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A detailed comparison of the empirical pseudopotential method with single and multiple band
calculations based on the envelope function and effective mass approximations are presented. It is
shown that, in order to give agreement with the more rigorous microscopic approach of the
pseudopotential method, structural dependent effective masses and Luttinger parameters must be
invoked. The CdTe/Cd,Mn,Te system has been employed as an example, and the first
pseudopotential calculations of quantum wells and superlattices in this material are presented. It is
shown that the electron, light- and heavy-hole effective masses tend towards twice their bulk values
in the limit of narrow quantum wells. €1997 American Institute of Physics.

[S0021-897€07)00319-9

I. INTRODUCTION change on a scale comparable with those of the Bloch func-
tion and the periodic interatomic potential, hence they can no
The envelope function and effective mass approximaionger be regarded as slowly varying in this case. Further-
tions have been employed extensively in the determinatiomore, the effective masses paramet@nsequivalently, the
of electronic states in semiconductor heterostructures such asittinger parametejswhich incorporate the effect of micro-
quantum wells and superlattices following the early work byscopic potential change in the parametrization scheme, are
NedorezoV and Bastard:* In this approach, the periodic in- normally treated as constants which are derived from band
teratomic potential is eliminated from the description and isstructure properties associated with the corresponding bulk
replaced by a smoothly varying macroscopic potential determaterials. One can expect such a treatment to become in-
mined by the band offset of the materials. The wavefunctioncreasingly inappropriate as the characteristic dimension of
of the system is assumed to be a linear combination of thﬁ}e system decreases. A|though some progress has been
product of a slowly varying envelope function together with made with regard to the general formalism of the envelope
a Bloch function appropriate to a bulk carrier. The latterfynction and effective mass theory for heterostructdfe®
changes rapidly on an interatomic scale, with a period of unithe central problems mentioned above relating to the values
cell length, and can be eliminated from the descripfion-  of the effective masses to be employed in a given calculation
deed the approach offers a simple but successful way to imain largely unresolved.
terpret experimental data from “large systems” such as wide Although computationally costly, solving the Schro
quantum wells or long period superlatticg8. It is to be dinger equation withmicroscopic atomic potentials is widely
noted, however, that these successes rely, to some extent, @fployed in band structure calculations such as the semi-
the judicious choice of important parameters such as the e%mpirical pseudopotential or the tight-binding method. The
fective masses of the carriers. developments that have made use of these methods extend
In contrast with the large system, the envelope functionyom pand structure calculations of bulk materials to those of
approach was shown to be less effective in describing théyicrostructured?-182° |n particular, Jaroset al.’#1% and
electronic properties of “small systems” such as Narrow 7 ngeret al. -2 have developed two different schemes for
quantum wells, or short period superlattices, if one employegysedopotential calculations of semiconductor heterostruc-
the same input parameters as with the large syStéfrin- tures, which can handle efficiently both small and large sys-
deed, when the characteristic dimensions of the systems dgsms. These pseudopotential calculations are, of course, free
crease to values comparable with the interatomic lengthom the approximations and restraints to which the envelope
scale, e.g., less than 20 A, say, there exists dramatic d'ffe_rf‘unction approach suffers. Consequently, a comparison of
ences between the results based on the envelope functigRe predictions of both methods permits a direct evaluation
approximation and the experimental déz‘_al is evident that ¢ the limitation of the envelope function approach and the
some of the basic approximations used in the envelope fungyqgjfications to it that are needed in order to give agreement
tion approach are not valid for these small systems. For eXgith the exact results of the pseudopotential theory.
ample, the envelope function and the macroscopic potential | the present article, which is an extension of our recent
work on the band structure and effective masses of the bulk
dElectronic mail: f.long@apphys.hull.ac.uk Cd,_,Mn,Te alloy?® we perform the first empirical pseudo-
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potential calculations 0of00)CdTe/Cd_,Mn,Te superlat-
tices and quantum wells. These results are then compared
with those from a simple single band model and with a
multiband k- p model, both of which encompass the enve-
lope function and effective mass approximations. In particu-
lar, the effective masses of the electron, light- and heavy-
holes in the quantum wells have been determined by treating
them as parameters within the envelope function calculation
and adjusting them until the resultant energy level structure
agrees with that of the empirical pseudopotential method. In
this manner, we can deduce, for the first time, the dependen-
cies of the effective masses of the electron, light- and heavy-
holes in(001) Cd, _,Mn,Te/CdTe superlattices and quantum
wells, on the width of the wells, a feature which has received
scant attention to date.

Il. PSEUDOPOTENTIAL CALCULATION OF THE FIG. 1. The band structure of the bulk £fn, Te obtained from the
SUPERLATTICES AND QUANTUM WELLS pseudopotential calculation.

In this section, we describe the empirical pseudopoten-
tial calculation for the diluted magnetic semiconductor
(DMS) Cd;_,Mn,Te/CdTe superlattices grown along the
(001) direction. There are extensive experiméfitdt?’and

zone is considered since the quantum wells and superlattices
discussed in this work are type I. Consequently, the only

theoreticdl?®~2° studies of these DMS quantum well sys- wave-vectorks which needed to be included in E() are
tems. These have led to a great understanding of their novgl]e set

properties due to the large $g exchange interaction be- 2 m

tween the carriers and the magnetic ¥Mnions. However, a O’O’N>’ €)
the majority of these studies have been based on the enve- 0

lope function and effective mass approximations. wherea, is the lattice constant of bulk CdTe, i.e., 6.481 A.

The calculational scheme used here was first developetihe entityN is the number of lattice constants in a superlat-
by Jaroset al.'#1931%2yho applied it to evaluate the elec- tice unit cell and them are the integers satisfyinm=<N.
tronic structure of types | and Il superlattices of llI-V and @, , s is generated by the standard local pseudopotential cal-
l1-VI compound semiconductors. In the calculation, a superculation including spin-orbit coupling?>23i.e., by directly
lattice unit cell is chosen so that the length of the superlatticeliagonalizing the matrix equation
period lies along the growth direction. The Sdtiinger
equation for the superlattice is written as H_kz_ E

2 nks
(Fo+ V)V =EV, (1)

where. 7, is the Hamiltonian of the bulk zinc-blende CdTe 15 ok K’)
crystal whileV is the perturbation introduced to account for 53

the difference in the microscopic atomic potential betweeqNhereG is a bulk reciprocal lattice vector, ari=k+ G

CdTe and CngMnxTe. This occurs, within thg unit cell, E... is the eigenvalue corresponding da,. V5.0 is the
when the latter substitute the former thus creating the super=": . . . b S.S .
) . L .~spin-orbit coupling matrix element which is evaluated using
lattice. The superlattice wavefunction is constructed as a lin:, ) :
o . : . the method introduced by Bloom and Bergstreséay, is
ear combination of the eigenfunctions.af, i.e., ; :
the screened local atomic pseudopotential. Knowledge of the
_ appropriate value o/, for CdTe, MnTe, and Cd ,Mn,Te
\P(r)—n%S An ke sPnks(r), (@ is essential to this work/, for CdTe and MnTe are deter-

) o mined by adjusting the form factors(®), i.e., the Fourier
wheren ands are, respectively, the band .and_ spin index of i ansformed components & , in order that the resulting
the bulk CdTe system. The wave vectoties in the bulk  hang structures and effective masses of the bulk materials
Brillouin zone and is determined by the period of the pertur—agree with those from experimental data.
bationV. This is because the bulk statég, «(z) which con- Figure 1 is a typical band structure for the C¢gMn, Te
tribute significantly to the superlattice staey (z) having )0y with x = 0.1. This alloy will be used as the barrier
the superlattice wave vectég, are those having & vector  material in later calculations. It is worth pointing out that
which can couple t by some linear combination of the although the 3d electron energy bands do not appear explic-
superlattice reciprocal lattice vectors. It is only those bulkitly in Fig. 1, their effects on the electrons in the conduction
states which satisfy this condition that need to be included imnd valence bands have been included implicitly in the cal-
the expansion of the superlattice state in E2). In the  culations, further details of which can be found in our

present work, only thd“_point in the superlattice Brillouin recent worlké®

5G,G’ 55,5’ +VL(|G_ G,|) 55,5’

=0, (4)
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TABLE |I. Comparison of the critical point energies of bulk CdTe as ob- TABLE Il. Comparison of the other band properties of bulk CdTe and
tained in the present pseudopotential calculation with those obtained in th®InTe calculated by the pseudopotential approach employed in the present
nonlocal pseudopotential by Chelikowsky and CGh@@C). The eigenval-  work with the experiments. These properties are also used as the input

ues for bulk MnTe are also listed and the way to compare theab faitio parameters for the single- and multiple-band effective mass model calcula-
calculation is detailed in our recent work. tions in the present work.
CdTe CdTe MnTe
Energy level(eV) Present ccC MnTe Property Present  Experiment Present Experiment

r,, —-0.920 —-0.89 —-0.922 Egap (€V) 1.606 1.608 3.193 3.19%

e, 0.000 0.00 0.000 Aq (8V) 0.920 0.92 0.922

| 1.606 1.59 3.193 Effective masses

. 5.384 5.36 6.837 atT point (mp)

Xeo —-4.799 -5.05 —4.306 me[ 100] 0.110 0.099 0.177

X7, -2.011 -1.98 —2.025 my,{ 100] 0.60 0.60 0.961

Xew —1.700 —1.60 —1.568 my,[ 100] 0.18 0.12 0.322

Xec 3.097 3.48 3.814 Mg, 100] 0.35 0.530

Le —4.686 -4.73 2.812 my{ 111 0.69 0.69 1.01

Leo -1.212 -1.18 -1.357 m[111] 0.21 0.1% 0.37

Lss —0.646 —0.65 —0.873 Luttinger parameters

Lec 2.831 2.82 4.795 " 3.611111 2.073 086

Lec 6.127 6.18 5.797 Vs 0.972 222 0.516 252

V3 1.080 918 0.541 494
ZSee Ref. 45. @ 8.212 3137 4.724 169
See Ref. 25. E, (eV) 9.973 908 8.004 573
aRef. 46.
PRef. 47

The relative alignment between CdTe and,CdMn,Te  cxef 44
is determined by the symmetric parf(\G) of V(G) associ-  “Ref. 48.
ated with MnTe atG=0. In effect, \P(G) causes a rigid
shift of the whole band structure, and its value was adjusted
so that 35% of the difference in the band gap between CdTguess” at the gradients of the polynomial. This polynomial
and MnTe at thd™ point was taken up by the valence-band form of V(q) is then used in a calculation of a large period
offset. Although the exact values of the valence-band offsesuperlattice. For the latter, it has been shown in the literature,
between CdTe and Gd,Mn,Te are still controversid?® e g., Ref. 9, that calculations based on microscopic potential
recent experimental wotk suggests that the values are models, such as the pseudopotential or tight-binding ap-
within the range of 30%-40%. proaches, give good agreement with those from the simple

It is known that the form factor¥(q) for smallq, in  envelope function approach within the effective mass ap-
addition to those for the bulk zinc blende reciprocal latticeproximation. Consequently we adjusted the gradients of the
vectors, are needed in an empirical pseudopotential calculgolynomial at the zinc- blende vectors so that the calculated
tion of superlattices. Several attemi3t&"*®at determining energy levels of a given large period superlatti¢e.g.,
these smalt) form factors, based essentially on the quasicon207.4 A Cd_,Mn,Te/90.7 A CdT¢ agree with those of
tinuous dependencies d(q) on g, have been made. These the simple envelope function approach. The critical point
have involved fitting a parameterized algebraic form of po-energies of bulk CdTe and MnTe calculated by the pseudo-
tential V(q), to the form factors at the zinc-blende reciprocal potential approach employed in the present work are shown
lattice vectors. The parameters are then optimized in ordeh Table I. Similarly Table Il shows the other band properties
that a variety of bulk properties, such as the band structuresf bulk CdTe and MnTe calculated which are also used as
effective masses, band offsets, and deformation potentiaigie input parameters for the single- and multiple-band effec-
agree with the measured values. In the present work, théve mass model calculation performed in the present work.
quasicontinuous forms o6f(q) for CdTe and MnTe are as- Table Il lists the coefficients of the polynomial functions of

sumed to be a polynomial of degree 8, i.e., V(q) for CdTe and MnTe.
8 Using the quasicontinuous form &f(q) for CdTe and
V(g)=2>, Aq. (59 Cdi_,Mn,Te, the energy levels of the superlattices and
i=0

guantum wells are obtained by substituting E?). into Eq.

The polynomial is first fitted t&/(G) at the zinc-blende vec- (1) and directly diagonalizing the resulting matrix equation.
tors, which means that the measured band structure and ef-

fective masses of bulk materials have been reproduce )

Then, for CdTe, the gradients of the polynomial at the dif-q"' ENVELOPE-FUNCTION TECHNIQUE

ferent zinc-blende reciprocal vectdBsare optimized so that In this section, we describe the calculations based on the
a variety of measured deformation potentialare repro- envelope function approximation and compare them with the
duced by the pseudopotential calculation. For MnTe andesults obtained from the empirical pseudopotential ap-
Cd, _,Mn,Te, because of the scant knowledge available conproach. Two classes of model were employed within the en-
cerning the deformation potentials, we first made a “bestvelope function approach

3416 J. Appl. Phys., Vol. 82, No. 7, 1 October 1997 Long et al.
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TABLE lll. Coefficients of the polynomial function of atomic pseudopotential form factig). The unit of
V(q) is eV and that ofy is 27/a,.

Coefficients Cd Tdin CdTe Mn Te (in MnTe)
Ao 7.246 4541073 2.145 5141072 —1.25143%10°2  —2.27582% 1073
A —2.96903% 1072  —2.40395%X10° ! —1.34619%10°* —1.34619%10°!
A, 3.081176¢10°2 1.201 461 1071 2.08971x 107! —2.956 3341072
A; —2.11067X10°2  —3.25857%10 2  —-2.41162X102  —4.366798% 10 2
A, 5.797 186103 5.442 721073 6.123 684102 8.046 64% 10732
A —7.51800410°*  —-543028%x10°* -7.51477x10*  —8.60184%107*
Ag 4.99366X10°° 3.101 7861075 4.802 93k 10°° 5.155 39X 107°
A, —1.64934%10°®  —9.31415410°7 —1.54250%K10°®  —1.60297&10°®
Ag 2.150 6151078 1.13805% 10 8 1.968 99% 108 2.011 06108

(1) the single-band effective mass model—although the couwhich was adjusted for wells of varying width, until the en-
plings between electrons in different bands are not inergy levels of the electron, heavy and light holes agreed with
cluded explicitly in this kind of model, it still gives a those obtain from the pseudopotential calculation. On other
good description of band-edge states of a large quanturhand, the value om* for the Cd_,Mn,Te was kept at its
well system provided an appropriate choice of the effecbulk value since the widths of the barrier layers are much
tive masses is made. thicker than those of the well layers and could be considered

(2) the multibandk-p model—a perturbation theory in to be “bulk-like.” The effective masses appropriate to bulk
which a small set of coupled zone-center states of th&d,_,Mn,Te were obtained from our recent pseudopotential
different bands are used to give a description of the bandalculation of the band structure of CdMn,Te?® as a func-
structures and other related electronic properties of bulkion of the alloy concentratior.
materials and corresponding heterostructures. In the clasg2) model, the states of the quantum well are

expanded in terms of a linear combinations of the periodic
r_[Parts of the zone center Bloch function appropriate to bulk
materials, i.e.,

In the class(i) model, the Schminger equation of a
guantum well is reduced to a one-dimensional proble
which, for definiteness, was taken to have the form

9 -
“immrg a Ved? | 2@, O ®(r=e" 2 ur(nfi(2), ®

whereV,,(2) is the quantum potential which represents the . . .
band-edge changes of the bulk carriers between the two mg\{hereki is the in-plane wave vector,r) is the part of the

terials of the quantum well structure. Under zero bias condi-zolrlle cednter B.loct?] funcnoln W't? thi. perlz? t%f thet bulk :;'t
tions, Ve,(2) is constant in each material and its change at®h an .f(z) IS the envelope Tunction. 'S stage, two
assumptions are madél) ur(r) takes the same form in

the interface is defined in terms of the band offef(z) is X .
the envelope function of thigh state of a carrier in the quan- both_well (CdTe gnd barrier materla(Cdl,x_MnxTe). (2 .
f|(2) is slowly varying on the scale of the unit cell appropri-

tum well, andm* (z) is the effective masétaken as a con- !
ate to bulk material.

stant within each material comprising the quantum vetl - . . .
is worth noting that utilization of Eq(6) automatically im- Substituting Eq(8)_|_nt_o the Schrdinger equation of the
quantum well, and utilizing the property ofplr), we can

lies a boundary condition of the form X s . .
P y establish a set dl coupled partial differential equations. In

1 ddi(2) the present work, we use tkep model for the quantum well
5 dz system developed by Ekenbezgal.*° and emphasis is paid
interface-CdTe to the hole energy levels. In particular, the Luttinger param-
1 ddi(2) eters are directly_ related to the baneldge effective masses
:<_* & ) (7)  through the relatiorf$
m interface-CdMnTe
i.e., ®(z) and 1Mm* d®;(z)/dz are continuous at the inter- Mo _ P (9a)
face between CdTe and ¢dMn,Te. m{ 100] LENCE
Equation(6), under the restraint of the boundary condi-
tion (7), is solved by a numericahooting technique. It is to
be noted that, in the majority of calculations reported in the Mo _ y1+27s, (9b)
literature, the values of the effective masses of the electron, mj;[100]
and the light- and heavy- holes used in Ef) are those
appropriate to the bulk materials as defined via the bulk band m
structure. But, in the present work, the value of the effective ~—— — Y1— 273, (9¢)
massm* in the (CdTe well was treated as a parameter ~ M 111]
J. Appl. Phys., Vol. 82, No. 7, 1 October 1997 Long et al. 3417
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Mo 100

— - =711 2vs, (9d)
mip[111] 80 ——o EFA
my_  EnEgt i) . s PP
S I b
m?, Eg(Eg+A) £ 60|
&
mO EpA a—) 40 L
m T 3E(EgrA) <0 7
mg_, g( g 11}
where y1, v,, v3, a, andE, are the Luttinger parametérs 20 |
which are shown in Table IE; and A are band gap and

spin-orbit gap, respectively. Thie* are the effective masses 0 0 2‘0 4'0 6‘0 8I0 10
along the different directions. It is well known that the Lut- Well width (A
tinger parameters reflect the effects of microscopic potential ell width (A)

in the form of theV(k), and that, in general, they are energy 60 '
dependent. Consequently, even if the Luttinger formalism 50 IEEAlhIh
could be applied to quantum well structusesfeature which EFA hh
we have shown recently is questionalffethe energy depen- s 40 PP hh
dence of the parametrization scheme would need to be incor- GE’

porated into the formalism, particularly for narrow wells. =30 |

This is achieved in the present work by deducing the Lut- 12

tinger parameters via E@9), utilizing effective masses ob- 2 20

tained by fitting the results of Ed6), for a given quantum L

well structure, to the pseudopotential calculation for this 10 |

same structure. 5

0 20 40 60 80 100
IV. NUMERICAL RESULTS AND DISCUSSION Well width (A)

A. Comparisons of the single band envelope function

. . FIG. 2. The dependence of the confinement energiéa)aflectron andb
model and the pseudopotential calculation P gica) db)

light- and heavy-holes on the quantum well widths. PP and EFA correspond
to the pseudopotential and single-band envelope function models,

Figures Za) and Zb) plots, respectively, the confine- despectively.

ment energies of electron, light-, and heavy-hole groun
states as a function of the width of the CdTe quantum well

when surrounded by G@Mng Te. Two curves are dis- \yells in order to eliminate the discrepancy in energies shown
played:(i) PP-full pseudppotentlal calculano.n of the glectronin Figs. 2a) and 2b). In particular, these effective masses
and hole energy levels in the quantum wells. EFA-single  yeach values which are double that of the bulk at around 13
band envelope function model as summarized by@altis A (4 monolayers Figure 3 also suggests an empirical rela-

clear that the curve given by the EFA model does agree We“ionship betweemm* and the well widthl,, of the form
with that given by the microscopic PP model within quite a

large range of the wide wells, i.e., the discrepancy between M*(ly)=m’'e” W' +mg . (10
two sets of the curves is less than 3 meV for the well widths
greater than 50 A. However in all three cases, the discrep-
ancy between the two models increases as the well width

decreases. This is attributed to a steady decrease of the ap- 12| S olecton
plicability of bulk band structure consideratiofis the form o heavy hole
of the bulk effective mass parametets narrow quantum 1.0 ¢ 4 light hole

well structures. This is predicated on the reasonable assump-
tion that the pseudopotential, being a microscopic model,
gives a more accurate description of narrow wells. ;-S/ 06t

The effective masses which appear in Fig. 3 are deduced
by adjusting their values in E@6) until exact agreement is 0.4 r
obtained with the PP calculation of the corresponding one 0.2 @\S\D

electron energy. It is apparent that the expected limit of bulk
mass values for the wide wells is obeyed. For CdTe wells of 0.0 : ‘ : :
. . 10 30 50 70 90
width greater than 50 A, the effective masses of the electron, Well Width (A)
light-, and heavy- holes increase by less than 10%, 8%, and
_17% of their bU”_( values, respectively. Howeve_r, INCreas-r|G. 3. The dependence of the effective masses of electron, light- and
ingly larger effective masses must be employed in narrowerieavy-holes on the quantum well widths.

208}
g

3418 J. Appl. Phys., Vol. 82, No. 7, 1 October 1997 Long et al.
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1.0 ¢ " 1 v
= hh r
. oh 2 T —— PPT
08 . ec 1 ~—— KP model 1
. T, ——-—- KP model 2

0.0

0 20 40 60 80
Energy E (meV) k

FIG. 4. The effective masses of the electron, light-, and heavy-holes as g|g. 5. The band structure of bulk CdTe alof@pl) calculated with the

function of the confinement energies. The solid points are from the pse“doﬁseudopotential approadfP, the k-p model with Luttinger parameters
potential calculations and the solid lines from nonparabolicity apprés=edh deduced from Ref. 42KP model 1, and thek-p model with Luttinger

Ref. 42. parameters deducddia Eqg. (9) from the pseudopotential data shown in
Table | (KP model 2.

This relationship was fitted to the data in Fig. 3 and gave the
values of the constants’ and L as shown in Table IlI.

It is interesting to note that well width dependent effec-beyond that small region, the discrepancy betweenkthe
tive masses have been proposed before by EkedBevgp  model and the pseudopotential calculation can be very large
applied the nonparabolicity correction of bulk band structure(up to several eVjs This has significant implications for the
to the confinement energy of a subband of a quantum welk - p model description of a quantum well, particularly a nar-
In particular, as the quantum well becomes narrower, theow quantum well, where it has been shdfvihat more bulk
wave vectork, along the growth-axis, which appears in the Bloch functions(i.e., more band statesieed to be included
one-dimensional envelope function dog), becomes larger. in the k-p basis set for a quantum well system than are
The effective mass of the corresponding bulk states can beequired for the description of a bulk state. Given that the
come altered due to the deviation of the bulk band structurenergy levels of these bulk Bloch functions are themselves
from the paraboliE = k? relationship, and hence the effec- described poorly by thk- p model, it is clear how errors can
tive mass becomes a function of well width. In Fig. 4, theenter into thek-p calculation for a quantum well system.
effective mass of Fig. 3 are plotted against the correspondin@ne means of overcoming this would be to increase the
confinement energies, as illustrated by the solid symbols. Inumber of Luttinger parameters employ®dAnother ap-
comparison with this, the solid lines are the results of impleproach would be to adopt the energy dependest, well
menting the approach of EkenbéfgBasically this involves  width dependentLuttinger parameters.
deducing the effective mass from the bulkl00] Figure 6 shows the well width dependence of the Lut-
bandstructur® at the band energies corresponding to thetinger parametery, andy, as defined by Eq€9a) and Eq.
quantum well confinement energies. It is apparent that whil€db), where the correspondingy,[ 100] andm;ji[ 100] come
the nonparabolicity of the bulk band structure is contributing
to the variation in the effective mass, it is not sufficient to
explain the dependency.

4
B. Comparisons of the multiple-band k-p model and ©
the pseudopotential calculation 3!

Figure 5 displays the band structure of bulk CdTe along o
(001 calculated with three different methods. The first L%
method employs the pseudopotential approdiB, the sec- =2
ond method thek-p model with Luttinger parameters de-
duced from experimental data of cyclotron reson&h¢&P
model 1), while the third employs th&-p model with Lut- T = =
tinger parameters deducé¢da Eq. (9) from the pseudopo- A/Q/A/A/Ir
tential data shown in Table(KP model 2. It is clear from 0 , ‘ ‘ ,
this figure that bothk-p models have a dispersion curve 10 40 70 100 130 160
which agrees well with that from the pseudopotential ap- Well Width (A)

proach in a small region near tliepoint. This demonstrates
C!e_arly that ther mOdel 1S a Succe_S_Sfm model in the Vi- G, 6. The dependence of the Luttinger parametgrsand v, on the
cinity of a special point of the bulk Brillioun zone. However, quantum well widths.

J. Appl. Phys., Vol. 82, No. 7, 1 October 1997 Long et al. 3419
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model 1, which uses constant Luttinger parameters derived

50 from the experimental observations of bulk materfals.
p————T Figure 8 displays the equivalent data of Fig. 7 but for the
40 ¢ 5— o hh in model 3 light hole. These curves substantiate the point that the utili-
&——=2 hh in model 2 zation of constanfbulk) Luttinger parameters are totally in-
30 | +———+ hhin model 1 appropriate for the calculation of the energy level structure
% of narrow quantum wells.
Koo |
V. CONCLUSION
10 + It has been demonstrated that calculations of the electron
and hole energy levels in narrow quantum wells, based on
‘ ‘ ‘ ‘ the envelope function approach employing effective masses,
0 0 20 40 60 80 100 or equivalently Luttinger parameters, deduced from bulk

band structure properties, can have large discrepancies com-
pared with the rigorous microscopic approach of the empiri-
FIG. 7. The heavy-hole confinement energies in the quantum wells calcueal pseudopotential method. Indeed both the effective mass
lated with four different approaches. and Luttinger parameters have been shown to have appre-
ciable structural (i.e., well width dependencies.
These dependencies have been illustrated in detail, for the
from Fig. 3 or Eq.(10). When these Luttinger parameters, CdTe/Cd_,Mn,Te system. As described in more detail in
together withy; appropriate to the bulk value, are put into the text, these discrepancies can be regarded as a manifesta-
the calculation, they produce the same confinement energy @bn of the inappropriateness of the envelope function meth-
the ground heavy- and light- hole states obtained from theds employing structurally independent effective masses
pseudopotential calculation shown in FighR The errors  within the standard form of the Hamiltonian, which will
are within 0.2 meV. This shows the self-consistency of thepverestimate considerably the quantum confinement energies
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