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SurfaceView: Seamless and tile-based

orthomosaics using millions of street-level

images from vehicle-mounted cameras
Supannee Tanathong, William A. P. Smith, and Stephen Remde

Abstract—We tackle the problem of building city- or country-
scale seamless mosaics of the road network from millions of
street-level images. These “orthomosaics” provide a virtual top-
down, orthographic view, as might be captured by a satellite
though at vastly reduced cost and avoiding limitations caused by
atmospheric interference or occlusion by tree cover. We propose a
novel, highly efficient planar visual odometry method that scales
to millions of images. This includes a fast search for potentially
overlapping images, relative pose estimation from approximate
ground plane projected images and a largescale optimisation,
which we call motion-from-homographies, that exploits multiple
motion, GPS and control point priors. Since even city-scale
orthomosaics have petapixel resolution, we work with a tile-
based mosaic representation which is more efficient to compute
and makes web-based, real-time interaction with the images
feasible. Our orthomosaics are seamless both within tiles and
across tile boundaries due to our proposed novel variant of
gradient-domain stitching. We show that our orthomosaics are
qualitatively superior to those produced using state-of-the-art
structure-from-motion output yet our pose optimisation is several
orders of magnitude faster. We evaluate our methods on a dataset
of 1.4M images that we collected.

Index Terms—Structure-from-motion, image stitching,
gradient-domain blending, image mosaicing, tile-based mapping

I. INTRODUCTION

BUILDING city- or country-scale maps of the highways

has traditionally been the job of cartographers. Over

the past two decades, the availability of planet-wide, high

resolution satellite imagery has allowed these hand-built maps

to be augmented by digital imagery and elevation data enabling

a whole host of new applications. However, acquiring satellite

imagery is hugely expensive, dependent on clarity of the

atmosphere and resolution is limited by the large camera-

surface distance. For applications such as road condition

surveying, asset management and autonomous driving there

is a need to obtain much higher resolution imagery of the

highways with high temporal frequency so that deterioration

and change can be detected and monitored. This motivates the

use of street level imagery.

In this paper we describe a system for building virtual top-

down view maps of very large areas of the highways simply

by driving around a vehicle and collecting images from a

camera with an oblique view of the road surface (e.g. see
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Figure 1, middle). The resulting images are referred to as

“orthomosaics”, due to the fact that they are a mosaic of

many images (perhaps millions) and that they approximate

an orthographic view of the world from above, as might be

captured by a satellite. However, unlike satellite imagery, our

system is vastly less costly, is not dependent on having a

sufficiently clear atmosphere and the resolution of the images

is limited only by the resolution of the cameras mounted on

the vehicle. Hence, our orthomosaics allow visualisation of

the road network from a scale where the entire network is

visible, down to a scale where features such as surface cracks

are resolved in very high detail. Fig. 1 provides an overview

of our system and a video visualisation is available1.

Our system provides an attainable approach to build street-

level orthomosaics. Using only a GPS receiver and a camera

mounted on top of the vehicle with an oblique view to the

ground, when driving along the road, it captures images of

the road surface at the highest resolution and steers clear of

occlusions occupying the road surface unlike that collected by

airborne devices. This results in artefact-free, high-resolution

mosaics. Due to its practical setup, this can be used to

encourage voluntary crowd-sourcing street-level images for

community benefits. In addition, our survey driving-based sys-

tem is practical while, in some countries, flying drones/UAVs

in cities or residential areas are prohibited by law.

While methods for 3D modelling, i.e. structure-from-motion

(SfM), have been developed for very large-scale, street level

image datasets [1], the creation of seamless orthomosaics

has not previously been considered at this scale. While SfM

reconstructs sparse 3D models (each image contributes on the

order of a thousand feature points to the 3D scene), our goal is

to produce orthomosaics at the maximum resolution possible

from the input images (hence, each image contributes on the

order of a million pixels to the output mosaic). Hence, our

problem is roughly three orders of magnitude larger in scale

than a sparse 3D reconstruction.

Contribution In this paper, we propose specialised ap-

proaches towards creating large-scale orthomosaics at the scale

and quality needed for country-wide road surface inspection.

Our system comprises the pipeline shown in Fig. 2 with

two key novelties. First, we propose an alternative method

to SfM to solve for camera pose. With the assumption of

a locally planar surface, we reduce the complexity of the

problem to solve for only 6 unknowns per image and eliminate

1https://youtu.be/tFftnwe7ncE

https://youtu.be/tFftnwe7ncE
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Orthomosaics 

Fig. 1. Overview of our system. We build city scale, virtual top down view mosaics from street-level images at a scale where the entire network is visible
down to a scale where fine details of road surface can be inspected. See supporting video1.
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Fig. 2. Our proposed pipeline for creating large-scale orthomosaics.

the need for computing 3D scene points while achieving

the same accuracy as that obtained by conventional SfM (or

better where the planar degeneracies of a road scene cause

SfM to fail). Second, we propose a tile-based image stitching

method that can create seamless orthomosaics from millions

of images while preserving finescale details. Every step of

our pipeline scales to extremely large datasets, including a

fast method for finding potentially overlapping images and

simplified transformation model for filtering feature matches.

The rest of the paper is organised as follows: Sec. II

reviews related work. Sec. III defines notations and basic

models used in the later sections. Sec. IV-VIII describe the

complete pipeline as presented in Fig. 2. We demonstrate the

results of our method on our own dataset of 1.4M images in

Sec. IX including comparison with existing methods. Finally,

conclusions and future work are discussed in Sec. X.

II. RELATED WORK

This paper presents a system for building orthomosaics

from a collection of street-level images captured by a vehicle-

mounted camera with an oblique view of the road surface. We

see three categories of related work.

Camera pose estimation Prior to generating image mosaics

of a scene, the poses (positions and orientations) of the

cameras must be known. Main techniques used to obtain the

poses include simultaneous localization and mapping (SLAM)

and structure-from-motion (SfM).

SLAM These methods concurrently observe the surround-

ings to localise the observer’s position while incrementally

building an accurate map of the environment. Approaches

in SLAM can generally be classified based on the type

of sensors used to sense the environment. LiDAR SLAM

uses LiDAR sensors at its core while visual SLAM uses

cameras as a main sensor such as monocular-camera [2]–[6],

stereo [7]–[9], RGB-D [8], [10], [11], etc. Monocular-based

approaches, although widely adopted due to their simple and

economical setup, suffer from recovering the metric scale,

and that integrating with an IMU (either loosely-coupled or

tightly-coupled), referred to with a prefix visual-inertial, offers

a main advantage of solving scale ambiguity and providing

a more robust navigation. Examples of work include [12]–

[15]. Visual-based approaches may be classified, based on how

image information is utilised, as direct-based [16], for dense

reconstruction, or feature-based approaches [5], for sparse

reconstruction. The majority of SLAM methods tackle the

navigation problem in real-time, thus imposing a constraint

on computational resources. The approaches often require high

frame-rate image-sequences, although some report to be able

to work on a low frame-rate [4]. Many SLAM methods are

key-frame based approaches [7], [12], [17], in which key-

frames (subset of the entire images) are used to build the maps

hence reduce the scale of the optimisation tasks. Many works

have claimed to solve large-scale problems [4] (reported on

several kilometre), [7] (thousands of keyframes), [17] (several

hundred metres), also [5], [7], [9], [18], still not at the level

large-scale SfM methods have achieved. For a comprehensive

review of SLAM, see [19]–[21].

SfM Given a set of images, SfM estimates the poses of the

camera and simultaneously reconstructs a sparse 3D model of

the scene. Many existing SfM approaches have been proposed
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and can be broadly classified as incremental or global based

on how images are registered into the reconstructed model.

Incremental SfM [22]–[25] starts by constructing an initial

coarse model from a small number of images then iteratively

adds more images to grow the model. The incremental process

repeatedly uses bundle adjustment to re-estimate camera poses

and refine the model. Although the technique has been shown

to be successful, especially in solving very large scale prob-

lems such as Internet photo datasets [26]–[28], it tends to be

computationally expensive and may suffer from accumulated

errors [29].

Global SfM [30]–[32] on the other hand, estimates camera

parameters of all images simultaneously which leads to effi-

cient computation and encourages scalability. A key success

factor of the global approach lies on a good initialisation

of camera orientations and positions for bundle adjustment.

While approaches to estimating global rotation of each camera

are well established [33]–[35], computing global translation

priors is challenging, but recent studies have shown promising

results [36], [37]. Moreover, incorporating extra information,

such as sparse depth [30], vanishing points [38], GPS [39]–

[42] and inertial data, has proven useful with the latter two

common for photogrammetry and SLAM.

SfM approaches may also be divided into structure-based or

structure-less. The former refers to the conventional techniques

in which 3D structures are estimated simultaneously with

camera poses. While the latter eliminates 3D structures from

the bundle adjustment and is not so widely used. Instead

of minimising the cost of reprojection errors, Rodrigue et

al. [43] formulate their cost function based on the pairwise

epipolar constraints in which unknowns include only camera

poses of the two views. Similarly, Indelman et al. [44] ex-

clude structures and form the cost function based on multi-

view constraints. Zhou et al. [45] estimate camera parameters

for planar scene by minimising reprojection error based on

homography. Lovegrove et al. [46] perform visual odometry

also using a homography model with a global image alignment

cost. Sawhney et al. [47] optimise a similar cost function to

ours for small scale mosaicing.

Image Stitching After images are globally aligned through

SfM, in order to create pleasant looking mosaics the image

contents must be blended seamlessly through a technique

called image stitching. Image stitching can be classified as

transition smoothing or optimal seam approaches. Most re-

cent transition smoothing algorithms combine images in the

gradient domain. Instead of copying image intensities, Perez

et al. [48] copy the gradient field of the source region onto the

target region then the gradients in the target image are obtained

by solving a linear equation system constructed as Poisson

equation with Dirichet boundary served as guidance field.

Levin et al. [49] create the composite image by optimising

the dissimilarity between the composite image and the source

images over the gradient domain. The optimal seam finding

approaches place the seams to where disagreements in the

composite images are hardly noticeable. The most commonly

used technique for seam placement is through graph-cuts [50],

[51], other techniques include watershed segmentation [52]

and dynamic programming [53], [54]. The combination of

transition smoothing and optimal seam approaches is presented

in [51], where the source images are composed along the

seams then gradient-domain fusion is applied to reduce pho-

tometric inconsistencies. Recent studies have shown that deep

learning can also be used for image compositing [55], [56].

Solving a system of linear equations becomes computation-

ally expensive and requires huge memory especially when the

final composite image is large. Agarwala [57] reduce the size

of the problem by blending only where seams are present

by adaptively subdividing the image domain using a quadtree

hierarchy; reducing the problem by solving for the size of

the seam pixels instead of the size of the composite image

which substantially speeds up the computation. However,

when the number of source images increases or there are

too many optimal seams (e.g. small overlapping regions) the

performance can become poorer. An efficient computation can

also be achieved by implementing the gradient-domain solver

in a distributed manner as presented in [58].

Large-scale Image Mosaics Large-scale, high resolution

image mosaics are a useful representation for many analysis

and mapping tasks. Koef et al. [59] present a system to create

seamless “gigapixel” images and store the resulting panoramic

images as a pyramid of fixed-sized tiles which are fetched to

show only when requested. Prados et al. [60] create “giga-

mosaics” of large areas of seabed from sequences of images

with varying ligthing and altitudes. Ferrer et al. [61] used

similar priors to ours in the context of creating large-scale

underwater mosaics. We find the method to create photo-

mosaics in [60] to be similar to ours, although much different

in implementation details, in which (a) image stitching is

independently operated on tiles but still ensures smooth colour

transition between neighbour tiles (b) stitched images preserve

richness detail of the scene. However, ours is a single-step

process, while a post processing is required by [60] for smooth

transitions between adjacent tiles.

Many recent studies have shown impressive results in

generating large-scale photo-mosaics from UAV images.

Map2dfusion [62] builds large-scale orthomosaics in real-time

by incrementally blending warped image patches using an

adaptive weighted multi-band algorithm. Because the mosaic

plane is estimated by fitting sparse point clouds, the orthomo-

saics are not guaranteed to be completely planar. By assuming

a UAV flying orthogonal to the ground plane, MGRAPH [63]

discounts the roll and pitch motion such that the captured

images are restricted to a similarity transformation. To achieve

real-time performance, overlaying images are not blended

together, leading to visual artifacts under different lighting

conditions. OpenREALM [64] presents a system for real-time

aerial mapping system which can generate orthomosaics from

UAVs with a downward facing camera. Due to no exposure

correction or colour blending, the generated mosaics contain

artefacts around boundary of individual images. There are

additional work on large-scale mosaics in different settings

such as MAV [65], ROV and AUV [66] and commercial



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, NOVEMBER 2020 4

products such as Agitosft Photoscan2 and Context Capture3.

III. PRELIMINARIES

We assume that a sequence of images (which we refer to

as a “trace”) is captured by a moving vehicle with a fixed

camera oriented towards the road surface. A complete dataset

comprises Nt traces, where Nt could be > 1, 000. We denote

by Ii,tc (x, y) the intensity in colour channel c in the ith image

in trace t at pixel position (x, y), with i ∈ {1, . . . , Nt}, x ∈

{1, . . . ,W captured} and y ∈ {1, . . . , Hcaptured}. We assume that

the camera in trace t is calibrated, i.e. that the intrinsic matrix

Kt is known, where fx,t and fy,t are the focal lengths in

the x and y direction and cx,t and cy,t define the centre of

projection, and that the nonlinear distortion parameters, k1,t,
k2,t, p1,t and p2,t, are also known. We assume that the height

of the camera above the road, wmeasured
t , and the angle that

the camera view vector makes with the road surface, βmeasured
t ,

are approximately known, though they are later optimised per-

image so these measured values are used only for initialisation.

A. Motion model

We represent the pose of the camera captured the ith image

in trace t by the rotation matrix Ri,t ∈ SO(3) and the

translation vector ti,t ∈ R
3. Where we refer to only a single

trace, we drop the dependency on t.
A world point is represented by coordinates w = [u, v, w]T ,

where (u, v) is a 2D Universal Transverse Mercator (UTM)

coordinate representing position on the w = 0 ground plane

and w is altitude above sea level. Each camera has a standard

right handed coordinate system with the optical axis aligned

with the w axis. A world point in the coordinate system of

the ith camera is given by

wi = Riw + ti. (1)

It is convenient to represent the rotation as a composition

of four rotation matrices, one of which is fixed. The fixed

one aligns the world w axis with the optical axis of the

camera in canonical pose: Rw2c = Rx(90
�). We model vehicle

orientation by three angles: yaw, pitch and roll. We choose

this representation because the vehicle motion model leads to

constraints that can be expressed naturally in terms of these

angles. Hence, we define three rotation matrices Ryaw(α),
Rpitch(β) and Rroll(γ) for which the yaw angle rotating around

the camera’s y axis, the pitch angle around the x axis and the

roll angle around the z axis.

The overall rotation as a function of these three angles is

given by:

R(α,β, γ) = Rroll(γ)Rpitch(β)Ryaw(α)Rw2c. (2)

Hence, the rotation of the ith camera depends upon the

estimate of the three angles for that camera:

Ri = R(αi,βi, γi). (3)

The coordinate systems and rotation angles are visualised in

Fig. 3. We assume that each image is labelled with a geotag,

2https://www.agisoft.com
3https://www.bentley.com/en/products/brands/contextcapture

X 

Y 

(0,0) 

East (u) 

North (v) 

Elevation (w) 

2D map coord. system World coord. system Camera coord. system 

z 

x y 

roll 

pitch yaw 
moving direction 

(towards North) 

Fig. 3. The three coordinate systems as referred to in this paper.

(uGPS
i , vGPS

i ), providing an approximate position for the camera

in the ith image in world coordinates. In our system, this

geotag is provided by GPS augmented by wheel tick odometry.

B. Perspective projection and distortion

We assume that our cameras can be modelled by a pin-

hole perspective projection followed by radial and tangential

distortion. Accordingly, we define a projection matrix as

P = K



R t

01⇥3 1

�

, (4)

and write the perspective projection of a world point w as

x
0 = h

✓

P



w

1

�◆

. (5)

where the function h : R3 → R
2 homogenises a 3D point:

h([x, y, z]T ) =
⇥

x/z, y/z
⇤T

. (6)

For world points lying on the w = 0 ground plane,

i.e. [u, v, 0]T , we can express the transformation from ground

plane to image plane via the following homography:

H = K
⇥

RS
T

t
⇤

, S =



1 0 0
0 1 0

�

(7)

such that

x
0 = h

⇣

H
⇥

u v 1
⇤T
⌘

. (8)

The inverse projection from undistorted image coordinate

(x, y) to the ground plane is simply:


u
v

�

= h
⇣

H
�1
⇥

x y 1
⇤T
⌘

. (9)

To obtain pixel coordinates, we apply the distortion model

of Heikkilä and Silven [67] to the projected point:

x = distort(x0, fx, fy, cx, cy, k1, k2, p1, p2) (10)

Note that inverting the distortion function involves solution of

a nonlinear optimisation problem so, for efficiency, we avoid

undistorting image coordinates wherever possible.

C. Image to ground plane mapping

As illustrated in Fig. 1, our images provide an oblique

perspective view of the road surface (Fig. 1 middle). We

ultimately wish to produce a top-down, orthographic mosaic

of all images in a dataset. Therefore, during the final image

stitching, and also during feature extraction and matching, we

wish to project and resample captured images to the ground

plane. We do this using backwards mapping. This is more

efficient since it amounts to bilinear interpolation of a regularly

https://www.agisoft.com
https://www.bentley.com/en/products/brands/contextcapture
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sampled function (the input image) which is more efficient

than barycentric interpolation of an irregularly sampled func-

tion (which would be required if forward mapping was used).

Moreover, we avoid having to undistort the pixels in the

original image (using a backwards mapping we only need

compute a forward distortion).

Concretely, we define a grid on the ground plane in

terms of UTM coordinates u(X,Y ) and v(X,Y ) where

(X,Y ) is a pixel coordinate in the ground plane image

with X ∈ {1, . . . ,W grid}, Y ∈ {1, . . . , Hgrid}. Given an

estimated camera pose, the ground plane grid coordinates,

[u(X,Y ), v(X,Y )], are projected to the image plane via (8),

then distorted via (10) giving an image coordinate (x, y)
that can be used for bilinear interpolation into Ii,tc (x, y) and

the resulting value assigned to Igrid
c (X,Y ). This process is

repeated for all ground plane image pixels (X,Y ).

D. Tile-based mapping system

We use a multi-resolution, tile-based mapping system to

store and process our orthomosaics. Our implementation fol-

lows Google Maps conventions in which the spherical Merca-

tor projection is used and the size of a tile is H tile = W tile =
256 pixels [68]. Accordingly, the width and height of the map

at a zoom level Z is 256× 2Z pixels, so at zoom level Z = 0
the entire Earth is covered by a single tile. At higher zoom

levels, tiles within the map are indexed via their row, R, and

column, C, with R,C ∈ {1, . . . , 2Z}. Hence, any tile can be

uniquely indexed by Z/C/R. We denote by I
Z/C/R
c (X,Y )

colour channel c of pixel (X,Y ) in the tile Z/C/R, with

X,Y ∈ {1, . . . , 256}.

E. Binning images into tiles

Both for finding potential overlapping images between

traces (Sec. IV-B) and for stitching orthomosaic tiles

(Sec. VIII), it is helpful to associate with each tile the set

of images that contain parts of the ground plane that overlap

the tile. Depending on the camera parameters, multiple images

may overlap a single tile. We denote the set of images whose

ground plane projection overlaps tile Z/C/R by P(Z,C,R),
where (i, t) ∈ P(Z,C,R) if image i in trace t overlaps tile

Z/C/R. Computing these sets is a spatial binning problem

and thus runs in linear time [69].

We project image corners onto the ground plane using (9)

to form a 4-sided polygon, where the homography depends on

the estimated camera pose Ri,t and ti,t and results in images

projecting to different locations on the ground plane. An image

is binned into a tile if the ground plane projection of any

of the four image corners lies within the tile boundaries. As

camera lenses are subject to distortion, using distorted image

coordinates in (9) may omit some images near the border of

tiles. On the other hand, deriving undistorted coordinates from

distorted coordinates is not computationally efficient. A simple

solution is to extending the tile boundary by a few pixels to

compensate for image distortion.

IV. FAST SEARCH FOR POTENTIAL OVERLAPS

The first step in our pipeline uses fast geometric heuristics to

identify pairs of images that may contain overlapping regions

of the ground plane. The goal of this part of the pipeline

is to reduce the number of image pairs for which we must

conduct expensive image feature matching and match filtering.

We use two different procedures to identify potential overlaps

between: 1. images from the same trace (which we refer to as

self-overlaps) and 2. images from different traces (which we

refer to as between-trace overlaps).

A. Self-overlaps

Self-overlaps are detected for each trace independently

according to two heuristics. First, our images come from a

sequence. Moreover, in our setup we trigger image capture

using GPS and wheel tick odometry information such that

there is an approximately fixed distance between consecutive

images. This means that it is possible to choose a constant

offset O ∈ N>0, within which we expect images to overlap,

i.e. we expect image i to contain overlaps with images i−O,
. . . , i+O. We refer to this as a sequence heuristic and define

the set of such potentially overlapping pairs for trace t as:

Ot
seq = {(i, j)|1 ≤ i, j ≤ Nt ∧ 0 < j − i ≤ O}, (11)

and hence |Ot
seq| = NtO −O(O + 1)/2.

Second, since the trajectory of the capture vehicle may

intersect with itself or even retrace previously covered ground,

we also seek to detect potential overlaps between images that

are not close in the image sequence. We do this by comparing

the ground plane projection of image centres. The distance

between projected image centres is given by:

dcentroid(i, j) =

�

�

�

�

�

�

H
�1
i

2

4

cx
cy
1

3

5−H
�1
j

2

4

cx
cy
1

3

5

�

�

�

�

�

�

(12)

where Hi is the homography that transforms from the ground

plane to the ith image computed according to (7). Of course,

the homography depends upon camera pose estimates which

we have not yet optimised. Hence, for this test we construct

the homography using the initialisation from GPS location and

bearing as described in Sec. VI-A.

We search for all pairs where the Euclidean distance be-

tween centroids is less than a threshold:

Ot
centroid = {(i, j)|dcentroid(i, j) < t} (13)

This is a 2D fixed-radius all nearest neighbours search, which

can be computed in O(Nt + |Ot
centroid|) time [70]. The set of

potentially self-overlapping image pairs is then given by:

Ot
self = Ot

seq ∪Ot
centroid. (14)

B. Between-trace overlaps

During pose estimation, we begin by optimising over each

trace independently (see Sec. VI) prior to incrementally

combining traces (see Sec. VII). Hence, when searching for

potential overlaps between images from different traces, we

have already performed pose optimisation on individual traces
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and so pose estimates (Ri,t, ti,t) are available for every

image in every trace. If trace s and t contain potentially

overlapping images, then we store a set, Os,t
between, s < t, such

that (i, j) ∈ Os,t
between if image i in trace s is a potential overlap

for image j in trace t. To compute this set, we proceed through

a sequence of tests of increasing complexity so that the number

of images considered by the more expensive and accurate tests

is kept to a minimum.

To find candidate pairs from the entire image set, we use

the spatial binning process described in Sec. III-E. Any tile

that contains images from more than one trace could contain

images with between-trace overlaps. For all pairs of images

from different traces that are binned to the same tile, we

now test for intersections between the bounding boxes of the

ground plane projections of the images. If the bounding boxes

overlap, we perform a point in polygon test [71]. Two images

are considered potentially overlapping if (1) the centroid of

one polygon is inside the other, or (2) at least 3 corners of

one polygon are inside the other, or (3) two corners are inside

the other and those are not adjacent, or (4) at least 1 corner

is inside the other and the area of overlap is greater than a

threshold. For the latter case, we need to compute the area

of overlap. First we form a polygon from the corners inside

the other polygon and the edge intersections. Then the area is

efficiently computed using Meister’s shoelace formula [72].

V. FEATURE EXTRACTION AND MATCHING

Having found pairs of images that potentially contain over-

lapping regions of the ground plane, we then proceed to

compute feature matches between images. We make this pro-

cess robust by filtering the matches according to a simplified

motion model. Any pair of images with an insufficient number

of inlying matches is discarded. The feature matches between

all other pairs are retained and used later in the pose optimi-

sation process. Unlike in a conventional 3D SfM pipeline, we

compute only pairwise matches. This is because we require

only pose estimates and do not reconstruct the 3D position of

matched features. This vastly reduces the complexity of the

pose optimisation process while being sufficient for our final

goal of orthomosaic stitching.

The part of the scene in which we are interested (the road

surface) can be assumed to be locally planar. We exploit this

during feature matching in two novel ways. First, we perform

feature extraction on images that have been reprojected to

an assumed ground plane. This has the effect of normalising

the appearance of features that lie on the ground plane (by

approximately undoing the effect of perspective projection)

and improving the likelihood of matching the same point

viewed from different locations. It also has the added benefit

of distorting the appearance of features that do not lie on the

road plane (such as buildings, signage or vehicles) so that they

are less likely to be matched. Second, we assume a simplified

motion model with only three degrees of freedom which means

that feature matches can filtered efficiently and robustly.

A. Image to ground plane mapping

We map each image to a canonical ground plane projection

using the method described in Sec. III-C under an assumed

pose c = [0, 0, wmeasured]T , α = γ = 0 and β = βmeasured.

Any deviations in cw or β from their measured values or γ

from zero will cause this projection to be distorted but we

expect these deviations to be small and the distortions to be

insignificant for this part of the process.

Specifically, to define the ground plane grid, we project

the image corners assuming canonical pose using (9) and

compute a bounding box. We then define a regular grid of

specified resolution over the extent of this bounding box.

As in Sec. III-C, we project each grid point back into the

image using (8) and perform forward distortion with (10). Note

that the grid and its projection depend only upon wmeasured,

βmeasured, K and the nonlinear distortion parameters. Therefore

the grid and its projection only need be computed once per

trace. For each image, we now perform bilinear interpolation

at the grid sample points to compute a ground plane projected

image. An example of two input images and their ground plane

projections can be seen in rows 1 and 2 of Fig. 4.

B. Feature matching

We compute local features in the ground plane images. Let

uf denote the location in the ground plane image of feature f .

We also compute and store x
0
f , by projecting uf back into the

image with (8) (note that we do not distort this location since

we will later project them back to the ground plane during

pose optimisation). The x
0
f are the undistorted locations of

features in the image plane.

We expect features in the projected ground plane images to

approximately retain their appearance and scale but that the

orientations of the same features in two different images will

differ by a global 2D rotation. Hence, we do not require invari-

ance to affine distortion but do require rotational invariance at

the initial matching stage. While there are a number of feature

descriptors that satisfy these criteria, we use SIFT [73] though

any other suitable descriptor could be substituted. We compute

greedy matches between features in pairs of images identified

as potentially overlapping using the methods in Sec. IV. We

filter these matches for distinctiveness using Lowe’s ratio test

[73].

Even with this filter applied, the matches will still contain

noise that will disrupt the alignment process. Specifically,

they may include matches between features that do not lie

on the road plane (such as buildings or signage) or between

dynamically moving objects (such as other vehicles). If such

matches were retained, they would introduce significant noise

into the pose refinement process.

C. Filtering matches with a simplified motion model

We now filter feature matches such that they are geometri-

cally consistent with a simplified motion model. Specifically,

we assume that between a pair of images, the vehicle may

translate in the u, v plane and that its bearing may change. In

other words, we assume that pitch, roll and the height of the

camera above the ground plane remain fixed. This restricted

transformation therefore only has three degrees of freedom.

In the projected ground plane images, this means that we

seek a 2D proper rigid transformation (i.e. a translation and
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Fig. 4. Feature matching in the ground plane. First row (naive method):
feature matches on undistorted images that are consistent with a homography.
Second row (proposed method): feature matches in images projected to
ground plane that are consistent with 2D proper rigid transformation. Bottom:
alignment using matches in second row.

rotation). The least squares best fitting such transformation can

be found in closed form using a restricted version of Procrustes

alignment [74] (allowing only translation and rotation). To

measure the error between a pair of matched feature locations

after computing a best fitting transformation, we use the

Procrustes distance and symmetrise by taking an average of

the forward/backward transformation.

We use this simplified motion model in conjunction with

RANSAC to compute the set of inlying feature matches. From

the greedy feature matches, we randomly select two matches

(the minimum required to fit a 2D proper rigid transformation).

We fit the transformation and define inliers as those with a

Procrustes distance of < 10 pixels. An example of the final

result is shown in Fig. 4. In the top row we show a pair of input

images. The feature matches after RANSAC filtering between

features in the projected ground plane images are shown in the

second row. For comparison, the top row also shows the result

of matching directly in the original images (we first undistort

the images, compute greedy feature matches, then fit a general

homography to filter the matches). It is clear that the ground

plane images provide more matches than the naive method and

that they correspond to the correct transformation. Finally, at

the bottom of the figure we show the alignment using the

fitted 2D proper rigid transformation. Note that this is not the

alignment used in the final orthomosaic stitching. It is just the

coarse transformation used to filter feature matches.

The final set of inlying matches are stored as Ms,t
i,j , where

(f, g) ∈ Ms,t
i,j if feature f in the ith image in trace s is

matched to feature g in the jth image of trace t. For the

set of matches between images in the same trace, we write

simply Mt
i,j . The locations of the features in the ground

plane projected images are not used in the following pose

optimisation and can be discarded at this point.

VI. MOTION-FROM-HOMOGRAPHIES

We now address the problem of estimating accurate camera

poses for each image in a single trace. The pose needs to

be sufficiently accurate that, when images are later projected

to the ground plane, overlapping images have at least pixel-

accurate alignment. Otherwise, there will be misalignment

artefacts in the stitched orthomosaic images. This can be

viewed as an SfM problem. However, previous approaches

for SfM are not applicable in this setting for two reasons:

1. Images in which the scene is primarily the road surface

are largely planar. This is a degenerate case for estimating

a fundamental matrix and subsequently reconstructing 3D

scene points. 2. Typically, the number of 3D scene points

reconstructed by the SfM process is much larger than the

number of pose parameters to be estimated. This means that

SfM does not scale well to very large problems, e.g. those

containing millions of images.

Similarly, methods based on visual odometry or Simul-

taneous Localisation and Mapping (SLAM) are not appli-

cable. They typically require high frame rates in order to

robustly track feature points over time. Sampling images at

this frequency is simply not feasible when we wish to build

orthomosaics of thousands of kilometres of road.

The pipeline described in Sec. IV and V provide sets of

matched features between pairs of images within the same

trace and between different traces. These matches have been

found and filtered by assuming that the road surface is locally

planar so that images can be projected to the ground plane

via a homography. For this reason, we refer to our method

as motion-from-homographies. We now solve an optimisation

problem that uses the estimated pairwise matches directly

without reconstructing the 3D world position of the features.

This vastly reduces the complexity of the optimisation problem

that we need to solve compared to SfM. The number of

unknowns is simply 6N for an N image sequence.

A. Initialisation

We rely on GPS and an initial estimate of the camera height

above the road surface to initialise the location of each camera:

c
init
i

= [uGPS
i , vGPS

i , wmeasured]T where (uGPS
i , vGPS

i ) is the GPS

estimate of the ground plane position of the ith camera and

wmeasured is the measured height of the camera above the road

surface in metres. This need only be a rough estimate as the

value is subsequently refined.

To initialise rotation, we compute yaw from the GPS

bearing. First, we compute a bearing vector using central
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differences: bi = 0.5[uGPS
i+1 − uGPS

i�1, v
GPS
i+1 − vGPS

i�1]
T . Second,

we convert this into a yaw angle: αinit
i = atan2(−bi,1, bi,2).

We initialise the pitch to a measured value for the angle

between the camera optical axis and the road surface and the

roll to zero: βinit
i = βmeasured and γinit

i = 0. Again, βmeasured

only need be roughly estimated since it is later refined.

B. Single trace data objective

For a single trace, we compute an objective function, εdata,

which measures how well matched features align in the ground

plane. We refer to this as our data term:

εtdata({Ri, ti}
Nt

i=1) = (15)

X

(i,j)2Ot
self

X

(f,g)2Mt
i,j

�

�

�

�

h

✓

H
�1
i



x
0
f,i

1

�◆

− h
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H
�1
j



x
0
g,j

1

�◆�

�

�

�

2

where x
0
f,i is the 2D position in the image plane of the

f th feature in image i, obtained by projecting the ground

plane feature location back to the image, as described in

Sec. V-B. Hi is the homography from the ground plane

to the ith image given by (7) using the estimated Ri and

ti. (15) shares some similarities with the data term used in

bundle adjustment in the general SfM problem. However, there

are some important differences. First, rather than measuring

“reprojection error” in the image plane, we measure error when

image features are projected to the ground plane. Second, the

objective depends only on the camera poses - we do not need

to estimate any 3D world point positions. The first difference

is important because it encourages exactly what we ultimately

want: namely, that corresponding image positions should align

in the final orthomosaic. The second difference is important

because it vastly reduces the complexity of the problem and

makes it viable to process very large sets of images.

C. Priors

We not only wish to minimise the ground projection error,

Sec. VI-B, we also wish to constraint the camera poses

based on the priors of the vehicle. Since we expect the

vehicle’s orientation with respect to the road surface to remain

approximately constant, we can impose priors on two of the

angles. First, we expect side-to-side “roll” to be small, in

general only being non-zero when the vehicle is cornering.

Hence, our first prior simply penalises the variance of the roll

angle estimates from zero:

εroll({Ri, ti}
Nt

i=1) =

Nt
X

i=1

γ2
i . (16)

The second angular prior penalises variance in the angle

between the camera optical axis and the road plane, i.e. the

pitch angle, such that it remains close to the average tilt angle:

εpitch({Ri, ti}
Nt

i=1) =

Nt
X

i=1

 

βi −
1

N

N
X

i=1

βi

!2

. (17)

Third, we penalise variance in the estimated height of the

camera above the road surface since we expect this to remain

relatively constant, hence the average height:

εheight({Ri, ti}
Nt

i=1) =

Nt
X

i=1

 

ci,3 −
1

N

N
X

i=1

ci,3

!2

. (18)

Fourth, we may be provided with ground control points
(GCPs). These are a set of Ng points for which the ground
plane coordinates (uGCP

1 , vGCP
1 ), . . . , (uGCP

Ng
, vGCP

Ng
) are known

and the correspondence of these points to pixels in some
images is known. GCP correspondences are stored in the set
CGCP such that (i, j, (x, y)) ∈ CGCP if pixel (x, y) in image
i corresponds to the jth GCP. We penalise the distance in
the ground plane between the actual GCP position and that
predicted by the pose of a camera which has a correspondence
to a GCP:

εGCP({Ri, ti}
Nt

i=1) =
X

(i,j,(x,y))2CGCP

�

�

�

�

�
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Fifth, we introduce ground control lines (GCLs). In some
cases, it is difficult to define a point-to-point correspondence
between image and map but road boundaries, kerbs or road
lines may allow us to associate an image point to a line on
the ground plane. We define a set of Nl GCLs, CGCL, such
that (i, j, (x, y)) ∈ CGCL if pixel (x, y) in image i corresponds
to the jth GCL. We define a GCL by its 2D line equation
in the ground plane, such that the jth GCL is defined by:
aju+bjv+cj = 0. We penalise the point-line distance between
the GCL and the ground plane projection of pixels in CGCL:

εGCL({Ri, ti}
Nt

i=1) =

X

(i,j,(x,y))2CGCL

1
q

a2
j + b2j

�

�

�

�
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Finally, we can use the estimated camera position provided

by GPS in two ways. First, we can penalise absolute deviation

from the GPS position:

εAGPS({Ri, ti}
Nt

i=1) =

Nt
X

i=1

�

�ci − c
init
i

�

�

2
. (19)

However, GPS can provide more accurate relative rather than

absolute position information [75]. Hence, a second prior can

penalise deviation from the relative position change provided

by GPS:

εRGPS({Ri, ti}
Nt

i=1) =

Nt�1
X

i=1

�

�(ci − ci+1)−
�

c
init
i − c

init
i+1

��

�

2
.

(20)

D. Single trace pose optimisation

For a single trace, we now optimise a hybrid objective

function comprising a weighted sum of the data term and all

priors. We initialise using the process described in Sec. VI-A

and then optimise using nonlinear least squares. Specifically,

we use the Levenberg-Marquardt algorithm as implemented

in Ceres [76] which exploits Jacobian sparsity to improve

efficiency and automatically computes analytical first order

derivatives.
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VII. INCREMENTAL MULTI-TRACE OPTIMISATION

An orthomosaic of a complete road network is likely to

comprise many traces. Each trace may overlap with many

others and to obtain a seamless orthomosaic, all overlapping

regions must be optimised together. One solution would be to

combine all traces into a single one and run the optimisation

in the previous section. However, even with the simplifying

assumptions made, this does not scale to millions of images.

Instead, we propose an incremental process in which we

optimise a single trace at a time but ensure that the new trace

aligns with the previously optimised traces. This ensures that

the size of any one optimisation problem is kept small.

Whenever a new trace is added into the network we use

the fast search technique discussed in Sec. IV-B to find

potential overlaps between the new trace and the existing

traces and obtain filtered matches between them. Then, for

each previously optimised trace s that overlaps with the new

trace t, we add an additional cost:

εmulti({Rt,j , tt,j}
Nt

i=1) =

X

(f,g)2M
s,t

i,j
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�

�

h
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�1
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1
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− h

✓

H
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2

,

(21)

where xt,j,g refers to the gth feature in image j in trace t and

Ht,j is the homography from ground plane to the jth image

in trace t, i.e. that is constructed from Rt,j and tt,j using (7).

The overall optimisation for trace t comprises the single

trace objective as in Sec. VI-D with additional objectives of

the form (21), one for each overlapping trace. This additional

cost will minimise the misalignment between the current and

existing optimised traces.

VIII. TILE-BASED IMAGE STITCHING

This section describes our strategy for stitching images

into a set of tiles that together form a seamless orthomosaic.

There are two challenges in doing so. First, a stitched tile

image must combine information from all of the images that

overlap the tile without introducing artefacts such as seams at

projected image boundaries or blurring caused by imprecise

alignment. Second, images for adjacent tiles must appear

seamless when placed side by side. To remain computationally

tractable we cannot stitch all tiles simultaneously and so we

must impose constraints between adjacent tiles whilst allowing

tiles to be stitched in any order. Our approach is based on

gradient domain blending [48] with two novel modifications:

1. gradients are selected from the source image pixel with

maximum resolution and, 2. the introduction of boundary

constraints when stitching a tile where one or more neighbours

have already been stitched.

A. Per-pixel blending weights

Since our camera provides an oblique perspective view of

the road surface, the camera-road distance (and hence the

projected resolution) varies with pixel position. Specifically,

pixels towards the bottom of the image are closer to the camera

near 

distance to 

camera 

far 

1.0 

0.0 
(a) (b) (c) (d) 

Fig. 5. Creating and projecting a weight image: (a) the camera mounted on
the roof of the vehicle tilted towards the road surface, (b) the bottom part
of the image closer to the camera is observed at higher resolution, (c) the
weight coefficient of each pixel is inversely proportional to the distance from
the camera, (d) projection of (c) to a tile.

and are observed at higher resolution. We use this principle to

compute a weight for each pixel in each captured image and

project these weights to tile pixels. These are subsequently

used as the blending weights for gradient domain tile stitching.

Specifically, for image i in trace t, we compute a weight

image Ai,t(x, y) ∈ R�0. We consider two alternatives for

these weight images. First, the exact camera-ground distance

for each pixel could be computed using the estimated pose.

This involves undistorting a pixel coordinate, projecting to the

ground plane using the estimated pose via (9) then computing

the distance between this point and the camera centre. How-

ever, this must be done for each image independently which is

expensive. The second option uses a much simpler alternative.

We linearly vary the weight according to the pixel row such

that the top row has zero weight and the bottom has weight

one, i.e. Ai,t(x, y) = y/Hcaptured. While not exact, this has the

advantage of being very cheap to compute and constant across

all images. We use this second strategy in our implementation.

Finally, for all images that overlap tile Z/C/R, i.e. where

(i, t) ∈ P(Z/C/R), we apply the projection and resampling

method described in Sec. III-C to project the weight image

Ai,t(x, y) into the tile, yielding A
Z/C/R
i,t (X,Y ). Tile pixels

that are not covered by the projection are assigned a weight

of 0. This process is illustrated in Fig. 5.

B. Seamless orthomosaics within a tile

We now perform gradient domain blending in order to

combine all images that overlap a tile and obtain seamless

orthomosaics within that tile. This amounts to solving a large,

sparse system of linear equations in which the unknowns are

the image intensities for the stitched tile, i.e. I
Z/C/R
c (X,Y ).

The reconstructed intensities seek to preserve the image gra-

dients selected from the image with highest weight, i.e. from

the image that observed that point with highest resolution.

Specifically, the target gradients are approximated using

forward finite difference and computed as:

Gc
x(X,Y ) = I

Z/C/R
c,i∗,j∗ (X + 1, Y )− I

Z/C/R
c,i∗,j∗ (X,Y ), (22)

Gc
y(X,Y ) = I

Z/C/R
c,i∗,j∗ (X,Y + 1)− I

Z/C/R
c,i∗,j∗ (X,Y ), (23)

where (i⇤, t⇤) is the image with highest weight for that pixel:

(i⇤, t⇤) = argmax
(i,t)2P(Z/C/R)

A
Z/C/R
i,t (X,Y ), (24)

and I
Z/C/R
c,i,j is the ground plane projection of colour channel

c of image i in trace t computed as described in Sec. III-C.
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Fig. 6. Left: Visible seams at the boundaries of tiles. Right: Smooth colour
transition between tiles yet still computed independently.

We switch to backward finite difference at the right hand

boundary of the image. An image can only be reconstructed

from gradients up to an unknown offset. To resolve this

indeterminacy and to encourage the overall brightness and

colour to match the original captured images, we include

guide intensities as regularisation. This is simply computed by

averaging all the ground plane images (ignoring pixels with

zero weight). We denote this average image as Icguide(X,Y ).
The intensities for a stitched tile in colour channel c can

now be computed by solving the following system of linear

equations in a least squares sense:
2

4

DX

DY

λI

3

5 vec(IZ/C/R
c ) =

2

4

vec(Gc
x)

vec(Gc
y)

λvec(Icguide)

3

5 . (25)

Here, the matrices DX ,DY ∈ R
n2⇥n2

compute finite differ-

ence approximations of the gradient in the X and Y directions

respectively with n = H tile = W tile. These matrices are sparse

(only two non-zero entries per row using finite differences). I

denotes the identity matrix and λ is the regularisation weight

which can be set to a small value. The solution to this system

of equations can be seen as recovering detail from the gradient

in the best image but overall brightness from the average of all

images. Such systems can be solved efficiently meaning the

tile stitching process could potentially be done in real time.

C. Seamless orthomosaics between tiles

If an orthomosaic tile is stitched independently using the

process in Sec. VIII-B, then boundaries between adjacent

tiles will be visible, as illustrated in Fig. 6 (left side). This

problem is particularly noticeable when camera exposure vary

dramatically between images. We resolve this problem by

including overlaps with previously stitched neighbouring tiles.

This is done by extending the size of the guide image,

Icguide, for e pixels equally at each side to create a small

overlap with the neighbouring tiles. We solve for the unknown

intensities over this larger m × m image but only include

gradient constraints within the original tile region. Hence, Dx

and Dy are modified to have size n2 × m2 and the target

gradient images retain their size of n×n. We replace the fixed

λ with a per-pixel weight encoded as a vector λ ∈ [0, 1]m
2

.

If the ith vectorised pixel lies within the overlap region we

have only the guide intensity constraint and so λi = 1. If an

adjacent tile has not yet been stitched, we set λi = 0 and Icguide

to an arbitrary value for those pixels in the overlap region.

Since the guide intensities within the interior of the tile

are formed by averaging the overlapping images, they may be

inconsistent with the guide intensities in the overlap regions

that are provided by previously stitched tiles. For this reason,

we set λi = 0 if the ith vectorised pixel lies on the boundary of

the tile interior. For interior pixels not lying on the boundary,

we increase λi linearly over a distance e from the boundary

with the remainder set to a constant, for which we use λi =
0.1. The modified system of equations is:

2

4

DX

DY

diag(λ)

3

5 vec(IZ/C/R
c ) =

2

4

vec(Gc
x)

vec(Gc
y)

diag(λ)vec(Icguide)

3

5 . (26)

The guide intensities in the overlap regions cause tile bound-

aries to exactly match with adjacent tiles. Any large intensity

changes that would have occurred are made less visible as

low frequency transitions. This allows us to stitch tiles one at

a time but still produce a seamless mosaic (see Fig. 6, right).

Although the system is sparse and thus quick to solve, we

can still improve speed by reducing the number of equations

for guide intensity constraints. Instead of including all the

pixels in the interior, we can only include a reduced subsample.

Not only does this improve speed, the quality of the stitched

image is also improved because it avoids the solution being

encouraged towards the overly smooth average image.

D. Orthomosaic map generation

Of course, the use of previously stitched tiles as constraints

when stitching a new tile means that the overall result is

dependent on the order in which tiles are stitched. In addition,

if stitching is parallelised then care must be taken to avoid

independently stitching neighbouring tiles. To avoid this, we

feed tiles to the concurrently running threads such that they

have R or C different by at least 2, i.e. are non-adjacent.

Finally, an orthomosaic for any region can be constructed

by simply placing the tiles side by side according to its

tile positions. In practice, a user interacts with the map by

changing the region of interest (e.g. by dragging the map) or

the zoom level, which generates requests for a set of tiles.

These are either returned directly (if they were precomputed

in advance) or stitched on-the-fly in an on-demand implemen-

tation. In principle, the entire orthomosaic could be created by

concatenating all stitched tiles together into one large map.

IX. EXPERIMENTS

Data The datasets presented in this study were collected by

seven vehicles equipped with a downward facing camera and

a GPS receiver, both of which were temporally synchronised.

The settings of these cameras, e.g. the downward angle and the

height of the camera on the rig, were roughly hand measured

whilst fitting, for use as initial estimates for pose optimisation,

and the cameras are all pre-calibrated.
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OpenMVG [77] OpenSfM [78] Ours

Fig. 7. Qualitative comparison on a 400-image sequence with a simple
trajectory. Orthomosaics are created using the estimated camera poses from
Left: OpenMVG [77], Middle: OpenSfM [78] and Right: ours. Our work has
shown to be superior to the two approaches, noticeably at the crossing lines
highlighted as yellow boxes. (Zoom for detail).
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Fig. 8. Camera pose obtained on a 400-image trajectory. Left: heights remain
close to the approximate height of the camera above the ground, Middle: pitch
fluctuates when the vehicle goes over uneven surfaces, Right: rolls deviate
from 0

� when the vehicle is cornering.

Pose estimation evaluation We first evaluated the reliability

of our proposed motion-from-homographies by comparing

against two4 state-of-the-art SfM implementations: OpenMVG

[77] (based on global SfM) and OpenSfM [78] (incremental

SfM). Fig. 7 compares the orthomosaics created using the

poses estimated by these two approaches and ours on a 400-

street-level-image sequence with GPS. OpenMVG was unable

to obtain poses at the start and end of the trajectory and the

inaccurate estimated poses at the end caused the road to appear

4Note that other potential comparison methods, e.g. COLMAP [22], Visu-
alSfM [23], Bundler [26] and MVE [79], do not support GPS priors, hence
give much worse performance and so the comparison is unfair.

OpenSfM [78] Ours (single) Ours (multiple)

(a)

(b)

(c)

(d)

(e)

Fig. 9. Qualitative results on a crossing and overlapping two-trace dataset.
Left: OpenSfM [78], Middle: Our method with single-trace optimisation and
Right: Our method with multiple-trace optimisation. First row: orthomosaics
of the entire scene. Other rows, corresponding to the points (a)-(e) labelled on
the top-left image, show that our methods produce superior results especially
when two traces crossing each other. (Zoom for detail).

wider. Our work has shown to be superior to OpenMVG in

most parts of the orthomosaics and achieved slightly better

results than OpenSfM in some areas, see the bottom three rows

of Fig. 7. With 3D structures being eliminated, our approach

consumed only 21 sec for bundle adjustment (reduced to 9 sec

when running with multiple threads) while [77] and [78] took

17 mins and 2.47 hours, respectively. We excluded the time

taken for feature extraction and matching.

We quantitatively evaluate pose estimation by measuring

the error between observed and predicted groundpoints, using

(9). We labelled 7 groundpoints and 30 corresponding image

GCPs. Note that these GCPs were used only for evaluation, not

for pose optimisation. The errors were 0.27± 0.095m (ours),

0.27 ± 0.094m (OpenMVG) and 1.61 ± 0.14m (OpenSfM).

Hence, our performance matches OpenMVG while requiring

significantly less computation time and noting that OpenMVG

fails to compute poses for about half of the sequence.

Our estimated camera poses correspond well with our

objective functions. Fig. 8, left shows the height of the camera

remains approximately constant and close to the measured

height. Similarly, pitch angles (middle) remain almost con-

stant at around 30�, and both heights and pitches change
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[80] no gain [80] with gain Ours

Fig. 10. Qualitative comparison of image blending from Left: [80] no gain
compensation, Middle: [80] with gain compensation and Right: Our proposed
work. Top row: stitching result, bottom row: gradient magnitude.

significantly only when the vehicle goes over uneven surfaces

e.g. speed bumps. The roll angles (right) are close to 0� most

of the time except when cornering during frames 150-170.

We also evaluated our method in comparison with OpenSfM

[78] on a two-trace dataset (790-image and 484-image se-

quences) crossing and overlapping each other. We tested our

motion-from-homographies on two modes. For the first mode,

similar to that given to OpenSfM, these two traces were com-

bined and optimised as a single trace. For the second mode,

which is the typical way we deal with multiple traces, we

started by optimising one trace then incrementally optimised

the second trace based on the multiple-trace optimisation. Our

method consumed 11.26 mins using the single-trace based

approach and only 2.35 mins with the multiple-trace approach

for bundle adjustment, while OpenSfM consumed 53 hours.

Our proposed work produced superior alignments where the

two traces overlap while OpenSfM failed to connect two parts

of the road, presented as (a)-(d) in Fig. 9, and produced

misalignment artefacts, the bottom row of Fig. 9.

Image-stitching evaluation We compared our image stitch-

ing against [80]. Since we wish to produce a virtual top down

view of the stitched images, we used our camera poses com-

puted from the previous experiment for image registration then

used [80] to stitch the images via multi-band blending with

and without gain compensation, see Fig. 10 for comparison.

To quantitatively evaluate how well our stitching method can

preserve fine features in the produced results, we computed

the gradient magnitude averaged over foreground pixels as

a measure of sharpness in a stitched image. Averaging over

images, [80] without gain compensation yielded a mean gra-

dient magnitude of 0.128, with gain compensation this was

0.126, while our method produced the sharpest images with

0.218. We conclude that our stitching approach can preserve

fine details significantly better than [80].

Comparison with state-of-the-art We wish to compare our

proposed system against many state-of-the-art systems. Due

to the requirements of the captured images to be orthogonal

to the ground [64], [63], lack of orthomosaics features in

TABLE I
COMPARISON WITH STATE-OF-THE-ART

Mosaic-sizea (pix) time (pose) time (mesh) time (stitch)

AP 21776× 17807 30m 51m 11m
CC 22600× 16384 2h 40m − 10m
Ours 19968× 16896 10m − 22m

a The difference in orthomosaics size is due to the background pixels padded
to the final results.

AutoStitch5, OpenPano6, issues with memory management

[65], we could only be able to compare our system against

Agisoft Photoscan7(AS) and Context Capture8(CC). We use

the same dataset as that used in Pose estimation evaluation,

and the computational results are presented in Tab. I. Ours pose

estimation consumes one third processing time of that used for

AP but without the need for computing mesh and is signifi-

cantly less than that of CC. The stitching time used in ours is

twice that of the two. This is because our work generate each

tile independently and that no data are shared between them.

However, since minimum computational resource (particularly

memory) is used to create a tile, this enables us to generate

several tiles in parallel up to the limit of the processor (in

this experiment, we ran 8 threads in parallel). Overall, ours

consumes less processing time than these two commercial

software. Fig. 12 compares the orthomosaics generated by

AP, CC, MGRAPH9 and ours. Our results are competitive

with AP and CC showing no artefacts between the stitched

images, while discontinuity seams around image boundaries

are visible in MGRAPH results as their orthomosaics are

generated without blending and even look more blurry. AP

and ours have shown to preserve fine details where CC,

though impressive, losses some sharpness and washes out

some detail in some parts (this is likely because their system

also eliminates shadow presenting in the stitched images). We

conclude that orthomosaics generated from our novel system

is comparable as that from commercial products.

Large-scale evaluation To demonstrate the performance

of our proposed methods on large-scale datasets, we used a

dataset of 1.4 million images, made up from 1,700 traces

acquired by three vehicles driving around the city of York,

UK, for a period of ten days during summer daytime. The

dataset covered roughly 350km2, measured from the extreme

boundary. We processed the whole dataset on a 12-core CPU

with a 128-GB RAM. We relied on parallel processing, in

which we extracted features and obtained matches for self-

overlaps, as discussed in Sec. IV-A, for individual traces

in parallel. Then we started by running our motion-from-

homographies on the traces which were provided with GCPs

or GCLs to obtain camera poses and treated them as the

established trace network. After that we extended the road

5http://matthewalunbrown.com/autostitch/autostitch.html
6https://github.com/ppwwyyxx/OpenPano
7https://www.agisoft.com
8https://www.bentley.com/en/products/brands/contextcapture
9Since MGRAPH does not work with oblique images, we used the camera

poses computed by our system for image registration and used their approach
[63] to create orthomosaics.

http://matthewalunbrown.com/autostitch/autostitch.html
https://github.com/ppwwyyxx/OpenPano
https://www.agisoft.com
https://www.bentley.com/en/products/brands/contextcapture
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Fig. 11. Qualitative results on a 1.4 million-image dataset. Orthomosaics are generated and overlaid on top of aerial images (boundary between orthomosaic
and aerial image shown in green). First row: stitched images from a single trace. Second row: stitched images from two traces running in opposite direction.
Third row: junctions where at least two traces crossing and joining each other. Fourth row: no through road where the vehicle had to re-trace or made a
u-turn. Fifth row: loops or roundabout. Two bottom rows: fine details of road defects extracted from our orthomosaics. (Zoom for detail).
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AP CC MGRAPH9 Ours

Fig. 12. Qualitative comparison of orthomosaics generated (from left to right)
by Agisoft Photoscan, Context Capture, MGRAPH9 and ours. (Zoom for
detail).

network by incrementally optimising traces that overlapped

with any of the established traces, Sec. IV-B, and this step

was run in parallel. Once completed, we stitched each tile

in parallel, and the final orthomosaics were simply created

by placing tiles side by side based on its geo-positions.

We generated in total 40.5 billion tiles for 4 zoom levels:

Z = 21, . . . , 24, equivalent to a 1015 (i.e. petapixel) image.

The most time consuming process lied in feature matching

and filtering. Processing the entire dataset took approximately

4 weeks, though this can be reduced to 2 weeks using GPU-

based implementations of feature matching and RANSAC.

The results are presented in Fig. 11 and a video visualisation

is available1. The top two rows illustrate parts of the road

network from a large coverage scale down to finer details.

The first row presents an orthomosaic made up of a single

trace while the results on the second row comprise at least

two traces running in the opposite direction. The third row

shows the results at junctions where images from at least

two traces were incrementally optimised. The fourth and fifth

rows demonstrate the results at no through road and loops or

roundabout where the vehicle capturing images had to retrace

itself or made a u-turn and where multiple traces overlap

each other. The two bottom rows illustrate orthomosaics at

the scale where defects on road surface are clearly visible.

The orthomosaics presented here are composed of tiles, which

were stitched independently, showing no seam artefacts at the

boundaries between tiles.

X. CONCLUSION AND DISCUSSION

In this paper, we have presented a complete pipeline to build

city-scale orthomosaics of the road network from a scale where

the entire network is visible down to a scale where fine details

(a) (b) (c)

(d) (e) (f)

Fig. 13. Failure cases. Artefacts in orthomosaics due to (a) scene shadow, (b)
observer shadow, (c) moving objects, (d) stationary objects, (e) out of sight,
(f) mixing of multiple mosaics of different elevations. (Zoom for detail).

on road surfaces can be inspected. We believe the work makes

two important contributions.

First, we proposed motion-from-homographies to estimate

camera poses of street-level images as an alternative to SfM.

With the assumption that the road surface is planar and induces

no 3D structure, motion-from-homographies reduces the com-

plexity of the optimisation problem by limiting to solve only

6 unknowns for each camera and completely eliminating the

reconstruction of 3D scene points. Our approach dramatically

reduces the time to solve for camera poses, while still pro-

ducing accurate alignment compared with conventional SfM

techniques [77], [78]. Second, we presented a tile-based image

stitching that can create very large orthomosaics from millions

of images and yet still produce a visually pleasing result. The

stitching is operated on tiles allowing us to be able to stitch

very large datasets and enables the large-scale orthomosaics to

be viewed online. Our gradient domain stitching ensures the

tiles preserve maximum detail of the input images and seams

are invisible both within the tiles and between tiles.

There are still some areas for improvement and we show

failure cases in Fig. 13. First, street-level images inevitably

include shadows which cause artefacts when they change,

Fig. 13(a) and (b). Shadow detection could be used to re-

move shadow pixels from the stitching process. For observer

shadows, we could use the geometrical model of the observer

to predict shadow masks [81]. Second, moving objects such

as cars create ghosting artefacts in the stitched mosaics,

Fig. 13(c).

We could use semantic segmentation or object detection

[82] to learn to detect undesirable objects such as parked cars,

Fig. 13(d), and exclude them in the stitching process. Third,

artefacts occur when part of a junction is out-of-sight when a

vehicle makes a turn, Fig. 13(e), which can result in stitching

failure when multiple traces overlap. Finally, our approach

does not account for two or more roads sharing the same 2D

geo-positions, e.g. where a bridge crosses another road. In this

case, their contents were blended together in the same tiles,

Fig. 13(f). Solving this would require estimation of altitude

to detect when two overlapping traces are not the same road,

then stitched and visualised as different map layers.
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