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Abstract—The serverless computing paradigm ushers in new
concepts for running applications and services in the cloud.
Currently, commercial solutions dominate the market, though
open-source solutions do exist. As a consequence of this,
there is little research detailing how well the different open-
source solutions perform. In this paper, one such open-source
solution, Apache OpenWhisk, is investigated to shed light on
the capabilities and limitations inherent of such serverless
computing architecture, and principally to provide further
research on this particular solution’s performance. This is
accomplished through an extensive evaluation of OpenWhisk,
involving a variety of experiments and benchmarks.
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I. INTRODUCTION

Recent advancements in cloud computing and virtuali-

sation have led to the emergence of serverless computing;

a technology which leverages container-based virtualisation

to deploy applications and services. The goal of serverless

computing is to provide isolated environments that abstract

underlying technologies and expose small runtime containers

for users to run functions as code [1].

A serverless computing system is an ideal solution to

build and optimise any Internet of Things (IoT) operation

with zero infrastructure and maintenance costs and little-to-

no operating expense as it allows IoT businesses to offload

all of a server’s typical operational backend responsibilities.

Moreover, such system is a natural fit for edge comput-

ing applications as serverless computing also supports the

protocols which IoT devices require in actual deployment

conditions.

Serverless computing has seen widespread adoption from

tech industry giants such as Amazon [2], Microsoft [3] and

Google [4], as well as the public domain, with open-source

projects like Apache OpenWhisk [5], Fission [6], IronFunc-

tions [7] and more. It offers scalability, fault tolerance and

cost benefits, but also comes with a set of drawbacks related

to the execution environment that affects the viability and

design of applications [8]. Moreover, there are a number of

performance related challenges in serverless computing such

as unreliability, large overheads and an absence of bench-

marks [9]. Investigations into various aspects of serverless

architectures are therefore required to guide the decision

making process.

The lack of benchmarks and research in general, partic-

ularly within open-source serverless computing, is a key

issue. Further research into the performance of open-source

serverless architectures would provide greater insight into

their capabilities and increase awareness of their potential

as alternatives to commercial offerings. Given that serverless

computing is still a relatively new technology, only a hand-

ful of open-source serverless architectures currently exist.

One such framework, Apache OpenWhisk [5] is quickly

becoming one of the most popular options, likely due to the

exposure its received via IBM Cloud Functions, IBM’s com-

mercial serverless solution based on Apache OpenWhisk,

and its large number of contributors. OpenWhisk is an

ideal candidate for assessing the capabilities of serverless

computing and is the chosen framework for this serverless

architectures investigation.

The contributions of this paper are:

1) we propose a cloud-based technical solution for bench-

marking and analysis of Apache OpenWhisk platform

using a set of test functions;

2) we demonstrate OpenWhisk’s performance in terms of

effectiveness and efficiency.

This paper is structured as follows: section II briefly

provides some background information on serverless com-

puting and OpenWhisk’s architecture. The related work is

reviewed is section III. The experimental environment setup

and the test functions for various serverless use cases are

described in section IV. Section V presents the results of

the experiments and compares OpenWhisk’s performance

against two other different solutions, Docker and native.

Section VI concludes the paper and describes future work.

II. BACKGROUND

The last ten years saw an evolution in cloud platform

hosting: 1) from buying or renting physical servers to run

applications and paying for those servers to be maintained;

2) to the widespread adoption of virtualisation, allowing

one server to be treated as many software-defined Virtual

Machines (VMs). Containerisation is seen as a refinement



and intersection of virtualisation and configuration manage-

ment; 3) to Platform-as-a-Service (PaaS) as the next level of

abstraction away from running own servers and deployment

processes, and 4) to serverless which is similar to PaaS, but

allows for small fragments of code to be deployed to support

building self-scaling applications.

The term serverless doesn’t imply that there are no servers

involved; servers simply become transparent to users. It has

been linked to mainly two service models, similar to the ones

that originally emerged with the rise of cloud computing: 1)

Backend as a Service(BaaS): refers to services that offer

features traditionally implemented by back-end applications

such as databases or API servers. Users can incorporate them

in their front-end web applications without the provisioning,

setup and management of servers. Although similar to PaaS,

they are more full-featured, implementing server-side logic

such as user authentication or push/pull notifications which

PaaS offerings forego in favour of more flexibility, and 2)

Function as a Service(FaaS): this model allows users to

develop their application logic by compositing event-driven

executable elements called functions. These functions are

executed inside ephemeral containers, taking advantage of

container virtualization to quickly provision resources for

the duration of the execution. Most notably these containers

are managed by the providers and scale automatically in

number based on demand. FaaS is the most prominent

model of serverless computing and has seen widespread

adoption by both industry and open-source communities.

Notable platforms include AWS Lambda [2], Microsoft

Azure Functions [3] and Google Cloud Functions [4].

Figure 1. OpenWhisk Architecture. Source: [4]

OpenWhisk follows a simple event-driven architecture –

functions are being triggered in re-sponse to events origi-

nating from direct invocations to the OpenWhisk API, or

external servicesthat are integrated in the platform through

specialised packages. Its architecture is shown in Figure 1.

The numbers in the diagram show the flow in execution and

deployment. In the first step, nginx [10] is used to expose

HTTP endpoints to clients so functions can be requested.

Once a request is issued, it hits the controller which performs

authorisation and authentication of every request. Then, the

controller interacts with a CouchDB [11] instance to verify

credentials, namespaces and all things associated with the

requested function. After this, the controller interacts with

a Consul [12] instance for service discovery. The real-time

data pipeline tool Kafka [13] is then used for communication

between the controller and invokers. Invokers perform all the

heavy lifting, handling container deployment and resource

allocation to create a runtime for function execution.

OpenWhisk is developed as a platform built on top of

Docker [14] and can therefore be deployed on a number of

cloud and IoT infrastructures as well as container technolo-

gies.

III. RELATED WORK

For a map of state-of-the-art research on the topic of FaaS

platform and tooling engineering together with analysis of

relations of the proposed concepts to existing solutions, the

reader is referred to [15]: the mapping study on engineering

FaaS platforms and tools provides insights on publication

trends, the common challenges and drivers for research as

well as information on industry participation in research

publications. The reader interested in the evaluation of pro-

duction serverless computing environments (AWS Lambda,

Microsoft Azure, Google Cloud Functions and IBM Apache

OpenWhisk) is referred to [16], [17], [18]. Next, two main

areas of related research are reviewed: the first one is about

the general design limitations of serverless platforms, in

particular relating to runtime performance, and the second

one focuses on performance evaluations of open-source

serverless platforms, similar to the one investigated in this

paper.

Design Limitations. There has been extensive research

around factors affecting function execution performance.

Manner et al. [19] consider the cold start problem and

highlight the impact of the choice of language runtime;

compiled languages lead to 2-3 times higher latency com-

pared to interpreted languages like JavaScript. Their tests

were performed on AWS and Azure and interestingly the

measurements differ significantly between the platform and

client side, further reinforcing the decision to measure both

raw function execution time and API request latency.

The cold start problem has also been investigated by Lloyd

et al. [20], where they note a 15× factor differential between

warm and cold start times. They suggest providers keep

containers alive for longer to offset the performance impact.

This needs to be balanced with the cost of maintaining

unused containers that the user is not charged for. A choice

of language that minimizes cold start times is therefore

important.

Baldini et al. [8] also acknowledge cold start as one of

the main challenges of serverless platforms and additionally

highlight the limitations of the current programming model,

noting expressivity and composability as the main areas of

improvement. Maas et. al [21] drill further and identify pain



points for current language runtimes in cloud deployments;

they develop seven tenets for runtime design, proposing

a library-based approach for integration with existing pro-

gramming languages. Spillner [22] proposes Snafu, a FaaS

runtime implementation focusing on flexibility and ease-of-

deployment, with improved performance over AWS Lambda

in a variety of configurations. This showcases the impor-

tance of runtime design; we can therefore expect serverless

platform choice to affect performance, even for the same

languages.

Open-Source Serverless Platforms. The evaluation of

open-source serverless frameworks has been investigated

by Mohanty [23] considering a performance evaluation of

Kubernetes-based platforms (Fission, Kubeless and Open-

FaaS) and focusing on feature comparisons and auto-scaling

performance as the number of users and requests increases.

Similar research by Li et al. [24] compare four platforms

(Kubeless, OpenFaaS, Nuclio, Knative), noting the under-

whelming state of the auto-scaling mechanisms which might

prevent production deployments. This is another facet to

consider when measuring response latency, as any decently-

sized production environment will be faced with these issues.

This is most likely one more reason why most companies

turn to commercial offerings, and literature in this field is

sparse.

Little attention has been given to OpenWhisk assessment

with respect to performance. The work in [25] compared

OpenWhisk against other serverless solutions, including

commercial ones, whilst a performance comparison between

different function implementations in OpenWhisk is found

in [26].

To summarise, previous research involved benchmark-

ing OpenWhisk against itself using different programming

languages for function execution [26] and benchmarking

OpenWhisk against other serverless solutions [25].

In essence, this paper contributes further to research in this

field: 1) experiments are designed to assess OpenWhisk’s

capabilities through performance intensive tasks, and 2) ex-

periments are performed to benchmark OpenWhisk in three

performance areas against alternative methods which mimic

function execution performed by serverless computing.

IV. EXPERIMENTAL DESIGN

The plan is to evaluate OpenWhisk’s performance using a

single programming language for implementation of separate

functions, with each function targeting a single hardware

resource. Functions will need to be designed such that they

are intensive for the resource they are targeting. Bench-

marking these against alternate solutions to better measure

OpenWhisk’s performance is another plan for evaluation.

Cloud testbed. The experimentation was performed on

a Cloud testbed available at the University of Leeds com-

prising a 14 node cluster. It uses Open Nebula 4.10.2 [27]

and Zabbix 2.4.4 [28] for monitoring. The typical node that

was considered for measurement is a Dell PowerEdge R430

Server commodity server with two 2.4GHz Intel Xeon E5-

2630 v3 CPUs with 128GB of RAM, a 120GB SSD hard

disk and an iDRAC Port Card.

Virtual Machine. Table I details the resources allocated

to the Virtual Machine setup for OpenWhisk installation.

The operating system used is Devuan; a fork of the Debian

Linux distribution. This particular Linux distribution was

chosen as the image was readily available in the Open-

Nebula marketplace and offered the most disk space, which

was required mainly to support OpenWhisk’s installation

amongst other things. With OpenWhisk running persistently

within the VM, it was then possible to begin prototyping the

functions for OpenWhisk to invoke.

Table I
VIRTUAL MACHINE SPECIFICATION

CPU vCPU Memory Operating System

16 16 16GB Devuan GNU+Linux

Measurements and Metrics. The performance of an

application is typically measured by taking into account

a number of Key Performance Indicators (KPIs). Often,

KPIs are split into two types, namely efficiency-oriented

KPIs and service-oriented KPIs [29]. The former includes

throughput and utilisation which determine an application’s

effectiveness at using the resources available to it, while the

latter includes availability and runtime which measure an

application’s ability to provide a service to its end users.

For the purpose of measuring the performance of Apache

OpenWhisk, a combination of both KPI types are used.

Runtime is easily measured regardless of what an ex-

periment entails. Alternatively, the tasks involved in each

experiment decide which resources are utilised and to what

extent. As such, it is reasonable to design each experiment

in a way which targets a specific resource and exhausts it to

varying degrees, the latter being achieved through the use of

iterative methods. The resources chosen for experimentation

are those most frequently found in performance evaluation.

CPU. The central processing unit (CPU) is perhaps the

most popular resource to evaluate and benchmark for per-

formance due to its sheer importance in computer systems.

The most common method for generating consumption of

the CPU is to create a program which performs a multitude

of complex numerical calculations. Examples of this include

calculating Pi and computing prime numbers. Between these

examples, a range of iterative algorithms exist. For this

experiment, calculation of Pi is the preferred choice for

expending the CPU as most iterative algorithms for calcu-

lating Pi are easily implemented and do not depend on data

structures. Hence, in theory, this experiment has little effect

on other system resources and is therefore unlikely to be at

risk of a bottleneck. The selected algorithm for calculating



Pi is the Bailey-Borwein-Plouffe (BBP) formula [30], and is

chosen due to its simplistic design and ease of implemen-

tation, i.e. consideration of the number of iterations N and

decimal places precision.

Memory. After the CPU, system memory is probably the

next-most popular resource to analyse. In addition to this, it

is the main determinant for pricing in commercial serverless

solutions such as AWS Lambda [2]. There are few generally

accepted methods for depleting memory and none which

avoid impacting other resources. Thus, the method chosen

for this experiment is performing the multiplication of two

matrices of dimension N × N.

Network Although generally considered less important

than CPU and memory, network resources are innately

dependent on within distributed systems. In the case of

serverless computing, prime examples of reliance on net-

work resources are in supporting requests from users and

responses from functions. As a result, much like the other

resources, ove rheads affecting the network impacts overall

performance and user experience.That said, the greater in-

terest in CPU and memory experimentation means that this

experiment is less of a focus and so simpler by design. The

experiment itself purely involves HTTP GET requests to a

locally hosted Web service.

Experiment Execution and Benchmarks. To execute the

experiment tasks on OpenWhisk, a new OpenWhisk action

is created for each of them. As listed in Table I, the VM

in which OpenWhisk runs has 16 CPU cores. Since each

action - or function - essentially runs on a distinct thread,

and a single thread is limited to no more than 1 core, to

achieve 100% CPU utilisation in the VM, 16 functions are

run concurrently.

Each experiment task is executed using two other different

solutions, Docker [14] and native, which can be considered

more contemporary solutions for accomplishing the same

tasks. The purpose of this is to provide fair benchmarks for

OpenWhisk to contrast with. This comparison highlights the

performance implications of executing a task using a server-

less solution like OpenWhisk over present day alternatives.

The Docker solution basically attempts to mimic the

underlying operation of OpenWhisk, with the idea of a single

function running in a single container. Analogous to the

task execution described for OpenWhisk, 16 functions are

executed concurrently in distinct containers, with each one

removed after completion. Bespoke container images needed

to be built to include each function.

Comparable to the Docker solution and OpenWhisk, the

native solution also executes 16 functions concurrently but

without container-based virtualisation, meaning this solution

does not suffer from the same overheads. Effectively, each

function runs natively using libraries built-in to the virtual

machine’s operating system and concurrency is accom-

plished through manually executing each function on a sep-

arate thread. Theoretically, this solution should outperform

the others.

As with all serverless solutions, tasks are performed

through the execution of program functions. Hence, each

of the experiment tasks require a counterpart in the form of

a single coded function, written in Python which runs on all

of the defined experiment execution methods.

Hypotheses. As a result of how these experiments are

designed, a total of three hypotheses are formulated as

predictions for each experiment’s outcome. As such, each

experiment tests one or more hypotheses and the results of

each experiment proves or disproves them.

• (H1) In comparison to the other experiment tasks,

the results from CPU experimentation on OpenWhisk,

Docker and native solutions are most disparate.

• (H2) Experiments performed with the native solution

yield lower runtimes and lower resource utilisation

than the OpenWhisk and Docker solutions across all

experiment tasks.

• (H3) Results from experimentation on OpenWhisk

and Docker solutions are almost identical due to

their shared architecture and functionality, though the

Docker solution has a slight edge.

V. PERFORMANCE RESULTS

To guarantee accurate and reliable results, experiments

were run five times, with five different iteration values

appropriate to each experiment task. The perfomance results

that are shown next represent the average of these runs.

A. CPU

Figure 2. OpenWhisk CPU Runtime and Utilisation

To avoid issues with numbers becoming too large to sum

or divide, values are converted to Decimal type with a

precision of 50 decimal places. This is acceptable as the

purpose of the experiment is not to achieve a particular value

of Pi, but simply to stress the CPU.

As expected, Figure 2 depicts a gradual increase in

runtime as the value of N, the number of iterations, in-

creases. Apart from when N = 2000, standard deviations

in runtime remained small which suggests that OpenWhisk

is consistent in utilising the CPU. The standard deviations

in CPU utilisation are also small, again with the exception

ofwhen N = 2000. These anomalies in standard deviation



are clearly caused by the first run when N = 2000, and are

a consequence of the initial creation of required containers.

The trend appears to be linearithmic, which is the time com-

plexity for the BBP formula. This indicates that OpenWhisk

has little impact on the runtime of functions, not considering

the time taken for initial startup.

Figure 3. Benchmarking CPU Runtime and Utilisation

Recounting on the hypotheses made previously, Figure

3 depicts close runtimes between OpenWhisk, Docker and

native solutions, though the Docker solution is slowest in all

areas, disproving hypothesis H3. This is likely due to Open-

Whisk’s orchestration of containers being more optimal than

what can be achieved through the Docker Command Line

Interface. On the contrary, the CPU utlisation demonstrates

OpenWhisk’s being above that of the Docker and native

solutions, implying that there is some truth in hypothesis

H3. This disparity also partially confirms hypothesis H1.

B. Memory

Figure 4. OpenWhisk Memory Runtime and Utilisation

The runtimes in Figure 4 appear to scale linearly with

N (matrix size), and the standard deviation for each N is

similar to those in the CPU experiment. However, while the

results also show the largest standard deviation to be for the

first value of N, it is caused by Run 2 and Run 5 instead.

This is atypical to the expected behaviour of utilisation,

which is for Run 1 to produce values above the average due

to initial startup and container deployment. More unusual

though, is the outcome that this large standard deviation

arises from values below the average. One explanation

for this is the utilisation measured here purely represents

memory consumed by the functions being executed, not

including amounts used by the underlying system that could

be monopolising memory and possibly causing restrictions

in allocation to OpenWhisk.

Figure 4 proves the linear increase in runtime as N

increases as well as in utilisation. Despite this, the overlaps

in standard deviations for utilisation show that memory

allocation is variable.

Figure 5. Benchmarking Memory Runtime and Utilisation

Disproving hypothesis H3, Figure 5 depicts the Docker

solution as slower than OpenWhisk, also probably linked

to container orchestration as mentioned for the CPU exper-

iment. Similarly, H2 holds true for this experiment, with

the native solution having the lowest runtimes and lowest

utilisation. Despite the promising results from the CPU

experiment, it seems that H1 is also disproven, as the results

shown in Figure 5 for the memory experiment are more

disparate. The Docker solution utilises significantly more

memory in this experiment, which too could be linked to the

inferiority this solution has when compared to OpenWhisk’s

orchestration capabilities.

C. Network

Figure 6. OpenWhisk Network Runtime and Utilisation

Reverting back to the same anomaly found in the CPU

experiment runtimes, the standard deviation is large for the

first value of N (number of HTTP requests) and caused

by Run 1, as shown in Figure 6. Inline with the ongoing

pattern, the largest deviation in network utilisation is found

for the first value of N, though like the memory experiment,

is caused by values much lower than the average.



Figure 7. Benchmarking Network Runtime and Utilisation

For a third time, hypothesis H3 is disproved, as shown

in Figure 7 where the Docker solution performed slower

than OpenWhisk. Hypothesis H2 remains true for runtime,

however utilisation is above the other solutions, which is ac-

tually a good thing. Based on that logic, H3 could be proven

slightly as the Docker solution outerforms OpenWhisk for

3/5 of the different values of N, although the values are so

close at each point that the two solutions’ performances are

practically the same. Also disproving H1, this experiment

has a larger disparity in both runtime and utilisation when

compared to the CPU experiments.

D. Discussion

As described in Section III, one of the motivations for

evaluating Apache OpenWhisk is due to the lack of bench-

marks and research, not only in the field of open-source

serverless computing, but for OpenWhisk specifically too.

Considering the closest work on the assessment of Open-

Whisk with respect to performance [26], [25], and given

that neither of these papers evaluated OpenWhisk in similar

ways, it is hard to draw conclusions around whether or not

the findings in this investigation support or align with the

findings in those. That said, the evaluation in [26] is closest

in methodology as it experiments with CPU and memory

intensive functions, using prime number computation and

matrix multiplications respectively.

In essence, this investigation contributes further to re-

search in this field. The experiments are designed to assess

OpenWhisk’s capabilities through performance intensive

tasks and benchmark OpenWhisk in three performance areas

against alternate methods, which mimic function execution

performed by serverless computing.

VI. CONCLUSION AND FUTURE WORK

This paper aimed to conduct a comprehensive evaluation

of Apache OpenWhisk, principally focused on its perfor-

mance. To do this, a series of experiments were designed

and implemented to assess OpenWhisk’s performance in

different areas. The experiments involved creation and ex-

ecution of program functions, each of which was intended

to target and consume a specific hardware resource. Two

metrics were of interest in experimentation: function runtime

and resource utilisation. Together, these metrics would be

used to demonstrate OpenWhisk’s performance in terms

of effectiveness and efficiency. Experiments also involved

creation of two alternate solutions used as benchmarks for

the results produced by OpenWhisk to provide some context

and means for comparison. The results of each experiments

showed that OpenWhisk could outperform a solution which

employed similar functionality, through use of container-

based virtualisation. It also demonstrated how close Open-

Whisk is performance-wise to a more optimal solution which

does not suffer from the overheads of virtualisation. In

summary, this paper has contributed to existing research

in the area of serverless computing by executing typical

performance based experiments with unconventional real-

world benchmarks.

There are many options for future work which could

further add to this research topic:

• One of the extended requirements is to test Open-

Whisk’s performance in the area of concurrency. In

particular, one could evaluate how OpenWhisk behaves

in comparison to the same benchmarks.

• Other open-source serverless solutions could be de-

ployed to provide a side-by-side comparison in perfor-

mance on the cloud computing testbed.

• A qualitative evaluation of production serverless solu-

tions with open-source solutions could be performed to

measure trade-offs influenced by cost.
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