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Double crystal x-ray diffraction simulations of diffusion in semiconductor
microstructures

J. M. Fatah, P. Harrison,a) T. Stirner,b) J. H. C. Hogg, and W. E. Hagston
Department of Physics, University of Hull, Hull HU6 7RX, United Kingdom

~Received 17 July 1997; accepted for publication 23 December 1997!

Diffusion in group IV, III-V and II-VI semiconductors is an interesting problem not only from a
fundamental physics viewpoint but also in practical terms, since it could determine the useful
lifetime of a device. Any attempt to control the amount of diffusion in a semiconductor device,
whether it be a quantum well structure or not, requires an accurate determination of the diffusion
coefficient. The present theoretical study shows that this could be achieved via x-ray diffraction
studies in quantum well structures. It is demonstrated that the rocking curves of single quantum
wells are not sensitive to diffusion. However the intensity of the first order satellite, which is
characteristic of superlattice rocking curves, is strongly dependent upon diffusion and it is proposed
that this technique could be used to measure the diffusion coefficient D . © 1998 American

Institute of Physics. @S0021-8979~98!01608-9#

I. INTRODUCTION

Diffusion has been studied in bulk semiconductors for
many years1. The use of diffusion in the post-growth fine
tuning of devices based on semiconductor microstructures
has become increasingly important.2,3 Diffusion could also
play an important role in the viability of devices from the
viewpoint of their operating properties. In particular diffu-
sion of an alloy component such as Al in
GaAs–Ga12xAlxAs, Mn in CdTe–Cd12xMnxTe or S in
ZnSe–ZnSxSe12x will affect the optoelectronic properties of
the device and could ultimately render the device useless.
Hence from the viewpoint of both device fabrication and
device stability quantitative knowledge of the amount of dif-
fusion is essential if they are to be optimized and controlled,
respectively.

Certain probes of diffusion have already been suggested,
such as the excitonic optical properties of quantum well
structures4 and, for the diffusion of a magnetic ion ~e.g.,
Mn21), the polaronic properties.5 While the polaronic prop-
erties in a magnetic field could offer an accurate measure of
the diffusion coefficient of a magnetic ion, they are obvi-
ously limited to diluted magnetic semiconductors. Similarly,
although the excitonic optical properties of nonmagnetic ma-
terials could be employed successfully to investigate diffu-
sion, they would probably need to be used in conjunction
with another technique, such as x-ray diffraction, in order to
reduce any uncertainties in quantum well widths, etc.

In the present theoretical work it will be demonstrated
that semiconductor quantum well structures offer a unique
environment for probing diffusion. In particular it is shown
that computer simulations of double crystal x-ray diffraction
~DCXRD! curves for annealed multiple-quantum well struc-
tures, in conjunction with the corresponding experimental

data, can provide an accurate measure of the diffusion con-
stant of an alloy constituent in all of the technologically sig-
nificant group IV, III-V and II-VI semiconductors.

II. COMPUTER SIMULATION

To interpret the rocking curves resulting from x-ray dif-
fraction studies of crystals and to obtain accurate values for
various structural parameters ~such as the alloy concentration
x , the degree of lattice relaxation, etc.! it is important to
carry out a profile simulation.6 This profiling can be done by
simulating the diffraction of x rays from crystals using the
dynamical x-ray diffraction theory, reviews of which are
given in Refs. 7 and 8. The problem is to solve Maxwell’s
equations in a medium which has a complex, triply periodic
electric susceptibility x . In the x-ray case only two waves
with appreciable amplitudes are normally allowed to exist
within the crystal. These two, the incident and diffracted
waves, are described by the wave vectors K0 and Kh , and
are connected to the reciprocal lattice vector h by the Laue
equation

K01Kh5h. ~1!

The solution, Equation ~2!, defines the dispersion surface,
which is the locus of the end points of the allowable wave
vectors inside the crystal.

a0ah5
1
4 C2k2xhx h̄ . ~2!

Here C is the polarization factor, k5uK0u5uKhu51/l ~at the
wavelength l) and a0 and ah are given by

a05

1

2k
@K0 .K02k2~11x0!#

ah5

1

2k
@Kh .Kh2k2~11x0!# .

The total wavefield D tot is related to the amplitudes of the
direct and diffracted waves, D0 and Dh , by
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D tot5(
j51

2

@D0 j exp~22piK0 j .r!

1Dh j exp~22piKh j .r!# .

The amplitude ratio X8(5Dh /D0(z)) is given by the rela-
tion

X85

2a0

kCx h̄

5

kCxh

2ah

.

The relative strengths of the direct and diffracted beams
emerging from the perfect crystal thus depend on a0 and ah ,
which in turn depend on the deviation DQ of the incident
beam from the exact Bragg angle. Thus as the crystal is
rotated, the diffracted intensity changes, giving the rocking
curve its finite width.

The generalized diffraction theory, developed by
Takagi9 and Taupin,10 can be used to describe the passage of
x-rays through a crystal with any type of lattice distortion. In
the two-beam approximation the wavefield inside the crystal
can be described by two coupled first order partial differen-
tial equations expressed along the depth z into the crystal

il

p
g0

]D0

]z
5x0D01Cx h̄Dh , ~3!

il

p
gh

]Dh

]z
5~x02ah!Dh1CxhD0 , ~4!

where xh is related to the structure factor Fh , the electron
radius re and the unit cell volume V by

xh5

l2re

pV
Fh .

g0 and gh are the direction cosines of the incident and re-
flected beams relative to the inward surface normal. The pa-
rameter ah , which represents the deviation of the incident
wave from the exact Bragg condition, is given by

ah~v !522
l

d
DQh cos~QB!,

where DQh is the local deviation from the exact Bragg
angle, taking lattice strains into account, QB is the local ex-
act Bragg angle and d is the interplane spacing.

Equations ~3! and ~4! can now be combined, by defining
an amplitude ratio X85Dh /D0(z), and integrated.11 We thus
obtain the amplitude ratio X(Z)

X~Z ,v !5

X8~z ,v !S1i~BX8~z ,v !1E !tan~DS@z2Z# !

S2i~AX8~z ,v !1B !tan~DS@z2Z# !
,

~5!

where the variable z is the depth above the depth Z at which
the amplitude ratio is the known value X8. In Equation ~5!
we use the parameters11

A5

ughu

g0
x h̄

B5

1

2F S 12

ughu

g0
Dx02ah~v !G

D52

p

lughu

E5xh

and

S5AB2
2AE .

To calculate the diffraction profile we need to establish a
starting amplitude ratio ~chosen as zero deep inside the crys-
tal! and progress up through the crystal layers, and use the
amplitude ratio at the top of one layer as the start value for
the bottom of the next. This procedure is then repeated for
each step in the crystal rotation angle v .

In the present work interest is focused upon the Cu Ka1

004 rocking curve. To be definite, a quantum well stack
which was commensurate with, and grown upon, a 001 InSb
substrate with a 1000 Å CdTe buffer layer was employed in
the model calculations.

For the purposes of the simulation of rocking curves,
quantum well structures can be described completely in
terms of alternating layers of material. In the present case
Cd12xMnxTe layers were assumed, with differing alloy con-
centrations x . When one of the alloy constituents has dif-
fused ~i.e., Mn!, a more complex variation of x along the
growth (z) axis occurs. In order to model the latter it is
assumed, for the purpose of illustration, that the diffusion
coefficient D does not vary with the alloy concentration x .
This leads to Fick’s second law in one dimension,

]x

]t
5

]

]z
DS ]x

]z
D , ~6!

which has been described in detail in an earlier publication.4

Various standard solutions to the linear case of Fick’s
second law do exist,12,13 depending on the initial distribution
of the diffusing substance. For the following calculations,
Crank’s12 solution to the diffusion equation for a source with
an extended initial distribution has been employed. Using xo

for the initial concentration of the diffusing substance,
Crank’s equation reads

x5

xo

2
erfcS z

2ADt
D , ~7!

where erfc denotes the complementary error function. The
supposed linearity of Fick’s second law, i.e., the constancy
of the diffusion coefficient D , now allows a linear superpo-
sition of the separate solutions to the diffusion equations at
any given time t .

It should also be pointed out that the following calcula-
tions are not microscopic in the sense that there is no refer-
ence to impurity atoms or lattice defects, such as interstitials
or vacancies ~which can enhance diffusion processes dra-
matically!. For such a calculation, which takes impurities
and lattice defects into account, a diffusion Monte Carlo
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analysis would be necessary. However, the macroscopic
model employed is of proven utility for abstracting informa-
tion from experimental data.14

Figure 1 shows diffusion profiles for a single CdTe well
of width 80 Å, surrounded by 200 Å Cd0.925Mn0.075Te barri-
ers, in which the diffusion is due entirely to a post-growth
anneal. As a linear diffusion process has been assumed the
curves are universal, i.e., the diffusion coefficient and the
time are interchangeable. Hence the separate graphs are la-
belled with the corresponding product of diffusion coeffi-
cient D and time t ~in units of Å2). For example, if we
assume for the graph with the largest amount of diffusion a
diffusion coefficient of D50.1 Å2/s we obtain, by using the
Dt value of 5000 Å2, a corresponding annealling time of t

550 000 s'14 h.

III. RESULTS AND DISCUSSION

A. Diffusion of single quantum wells

Figure 2 shows the simulated rocking curves for the
single quantum well structures of Fig. 1. Note that for the
purpose of clarification the curves have been scaled. It is
clear that the central ~substrate! peak dominates and, at first

sight, the curves are virtually identical, even though the
quantum wells themselves are significantly different. Subtle
differences between the curves do exist in the peak centred
around 700–800 arcsec, but they are far too small to be
detectable with any reliability by experiment. In summary,
single quantum wells are of limited utility from the view-
point of DCXRD studies for the investigation of diffusion.

B. Diffusion of superlattices

It is envisaged that superlattices could be a more sensi-
tive measure of diffusion, since the additional periodicity of
the superlattice unit cell leads to a strong feature ~i.e., the
superlattice satellites! on the rocking curve, which is charac-
teristic of the exact form of the structure. In particular the
angular separation of the first order satellite from the sub-
strate peak is a measure of the superlattice period. Further-
more, the height and width of the peak give an indication of
the number of repeats and uniformity of the periodicity.

Figure 3 displays the simulated rocking curve ~of the
sample described in Fig. 4 below! with no diffusion. It is
clear from this figure that the first order satellite peaks are an
order of magnitude larger than the second order ones. From
an experimental viewpoint, this means that it is much more

FIG. 1. Diffusion profiles for a single CdTe well of width 80 Å, surrounded
by Cd0.925Mn0.075Te barriers, for various values of Dt ~in Å2).

FIG. 2. Simulated Cu Ka1
004 DCXRD rocking curves for the single quan-

tum wells of Fig. 1.

FIG. 3. Simulated Cu Ka1
004 DCXRD rocking curve for 15380 Å CdTe

wells separated by 80 Å Cd0.925Mn0.075Te barriers with no diffusion.

FIG. 4. Diffusion profiles for the sample of Fig. 3 with varying values of Dt

~in Å2).
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difficult to monitor accurately the changes in the second or-
der satellites. Hence although the latter are sensitive to the
well shape15 we will focus our attention in the present paper
on the first order satellites which can be more accurately
monitored experimentally.

For comparison with the previous section, the superlat-
tice was chosen to have 15 80 Å CdTe wells, separated by 80
Å Cd0.925Mn0.075Te barriers, with 200 Å outer barriers. Em-
ploying the same Dt values as in Section III A, the manga-
nese concentration x as a function of distance z along the
growth direction is displayed in Fig. 4.

The simulated rocking curves for the superlattices of
Fig. 4 are shown in Fig. 5. Although the first order superlat-
tice satellites are clearly visible in the bottom curve of Fig. 5
at angles of '210009 and 112009, for increasing amounts
of diffusion these satellite peaks are eroded away, while the
rest of the curves remain virtually unaltered. This could have
been anticipated a priori since increasing amounts of diffu-
sion in a superlattice would lead eventually to a uniform
alloy ~as shown in the Dt55000 Å2 curve of Fig. 4!, which
would contain no superlattice periodicity and hence no su-
perlattice satellites would be observed. The diffusion profiles
displayed in Fig. 4 clearly represent intermediaries between
the two extremes of a square well superlattice and an alloy.

The intensity of both first order superlattice satellites are
plotted as a function of Dt in Fig. 6. It can be seen that the
intensities are a sensitive function of the amount of diffusion;
in this case the peaks decrease by about a factor of 10 from
the superlattice with effectively no diffusion ~i.e., Dt51 Å2)
to that with considerable diffusion ~i.e., Dt55000 Å2). As
the annealling time in any post-growth process is easily mea-
sured, then Fig. 6 demonstrates that DCXRD could be used
to measure the diffusion coefficient D for any particular an-
nealing temperature by repetitive measurements on the same
sample at successively longer time intervals.

Note that although attention has been focused upon the
CdTe–Cd12xMnxTe system, the results are completely gen-
eral. The technique could be equally applied to Al diffusion
in GaAs–Ga12xAlxAs or Ge in Si–Si12xGex strained layer
superlattices, by simply growing the appropriate multiple-
quantum well structure and performing annealing and x-ray
diffraction measurements. In fact, the effects desribed in this

section have recently been observed in an experimental x-ray
diffraction study of thermally induced disordering in a
ZnSSe–ZnSe superlattice system.16

C. Diffusion during growth

The conclusions of the previous section are based on the
assumption that no diffusion occurs during growth of the
superlattice. Depending on the diffusion coefficient ~which
could be a strongly varying function of the growth tempera-
ture! and the total growth time ~which itself depends on the
growth rate and the overall thickness of the superlattice
stack! the amount of diffusion during growth could be sig-
nificant.

Figure 7 shows the effect of such diffusion during the
growth of the superlattice of Section III B, for various values
of D ~in units of Å2/s!. There is no post-growth annealing,
hence the last well to be grown exhibits virtually no diffu-
sion, while the first well can exhibit significant diffusion. In
these calculations the growth rate was chosen to have the
typical value of 1.83 Å/s. The curves are no longer universal,
hence the diffusion coefficient D has been chosen to repre-

FIG. 5. Simulated rocking curves for the superlattices of Fig. 4 with differ-
ing amounts of diffusion (Dt in units of Å2).

FIG. 6. Peak intensity of the first order superlattice satellites of Fig. 5 as a
function of the amount of diffusion Dt .

FIG. 7. Superlattice of Fig. 3 with diffusion during growth only (D in units
of Å2/s!.
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sent the extremes of hardly any diffusion (D50.001 Å2/s! to
almost total destruction of the first well grown (D51 Å2/s!.
Note that only curves for D50.1 and 1 Å2/s are shown for
clarity. The diffusion time t for the first layer is now set as
the growth time, i.e.,

t5
total thickness of superlattice stack

growth rate
5

2720 Å

1.83 Å/s
'25 min.

Clearly the diffusion time decreases to zero for the last layer
in the stack and takes on intermediate values between these
two limits for different layers. Figure 8 illustrates the dy-
namical simulation of the x-ray rocking curves of the super-
lattices of Fig. 7, together with those appropriate to D

50.01 and 0.001 Å2/s. As in Section III B, the rocking
curves remain virtually unaltered except for the first order
superlattice satellites at '210009 and 112009, which are
dramatically reduced. This is not due specifically to a loss of
superlattice periodicity, but to a reduction in the difference
between well and barrier material, as the earliest grown wells
tend towards alloys, as shown in Fig. 7.

Figure 9 summarizes the changes in the satellite peak
intensities for both left ('210009) and right ('112009)
first order peak. Hence, the amount of diffusion occurring
during growth can be deduced by comparison of the simula-
tion of the experimentally measured rocking curve, with the
simulation of the ideal ~i.e., undiffused! rocking curve. The
growth conditions can then be adjusted accordingly to con-
trol such processes.

IV. CONCLUSION

It has been demonstrated that multiquantum well struc-
tures offer an invaluable means of measuring the diffusion
coefficient of any semiconductor. Simulations of DCXRD
rocking curves cannot only be utilized to quantify the diffu-

sion occurring in post-growth annealling, but can also be
used to determine the amount of diffusion occurring during

growth of semiconductor heterostructures.
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