise that researchers in both academia and industry strive to ascertain, this 

being due to the complex nature of the many processes involved, namely, granulation and 

tableting processes, which are key to the production line of these pharmaceutical tablets, and 

also due to the uncertainties and challenges that surround these processes, including access to 

measurement points. Therefore, in this research paper, a new approach that integrated a particle 

swarm optimization (PSO) algorithm with a fuzzy logic system (FLS) was proposed. The 

ultimate aim of this new approach was to facilitate the development of the right-first-time 

framework by which the concept of the optimal production of granules and tablets was 

achieved. This framework inverted the non-linear models that were previously elicited to 

represent the high shear granulation (HSG) and the tableting processes [3, 6]. By implementing 

such a framework, the optimal granule properties and the optimal operating conditions to 

produce a tablet with predefined properties were successfully achieved. Moreover, waste and 

recycling ratios were significantly minimized.  

This right-first-time optimization framework is original in that it circumvented the direct 

mathematical inversion of the complex models via multi-objective optimization which, more 

often than not, is not possible due to the fact that such inverse does not exist or simply is not 

unique; furthermore, it considered more than one objective function which made the definition 

of optimality not so straightforward and instead the concept of Pareto-optimality was relied 

upon whereby a set of non-dominated solutions was obtained. In this case study, it was possible 



to only include two objectives without loss of interpretability or accuracy but even if more 

objectives need to be incorporated in the future, such as those associated with the environment, 

for instance, then these can be taken into account within a hierarchical framework without 

compromising the concept of Pareto-optimality.   

In summary, the results achieved in this research were truly promising and showed that 

right-first-time production of the granules and tablets should no longer remain just a ‘myth’. 

By considering some aspects (e.g. scaling-up methods), the modelling frameworks can be 

implemented correctly in the pharmaceutical industry (i.e. on a relatively large scale). The 

advantages of such an implantation can include, but not limited to, developing a cost-effective 

product, meeting the stringent regulations imposed on the pharmaceutical industry and 

minimizing new product development time. 
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Figures  

 

Figure 1. The architecture of the integrated network [3]. 

  



 

Figure 2. The hybrid model for the HSG process [6]. 

 

  



 

Figure 3. The incorporated model for the tablet strength: (a) Training and (b) Testing 

(with 10% band). 

  



 

 

Figure 4. Modelling and optimization frameworks for the granulation and tableting processes. 



Figure 5. The 3D surfaces relating to the two objective functions: (a) Minimizing the waste 

and recycling ratio, and (b) Obtaining the pre-defined properties (the arrows show the 

location of the optimal solution, as selected by the fuzzy system, for a tablet with a 0.75 

strength value). 



 

Figure 6. The normalized best performance obtained by MOPSO algorithm (Tablet strength 

is 0.75 MPa, the final single optimal solution, as selected by the fuzzy system, is highlighted 

(o)). 
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Figure 7. An example of the fusion model performance in the space area of the binder content. 
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Table 1. The target and the predicted values of the granule and tablet properties*. 

*The intervals were calculated using a 95% confidence interval.  

 

 

 

 

 

  
Target tablet strength (MPa) 

0.45 0.6 0.75 

 PSO and FLS  PSO PSO and FLS  PSO PSO and FLS  PSO 

Operating 

conditions  

Impeller shape Type I Type I Type II Type I Type I Type II 

Impeller speed (rpm) 5978.88 3363.57 1878.15 5237.32 3879.45 5832.24 

Granulation time (min) 6.06 15 12.69 6.17 6 6.02 

L/S ratio (%) 14.03 13.84 14.8 14.65 13.74 13.27 

Granule 

properties  

Binder 

content (%) 

Target  13.71 8.75 11.75 

Experimental  12.86±0.53 11.81±0.42 9.72±0.95 10.44±0.48 11.63±0.37 12.88±0.34 

Porosity (%)  
Target  8.58 10.94 10.53 

Experimental  9.24±0.91 9.44±0.95 10.04±0.63 13.02±0.43 9.72±0.66 11.80±0.71 

Experimental Tablet 

strength (MPa) 
Experimental  0.412 ±0.03 0.407±0.03 0.533±0.07 0.68±0.04 0.814±0.05 0.858±0.03 
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