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Abstract

Electron tomography has been widely applied to three-dimensional (3D) morphology
characterization and chemical analysis at the nanoscale. A HAADF-EDS bimodal tomographic
(HEBT) reconstruction technique has been developed to extract high resolution element-specific
information. However, the reconstructed elemental maps cannot be directly converted to
quantitative compositional information. In this work, we propose a quantification approach for
obtaining elemental weight fraction maps from the HEBT reconstruction technique using the
physical parameters extracted from a Monte Carlo code, MC X-ray. A similar quantification
approach is proposed for the EDS-STEM tomographic reconstruction. The performance of the two
quantitative reconstruction methods, using the simultaneous iterative reconstruction technique, are
evaluated and compared for a simulated dataset of a two-dimensional phantom sample. The effects
of the reconstruction parameters including the number of iterations and the weight of the HAADF
signal are discussed. Finally, the two approaches are applied to an experimental dataset to show
the 3D structure and quantitative elemental maps of a particle of flux melted metal-organic

framework glass.

Key words: EDS-STEM tomography, HAADF-EDS bimodal tomography, electron-induced

X-ray quantification, three-dimensional elemental map.

1. Introduction

Electron tomography is a technique that characterizes the three-dimensional (3D) structure of
a typically nanoscale object from a tilt series of two-dimensional (2D) projections [1] and has been
widely used in biological science [2, 3] and materials science [4]. Different image modes are
available for electron tomography. The scanning transmission electron microscope (STEM) high-
angle annular dark-field (HAADF) image is typically used for most cases in the field of material
science to minimize the diffraction contrast that dominates in low-angle scattering which is the
case for conventional bright-field (BF) or dark-field (DF) images of crystalline materials [5]. The
intensity of the HAADF-STEM signal is strongly dependent on the atomic number and the
projected thickness. HAADF tomography is thus sensitive to 3D chemical composition
information. One disadvantage of HAADF tomography is that it only contains the accumulated
information of all elements, which means the structures with different compositions but similar

average atomic numbers cannot be distinguished. On the other hand, energy dispersive
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spectroscopy (EDS) STEM tomography can be used to extract element-specific distribution maps,
and it has been applied to a wide range of materials including bimetallic nanoparticles [6],
metallurgical samples [7], and semiconductor nanowires [8]. However, in comparison to HAADF-
STEM tomography, it has poor signal-to-noise ratio (SNR) because of low count rates associated
with the low probability of X-ray emission and the poor signal collection efficiency of available

X-ray detectors [9, 10].

HAADF/ADF-STEM images have been used in EDS-STEM tomography for object contour
determination [11], absorption correction [12], and shadowing effect correction [13]. Zhong et al.
[14] proposed an HAADF-EDS bimodal tomographic (HEBT) reconstruction technique that uses
HAADEF-STEM and EDS-STEM simultaneously to extract 3D elemental maps. The technique
links the HAADF image and EDS maps through response ratio factors using a linear relationship,
1.e., the HAADF image is a weighted summation of the EDS maps of different elements. Using
this technique, the element-specific features of EDS maps are extracted while also preserving the
high SNR of the HAADF image. It has been successfully applied to the characterization of a
nanowire device [15]. Nevertheless, it is not straightforward to obtain quantitative compositional
information from the reconstructed intensities. To obtain the 3D elemental weight/atomic fraction

maps, a quantification method needs to be applied.

There are currently three approaches to the quantification of EDS-STEM images: the Cliff-
Lorimer method [16], the {-factor method [17], and the partial cross-section method [10]. The
Cliff-Lorimer method connects the weight fractions, C4 and Cy, of two constituent elements A and
B to their detected characteristic X-ray intensities, I, and Iz using the following equation [16]:

g_: = kg ;_: ) (D

where k,p is the Cliff-Lorimer factor (k-factor), which can be estimated using theoretical
calculations or experiments [17]. The theoretical calculation of k-factors is fast but gives rise to
relatively high systematic errors (+10% — 20% for the quantification of 2D elemental map) [17,
18], while the experimental determination is accurate with relative errors around +1% but is often
complicated and time-consuming [17]. An improved quantitative approach, the (-factor method,

gives the relationship between the detected X-ray intensity of element A, I, and the mass thickness

pt (p and t are the specimen density and thickness) as follows [17]:
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pt =4y D, (2)
where (4 is the (-factor and D, is the total electron dose. The (-factor method shows great
advantages in absorption correction, spatial resolution calculation, etc. because it refines the
thickness information. Moreover, the experimental determination of the {-factor is easier as it can

be performed using single element standards.

A further, recently emerging approach uses EDS partial cross-sections to quantify X-ray counts
in an absolute manner [10, 19]. The EDS partial cross-section of a single atom of element A is
determined from a pure element standard using the following equation:

Iy
D,n,t’
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where nyt is the atom density per unit area in atoms/m?, in which ny is the atom volume density
and t is the thickness. Although this approach is based on the {-factor method, the implementation
of this approach is simpler because it is on an absolute scale [19]. A similar quantification method
to the {-factor method and partial cross-section is used in our calculation, although here the

correction factor is determined through physical models instead of experiments.

The main objective of this paper is to present a quantification method using theoretical cross-
sections to obtain 3D elemental maps from both EDS-STEM tomography and HEBT through the
simultaneous iterative reconstruction technique (SIRT). The effects of the reconstruction
parameters are also studied in this work. Using a 2D phantom sample, the image qualities of the
direct reconstructed maps and the quantified maps are investigated and compared for EDS-STEM
tomography and HEBT. Both techniques are then applied to an experimental dataset of a particle
of flux melted metal-organic framework glass, denoted ag [(ZIF-67)0.2(ZIF-62)0.3], where a, refers
to amorphous glass structure, ZIF-67 and ZIF-62 refer to two compositionally distinct zeolitic
imidazolate frameworks, and the subscripts refer to the relative fraction in the bulk glass. The
synthesis and traditional quantitative EDS tomography of the glass particle have been explicitly
described in previous reports [20, 21]. Here we look specifically at the implementation and results

from the quantified HEBT reconstruction.



2. Methods

The following calculations are based on the thin film approximation, which means that the
absorption and secondary fluorescence are negligible, as is the multiple scattering of the incident
electrons. The quantifications of the EDS-STEM tomographic and HEBT reconstructions and the
simulation of the HAADF and EDS signals using MC X-ray [22] will be introduced in this section.

2.1. Quantification of the EDS-STEM tomographic reconstruction

The measured characteristic intensity of a certain X-ray line of element A from a thin film is

expressed using the equation [23]:

A
OlonWaPa 0
I, = N, 22274 ¢ . otD (—) , 4

where Ny is Avogadro’s number, 6/ ,is the ionization cross-section, w, is the fluorescence yield,
p4 1s the relative intensity, My is the atomic weight, (2 is the detector solid angle, and g4 is the
detector efficiency. To better demonstrate the relationship between the X-ray intensity and the

weight fraction, equation 4 can be written as follows:

Iy = nfaCypt, &)
where n is a constant for a certain measurement and f is an element-specific factor, which are

calculated as follows:
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In electron tomography, for a heterogeneous sample, the measured characteristic X-ray
intensity for a single measurement of the projection image can be expressed in an integral form

along the electron trajectory inside the sample, t’,

L =1y [ GEIEAE ®)

The continuous line integral can be replaced by a discrete ray-sum [14]:
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where wj is determined by the volume intersected between the electron beam and the j"voxel [24].

N is the number of voxels in the specimen for the reconstruction.

For EDS-STEM tomography, multiple measurements are performed for various beam positions
and tilt angles. The number of measurements, M equals the product of the number of tilt angles
and the number of beam positions. For a certain element A, the X-ray intensity for the i”

measurement, I, ; can be expressed as follows:

N
Ly =nfy Z W;iCajpj - (10)
j=1
The tomography reconstruction is often formulated as a least square minimization:

X; = arg){(min 11, — WX,ll3, (11)
A

RM*N is the projection matrix, and X, € R" is

where I, € RM is the X-ray intensity matrix, W €
the reconstruction quantity. According to equation 10, we know that the reconstructed quantity for

the j™ voxel, X, i = nfyCy ;p;j. Since the sum of the weight fractions of the constituent elements
for a certain voxel is always one, i.e., fox=1 Cyj = 1, where k is the number of elements, using a

similar calculation to the {-factor method, considering that the solid angle is the same for all the

elements, we have
X4/ fa

T L
Nk Xl fa

According to the definitions, the partial cross-section can be calculated using the factor f, by

szar :fA .Q/47TMA

(12)

SIRT is used to solve the least square problem [25]. SIRT updates the reconstructed values at
each iteration using the data from all the projections simultaneously [26]. Its primary advantage is
a reduced sensitivity to noise or other errors in under-sampled experimental data [27].
Unfortunately, it has the semi-convergence property, that the error initially decreases but starts to

increase after some iterations when dealing with noisy data [28]. In this work, a non-negativity



constraint was applied to SIRT algorithm by setting individual negative voxels to zero in each

iteration since the reconstructed values should always remain non-negative [29].

The normalization in equation 12 may magnify the noise of the reconstructed map by changing
a small value to one. Therefore, prior to this normalization, a thresholding was performed in order
to define the voxels within the particle, that any intensities smaller than the threshold were set to
zero based on the summation of all the elemental maps of X, ;/f4. The exact threshold value was
determined using a modified edge spread function (ESF) fitting approach [21]. The approach
calculates the particle volume for a series of threshold values, and the variation of the threshold
relative to the particle volume can be fitted using the ESF. Therefore, the smallest gradient of the
particle volume over the threshold corresponds to the most appropriate threshold value. The same
process was applied to the quantification of the HEBT reconstruction. For both the EDS-STEM
and HEBT reconstruction, the thresholding step was applied after the reconstruction process as a
post-processing step for the purpose of visualizing and interpreting the quantification within the

volume of the particle.

2.2. Quantification of the HEBT reconstruction

It is worth noticing that HEBT can be applied only when two conditions are satisfied: first,
both the HAADF and EDS data fulfill the projection requirement, that the signal is a monotonic
function of the thickness and composition [30], and secondly, the HAADF signals are the weighted
sum of the EDS signals for all the elements present [31].

The HAADF-STEM signal I is the number of electrons that are scattered at high angles and
can be expressed as the sum of the scattered electrons by each element present in the specimen

[14]:

k

C,(Hp(tHd(t

IH:Dé{NvZO-Qaf A( )IZ( ) ( )’ (13)
A=1 A

where Df is the electron dose for HAADF measurement, A is the index of the constituent element,
k is the number of elements in the specimen, /4, is the elastic scattering cross-section, and C,(t")

is the weight fraction of element A at t'. It can be written in the same form as equation 9:
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where z, = 6,/ M,.

The HEBT reconstruction technique proposed by Zhong et al. [14] links the HAADF signals

with the EDS signals using a response ratio factor 7y:

k
IH = z T‘AIA (15)
A=1
and,
DIN.
r, = e VpZy (16)
nfy

Since the value of 74, might differ for various instruments or experimental setups, it is typically
estimated using the measured intensities I and I, through linear regression. The reconstruction
using HEBT is to minimize the least square of the measured and estimated signals (see [14] for

more details),

X = ar%(rglin [|11° — wPXP?||3 (17)
(1 -anl /(1 —OW . 0 ? \
here o | - c;r)rAIe | (z) . —:a)W N (2) I
(1= &)l \ 6 . 9o . (- a)W/
al? aW aW aW
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and X? = kxﬁ), where X4 € RV, in which X2 ; = z,C, ;p;, and a is the balance factor between
X},
the HAADF and EDS terms, which indicates the weight of the HAADF term (0 < a < 1).

With the reconstructed quantity X?, the composition of element A for the j* voxel can be

calculated as follows:



Ca,j

2.3.Forward modeling using MC X-ray

The required physical parameters for the quantification including scattering and ionization
cross-sections are extracted from MC X-ray [22], a Monte Carlo program for simulating electron
trajectories within the solid and computing X-ray emissions. The physical models used for
calculating those parameters are shown in Table 1. And the extracted physical parameters used in

this work are listed in Table 2.

MC X-ray [22] was used to calculate the simulated HAADF and EDS signals from a phantom
sample. The quantification processes using both EDS-STEM tomography and HEBT were applied
to the simulated signals, and the reconstructed images (both before and after quantification) were
compared with the phantom sample to assess the accuracy of each process. The HAADF detector

inner collection angle used in MC X-ray for high angle and low angle are 611 and 94 mrad,

respectively.

b
X4 j /24

=3k yb s,
2A=1XA,j/ZA

Table 1 Physical models used in MC X-ray [22]

(18)

Physical parameters

Physical models

Elastic scattering cross-section

Mott & Browning 1991 [32]

Tonization cross-section

Bote 2009 [33]

Fluorescence yield

Perkins et al. 1991 [34]

Relative intensity

Perkins et al. 1991 [34]

Table 2 Physical parameters extracted from MC X-ray

X-ray line AgLa Au Mo Co Ka Zn Ka
Incident beam energy (keV) 100

Elastic scattering cross

9.90%10° 1.98x10’ 5.59x10° 6.51x10°
section (barn)

Ionization cross section

2.44%10° 7.46x10° 420 302
(barn)




Fluorescence yield 0.057 0.030 0.369 0.466
Relative intensity 0.816 0.999 0.891 0.890

3. Results and discussion

3.1. A 2D phantom sample

3.1.1. Input

To assess the accuracy of the proposed quantification approaches, a 2D phantom sample of an
alloyed Ag-Au nanoparticle, a slice on the X-Z plane, was created. The weight fractions of Ag and
Au are presented in Figure 1. The phantom sample has a core-shell structure, in which the
composition of the core is 80 wt% Au and 20 wt% Ag, while the shell has 20 wt% Au and 80 wt%
Ag.

Ag weight fraction Au weight fraction

1.0
0.8
0.6
N
0.4
0.2
25 nm 25 nm
0.0

Figure 1 Weight fractions of a) Ag and b) Au for the phantom sample: a slice of Ag-Au alloyed particle with a core-shell
structure. Core: 80 wt% Au and 20 wt% Ag; Shell: 20 wt% Au and 80 wt% Ag.

0.0

Simulations were performed using MC X-ray at 100 keV for 97 beam positions from -72 to 72
nm with a step size of 1.5 nm and 31 tilt angles from -75° to 75° with a step size of 5°. The HAADF
sinogram (as presented in Figure 2 a) was obtained with a simulated electron number of 100,000
per pixel, which corresponds to an electron fluence of 444 e/A’(electrons per square angstrom ).
Pixels along the horizontal and vertical axes represent the signals for varying beam positions and
varying tilt angles, respectively. To mimic reasonable experimental conditions, an acquisition time

of 0.5 s for each pixel and a beam current of 100 pA were used, indicating an electron number of
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3.121x10® per pixel, which corresponds to an electron fluence of 1.39x10° /A2 Since the
experimental EDS signals follow a Poisson distribution [35], Poisson noise was applied to the
simulated EDS sinograms, and the resulting sinograms of the Ag La line and Au Ma line are shown

in Figure 2 b) and c), respectively.

Before performing the tomography reconstruction, a Gaussian filter with a standard derivation
of 0.8 was applied to the EDS elemental maps as a denoise process to improve the SNR. It was
implemented using the multidimensional Gaussian filter function in Python library SciPy [36]. The
EDS sinograms with Gaussian filter are presented in Figure 2 d) and e). For both EDS-STEM
tomography and HEBT, the EDS sinograms with Gaussian filter were used as input. And the
original HAADF sinogram was used for HEBT.

a) HAADF

Figure 2 Sinograms of a) HAADF, b) EDS for the Ag La line, c¢) EDS for the Au Ma line, d) EDS for the Ag La line adding a
Gaussian filter, and e) EDS for the Au Ma line adding a Gaussian filter. Pixels along the horizontal and vertical axes represent
the signals for varying beam positions and varying tilt angles, respectively.

3.1.2. EDS-STEM tomographic reconstruction

The EDS-STEM tomographic reconstruction was first performed using SIRT for the sinograms
shown in Figure 2 d) and e). The reconstructed images were computed for different numbers of
iterations, n = 20, 50 and 100, to investigate its effect. The reconstructed images of the quantity

X, for Ag and Au are presented in Figure 3. Note that the quantity X, is not on an absolute scale.
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For Ag after 20 iterations (as shown in Figure 3 a), the core-shell structure can be distinguished,
in which the intensity of Ag is higher in the shell than the core. However, the boundaries both
between the core and shell as well as between the object and background are blurry. When n
increases to 50 (Figure 3 b), the contrast is improved, and the boundaries become clearer. At a
higher n, however, an increased noise is observed (Figure 3 c¢) because of the over-fitting problem.
As for Au, similarly, an increased noise is presented with an increase in # (as shown in Figure 3 d,
e, and f). For all three numbers of iterations, the shape of the core with an increased Au intensity
is well-preserved, while part of the boundaries is not correctly recognized. For example, several
pixels in the bottom of the shell are recognized as background, which is due to the low SNR and
large tilt angle increment (5° for this case) of the projection images and the relatively low

concentration of Au in the shell.

Number of Iterations
n= 20

a)

0.5

Ag

Au

Figure 3 Ag and Au element maps reconstructed using SIRT through EDS-STEM tomography when the number of iterations n =
20, 50, and 100 respectively. a), b), and c) are on the same intensity scale, and d), e), f) are on the same intensity scale.

To better assess the quality of the reconstructed image, two types of image quality metrics are
calculated: structural similarity index (SSIM) and mean squared error (MSE). SSIM [37] evaluates
the structural similarity between two images considering three components: luminance, contrast,

and structure. Since the intensities of the reconstructed images are not on the same scale with the
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reference image (phantom sample), only the structure component is compared. The structure

component, s, of two signals x and y (with the same size) are calculated as follows [37]:

Oxy +C

s(x,y) = o 1 C (19)
x%y
where
Oy Z(xl 1O — 1), 20)
(2D
E(xl 1DV,

(22)

1
= —j(yi—uy)%w,
i=1

and C is a factor to avoid instability when g,.0,, is very close to zero, N is the size of x and y, u,
and p,, are the average intensity of x and y. Cis set to zero in our calculations but still included in
equation 19 for consistency with common implementations. An SSIM value that is close to one
means better structural similarity than for a value close to zero. MSE is the average of the squares
of the errors between two signals. MSE between the direct reconstructed image X, and the
reference image (Figure 1 a and b) is computed using a scaling factor since they are in different
scales, and the scaling factor is chosen to minimize the MSE. For the quantified weight fraction

maps, MSE is calculated directly without scaling.

Figure 4 shows the variations of a) SSIM and b) MSE relative to the number of iterations for
the reconstructed images obtained using the EDS-STEM tomographic reconstruction. For both
metrics, a better image quality for Au is found than for Ag. This difference is likely due to the
slightly higher X-ray intensities of the Au Ma line (as shown in Figure 2 d and e), which means
lower noise from the sinogram. Alternatively, the higher contrast between the shell and the
background for Ag than for Au may impair the image quality for Ag to a greater extent due to an
imperfect boundary. As n increases, the image quality for Ag initially improves but then starts to
fall off after 50 iterations, whilst for Au this drop off occurs after only 20 iterations. This is
consistent with what we can observe qualitatively in Figure 3. Therefore, the approximately

optimal value for the number of iterations for Ag and Au are 50 and 20, respectively.
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Figure 4 Variation of a) SSIM and b) MSE relative to n, the number of iterations for the EDS-STEM tomographic reconstruction.

From the reconstructed images of X4, Figure 3, the true weight fractions of Ag and Au were
computed using equation 12. The computed weight fraction maps for different numbers of
iterations are presented in Figure 5. In general, the core and shell are well segmented, and the
compositions of both regions are close to the reference values. The boundary between the object
and the background appears sharper after quantification primarily because the noise outside the
object is removed by the thresholding step. The image quality of the quantitative element maps as
shown in Figure 6 are thus slightly improved relative to the image quality of X,. The quantification
process to a certain extent neutralizes the difference between the intensities of Ag and Au, making
the relatively sharp boundary between the core and shell (as shown in Figure 3 a and d) become a
‘belt-like’ region (Figure 5 a and b) when the number of iterations is 20. The variation of the image
quality relative to the number of iterations (Figure 6) presents a similar trend as that for the images

of X, (Figure 4).
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Number of Iterations
n —

Ag

Au

Figure 5 Quantitative elemental maps (weight fraction) of Ag and Au for different numbers of iterations, n = 20, 50, and 100. All
figures are on the same intensity scale.
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Figure 6 Variation of a) SSIM and b) MSE for the reconstructed weight fraction maps from EDS-STEM tomography as a
function of n, the number of iterations.

3.1.3. HEBT reconstruction

In this section, results obtained using the HEBT reconstruction are presented. Figure 7 shows
the reconstructed Z-contrast image from the HAADF-STEM sinogram after 50 iterations.
Compared with the reconstructed elemental maps shown in the last section, the boundaries both

between the object and background as well as between the core and shell can be distinguished
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clearly, and there is notably higher contrast. It also shows an excellent agreement with the input
phantom structure. Therefore, it is reasonable to assume the HEBT reconstruction has some

advantages over the EDS-STEM tomographic reconstruction as it incorporates the HAADF signal.

The response ratio factors 74,4 and 1, were calculated using the gradient descent method [38]
to link the HAADF-STEM and EDS-STEM images by a linear relationship. The calculated 7,4

and 1, are 805 and 987, respectively, with a coefficient of determination R* of 0.982, indicating

that more than 98% of the measured data can be explained by the linear model.

400
300
) 200
100
25 nm
0

Figure 7 Reconstructed Z-contrast image from HAADF-STEM tomography after 50 iterations using SIRT.

Two parameters affect the HEBT reconstruction process: n, the number of iterations and a, the
weight of the HAADF signal. We performed the HEBT reconstruction for different n: 100, 200,
and 500, and varying a, ranging from O to 1. Note that the number of iterations required for the
HEBT reconstruction is much larger than that for the EDS-STEM tomographic reconstruction due
to the increased data volume. For the EDS-STEM tomographic reconstruction, the input data is
the EDS sinogram for a certain X-ray line with a pixel size of M, while for the HEBT
reconstruction, the input data is the EDS sinograms for all the X-ray lines of the elements present
and the HAADF sinograms, with a total size of M X (k + 1), where k is the number of elements
present in the specimen. Therefore, more data needs to be optimized for the HEBT reconstruction,
requiring an increased number of iterations. Several numbers of iterations smaller than 100 were
also tested, however they demonstrated far worse quality than the results presented here. The
qualities of the reconstructed images for the quantity X? are evaluated, taking Figure 1 as reference

images.
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The variations of SSIM and MSE are shown in Figure 8 a) and b), respectively, as a function
of o for different n. A better image quality of Au is observed compared with Ag, which is similar
to the results from EDS-STEM tomography. For each number of iterations, the image quality is
first improved as o increases, and then deteriorates after reaching the best. To better investigate
the effect of a, the weight of the HAADF signal, we present the reconstructed images for a = 0.7,
0.8, and 0.9 after 200 iterations in Figure 9. As a changes from 0.7 to 0.8, the noise level appears
suppressed since the low noise HAADF data dominates more. As it continues increasing to 0.9,
though with less noise, the boundary between the shell and core becomes blurry, and the contrast
deteriorates. Figure S1 presents the intensity profiles across the boundary for the elemental maps
shown in Figure 9 to better observe the variation of the boundary with a. The variation is because
as a increases, the EDS-STEM terms contribute less, which makes the optimization process to
minimize the residuals of the EDS-STEM terms inefficient. If the residual of the HAADF-STEM
term has been minimized while those for the EDS-STEM terms remain large, the back projection
from the HAADF-STEM image will appear in the reconstructed elemental maps. Therefore, in this
case, the reconstructed elemental maps of both Ag and Au become similar to the image from the

HAADF-STEM reconstruction (Figure 7), showing worse contrast.
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Figure 8 Variation of a) SSIM and b) MSE of Ag and Au as a function of a, the weight of the HAADF signal, for different n: 100
(green), 200 (blue), and 500 (red) for the direct reconstructed maps using HEBT. Solid lines represent the data for Ag, and
dashed lines represent the data for Au. The yellow horizontal lines indicate the best image quality obtained using the EDS-STEM
tomographic reconstruction.
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Figure 9 Elemental maps directly reconstructed using HEBT for Ag and Au for different a, the weight of the HAADF signal: 0.7,
0.8, 0.9 after200 iterations. a), b), and c) are on the same intensity scale, and d), e), and f) are on the same intensity scale.

As n increases, the image quality typically improves before subsequently deteriorating due to
the overfitting problem. Just as shown in Figure 10 d), e) and f), the Au elements map shows an
improved contrast when n increases from 50 to 200. However, upon increasing to 500 iterations,
the noise begins to dominate again. The approximately optimal value of 7 is thus found to be 200.
Although, the optimal value of n changes as a increases. As shown in Figure 8, the approximately
optimal value of n for Ag is 100 when a is smaller than 0.6, and the value changes to 200 when a
is between 0.6 and 0.8. An optimal value around 500 is found for a larger than 0.8. This results
from the inefficiency of the optimization process for the EDS-STEM terms as o increases. An
increased number of iterations is required to reduce the appearance of the back projection of the
HAADF-STEM image in the reconstructed elemental maps in the case when the residual of the

HAADF-STEM term is minimized and those for the EDS-STEM terms remain large.

The yellow horizontal lines in Figure 8 represent the best reconstruction image quality obtained
using the EDS-STEM tomographic reconstruction to be compared with the HEBT reconstruction.
The best image quality is obtained when n=50 for Ag (yellow solid line) and 20 for Au (yellow
dashed line). For both Ag and Au, the HEBT tomographic reconstruction shows better images

under most circumstances as long as a is larger than 0.5. The element maps for Ag demonstrate a
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greater improvement in image quality compared to Au possibly due to the fact that the image
quality of Ag is more sensitive to the change in the boundary resulting from higher contrast
between the shell and the background. When comparing the reconstructed images from EDS-
STEM tomography (Figure 3) with that of HEBT (Figure 9 and Figure 10), one improvement that
stands out is that the boundary between the object and the background is defined more clearly for
HEBT (see Figure S2 for the comparison of the intensity profiles across the boundary). This is
primarily a benefit of the high SNR of the HAADF sinogram. Within the object, the segmentation

of the core and shell relies partly on the choice of the reconstruction parameters like n and a.

Number of Iterations
n= 50 200 500
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200
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150

100

400
300
Au

200

100

Figure 10 Elemental maps for Ag and Au directly reconstructed using HEBT for different n, the number of iterations: 50, 200,
and 500 when a=0.9 (o is the weight of the HAADF signal). a), b), ¢) are on the same intensity scale, and d), e), f) are on the
same intensity scale.

From the reconstructed images of X?, the quantitative elemental maps of Ag and Au were
calculated using equation 18. The quantitative elemental maps of Figure 9 and Figure 10 are shown
in Figure 11 and Figure 12, respectively. Similar effects of n and o are observed as previously seen
in the reconstructed images of X?. For the same number of iterations, an increase in o can reduce
the level of noise but simultaneously results in a blurring of the boundary between the core and

shell (see Figure S3 for the intensity profiles of the elemental maps shown in Figure 11). For a
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constant o, an increase in » initially improves the contrast but subsequently brings more noise at

higher a due to the over-fitting problem.

Figure 11 Quantitative elemental maps of Ag and Au (weight fraction) from HEBT for different a, the weight of the HAADF
signal: 0.7, 0.8, 0.9 after 200 iterations. All figures are on the same intensity scale.
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Figure 12 Quantitative elemental maps of Ag and Au (weight fraction) from HEBT for different n, the number of iterations: 50,
200, and 500 with 0=0.9 (o is the weight of the HAADF signal). All figures are on the same scale.
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Figure 13 Variation of a) SSIM and b) MSE as a function of o for different n: 100 (green), 200 (blue), and 500 (red) for the
quantitative elemental maps obtained using HEBT. Solid lines represent the data for Ag, and dashed lines represent the data for
Au. The yellow horizontal lines indicate the best image quality obtained using the EDS-STEM tomographic reconstruction.

The variations of SSIM and MSE as a function of o for the quantitative elemental maps are
presented in Figure 13 for different n. The yellow horizontal lines correspond to the best image
quality obtained from the quantification of the EDS-STEM tomographic reconstruction (solid line
for Ag and dashed line for Au). The quality of the Ag elemental map is greatly improved by the

well-determined object boundary. However, the quality of the Au elemental map is at a comparable
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level with the Au map before quantification. The different effect on Ag and Au is intrinsic, i.e.,
because the particle contains higher Ag content in the shell (80 wt%) and it therefore should
demonstrate a higher contrast in the quantified composition map. The slight unusual fluctuation of
the two metrics with o results from the threshold determination to define the particle volume,

because this was done independently via the ESF method each time.

3.2. A particle of flux melted metal-organic framework glass

The two reconstruction techniques and quantification processes were next applied to 3D
characterisation of a real experimental dataset obtained from a multicomponent zeolitic

imidazolate framework (ZIF) glass: the ag [(ZIF-67)02(ZIF-62)0.3] flux melted glass.

3.2.1. Specimen and experimental data

ZIFs, a subcategory of metal-organic framework, are composed of tetrahedral metal nodes
connected by imidazolate-based organic ligands [39]. ag [(ZIF-67)02(ZIF-62)0s] is generated
through the melting of ZIF-67 [Co(mlm)2, mlm: 2-methylimidazolate, C,HsN; ] mixed with ZIF-
62 [Zn(lm)175(blm)o2s, Im: imidazolate, C3H3;N; , and blm: benzimidazolate, C;HsN; ] and
brought to above the melting point of ZIF-62 [20]. The subscripts, 0.2 and 0.8, refer to the weight
fraction of each component, and ag refers to melt quenched glass. For additional details of the
synthesis and previous EDS tomography analysis of this sample, refer to [20] and [21],

respectively.

The experimental maps were acquired on a Thermo Fisher 80-200 keV probe corrected Titan
with a four quadrant Super-X EDS detector operating at 80 keV. The EDS spectrum image data
sets were acquired for different tilt angles ranging from -72° to 54° with a tilt increment of around
9°. For each tilt angle, an ADF image was simultaneously obtained using a Fischione HAADF
detector. ADF images have been proved to satisfy the projection requirement, that the signal is a
monotonic function of the thickness, in a prior report [21]. It is, therefore, reasonable to use this
signal in conjunction with EDS for a HEBT reconstruction. Please refer to reference [21] for more

details about the experimental setup.

EDS maps were recorded with a pixel size approximately equal to the beam diameter, and then
subsequently re-binned to make sure that each pixel contains enough X-ray counts. Both the EDS

spectrum images and ADF images (required to have the same size as EDS maps) were re-binned
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to half of their original number of pixels in both spatial dimensions. The pixel size after re-binning
is 2.74 X 2.74 nm. For the acquired EDS spectra, the background was subtracted, and the
intensities of the peak of the C, N, Co, and Zn Ka line were integrated respectively to generate
EDS maps using HyperSpy [40], an open source Python library. The ADF images and EDS maps
for the same tilt angle were aligned by aligning the center of mass of ADF image with the elemental
map of N. To reduce the shadowing effect, the total signals of a tilt series EDS maps for a certain
element were normalized to the same value [41]. The in-plane alignment and tilt-axis shift and
rotation were then performed for both ADF and EDS images. Figure 14 shows the processed ADF
and EDS images of the C, N, Co and Zn Ka line for tilt angles: -45°, 0°, and 45°.

ADF C N Co Zn

-45°

150 nm

OO

45°

Figure 14 ADF and EDS maps for the C, N, Co, and Zn Ko line for tilt angles of -45°, 0°, and 45° . Note the presence of the
carbon support film is visible in both the ADF maps and the EDS maps for the C Ka line, and the ADF maps are presented here
on an inverted intensity scale.

3.2.2. Tomographic reconstruction

Since the weight fraction of H is relatively small for both components (4.6 wt% in ZIF-67 and
3.1 wt% in ZIF-62), the contribution of H to the elastic scattering of electrons, i.e., HAADF signals
is ignored. Therefore, only four elements: C, N, Co, and Zn are considered for the HEBT

reconstruction.
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The HEBT reconstructions were performed for around 260 slices with @ = 0.8 and n = 100.
The computed response factors for the four elements are 1. = 1921, ry = 3792, r;, = 5179, and
T7n = 6502 with a coefficient of determination R? = 0.92. The reconstructed elemental maps are
compared with the results from the EDS-STEM tomographic reconstruction in Figure 15, which

presents the 2D reconstructed images for slice number 70, 130, and 190.
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Figure 15 Reconstructed elemental maps for xz orthoslice (the cross-section view in/out of the paper for the maps shown in
Figure 14) using the traditional single signal tomography reconstruction and HEBT reconstruction for three slices: no. 70, 130,
and 190.

For both EDS-STEM tomography and HEBT, no clear boundaries between the Zn-rich and
Co-rich components is observed. Instead, the interface displays the diffusion of the two
components resulting in a region comprised of both Co and Zn, consistent with what has been

presented in prior reports [20, 21]. Moreover, a higher intensity of Co and little intensity of Zn are
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shown in the upper-left region of the particle, likely referring to remnant pure single-phase ZIF-
67. Meanwhile the bottom of the particle, displaying high Zn intensity and an apparent absence of
Co, likely contains a region corresponding to pure ZIF-62 domain. As we increase the slice number

from 70 to 190, the cross-sectional area of the particle increases.

Compared with the EDS-STEM tomographic reconstruction, the HEBT reconstruction, in most
cases, displays clearer boundaries and a better contrast. For example, for the Co element map at
slice n0.190, noise shows in the bottom-right region outside the particle for the EDS-STEM
tomographic reconstruction, while it is mostly absent in the reconstructed map from HEBT,

making the blurry boundary between the particle and the background much sharper.

Some slight discrepancies in the shape of the particle between the two reconstruction
techniques are observed. For example, for slice no.70, a “stripe-like” region along the bottom-right
side in the HEBT reconstruction is missing in the elemental maps of the EDS-STEM tomographic
reconstruction. This might be due to the misalignment between the ADF images and EDS maps
considering that ADF images have only one frame, while EDS spectrum images were acquired as

a summation over multiple frames with drift correction.

3.2.3. Quantification

The reconstructed images were then quantified using the physical parameters acquired from
MC X-ray. Considering that the X-ray intensities of the C and N Ka lines extracted from the
spectra can be inaccurate because of the poor background simulation at low energies, presence of
the carbon support film underneath the particle, and possible enhancement in the absorption effects
[21], C and N were not included in the quantification. We use the weight ratios of Zn and Co to
the total weight of Zn and Co [Zn/ (Zn + Co) and Co/ (Zn +Co)] to indicate the quantities of Zn
and Co, respectively. The HEBT quantification factors for Co and Zn are z;, = 9.49 X 10* b -
mol/g and z;, = 9.96 X 10* b - mol/g. And the EDS-STEM quantification factors are f,, =
2.25b-mol/g and f;, = 1.84b-mol/g. According to the definitions of the partial cross-

section g}, and the EDS quantification factor fy, we have 659, /ofa = (feo * Mco)/ (fzn * Mzn).

In comparison to the partial cross-section ratio of aggr / apzl?r = 1.08, determined experimentally

by Collins et al. [21], our calculation obtains a close value of (f¢, * Mco)/ (fzn * Mzn), 1.10, which

indicates the reliability of our model.
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Figure 16 presents the absolute weight fraction of Co and Zn for three slices using the two
different reconstruction techniques. Similar features as observed in Figure 15 are shown in Figure
16, that high Co concentration is found in the upper-left region, and high Zn concentration in the
bottom-right region. Even though the same threshold determination method was used, the HEBT
reconstruction shows smoother boundaries and a more similar shape to the reconstructed images
before quantification as observed in Figure 15 than the EDS-STEM tomographic reconstruction.

Again, small discrepancies in the shape might result from the misalignment between the ADF

images and EDS maps.
Slice EST-Co HEBT-Co EST-Zn HEBT-Zn
No. | ’
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130 WJ ﬁfb . & ¥ 2
o .y Sy |-

Figure 16 Weight fraction maps of Co and Zn [Co/(Co + Zn) and Zn/(Co + Zn)] using the EDS-STEM tomographic and HEBT
reconstruction for slice no. 70, 130, and 190 (cross-section view on the xz plane).

Figure 17 presents a 3D volume rendering of the flux melted particle obtained using the
quantification of the HEBT reconstruction, which provides a complete view to observe the 3D

morphology and diffusion of the Co-rich domain (red) and Zn-rich domain (blue) in the particle.
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Figure 17 3D volume rendering of the flux melted particle using the HEBT reconstruction. Red represents Co, and blue
represents Zn.

4. Conclusion

We have proposed a new quantification approach combining the physical parameters acquired
from MC X-ray with tomographic reconstruction to characterize 3D elemental distribution of
nanostructures quantitatively. Two types of tomographic reconstruction were investigated using
the simultaneous iterative reconstruction technique (SIRT): the traditional EDS-STEM
tomographic reconstruction and HAADF-EDS bimodal tomographic (HEBT) reconstruction. The
two types of reconstruction technique and the corresponding quantification approaches were
applied to a simulated dataset of a 2D phantom sample of a Ag-Au nanoparticle and an

experimental dataset of a particle of flux melted metal-organic framework glass.

Using the simulated dataset of a 2D phantom sample (a single slice), the effects of the
reconstruction parameters were investigated through two type of image quality metrics: SSIM and
MSE. For both EDS-STEM tomography and HEBT, the quality of the reconstructed image is
initially improved as a function of the number of iterations, before falling off at higher values due
to the over-fitting problem. A similar trend was observed for a, the weight of the HAADF signal,
in the HEBT reconstruction. Moreover, as a increases, the approximately optimal value for the
number of iterations increases since the optimization becomes less efficient as a increases. In

general, with appropriate reconstruction parameters, HEBT shows a better contrast and a reduced
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noise level compared with EDS-STEM tomography. The quantified elemental maps obtained from
the HEBT reconstruction also present a better similarity and lower errors in comparison to the

reference images when compared to that from the EDS-STEM tomographic reconstruction.

The quantification approaches of both reconstruction techniques were successfully applied to
an experimental dataset of a particle of flux melted metal-organic framework glass, displaying the
quantified 3D elemental distribution of Co and Zn. The diffusion of the Co-rich domain and Zn-
rich domain into each other was shown. The EDS-STEM tomography quantification factors
calculated using our approach have shown a good consistency with the experimentally measured

partial cross-sections from the reference.

We have shown the feasibility of our quantification approaches for EDS-STEM tomography
and HEBT applied to experimental datasets. Using SIRT, both EDS-STEM tomography and
HEBT have revealed physically meaningful results. Although requiring an optimal alignment of
ADF and EDS maps in conventional multi-frame acquisitions, HEBT has shown advantages in
image contrast, boundary determination, and noise reduction compared with EDS-STEM
tomography. The HEBT technique will play an important role in the characterization of beam-
sensitive samples for which the EDS maps are quite noisy and in reducing experimental acquisition
time. In the future, the method to better align the ADF and EDS maps will be explored. And the
integration of other advanced tomography algorithms as a replacement of SIRT will be

implemented to improve the reconstructed images.
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