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Abstract—With the emergence of various types of applications
such as delay-sensitive applications, future communication net-
works are expected to be increasingly complex and dynamic.
Network Function Virtualization (NFV) provides the necessary
support towards efficient management of such complex networks,
by disintegrating the dependency on the hardware devices via
virtualizing the network functions and placing them on shared
data centres. However, one of the main challenges of the NFV
paradigm is the resource allocation problem which is known
as NFV-Resource Allocation (NFV-RA). NFV-RA is a method
of deploying software-based network functions on the substrate
nodes, subject to the constraints imposed by the underlying
infrastructure and the agreed Service Level Agreement (SLA).

This work investigates the potential of Reinforcement Learning
(RL) as a fast yet accurate means (as compared to integer linear
programming) for deploying the softwarized network functions
onto substrate networks under several Quality of Service (QoS)
constraints. In addition to the regular resource constraints and
latency constraints, we introduced the concept of a complete out-
age of certain nodes in the network. This outage can be either due
to a disaster or unavailability of network topology information
due to proprietary and ownership issues. We have analyzed the
network performance on different network topologies, different
capacities of the nodes and the links, and different degrees of the
nodal outage. The computational time escalated with the increase
in the network density to achieve the optimal solutions; this is
because Q-Learning is an iterative process which results in a slow
exploration. Our results also show that for certain topologies and
a certain combination of resources, we can achieve between 70-
90% service acceptance rate even with a 40% nodal outage.

I. INTRODUCTION

Future communication networks (5G & Beyond) will sup-

port various types of technologies and applications. These

new technologies and applications need machine-to-human

and machine-to-machine communications, which require new

types of network services (NSs) [1]. As discussed in [2]

the new NSs will have short life span (short-lived services).

This makes future networks likely to be more dynamic and

complex.

In conventional systems, for the delivery of NSs, like the

web services, the network operator defines the NSs according

to the promised SLAs. These network services are comprised

of a set of Network Functions (NFs). Each NF, such as firewall,

router, Network Address Translation (NAT) etc., is integrated

onto a dedicated hardware device (or middle-box) to perform

a specific function. For the deployment of new services

or updating the existing ones, the network operators must

purchase, configure, and maintain the middle-boxes, which

confine the flexibility and agility of the network functions [2].

This causes a significant rise in the deployment of the middle-

boxes, leading to an escalation in the Operating Expenditures

(OPEX) and Capital Expenditures (CAPEX) [3]. However, the

utilization of this conventional strategy would not be a feasi-

ble solution for future communication networks. Especially

when new NSs are frequently arriving, and the middle-boxes

need to be constantly re-located and re-configured. This will

further increase the expenses and reduce scalability. A novel

network architecture, therefore, is necessary to support such

‘short-lived’ services with the flexibility to migrate the NFs,

depending on the resource requirements.

The ‘Virtualization’ approach offers advancement to the

network infrastructures by efficiently deploying the NFs. The

Network Function Virtualization (NFV) framework virtualizes

the NFs into software solutions by decoupling the NFs from

their dedicated hardware. These softwarized NFs offer flex-

ibility and agility to the network operators for embedding

and re-embedding of network functionalities. The softwarized

NFs are called Virtual Network Functions (VNFs) which are

deployed on high-volume servers, providing isolation and

independence to each VNFs. These VNFs are sequentially

chained to determine a requested network service, referred

to as Service Function Chaining (SFC). Once the SFC is

established, the NFV-MANO (NFV Management and Orches-

tration) embeds the chained VNFs in a specified order onto

the substrate nodes, as shown in Figure 1.

Fig. 1: Service Chain Function

There are a few advantages of adopting NFV-based net-

works. Firstly, reduction in the CAPEX and OPEX due to the

virtualization of the NFs. By allowing more than one VNF to

be deployed on a single high-volume server, this gives the

advantage of reducing the purchase and maintenance costs

of the hardware. Secondly, there will be a reduction in the

deployment time for new network services as compared to

the traditional method. This is because of the availability of

the high-volume servers in the networks. Lastly, NFV-based



networks provide flexible migration of VNFs from one server

to another, according to the change in the resource demand.

However NFV-based networks come with its own challenges

and one of them is ‘NFV-Resource Allocation’ (NFV-RA).

A SFC consists of multiple VNFs and virtual links with

diverse resource requirements; these requested resources must

be satisfied by the underlying infrastructure for successful

deployment. The provisioning of resources by the network for

the successful SFCs deployment is called ‘NFV-RA problem’.

The main objective of the SFC is to provide promised SLAs

to the users, which is accomplished in three stages. In stage

1, a SFC is defined by chaining the VNFs in chronological

order, and this process is called VNFs-Chain Composition

(VNFs-CC) [3]. In stage 2, these chained VNFs are optimally

deployed onto the substrate nodes subject to certain resource

constraints. The graphical representation of the sequentially

chained VNFs, which deliver an end-to-end network service

is called VNF-Forwarding Graph (VNF-FG). The deployment

of these graphs onto the network is called VNF-FG Embedding

(VNF-FGE). This VNF-FGE problem is branched out into

two sub-problems: Virtual Node1 mapping and Virtual Link2

mapping, as illustrated in Figure 2. Stage 3 concentrates

on minimizing the VNF-FG’s overall deployment time by

providing a time-slotted strategy for arriving VNFs, this is

called VNF Scheduling (VNF-SCH) [3] [4].

Fig. 2: VNF-FG Embedding

The VNF-FGE and network dynamism enhance the com-

plexity of the NFV-RA problem by creating a challenging

task of resource allocation for the requested VNF-FGs. Due to

the complexity, the NFV-RA problem is categorized as a NP-

hard optimization problem. Using conventional optimization,

the global optimal solution can be achieved but at the cost of

high computation time [3]. In fact, the computational time will

intensify more for denser networks. To limit computational

times, researchers have opted for sub-optimal solutions like

heuristics-based approaches which provide a trade-off between

the run-time and the global optimal solution. The disadvantage

of this approach is for dynamic systems where the constraints

and objectives are continually varying; these heuristic models

1Mapping of VNF.
2The connection between two consecutive VNFs

are required to be redesigned. Moreover, during the conver-

gence, it tends to get caught up at the local optimum, which

produces ineffective results [5].

In this paper, we are considering the placement of dynam-

ically arriving VNF-FGs defined by the network operator,

and is performed using the Reinforcement Learning (RL)

technique. In an environment where the network conditions

change vigorously, learning from the past experiences will be

beneficial for decision making; moreover, the RL approach

has been proven to provide better solutions than supervised

learning for NP-hard problems [6].

Additionally, this work also examines the performance of

the Q-Learning (QL) under uncertain conditions like nodal

outages due to disaster or vulnerability. Thus, in this work,

for solving the VNF-FG problem, we have explored the QL

performance under various scenarios like the complexity of

VNF-FGs, networks, and node capacity.

The remaining paper is organized as follows. Section II

provides a brief literature review. Followed by the problem

formulation of VNF-FGE problem, which is modelled as a

Markov Decision Process (MDP) and an overview about QL

is given in Section III. Results and discussions are presented

in section IV. Lastly, section V concludes the paper and

additionally provides information about our future plan.

II. LITERATURE REVIEW

To solve the VNF-FGE problem, various approaches like

Integer Linear Program (ILP), and Mixed Integer Linear

Program (MILP), were proposed based on the characteristics

of the problem. However, as mentioned in Section I, the

achievement of the global solution is not affordable because

of the increased dynamics and complexity of the networks.

Therefore, most of the approaches are modelled using the exact

method, but the optimal solution is achieved by using heuristic

algorithms. The researchers have adopted the ILP approach

for embedding the VNF onto the network by considering

some strong assumptions like delay and loss rate induced by

links [5], [7], which is not realistic. Few authors performed

a joint optimization method for VNF mapping and VNF

scheduling which are performed using the MILP model. In

[8] achieving the optimal solution for a smaller instance is

presented. However, for dense and complex networks, the

authors proposed a heuristic model which provided a sub-

optimal solution with a reduced amount of computation time.

Similarly, others suggested a linear relaxation algorithm to

obtain the optimal solution [5]. Some techniques are efficient;

nonetheless, they do not assure the best solution and some

of the parameters like latency, which is retrieved during the

execution time are not considered.

In [9], the performance of the online mapping and schedul-

ing is evaluated by using three greedy algorithms based

on different greedy criteria: Greedy Fast Processing (GFP),

Greedy Best Availability (GBA), and Greedy Least Loaded

(GLL). Apart from these approaches, the authors proposed

a meta-heuristic algorithm called Tabu Search, and this was

implemented to eliminate the local minimum solutions by



keeping a record of all the previously visited solutions. The

algorithm works on two objective functions: minimizing the

flow time of the SFC and minimizing the cost of the resources.

The authors have established a firm foundation for the online

mapping and scheduling of the VNFs. However, this algorithm

is not useful for more extensive space networks due to

the iterative process. The authors neglected the virtual link

mapping and its corresponding delays. For a more realistic

scenario, the consideration of link delay is essential.

With an attempt to solve the above open issue, the authors

of [5] proposed a model based on Deep Reinforcement Learn-

ing (DRL) called Enhanced Exploration Deep Deterministic

Policy (E2D2PG). The author compared the performance of

E2D2PG with the light network (BtEurope) and the dense

network (Uninett). The performance of Uninett network was

compromised as it has higher nodes and links. The VNF em-

bedding is still an open problem for the larger-scale networks.

In this paper, we have adopted QL for solving the VNF-

FGE problem. This is an early-stage work on studying the

robustness of different QL models like Deep QL, Double-

Deep QL (DDQL) on different network topologies with full

or partial topology information. Towards that goal, here in

this paper, we present some simulation results for estimating

the performances of compromised networks where the nodal

outages occurred due to disasters. Additionally, our models can

also be applied for the multi-operator scenario where operators

share a limited amount of network topology information.

III. VNF-FGE PROBLEM

A. Problem Formulation

In this work, we consider a discrete time-step method, in

which one VNF-FG arrives for deployment at each time-step.

That VNF-FG is composed of various VNFs and VLs, depend-

ing upon the type of services requested by the users. These

VNFs and VLs demand for a definite amount of resources like

CPU allocation, Random Access Memory (RAM), Storage,

Bandwidth and Latency. In this work, we are adopting the

relationship between CPU and RAM as provided in paper [10],

that is, each node will contain a certain number of CPU along

with its RAM requirement. For VLs, we are considering the

latency induced per link and initialize the bandwidth capacity.

More details have been explained in section IV.

OBJECTIVE: The objective of the constructed model is to

maximize the service acceptance rate; that is, maximizing the

number of VNF-FGs placement onto the networks.

CONSTRAINTS:

1) One of the critical aspects for a successful VNF de-

ployment is the provisioning of sufficient resources by

the substrate nodes, which will satisfy the requested

resources by the VNFs. Thus, the first constraint will

check the availability of the resources for the VNFs,

i.e.,
∑

v Y
v
h pv,r ≤ ah,r, ∀h, r, where pv,r indicates the

amount of requested resource r by the VNF v, and ah,r
represents the availability of resource r on the substrate

node h. Y v
h is a binary variable, which indicates the

placement of the v VNF onto the h substrate node.

2) Placing all VNFs of a VNF-FG onto a single substrate

node will cause overload on the links as well as on

the substrate nodes. This will lead to inadequate per-

formance by the networks. Thus, it is crucial to deploy

the VNFs of a VNF-FG onto different substrate nodes,

which will be the second constraint, i.e.,
∑

h Y
v
h ≤

1, ∀v.

3) The poor performance of a network can also be caused

due to the links; thus, the third constraint focuses on

the links and its resources. A successful deployment

of the VL is achieved when the substrate link satisfies

the demanded link requirements like Bandwidth, latency.

Therefore, for bandwidth resource,
∑

m Y m
n pm,b ≤

an,b, ∀n, b, where pm,b indicates the requested band-

width b by the VL m, and an,b represents the availability

of bandwidth b on substrate link n. Y m
n indicates the

placement of m VL onto the substrate link n.

4) After the deployment of the VNFs and its VLs onto the

substrate network, a continuous path between the head

VNF, and end VNF needs to be defined, i.e.,
∑

n Y
m
n ≤

1, ∀m.

If all the chained VNFs of a VNF-FG are deployed onto the

substrate nodes by satisfying the above constraints (1-4), then

it is called successful VNF-FG deployment. Once a VNF-FG

is successfully embedded, then the algorithm selects the next

VNF-FG for the implementation.

B. Q-Learning

RL is a learning process where at each time-step the agent

observes a state S, and accordingly, an action A is executed;

based on this action, the environment provides reward and

next state. From the obtained reward, the agent improvises

the decision strategy for achieving an optimal policy to attain

an optimal solution. In other words, RL is a self-learning

process where the models are trained with the help of online

data. These models learn how to accomplish a definite aim by

accumulating the rewards from the environment and avoiding

errors from the received penalties. These trained models will

maintain the performance even during the network dynamism.

RL is based on the Markov Decision Process (MDP) that is, the

environment is modelled as an MDP. RL’s main aim is to find

an optimal policy π∗ = S → A for the decision-maker (agent).

This optimal policy is obtained by maximizing the optimal

action-value function; i.e., π∗(st) = argmaxaQ
∗(st, at). This

action-value function is estimated using the Bellman Equation,

i.e.,

Qπ(st, at) =
∑

st+1

P (st+1, rt|st, at)(rt(st, at)

+ γ
∑

at+1

π(at+1|st+1)(Q
π(st+1, at+1)) (1)

st, at, and rt are the state, action, and reward obtained

at time-step t, respectively. Moreover st+1 and at+1 are the

state and action for next time-step, and P (st+1, rt|st, at) is the

probability of next state and reward for given current state and



action. Moreover, π(at+1|st+1) is the probability of selecting

the next action under the π policy and γ is discounting factor.

However, to estimate the optimal action-value, we are

considering Q-Learning (QL). QL is an off-policy model-free

algorithm, where the target policy learns from the behavior

policy to achieve an optimal solution. Thus the Eq.(1) is

modified as;

Qµ(st, at) = rt(st, at) + γmax
a

Qµ(st+1, a) (2)

under the µ policy. In other words, the action-value (Q value)

is defined as an expected discounted reward when an action is

executed for a state under a policy. QL agent intends to explore

the unknown environment by executing an action at each

time-step for the observed state. According to this, the model

receives feedback (in the form of rewards or penalty) from the

environment, which helps in improvising the decision strategy.

These learning values are stored in a table called Q-table.

Therefore, these Q-table values provide crucial information

about the state-action pair, which supports in discovering the

best action for the current state. After each time-step, the Q

value is updated, as shown in Eq.(3).

Qnew(st, at)← Q(st, at)
old × (1− η)

+ η(rt + γ argmax
a

Q(st+1, a)−Q(st, at)) (3)

where η is the learning rate which is ranged from 0 to 1,

rt is the reward achieved by the agent for executing action

at. γ indicates the significance of the future rewards for

current state-action pair, we have considered γ as 0.99. rt +
γ argmaxa Q(st+1, a)−Q(st, at) is called learned value, and

argmaxa Q(st+1, a) calculates the optimal future Q value.

For this work, we determined the states as the specifications

of the VNF-FGs. That is the resources required by the VNFs

and VLs, which is represented as |V | x Rvnf + |M | x Rvl. |V |
and |M | represents the number of VNFs and VLs in a VNF-

FG, respectively. Rvnf and Rvl indicated the resource require-

ment by the VNFs and VLs, respectively. This description of

the state is given to the QL agent for estimating the optimum

solution. Depending upon the description, the QL agent (i.e.,

Q table) will provide the best solution in terms of action.

These actions are the nodes of the network, which satisfies the

requested resources by the VNFs and VLs. The environment

is the physical network infrastructure owned by the network

operators. Based on the action, the environment rewards the

agent only if the selected action successfully embeds the VNFs

and VLs; else penalty is assigned to the agent. We have

considered local and global rewards. The local reward is given

to the agent for providing a satisfying substrate node per VNF,

and substrate link per VL, whereas the global reward, is given

upon the successful deployment of the VNF-FGs. Thus, the

reward function is constructed based on the deployment of the

VNFs and VLs onto the satisfying substrate nodes and links,

respectively. The reward function also captures the fact that

the communication delay between any two VNFs should not

exceed the upper bound of the latency.

Once the VNFs are embedded, the path between them is

defined according to the specified latency. In the literature,

the majority of the researchers considered the path based on

the shortest distance; adopting this will cause congestion on

a few links, generating a high delay. This method will not be

feasible for delay-sensitive applications. Thus we adopted a

method where the path per VNF-FG is established based on

the upper bound of the delay which we have set to 30 ms in

our analyses. Algorithm 1 summarises our model for VNF-

FG embedding. We have examined the performance of this

model under several scenarios like different network density,

resources present in each node, network capacity, and diverse

nodal outages levels. Thus we have generated several results

based on the network conditions, where few of them are

presented in the next section.

Algorithm 1 VNF placement based on Q-Learning

Initialize η, γ, Exploration Rate ǫ, and Threshold Latency

foreach episode i =1... N do

foreach timestep i = 1... T do
Initialize Q-table Q(s, a)
Select s0 from state space S as initial state

Using ǫ-Greedy method select an action a

if random(0, 1) > ǫ then
at = argmaxa Q(st, a)

else
at = random(A(s))

end

if action embeds VNF successfully then
Reward is given

else
Penalty

end

if all VNFs are placed then
x ← source(m), y ← Destination(m)

Latency (x,y) ≤ Threshold Latency

Reward is given
else

Penalty is given

end

Update Q table using Eq.(3)
end

end

IV. SIMULATION RESULTS

We have successfully constructed QL model for VNF-FGE

problem with and without the nodal outages. Currently, in

this paper, we considered two distinctive networks as our

environment: Netrail Network with 7 Nodes and 10 links

and BtEurope Network with 24 Nodes and 37 links [11].

The performances of the networks are evaluated based on the

Service Acceptance Ratio (SAR), and Run-time.

Assuming that the link capacity of the substrate network is

between 1 Gbps to 10 Gbps, and of 0 to 10 ms delay, which

is initialized randomly among the links. Note that, when we



embed the VNF-FGs into the substrate network; we need to

ensure that a path between any two VNFs should have a total

delay of less than 30 ms which is a sum of these randomly

initialized link delays between 0 to 10 ms. We have started

by analyzing the performances of the network based on the

different nodal capacity. For each run, we have considered

one scenario out of four: 2, 4, 8, and 12 core CPU per node

where each core can accommodate 2, 4, 8, and 16 VNFs.

Therefore, we have evaluated the network performance for 16

different combinations of nodal capacity. However, this whole

experiment is again studied for different maximum latency

delay of 30 ms, 50 ms, and 100 ms per path of a VNF-FG. In

this paper, we are presenting the results of the lowest latency,

i.e., 30 ms. Moreover, we examined the performance of the

network under the compromised situation by assuming the

occurrence of nodal outage due to disasters or vulnerability.

The above experiment is analyzed for 30 ms delay with 10%

- 50% of the nodal outage.

Each run consists of 100 episodes, and each episode com-

prises 100 time-steps. Each time-step generates one VNF-FG

with a unique combination of resource requirements, within

the range of 3-5 VNFs. These VNF-FGs are produced using

Erdős-Rényi model [12] with the epsilon value of 0.3. The

probability of connectivity among the nodes (VNFs) depends

upon the epsilon and number of VNFs per VNF-FG. Thus,

these VNF-FGs are generated with a different degree of

complexity. The generated VNF-FGs are directed graphs. We

have used the Python language for our simulations.

A. Service Acceptance Ratio

Figure 3 and 4 demonstrates the performance of the Netrail

network in terms of SAR for 4 core CPU with 16 VNFs per

core, and 12 core CPU with 8 VNFs per core scenario.

Considering the Figure 3, the smaller network provides

100% of service acceptance for 0% of the nodal outage. But

with the increase in the outage value, the network perfor-

mances deteriorated. However, considering the Figure 4 with

higher nodal capacity, the network provides satisfactory results

until 30% of the nodal outage. Nevertheless, for above 50%

of the outage, the netrail network rejected more than 50% of

the arriving services for both specified scenarios. This is due

to the unavailability of the resources in the network to satisfy

the requested VNF-FG resource; in other words, the network

resources got exhausted.

On the other hand, considering the more extensive network

that is BtEurope Network. In Figure 5, for a scenario of 4 core

with 4 VNFs per core, provides a gradual degradation in the

network performance with the increase in nodal outage value.

Like Netrail for 50% of the outage, a significant amount of

rejections are noticed. However, the scenario 12 core with 2

VNFs per core, outperformed the remaining cases, even with

the 60% of the outage the network provided upto 40% of

rejections, unlike the others, as shown in Figure 6. This is due

to the high availability of the resources, which was able to

embed the majority of the requested VNF-FGs.

Fig. 3: SAR: Netrail Network with 30 ms Latency

Fig. 4: SAR: Netrail Network with 30 ms Latency

B. Runtime

This section will describe the performance of the networks

in terms of runtime. Overhere, we are presenting a runtime

comparison between 0% and 30% of nodal outage for both

networks, which is demonstrated in the Figure 7 and 8.

Fig. 5: SAR: BtEurope Network with 30 ms Latency



Fig. 6: SAR: BtEurope Network with 30 ms Latency

As expected, the outage network took a significantly high

amount of time to solve the embedding problem that is finding

the optimal solution for VNF-FG placement. This is because

the optimal solution is achieved under high restriction and less

availability of resources in the network, as mentioned in above

SAR section.

On the comparison between the networks, the Netrail run-

time is scantier than BtEurope. This is because, for a small

network, the action space is within the range of 7, which

causes a faster exploration to obtain the optimal solution.

However, for a dense network like BtEurope, where the action

space is much larger, this generates a more massive exploration

time to find the optimal solution. Moreover, the runtime will

enhance furthermore for the denser networks. Hence, this

experiment justifies that for the more extensive networks, the

runtime will be higher. The reason is that QL finds the optimal

solution using the Q-table, which is an iterative process,

leading to larger execution time for more extensive state and

action space.

Fig. 7: Runtimes for Netrail Network

Thus this, model is not suitable for the dense network.

In future, we will be exploring the advance RL methods for

solving the VNF-FGE problem.

Fig. 8: Runtimes for BtEurope Network

V. CONCLUSION AND FUTURE WORK

In conclusion, we examined the performance of Q learning

for different network capacity under a various condition like

the nodal outages. The achieved results confirm our hypothesis

on Q Learning. That is, with the increase in the network

density, the service acceptance rate escalates at the cost of high

computational time. This will not be suitable for the real-time

scenario; thus, our main challenge is the network dynamism

and the complexity of VNF-FGE. Therefore, in future work,

we will be considering advanced RL models for optimization,

like DQL and DDQL. We will also be extending our work for

multi-domain networks.
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