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Abstract: Photonic biosensors are a major topic of research

that continues to make exciting advances. Technology has

now improved sufficiently for photonics to enter the realmof

microbiology and to allow for the detection of individual

bacteria. Here, we discuss the different nanophotonic mo-

dalities used in this context and highlight the opportunities

they offer for studying bacteria. We critically review exam-

ples from the recent literature, starting with an overview of

photonic devices for the detection of bacteria, followed by a

specific analysis of photonic antimicrobial susceptibility

tests. We show that the intrinsic advantage of matching the

optical probed volume to that of a single, or a few, bacterial

cell, affords improved sensitivity while providing additional

insight into single-cell properties. We illustrate our argu-

ment by comparing traditional culture-based methods,

which we term macroscopic, to microscopic free-space op-

tics and nanoscopic guided-wave optics techniques. Partic-

ular attention is devoted to this last class by discussing

structures such as photonic crystal cavities, plasmonic

nanostructures and interferometric configurations. These

structures and associated measurement modalities are

assessed in terms of limit of detection, response time and

ease of implementation. Existing challenges and issues yet

to be addressed will be examined and critically discussed.

Keywords: antimicrobial resistance; bacteria; evanescent-

wave sensing; photonic biosensors.

1 Introduction

Bacteria are ubiquitous in nature. Asmuch as they are vital

for our survival and the balance of any ecosystem, they can

also be harmful and pose serious risks in areas such as

health care, food, or environmental security [1–4]. Therefore,

the detection andmonitoring of bacteria are key challenges,

with time to result and sensitivity beingmajor drivers. This is

especially true in health care applications, where antimi-

crobial resistance (AMR) is a key issue and where the slow-

ness of current antimicrobial susceptibility tests (ASTs)

prevents timely and specific drug prescription [4–6].

Traditional microbiological techniques for detecting

and studying bacteria are culture-based, whereby bacteria

are grown on a substrate, such as an agar plate, for visual

inspection. These techniques are labour-intensive, time-

consuming, and difficult to conduct outside a specialized

microbiology laboratory. Another crucial limitation of

traditional tests is that they examine billions of microor-

ganisms at once, thereby washing out cellular in-

dividuality and heterogeneity; the outcome is a single

value within a confidence interval, which then disregards

any underlying distribution of quantities of interest. Bac-

terial populations, however, are strongly heterogeneous

and cell-to-cell differences are crucial in a variety of phe-

nomena, such as the development of antibiotic hetero-

resistance [7–9] or persistence [7, 10]. In addition, there is

growing evidence that the heterogeneity of bacterial col-

onies is a key factor in determining the failure of an anti-

biotic therapy [11, 12]. Consequently, an ideal AST must be

able to discern the signature(s) of susceptibility to the

antibiotic at low concentrations of bacteria by character-

izing their response at the single bacteria level, with the

twofold aim of speeding up detection and probing the

heterogeneity of the bacterial population [13–15]. Novel

optical and photonic detection modalities have recently

emerged to address this challenge. Photonic sensors

exploit the interaction of guided light with bacteria to

detect their presence and probe their response, whereby

the use of light offers key advantages, such as immunity to

external electromagnetic interferences that may disturb

sensors operating in other regions of the electromagnetic
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spectrum [16], and ease of parallel, high-sensitivity and

noncontact detection.

Optical sensors can be divided into fluorescence-based

and label-free devices. To date, most light-based sensors

use fluorescence, whereby target molecules, such as those

on the bacterial cell wall, are labelled with fluorophores to

indicate the presence, concentration and activity of bac-

teria [17]. While a comprehensive comparison between

fluorescence-based and label-free sensors is beyond the

scope of this article, we note that the former is extremely

sensitive, selective and easily able to reach singe-cell res-

olution. On the other hand, fluorescent labelling compli-

cates procedures, can interfere with bacterial viability and

requires prior knowledge of the bacteria to be labelled [18,

19]. We therefore focus on label-free techniques. In addi-

tion, biosensors can be divided into two further groups:

those detecting target bacterial components, such as ge-

netic material or specific enzymes and those based on

whole cell detection [2]. The former class requires further

sample processing to extract and purify the targetmaterial,

such as cell lysis, which inevitably increases process time

and complexity. Hence here, in the interest of simplicity,

we focus on label-free whole-bacteria detection techniques

that guide, confine or mould light with nanostructures.

1.1 The role and advantages of photonic in
bacterial detection and ASTs

Photonic sensors achieve their functionality by exploiting

enhanced light-matter interaction, tightmode confinement

and extreme phase sensitivity. Photonic sensors are typi-

cally based on guided modes and interact with the analyte

via their evanescent tail. The overlap integral (OI) quan-

tifies the fraction of themode’s electric field intensity |E(r)|2

overlapping with the cladding material to be sensed and

can be expressed as

OI �  
∫
Vclad

ε(r)|E(r)|2d
3
r

∫
Vtot

ε(r)|E(r)|2d
3
r

The integration is carried out over the cladding volume

above the sensor surface (Vclad) and the total volume of the

mode (Vtot), while ε(r) represents the spatial dependency

of the dielectric constant. This integral is therefore a key

determinant of the bulk sensitivity of the method. Larger

values of the OI correspond to a larger overlap of the field

with the sensing medium leading, in turn, to a bigger

change of the effective index of the mode for a given

change of the refractive index of the cladding. All sensors

based on surface plasmons and those based on dielectric

waveguides are based on this principle.

The extent of the evanescent tail determines the

interaction volume, and is easily obtained from guided-

mode theory via the decay constant γ:

γ �  
2π

λ

�������

n2eff − n2
c

√

where neff is the effective index of the opticalmode, nc is the

refractive index of the cladding (typically water, i.e. nc ∼
1.33) and λ the wavelength. Considering that the effective

index is 1.5–1.7 for a plasmonic mode and 1.5–2.5 for a

dielectricmode, the typical decay length 1/γ inwater-based

claddings is in the range of 100–200 nm [20].

These values of γ imply that because the interaction

with surface-attached bacteria only occurs via the

evanescent tail of themode, the probed volume is limited to

the bacterial membrane and its immediate vicinity inside

the cell. The limited penetration of the optical mode also

means that background interference, for example, from

bacteria and media further away from the surface, is

minimized, making for good signal to noise ratios. There-

fore, photonic structures naturally offer themselves as

good candidates for the sensing of single or small numbers

of bacteria.

In addition, such a localized interaction makes nano-

photonic structures able to probe different bacterial prop-

erties. For example, different bacterial strains have

different optical density (OD) of the cell wall, therefore

enabling identification [21, 22]; the OD of the membrane

may change as a result of an antibiotic challenge which

manifests itself as a change in refractive index [23]; the

motion of bacteria is an indicator for their metabolic ac-

tivity and is manifested as readout noise [24, 25]; the

morphology of the cell may be affected by antibiotics and

will impact on its light scattering properties [26]. In any of

these cases, the increased sensitivity offered by nano-

photonic structures can allow for individual bacteria to be

detected and analysed.

It is important to note that because bacteria need to be

exposed to the evanescent tail of the confined mode to be

detected and analysed, the sensor surface is often coated

with biorecognition elements, such as antibodies, aptamers

or bacteriophages that selectively bind to proteins in the

bacterial membrane [27]. In addition, optical biosensors

often rely on microfluidic methods to deliver the analyte to

the sensing area [28]. The use of microfluidics comes with

the attractive advantage of reducing the required volume of

solution while decreasing the characteristic length and

diffusion time needed for bacteria to reach and attach to the

sensor’s surface [29, 30]. While a thorough description of

these aspects is outside the scopeof this review,wenote that

both the surface chemistry and the microfluidics are key
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factors in determining the overall performance of a sensor.

This is especially true for the detection time, which depends

on the dimension of the respective fluidic cell, as surface

affinity binding is fundamentally driven by diffusion, but

also the quality of the surface receptor layers and the

binding affinity to the bacteria of interest.

Even though the recent literature is rich with examples

of photonic biosensing platforms, we believe that the po-

tential of photonics in this space has not yet been fully

exploited. To this end, we wish to present some of the most

relevant recent work to provide a critical assessment of the

state of the art and to highlight the key advantages of

photonic techniques for the detection and study of single

bacteria, especially in the context of AMR.

The review is divided into twomajor sections. In Section

2, we discuss different methods for detecting and imaging

bacteria, mainly focussing on evanescent wave nano-

photonic sensors. Section 3 describes the different photonic

methods used for studying the susceptibility of bacteria to

antibiotics. To highlight the benefits of light confinement,

we discuss techniques in order of progressive reduction of

the optically probed volume. We start with traditional

culture-based methods, such as the disk diffusion test,

which we term macroscopic, then move on to microscopic

free-space optical and nanoscopic guided-wave optical

methods. While macroscopic techniques are based on

averaging cellular growth over the entire bacterial popula-

tion, microscopic free-space optics methods such as bulk

optical tweezers, elastic light scattering, flow cytometry and

some nanostructure-based techniques afford probing fewer

bacteria, even down to single cells, but still retrieve infor-

mation from the entire cell. Conversely, nanoscopic tech-

niques such as surface plasmon resonances (SPRs), guided

mode resonances (GMRs) or metasurfaces-based configu-

rations rely on guided-wave optics and exploit the evanes-

cent wave at interfaces, as described previously. The optical

field is now confined to the surface of the sensor so that only

the bacterial membrane is probed. Some of the nanoscopic

techniques also exploit resonant enhancement which

further increases sensitivity [21, 23, 31, 32]. Overall, we show

that this reduction in volumeenables gaining further insight

into bacterial behaviour, as well as increasing sensitivity

and reducing the time needed to assess antibiotic action.

2 Photonics for bacterial detection

In terms of detection and observation, macroscopic and

microscopic techniques require little introduction; the first

bacteria were observed with a microscope by van Leeu-

wenhoek in 1677 [33]. We therefore move straight to

nanophotonic techniques used to detect and image bac-

teria at very low concentrations, down to the single cell

level. We classify the structures into two main categories:

plasmonic and dielectric (See Tables 1 and 2), and we

discuss them with particular attention to the optically

probed volume relative to the volume of a single bacterial

cell. We also discuss the current limitations of nano-

photonics for bacterial studies to highlight potential future

research directions.

2.1 Plasmonic configurations

2.1.1 SPR devices

Plasmonic biosensors typically consist of metallic thin films

which support SPRs and which strongly confine light at the

interface between the thinmetal film and the analyte. Using

surface functionalization techniques, the metal layer then

allows to selectively bind biomarkers or cells of interest.

SPRs are typically excited using the Kretschmann configu-

ration, whereby light is injected through a prism and any

changes in refractive index result in a change of resonance

angle, wavelength, or intensity. SPR was the first label-free

photonic detection technique to be commercialized (by

Biacore, now GE Healthcare).

More recently, SPR sensors have also been used for the

detection and imaging of bacteria. SPR offers a particularly

high surface sensitivity, both because of the strong overlap

of the evanescent field with the analyte and because of its

peculiar mode coupling properties [34, 35], which allows

for the detection of very low concentrations of bacteria,

that is, down to 102
–103 CFU/mL (colony-forming units) in

t∼ 20min [36]. It is important to note that the detection time

is not limited by the detection principle, but it depends on

other factors such as the surface functionalization protocol

and is influenced by the quality of the bioreceptor layer and

its binding affinity to the target bacterium.

Several sensing techniques have been used to further

improve the sensitivity of plasmonic configurations, for

example, by imprinting bacteria in soft polymers on metal

slabs or by using metal nanoparticles to enhance the

changes of reflectivity on bacterial binding [37]. However,

even if these sensing schemes provide an Limit Of Detec-

tion (LOD) < 1 CFU/mL, their main issue is the need for a

rather complex and slow preparation process (>24 h),

which makes them less ideal for rapid diagnosis and

commercialization, therefore impacting on the attractive-

ness of the approach.

A simpler SPR measurement scheme is offered by

crossed surface relief gratings (CSRGs), which consist of

G. Pitruzzello et al.: Nanophotonics for bacteria 4449



two orthogonally superimposed dielectric gratings covered

by a thin metal layer. One of the gratings provides the

necessary wavevector to excite the plasmon wave if the

incident field is polarized along the grating vector. Energy

is then exchanged between the two gratings, such that light

is radiated by the second grating with a polarization

orthogonal to the incident one. Therefore, if the CSRG is

placed between two cross polarizers and illuminated by

broadband light, a peak in the transmission spectrum

is observed and used for biosensing. This principle

enabled to simplify the optical setup compared to tradi-

tional SPR, even though more modest LODs were achieved

(<105 CFU/mL for Escherichia coli) [38].

2.1.2 Plasmonic nanohole arrays

An alternative way of exciting surface plasmons is to use

grating-coupling instead of the prism-coupling method

used in the Kretschmann configuration. The grating-

coupling method is best embodied by the nanohole array

(NHA) geometry, that is, a periodic distribution of sub-

wavelength apertures [39]. These subwavelength apertures

both enable easy out-of-planecouplingand they support the

phenomenon of enhanced optical transmission at reso-

nance which leads to a significant energy enhancement in

the nanoapertures [40]. The ease of light-coupling and the

compatibility with cost-effective optical components (e.g.

LED sources) also makes for an easy implementation.

Although the bulk sensitivity of plasmonic nanostructures is

typically lower than that of prism-coupled SPR sensors [34,

35], the strong light confinement in the nanoapertures im-

proves surface sensitivity and spatial resolution. These

features have been shown to be beneficial to biochemical

sensing, whereby plasmonic nanoholes have achieved low

limits of detection for proteins. More recently, applications

in bacterial detection have also emerged [31, 41, 42].

For example, Gomez-Cruz et al. [42] demonstrated the

detection of low concentrations of uropathogenic E. coli in

urine by using a plasmonic nanohole array with intensity-

based measurements in only 15 min. The sensor exhibits an

LOD of 100 CFU/mL, which is comparable with other plas-

monic techniques [36]. Notably, the authors achieved

detection with an analyte volume as small as 10 μL, which

means that, on average, only a single bacteriumwas present

and detected. A similar performance was achieved by Dey

et al. with an NHA configuration combined with an inter-

ferometric approach [31] where the interference between

two spatially separated, orthogonally polarized beams was

measured. Measuring the relative difference between two

collinear beams, rather than the absolute change of an in-

dividual one, minimizes the impact of mechanical, thermal,

and optical source noise, which we have recently shown to

be advantageous also for protein measurements [43].

In the context of this review, we note that the afore-

mentioned interferometric approach enabled the detection

of a single E. coli bacterium in a volume of 10 μL of

diluted blood plasma [31]. This corresponds to an

LOD = 100 CFU/mL, which is the same as that achieved

with the intensity-based sensor by Gomez-Cruz et al.

mentioned previously [42]. Nevertheless, it is important

to note that the interferometric device was realized in a

handheld format, where the noise level is typically higher

than in an optical benchtop experiment. The higher

sensitivity of interferometry therefore compensates for

the higher noise, which has led to the detection of a single

bacterium with a portable instrument and represents a

notable proof of concept for the translation of a nano-

plasmonic device into the medical environment.

2.1.3 Plasmonic imaging

SPR sensors have been also used for the imaging of bio-

logical samples, such as cells and bacteria. This prism-

based SPR imaging (SPRi) method exploits both the

angular and thewavelength response of a fixed input beam

to generate the image and the sensing information [44].

Using thismethod, Bouguelia et al. [45] have demonstrated

the detection of less than 20 CFU/mL of E. coliwith a prism-

based SPRi system. However, a limitation of prism-based

SPRi is that the image plane is not perpendicular to the

optical axis of the system, which creates a skew between

the camera and the sensor surface. Only a narrowband is in

focus in the image with a consequent worsening of reso-

lution [46, 47], which severely limits the field of view.

A solution to the skew issue was introduced by Bou-

lade et al. [46], who developed a resolution-optimized

surface plasmon resonance imaging (RO-SPRi). The

method consists of capturing multiple images in different

focal planes to overcome the skew between the camera

image plane and the sensor surface. The RO-SPRi system

enabled imaging of individual Listeria monocytogenes and

Listeria innocua bacteria and made them clearly visible

with a field of view of 1.5 mm2. In a direct comparison with

differential interference contrast microscopy, they also

showed that, not only SPRi managed to achieve a compa-

rable field of view, but it also provided a higher accuracy in

picking out bacteria on the sensor surface because it is

based on evanescent fields rather than on Gaussian beams.

This higher accuracy only refers to the vertical axis,

however. In the lateral dimension, the resolution is limited

by the propagation length of the plasmon wave, which is

typically of order 5–10 μm, so larger than the dimension of

4450 G. Pitruzzello et al.: Nanophotonics for bacteria



a typical bacterium. Nevertheless, by using relatively short

wavelengths (e.g. 530 nm) or lossy substrates (e.g.

aluminium) [48, 49], the propagation length can be

reduced significantly. A different strategy for improving

the lateral resolution consists of using an objective-based

SPRi [50], whereby the need for the prism typical of the

traditional Kretschmann configuration is eliminated by

launching the SPR through a high numerical aperture (NA)

immersion objective. Eliminating the physical constraints of

the prism allows for higher NA and magnification to be

achieved and, therefore, for spatial resolution to be

increased. Indeed, this technique enabled the imaging of

individual E. coli [51], of single influenza viruses [52], the

mapping ofproteinswithinmammalian cellmembranes [53]

and the tracking of organelles within a cell body [54]. These

results confirm the suitability of SPRi for the nanoscopic

analysis of bacteria and viruses as long as the limitations of

the technique are understood and suitably addressed.

As an alternative, CSRGs have also been used for the

SPRi of bacteria. Even though the resonant information

was not in resolved spatially, Nair et al. obtained an LOD of

100 CFU/mL for E. coli by measuring the intensity changes

induced by bacterial binding onto CSRGs [55].

2.1.4 Plasmonic nanotweezers

Plasmonic nanostructures have also been used to trap

bacteria using optical forces. The pioneering studies of

Ashkin et al. [56, 57] already demonstrated the contact-free

trapping of single E. coli bacteria with a laser beam.

Nevertheless, trapping required optical powers of tens of

milliwatts, which rendered the bacteria inviable after only

a few minutes because of photodamage [56]. The issue of

photodamage can be overcome by resorting to near-field

techniques that offer a stronger field gradient, which leads

to stronger trapping forces even at low power. In fact, the

trapping action is directly proportional to the gradient

force, and therefore proportional to the gradient of the

electric field, while the scattering and the absorption forces

are proportional to the light intensity. As a result, nano-

scale confinement affords strong trapping forces because

of the strong gradient field generated in the near-field even

with limited input power while limiting the contributions

of scattering and absorption [58].

The trapping of bacteria in the near-field was then

demonstrated by Lotan et al. [59] who fabricated nanoscale

plasmonic V-groove waveguides as shown in Figure 1(a).

The modes of these waveguides exert strong optical forces

on objects in their proximity, which was verified by col-

lecting the fluorescence signal from labelled bacteria (see

Figure 1(b) and (c)). Even more impressively, trapping of

single proteins was demonstrated with a gold double-

nanohole structure [60], which confirms the suitability of

near-field techniques for the trapping of nanoscale objects,

given that optical forces scale with the volume of the object

[58].

Exploiting resonant enhancement, plasmonic nano-

structures have been used by Righini et al. [61], who ach-

ieved the trapping of several individual bacteria

simultaneously in an array of dipole nanoantennas (see

schematic in Figure 1(d)). Stable confinement with a trap-

ping time of several hours was observed with a power

density of about 108 W/m2, or 0.1 mW/μm2. This value is

almost two orders of magnitude lower than SPR-based

plasmonic tweezers and much lower than the damage

threshold values for bacteria, which is typically quoted as

1010 W/m2, or 10 mW/μm2 [62, 63]. Examples of trapped

bacteria are shown in Figure 1(f). This achievement clearly

highlights the benefits of resonant enhancement and near-

field trapping and confirm the advantages offered by

nanostructured tweezers for the detection and manipula-

tion of individual bacteria. In addition, thanks to the

arraying capability of several individual cells over time,

these nanotweezers may enable further studies of the time-

dependence of the bacterial response to drugs, which will

be further discussed in Section 3.

2.2 Dielectric configurations

Dielectric configurations have been investigated more

recently with a view to overcoming the limitations arising

from the intrinsic optical losses of plasmonic systems [20,

64, 65]. Dielectric materials are typically transparent in the

visible and near-IR range, thereby minimizing absorption

and reducing thermal effects due to Joule heating. Similar

to their plasmonic counterpart, dielectric structures are

refractive index sensors that interact with the analyte via

the evanescent tail of the mode they support, meaning that

they may also enable probing the bacteria nanoscopically.

However, unlike plasmonic devices, dielectric structures

can support resonances with higher dynamic range,

because of the lower loss, which improves the signal-to-

noise ratio and, in principle, makes it easier to detect small

objects such as bacteria.

2.2.1 Optical waveguides and interferometric

approaches

Sensors based on optical waveguides were the first

dielectric configurations to be used for bacterial detection

[66]. These waveguides detect the phase change incurred
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by a bacterium attaching to the surface, which is most

sensitively realized via an interferometric readout. The first

Mach–Zehnder interferometers were used to detect

L. monocytogenes with a sensitivity of 105 CFU/mL [67].

Several improvements have since beenmade. For example,

Maldonado et al. [68, 69] have demonstrated a bimodal

waveguide for the detection of low concentrations of bac-

teria, that is, down to 40 CFU/mL. The device consists of

an optical waveguide in Si3N4 supporting two modes

with different polarization, as schematically shown in

Figure 2(a). The advantage of this bimodal waveguide

approach is that environmental fluctuations, especially

temperature, affect both modes almost equally, which al-

lows to improve the signal-to-noise ratio. A schematic and

data taken with this technique are shown in Figure 2(b).

From a practical point of view, a limitation of the op-

tical waveguide-based approach is the need to launch light

into the waveguide, which requires rather demanding

coupling arrangements and makes these devices not

compatible with standard microscopes. As an alternative,

the interferometer can be realized in an optical fibre, for

which standardized coupling interfaces exist [70, 71]. The

interferometer can be made of two identical chirped long

period gratings (CLPGs) as illustrated in Figure 2(c). The

first CLPG partially couples the light from the core mode to

the cladding mode. Both modes propagate through the

sensing area, where the fibre cladding is open and func-

tionalized to detect attached bacteria. At the second CLPG,

the cladding mode is coupled back into the fibre core,

therefore interfering with the core mode. Because only the

cladding mode interacts with the bacteria, their presence

provides the phase shift and resulting interference signal.

Figure 2(d) and (e) show how different concentrations of

E. coli impact on the optical transmission spectra of the

fibre. An LOD of only 7 CFU/mL of E. coliwas reported [72],

which highlights the remarkable sensitivity of this

technique.

The major downside is that the tapered fibre is very

fragile, which can lead to easy breakage. However, recent

progress in judicious packaging has enabled nano-

structured fibres to be used directly in tissue for the

detection of cancer biomarkers [73] or in ready-to-eat meat

for the detection of pathogenic bacteria [74]. These results

highlight the importance of fibre sensors and demonstrate

the opportunity for the in vivo detection of bacteria. Finally,

it is interesting to note that interferometric waveguide

sensors, which are extremely sensitive for protein sensing,

do not perform as well as resonant ones for the detection of

individual bacteria. The reason lies in theirmodus operandi

because an interferometric sensor derives its sensitivity

from the long interaction length and the assumption that

the sensing arm is uniformly covered by the measurand.

Even though low concentrations of bacteria have been

detected, an interferometric waveguide does not allow for

bacteria localization. Therefore, if the goal is to monitor

individual or small numbers of bacteria, then the long

interaction length offers no advantage and a resonant

modality is preferable. This modality is discussed in the

next section.

2.2.2 Resonant metasurfaces

Resonant metasurfaces use nanostructures to create

distributed resonances for specific wavelengths

Figure 1: (a) Scanning Electron Microscope
(SEM) micrograph of bacteria attached to a
V-groove waveguide. (b, c) Fluorescence
excitation and emission of bacterial guided
in the groove [59]. (d) Schematic of a nano-
antenna on a glass substrate and SEM
micrograph of a single nanoantenna in the
inset (scale bar: 200 nm). (e) Two-photon
induced luminescence (TPL) from a single
nanoantenna for both longitudinal and
transversal polarization. (f) Optical trapping
of two individual Escherichia coli bacteria
on separate nanoantennas [61].
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determined by their period, thickness and/or fill-factor.

These resonant structures sample the bacterium multiple

times, so they can be understood as multipass devices,

whereas interferometric waveguides are single-pass de-

vices. The multipass nature of the resonant structure pro-

vides high sensitivity, while also affording out-of-plane

coupling, which simplifies optical characterization.

Despite the resonant enhancement and simplicity of

optical interrogation, initial reports did not achieve the

sensing or imaging of single cells. In fact, most of these

sensors have been limited to the quantification of bacterial

concentrations, with typical LODs of ∼200 CFU/mL ob-

tained for Legionella neumophila with a polymer 2D PhC

[75]. Different approaches have been used to improve res-

olution. In particular, the combination of 2D photonic

crystals (PhCs) with hydrogels [76, 77] has improved the

resolution down to 32 CFU/mL of E. coli [77], although a

number of complex preparation steps are required to ach-

ieve this result. An alternativeway to improve the LOD is by

using the field enhancement offered by PhCs to enhance

fluorescence. For instance, a polymeric 2D PhCwas used to

detect the fluorescence of resorufin, a compound often

used as a proxy of bacterial presence and viability. Even

though this method is not label-free, an LOD of 10 CFU/mL

of E. coli was demonstrated in wash water [78].

More recently, we have introduced a label-free resonant

metasurface based on a nanohole array in amorphous sili-

con (a:Si) that exhibits Fano resonances with a dynamic

range fromnear0%tonear 100%reflectionandaQ-factor of

300–400 [32]. Surprisingly, these high-Q resonances also

Figure 2: (a) Schematic of the dielectric bimodal waveguide (BiMW) (left) and (b) measured phase change versus Escherichia coli

concentration [68]. (c) Schematic of the cascaded chirped long period grating inscribed in the fibre core with (d) corresponding transmission
spectra for different concentrations of E. coli. (e) Wavelength shift of the functionalised (red line) and bare (black line) sensor with exposed to
E. coli concentrations from 10 to 60 CFU/mL [70].
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exhibit a very high spatial resolution, that is of order 1 μmor

better, whenused for hyperspectral imaging. This capability

is illustrated in Figure 3, where we use the combination of

strong localization, highQ factor and high dynamic range of

the optical mode to provide a quantitative analysis of the

refractive index distribution and imaging of a single E. coli

cell. These results clearly demonstrate that the metasurface

approach can be used for nanoscopic analysis because the

refractive index being probed is that of the bacterial mem-

brane. This ability could open up a variety of studies

including, for example, cell adhesion and secretion moni-

toring that have previously only been demonstrated with

mammalian cells [79, 80], but have never been applied to

bacteria. Monitoring the response of bacteria to antibiotic

challenge is another promising area of research opened up

by these structures, which is discussed in more detail in

Section 3.

2.2.3 Dielectric nanotweezers

Dielectric nanotweezers are of particular interest because

they can enhance near-field forces while minimizing the

thermal effects typical of plasmonic configurations because

thermal effects have been shown to be detrimental to trap-

ping stability [81, 82]. For example, the trapping of DNA

molecules was demonstrated in a slotted waveguide [83]

and nanotweezers based on dielectric waveguides are

already available commercially as portable instruments

(OPTOFLUIDICS, Inc). The main limitation of nanophotonic

waveguides is their lowerfield enhancement comparedwith

metallic nanostructures, which means that typically higher

powers are required to achieve trapping. However, the

trapping of bacteria is somewhat easier because of their

volume, and the optical manipulation of bacteria with sili-

con waveguides has been successfully demonstrated with

relatively low power (100 mW source power, corresponding

to a few milliwatts coupled into the waveguides) [84].

An interesting configuration has been recently pro-

posed by Zhao et al. [85], who fabricated waveguide pairs

separated by gaps of 200 nm. The small gap allows light to

be coupled laterally back and forth between the two

waveguides, therefore creating numerous trapping spots

and effectively generating an optical lattice. By using a

guided power of 3 mW, the authors managed to trap and

align individual Shigella at a rate of 12 bacteria/min and

conduct single-cell viability studies on exposure of the

trapped bacteria to ethanol.

Moving from one-dimensional confinement in wave-

guides to two-dimensional confinement in cavities allows

increasing the resonant enhancement further. The stronger

light-matter interaction provided by a two-dimensional

resonator leads to higher optical forces and therefore a

reduction in the input power needed. In addition, the self-

induced back-action mechanism can be exploited, which

enhances the restoring force that draws the bacteriumback

into the trapping site when it tries to escape. This mecha-

nism is the main reason for the stable trapping that has

been achievedwith very low optical power, that is orders of

magnitude lower than the power needed for conventional

bulk trapping [86]. For example, van Leest and Caro [87]

achieved stable trapping of individual bacteria with PhC

cavities requiring only 400 μW for both Gram-negative

(E. coli) and Gram-positive (Bacillus subtilis) bacteria.

Other examples include photonic crystal nanobeam

cavity and hollow PhC configurations [21, 22] that have

shown not only to trap, but also to analyse single bacteria

on chip. In particular, the stable trapping of individual

E. coli, Staphylococcus epidermidis diplococcus and B. sub-

tilis was observed using only hundreds of microwatts of

(estimated) power in the cavity. Both types of cavities

allowed distinguishing bacteria by size, shape andmotility

patterns via the magnitude of the observed change in the

transmission spectrum of the cavity and the noise of the

transmission trace. A further improvement was achieved

with the 2D side-coupled PhC cavity shown in Figure 4(a),

whereby a statistical analysis of the transmitted optical

power enabled the authors to correctly differentiate be-

tween Gram-positive and Gram-negative bacteria within a

Figure 3: (a) Scanning Electron Microscope
(SEM) image of the dielectric nanohole
array and simulated electric field at
resonance in the inset. (b) Brightfield
microscope versus hyperspectral images
of an individual Escherichia coli obtained
with a dielectric nanohole array [32].
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few seconds [22]. Typical histograms of the relative trans-

mission are shown in Figure 4(b).

Being able to extract so much information is clearly

enabled by the strong overlap of the bacterial cell wall with

the evanescent field of the cavity mode. In fact, Therisod

et al. [22] were able to use the histograms in Figure 4(b) to

explain the intrinsic heterogeneity of the bacterial pheno-

type as well as the differences in the composition of the

bacterial membrane of different species. For instance, the

authors noted that Gram-negative bacteria consistently

induced a larger change in transmission compared with

Gram-positive species. This observation correlates well

with the larger deformability of the cell wall of Gram-

negative species, as well as with the presence of lipo-

polysaccharides molecules exclusive to the cell wall of

Gram-negative bacteria. Importantly, the size of the bac-

teria is not the main discriminator in Figure 4(b) because

the length of both Gram-stain bacteria ranges between 0.5

and 4 μm.

From the aforementioned, it is clear that optical trap-

ping can provide significant information on the

morphology and themotility of bacteria. Recently, we have

proposed to add another dimension to this toolkit by

investigating the possibility of conducting electrical

impedance measurements on optically trapped bacteria.

The idea builds on the “electrophotonics” principle we

introduced earlier, whereby the judicious doping of silicon

allows conducting electrochemical measurements on the

surface of an optical waveguide structure in a high-Q sili-

con microring resonator [88, 89]. Using similar principles,

we considered an arrangement that combines silicon

photonic crystal cavities for optical trapping with doped

regions for conducting impedance measurements [90]. A

schematic of a single trap is shown in Figure 4(c). The idea

is tomonitor changes inmorphology andmotility optically,

as previously mentioned, together with changes in

impedance as the trapped bacterium is challenged by

various antibiotics (Figure 4(d)). We expect that such a

multiparametric approach will provide a more accurate

and potentially faster susceptibility analysis [25], while

placing multiple such nanotweezers into an array allows

probingmultiple bacteria in parallel and can therefore also

provide information on population heterogeneity.

An alternative waveguide geometry is to use an optical

fibre for trapping. This is clearly not nanoscopic, as the

fibre achieves trapping through a focussed Gaussian beam

created by tapering or lens-ending the fibre but is much

more versatile than a focussed beam created by a micro-

scope lens. For example, Xin et al. [91] demonstrated the

trapping of a single E. coli by fabricating a nano-tip on the

end of a single-mode fibre. The fibre is also tapered to focus

the light away from the tip while creating a sufficiently

strong energy confinement (Figure 4(e)) to ensure that the

bacterium is localized in all three dimensions. Examples of

a trapped E. coli are shown in Figure 4(f). This approach

offers interesting opportunities for bacterial studies as it

enables probing bacterial motility and dynamics in

different environments, possibly even in vivo.

However, themain limitation of fibre-based tweezers is

their weak optical gradient compared to integrated nano-

tweezers, which means that higher optical powers are

required to achieve stable trapping. For example, a power

of about 50 mW, corresponding to a power density of

∼1010 W/m2 (or 50 mW/μm2), was needed to trap a single

E. coli bacterium in the experiments by Xin et al. [91]. The

experiment only achieved stable trapping for approxi-

mately 2 min, whereas many studies require longer

observation times (Table 2). Amore stable trapmay require

higher power, which may then become phototoxic [63].

3 Photonic techniques for

antimicrobial susceptibility

testing

To help appreciate the advantages of photonic techniques

for susceptibility testing (AST), we start by briefly intro-

ducing the traditional microbiological ASTs, which belong

to the macroscopic category of techniques. We then move

onto microscopic free-space optics techniques which

afford measuring fewer bacteria, but still probe whole

cells. Finally, we discuss nanoscopic devices based on

guided-wave optics which limit light-matter interaction to

the bacterial membrane. We also briefly describe some

light-based instruments that have already been success-

fully commercialized. Throughout this entire section, it is

important to remember that ASTs begin with an isolation

step, which serves to isolate the bacteria of interest from a

complex biological sample, such as urine or blood. This

procedure requires culturing and, therefore, at least an

overnight incubation on agar plates [93, 94]. After the

isolate is obtained, the actual AST is carried out by

exposing bacteria to certain antibiotics. In this respect, all

the times to result mentioned in this section (and reported

as “drug test time” in Table 3) only refer to the drug testing

procedure, asmost of the current ASTs techniques require a

pure bacterial isolate as a starting point [4, 95].
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3.1 Traditional microbiological techniques

The traditional method for assessing antibiotic suscepti-

bility is the disk diffusion test developed in the 60s by

Bauer and Kirby [96], a schematic of which is shown in

Figure 5(a). On overnight incubation of bacteria on an agar

plate, the size of the clear rings surrounding antibiotic-

impregnated filter-paper disks are used to inform antibiotic

efficacy in stopping bacterial growth. Although this tech-

nique is easy to perform and inexpensive, it suffers from

slowness (24–48 h) and from being only semi-quantitative,

so that the lowest concentration of antibiotic that inhibits

bacterial growth (the minimum inhibitory concentration,

MIC) can usually not be determined.

A more robust solution is provided by microdilution

assays [97], whereby bacterial inoculums are added to

micro-wells and incubated overnight with two-fold di-

lutions of antibiotics, as shown in Figure 5(b). Bacterial

growth is then quantified by measuring the OD of the

suspension. A clear suspension corresponds to a low OD

Figure 4: (a) Illustration of the 2D PhC hollow cavity and Scanning Electron Microscope (SEM) image used for trapping individual Escherichia
coli by Therisod et al. [22]. (b) Histograms of the relative transmission measured for seven different bacteria. (c) Schematic of an
electrophotonic trap simulated by Conteduca et al. [90]. (d) Optical and electrical detection principles of individual bacteria. (e) Schematic of
the lensed fibre for contactless trapping of individual E. coli. (f) Trapping of individual E. coli achieved with the nanostructured fibre [91].
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and is indicative of little or no growth, hence antibiotic

effectiveness, as shown schematically in Figure 1(c).

Although these techniques are commonly used in clinical

settings and microbiology laboratories, they have a long

turnaround time because of the need for overnight incu-

bation. In addition, they require specialized personnel

because of the labour-intensive procedures of plating,

diluting reagents and preparing trays.

3.2 Commercial devices

The problemof ease of operation has been partly addressed

by commercial instruments, such as VITEK2 [98] (Bio-

Mérieux), MicroScan WalkAway [99] (Siemens Healthcare

Diagnostic) or BD Phoenix [100, 101] (BD Diagnostics).

Most of these instruments are based on a photonic readout

of OD or fluorescence of bacterial cultures in microwells as

indicators of bacterial growth and/or metabolism in the

presence of antibiotics.

These instruments introduced desirable features such

as automation of sample loading and processing as well as

a multiplexing capability; the VITEK2, for example, can

perform up to 240 tests simultaneously. In terms of time to

result, these instruments are capable of generating results

in 3.5–16 h (see Table 3), thereby representing some

improvement compared with the more traditional tech-

niques [98, 102, 103]. The improvement is limited, however,

because the detection is fundamentally culture-based.

Furthermore, these techniques also neglect heterogeneity

by averaging over the entire bacterial population. Finally,

it is important to note that significant discrepancies be-

tween the results obtained with these instruments, and

with the traditional methods have been reported. For these

reasons, it is difficult to define a true “gold standard” for a

susceptibility test [104–107].

Table : State of the art of nanophotonic sensors for bacteria detection and imaging.

Configuration Application Resolutiona Solution Timeb Reference

SPR with polymeric film Detection . CFU/mL E. coli Buffer  min []
Plasmonic nanohole array Detection  CFU in  µL Urine  min []

E. coli

Plasmonic nanohole array with
interferometry

Detection  CFU in  µL Diluted plasma  min []
E. coli

Dielectric BiMW Detection  CFU/mL B. cereus Buffer  min [, ]
 CFU/mL E. coli Ascetic fluid  min

Hydrogel D PhC Detection  CFU/mL E. coli Milk, orange juice, river water,
serum

–min []

Chirped long period fibre Detection  CFU/mL E. coli Buffer  min []
SPR Imaging  CFU Listeria Tryptic Soy Broth (TSB) < h []
Dielectric nanohole array metasurface Imaging  CFU E. coli Buffer < min []

aThe resolution is reported in CFU/mL when the aim is only to quantify bacterial concentration and in absolute number of bacteria when the
sensor localizes bacteria for imaging. bThe detection time reported is not intrinsic to the photonic techniques, but it is also affected the surface
functionalization protocol used to tether bacteria onto the sensors’ surface.

Table : State of the art of photonic nanotweezers for single bacterium trapping.

Configuration Power Trapping time Application Reference

V-groove plasmonic waveguide / / E. coli detection by
fluorescence signal

[]

Plasmonic nanoantenna 

μW/μm

> h Trapping and growth monitoring of multiple
individual E. coli

[]

Dielectric D PhC
(H, H, L cavities)

 µW > min Trapping of E. coli and
B. subtilis

[]

Dielectric D PhC
(nanobeam cavity)

∼ µW  min, > h, > h Single B. subtilis, E. coli,
S. epidermidis

[]

Dielectric D PhC
(side-coupled hollow cavity)

∼ µW Several minutes Differentiation between Gram-positive and
Gram-negative bacteria

[]

Lensed optical fibre  mW  min Dynamic observation of single E. coli []
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Table : Overview of photonic antimicrobial susceptibility tests in comparison with traditional microbiological and commercial solutions.

Class Methods Structure Detection principle Susceptibility

indicator(s)

Surface receptors/

labels

Drug

test

time*

Probed

bacteria

Sample nature

and volume

Reference

Traditional culture-based (macroscopic) Disk diffusion
(Kirby-Bauer)

Visual inspection Growth None – h Bulk
method

Isolates on MH
agar

[]

(Micro)broth
dilution

Colorimetric or OD
reading

Growth or metabolism None – h Bulk
method

Isolates in MH
broth ( μL/
well)

[]

Free-space optics
(microscopic
photonics)

Commercial
devices

VITEK
(BioMérieux)

OD and/or fluorescence
measurements

Growth, metabolism None – h Bulk
method

Isolates in saline
( mL)

[, ,
]

MicroScan
Walkway

OD and/or fluorescence
measurements

Growth Fluorophores – h Bulk
method

Isolates in saline
( mL)

[]

BD Phoenix OD and colorimetric
reading

Growth, metabolism Chromophores – h Bulk
method

Isolates in
Phoenix AST-S
broth (. mL)

[, ]

Forward laser light
scattering

BacterioScan® Small-angle scattered
light

Growth, morphology None – h > CFU/
mL

Isolate in saline/
urine ( mL/
well)

[,–
]

Flow cytometry Commercial flow
cytometers

Transmitted and/or scat-
tered light and/or
fluorescence

Cell count,
morphology, mem-
brane integrity

Fluorophores
(optional)

.– h  Isolates in MH
( mL)
Spiked blood
(. mL)

[, ]

Nanostructure-
enhanced
detection

Silicon
nanopillars

Optical interference Growth Wheat germ
agglutinin
(WGA)

– h > CFU/
mL

Isolate in PBS
( μL)

[]

D nanodisks
grating

Optical diffraction Growth, motility,
diffusivity

None – h >– Isolate in LB broth
( μL)

[]

Guided-wave optics
(nanoscopic
photonics)

Evanescent-wave
sensors

Gold thin film SPR SPR resonance angle Membrane integrity Poly-L-lysine .– h Not given Isolate in LB broth
(not given)

[]

Gold nanoholes Extraordinary optical
transmission

Growth Anti–E. coli
antibodies

 h > CFU/
mL

Isolate in PBS
( mL)

[]

Gold nano-
mushrooms

LSPR resonance
wavelength

Growth Conditioning layer  h Not
relevant

Isolate in LB broth
( μL)

[]

SiN D grating GMR resonance
wavelength

Growth None  h Not
relevant

Isolate in LB broth
( mL)

[]

Gold thin film SPR SPR imaging Nanomotion Anti–E. coli/APTES < h  Isolate in PBS
( μL)

[]

*The drug test time refers to the time needed to identify susceptibility in a pure bacterial colony, therefore does not include pre-culturing time for either sample isolation or enrichment (typically at
least overnight).
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3.3 Free-space photonic techniques

3.3.1 Elastic light scattering

Amore refined version of microdilution is the use of elastic

light scattering. While microdilution simply measures the

light absorbed by a growing bacterial culture, light-

scattering also analyses the angular intensity spectrum of

the light scattered by the bacterial sample, as schemati-

cally illustrated in Figure 5(d). The angular spectrum

carries two pieces of information: its intensity is propor-

tional to the number of scatterers, that is the bacterial

count, hence is a proxy for bacterial growth, whereas the

shape of the spectrumdepends on the size andmorphology

distribution and of the scatterers. These ideas were applied

to antibiotic testing as early as the 1970s, when Berkman

et al. [108] and Murray et al. [109] observed significant

differences in the light scattered by antibiotic-treated

versus untreated samples. The technology has been

improved since and has recently been commercialized as

the BacterioScan® instrument [26], which is especially

designed to analyse urine samples and related urinary tract

infections. The instrumentmeasures the forward laser light

scatter (FLLS), that is the laser intensity scattered by the

bacterial sample at small angles compared with the inci-

dent direction and can measure OD values 1 to 2 orders of

magnitude lower than traditional laser absorbance tech-

niques. Consequently, it can detect bacterial growth from a

much earlier stage, affording time to result of 2–6 h in urine

[110–112] and even in blood samples [113]. Notably, the

device can perform 16 tests simultaneously.

Even though FLLS affords parallel, multiplexed and

relatively fast measurements, it still struggles with con-

centrations lower than 104 CFU/mL (see Table 3). In

particular, BacterioScan is not suitable for single, or few,

bacteria measurements, such that the heterogeneity of

bacterial colonies is still disregarded. Another limitation is

that the optical probing volume is determined by an un-

focussed laser beam, hence macroscopic, and background

noise may interfere with the measurement.

3.3.2 Flow cytometry

A further application exploiting laser-light interaction with

bacteria is represented by flow cytometry, where the key

idea is to rapidly flow cells across a detection area illumi-

nated by a fixed light beam. Critically, the bacterial sus-

pension is hydrodynamically focussed through a nozzle, so

that individual cells pass through the laser beam, as illus-

trated in the schematic in Figure 5(e). Therefore, flow

cytometry restricts the interaction of light to individual cells

without the need for light structuring or confinement. Both

the transmitted/scattered light and possibly their fluores-

cence, if the cells are specifically tagged, are detected. The

scattered light enables counting cells and analysing their

size andmorphology,whilefluorescent labelling can inform

the presence of specific proteins or markers. By choosing

appropriate fluorophores, one can probe the mechanical

Figure 5: (a) Schematic illustration of the
Kirby-Bauer disk-diffusion antimicrobial
susceptibility test. Bacterial colonies are
spread uniformly onto an agar plate and
their susceptibility is determined by the
size of the inhibition zones surrounding the
antibiotic-impregnated disks. (b) Sche-
matic of a microdilution assay, where bac-
teria are exposed to serial dilution of
different drugs. Dark wells are indicative of
viable bacteria that have managed to
duplicate, whereas clear ones indicate that
bacteria did not grow. (c) Optical density
(OD) measurement scheme. A turbid solu-
tion contains higher concentrations of
bacteria, therefore absorb more light. (d)
Schematic of light scattering techniques,
whereby light transmitted and scattered by
the bacterial sample are bothmeasured. (e)
Flow cytometry working principle. Single
bacteria are flown across a laser beam to
detect both the transmitted light and
emitted fluorescence from single bacteria.
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integrity of the bacterial membrane and its functionality

(such as the membrane potential) as well as bacterial

viability. Thanks to this richness of information, flow

cytometryhas been successfullyused forAST,bothwith and

without fluorescent tagging, with time to result of 1.5–8 h

[114–116].

Themain advantages of flow cytometry are rapid assay

times and single-cell capability with high-throughput.

However, although tens of thousands of cells per second

can be flown through the laser beam and analysed, the

technique is rather demanding in terms of detection

equipment. Fast and sensitive detectors are required to

excite and reveal fluorescence at a frequency of up to

10 kHz. In addition, certain bacterial strains emit auto-

fluorescence, hence causing false positive/negative and

increasing noise [117].

3.3.3 Nanostructure-enhanced detection

The free-space photonic structures examined thus far do

not exploit any nanostructure to shape or interact with

light.Wenowconsider approaches that use nanostructures

to generate interferometric or diffractive effects and

examine whether advantages can be gained from these

structures for the assessment of bacteria. Importantly, field

enhancement does not play a role in the particular struc-

tures examined in this section as they do not confine light.

Instead, nanostructuring is used to generate interference

and diffraction which increase sensitivity to bacterial

growth so that rapid ASTs can be performed.

For example, Volbers et al. [118] exploited the diffraction

generated by a gratingmade of a 2D array of gold nanodisks.

The intensity of the first-order diffraction mode is recorded

by a CMOS camera placed at an appropriate angle, as seen in

Figure 6(a). Bacteria growing onto or above the grating sur-

face (see the Scanning Electron Microscope (SEM) picture in

the inset of Figure 6(a)), disturb the diffraction because they

act as additional scattering centres. As a result, the decrease

and fluctuations of intensity in the diffracted mode are

monitored and linked to the number of bacteria and their

motility, respectively. Figure 6(b) shows how the decrease of

diffraction intensity depends to the number of bacteria.

Notably, the system is sufficiently sensitive to pick up the

presence of a few (1–5) bacteria within the observed grating

area of (120 × 120) μm2.

The system was then used to determine the MIC of

several bacterial strains exposed to three different antibi-

otics and susceptibility was demonstrated within 2–3 h.

Figure 6(c) shows the case of ampicillin by plotting the

change in diffracted mode intensity over time and for

different concentrations of the drug. The constant intensity

over time observed for concentrations of ampicillin higher

than 2mg/mL is indicative of no growth, and therefore drug

efficacy. Interestingly, the fluctuations in intensity are

shown to be an even earlier predictor of susceptibility than

intensity alone, pointing to motility as an early indicator of

susceptibility. For example, the action of ampicillin was

detected in 20–30 min as a significant decrease of the

normalized standard deviation of the intensity traces, as

illustrated in Figure 6(d) for a susceptible E. coli strain, as

opposed to the 1.5–2 h required for distinguishing the in-

tensity curves in Figure 6(c). Conversely, the signal

collected from resistant bacteria shows continuously

increasing fluctuations due to the increasing number of

bacteria contributing to the signal (see Figure 6(e)).

This observation is in agreement with the study of

fluctuations conducted on other platforms, such as hy-

drodynamic trapping of individual bacteria or the electrical

fluctuations induced by a few tens of bacteria in a micro-

fluidic channel [25, 119]. Similarly, monitoring the nano-

motion of bacteria tethered to AFM cantilevers produced

compatible results in terms of detection time [24, 120].

Overall, these findings suggest that measuring bacterial

fluctuations, which are proportional to bacterialmotility, is

a more powerful and earlier indicator of viability than

growth, so is worth exploring further as a reporter of sus-

ceptibility to antibiotics. A further advantage of the nano-

disk configuration is that no surface receptors are required

because the bacteria do not need to be in direct contact

with the surface to disturb the diffraction.

We note that other macroscopic and free-space tech-

niques are not able to record the motility of a few bacteria

either because they average over a much larger number of

bacteria or they only obtain temporary information (such

as flow cytometry). Conversely, the nanodisk are much

more sensitive, such that they can record as few as 1–5

bacteria (see Figure 6(b)), therefore allowing for both

bacterial division and fluctuations to bemonitored from an

early stage.

Another example that utilizes nanostructures to create

Fabry-Pérot resonances was proposed by Leonard et al.

[121]. Their sensor is based on a silicon micropillar array

with a functionalized surface to bind bacteria, as shown in

the SEM picture in Figure 6(f). The micropillar array gen-

erates Fabry-Pérot fringes in the vertical direction, with

interference happening between the portion of the beam

reflected off the top of pillars and the one reflected off the

bottom. The presence of bacteria modifies the refractive

index between the pillars and, consequently, the optical

phase, resulting in a shift of the fringes (see Figure 6(g)).

Bacteria were grown on the array and the shift of the

fringes was monitored over time as a proxy of bacterial
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growth. As Figure 6(h) shows, the signal behaves differently

when the antibiotic ceftriaxone is added to the bacterial

culture compared with a control experiment without anti-

biotic. Specifically, no increase in signal is observed when

bacterial growth is inhibited (red curve), as opposed to the

no-drug case,where growth occurs instead (blue curve). The

different growth conditions were verified with fluorescent

imagesas shown in the top rowofFigure6(h). The technique

Figure 6: (a) Schematic of the measurement setup used by Volbers et al. [118]. The inset shows a false-colour Scanning Electron Microscope
(SEM) image of the nanodisk array and a single Escherichia coli. Scale bar: 2 μm. (b) Mean decrease in diffraction intensity as a function of the
number of bacteria above the grating. (c) Change of diffraction intensity in the presence of different concentrations of ampicillin. (d–e)
Normalized change of standard deviation of the intensity fluctuations for susceptible and resistant E. coli in the presence of 8 mg/mL of
ampicillin. (f) False-colour SEMpicture of E. coli situated between the siliconmicropillars fabricated by Leonard et al. [121]. Scale bar: 1 μm. (g)
Interference fringes measured on illumination of the micropillar array. (h) Fluorescent images and percentage change of optical path
difference as a functionof time for E. coligrowingover themicropillar in clear growingmediumand ceftriaxone. Scale bar: 10μm. (i) Percentage
change of optical path difference over time for different concentrations of ceftriaxone.
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was also able to measure MIC values. For example,

Figure 6(i) shows that for concentrations of ceftriaxone

greater than 0.01 μg/mL, no change in phase is observed

over time. Conversely, for lower concentrations of antibi-

otics, a significant increase is observed, hence allowing an

MIC value to be determined within 2–3 h of monitoring.

In this case, the enhanced light-bacteria interaction

offered by the Fabry-Pérot resonance affords higher

sensitivity compared with traditional free-space interac-

tion or OD measurement. Even though bacterial growth is

still being used as a signature, here the bacterial optical

mass is being picked up interferometrically, which in

general affords higher sensitivity. Although the principle of

phase-based detection has beenwidely used in biosensing,

it has not been asmuch exploited for bacterial drug testing,

therefore representing an interesting opportunity for future

developments. In fact, exploiting optical interference

enabled a reduction of detection time from 2–16 h, typical

for free-spacemethods, to 2–3 h, as summarized in Table 3.

3.4 Evanescent wave-based ASTs

In contrast to the free-space techniquesdescribedpreviously,

evanescent-wave sensors are based on guided modes and

resonances and they interact with the analyte via their

evanescent tail. The confinement of the evanescent tail to

within a few hundreds of nanometres from the interface clas-

sifiesthesedevicesassurfacesensorsandimpliesthatonlythe

cell wall of the first layer of bacteria is probed, as described in

the introduction and underpinned by equation (1). We there-

fore classify these techniques as nanoscopic, as indicated in

Table 3, in contrast to microscopic techniques that instead

probe the entire cell. Interestingly, someof the techniques are

only nanoscopic in one dimension, that is they probe the

bacteriumwithinafewhundrednanometresof thesurfacebut

average over an illuminated area of 100s of μm or evenmilli-

metres, whereas others aremuchmore localized and are able

to probe individual bacteria. SPRi or hyperspectral imaging

with GMRs [20, 49, 79], fall into the latter category.

Regarding sensors that probe a larger area, one of the

first examples was reported by Chiang et al. [23], who used

an SPR sensor functionalized with poly-L-lysine to

encourage bacterial adhesion and made two important ob-

servations. First, bacteria susceptible to ampicillin showeda

reduction of refractive index compared with resistant bac-

teria on exposure to ampicillin. This indicates attack of the

cellmembrane and is consistentwith the fact that ampicillin

inhibits bacterial cell wall synthesis (see the light-grey curve

in Figure 7(a)). Second, the sensor can discriminate between

the actions of different drugs. Tetracycline, for example,

binds to the bacterial ribosomes and inhibits protein syn-

thesis, but does not affect the cell wall. Correspondingly,

very little reduction in refractive index was observed after

the administration of the antibiotic. Instead, the inhibition

of protein synthesis causes delayed and irregular fluctua-

tions in the SPR angle as a distinct signature (see the dark-

grey curve in Figure 7(a)).

Importantly, these changes are measured on a short

timescale because of the surface sensitivity; the evanescent

tail of the mode is able to directly interact with the bacterial

membrane and to monitor any changes instantaneously.

Therefore, theprocess is limited by thebiological timescale of

the drug’s action and not by the sensitivity of the

measurement.

Similarly, the high surface sensitivity of the confined

optical mode can also be used to monitor bacterial growth

directly and on a much shorter timescale than traditional

growth assays. This effect was exploited by Kee et al. [122]

who functionalized the surface of a gold nanohole array

with antibodies to monitor the growth of tethered E. coli.

Figure 7(b) displays a sketch of the structure and an SEM

image of a fabricated array, whereas Figure 7(c) shows the

wavelength shift induced by bacteria growing on the sen-

sor’s surface. Because the bacteria were resistant to

ampicillin but susceptible to tetracycline, a different

behaviour was observed on exposure to the two drugs. In

the presence of ampicillin, bacteria kept attaching and

growing, hence increasing surface coverage over time and

resulting in a continuous increase of the wavelength shift

(blue curve). Conversely, tetracycline inhibited bacterial

growth, which is evidenced by the immediate flattening of

the curve after the addition of antibiotics (red curve).

As another example, the strong light confinement

offered by localized surface plasmon resonances (LSPRs)

on nanoparticles has been applied to speed up suscepti-

bility testing of bacterial biofilms compared with tradi-

tional techniques. LSPRs are collective oscillations of free

electrons induced by light in subwavelength metallic

nanoparticles. On resonance, the electric field at the sur-

face of the nanoparticle is strongly enhanced and decays

with a short distance (tens of nanometre), thereby enabling

evanescent-wave optical sensing [123, 124]. Funari et al.

[125] fabricated gold nanoparticles supported by silica

pillars, as shown in the sketch in Figure 7(d) and imaged in

Figure 7(e). These structures, dubbed gold nanomush-

rooms, support a broad (Q ≲ 10) LSPR mode which was

used to monitor an E. coli biofilm forming over the surface

in the presence of different antibiotics.

By measuring the wavelength shift of the LSPR mode,

the authors showed that biofilm formation is only party

hindered by drugs that target the bacterial adhesion
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ability, in particular rifapentine [126]. Figure 7(f) plots the

wavelength shift as a function of antibiotic, whereby a

negative shift indicates sustained growth while a positive

or zero shift indicates that biofilm is not fully forming. The

partial efficacy of rifapentine is suggested by the negative

shift in resonance wavelength of similar magnitude to that

of an untreated sample (grey and red bars in Figure 7(f)).

Biofilm formation is then inhibited more effectively by

pairing rifapentine with a bactericidal drug, such as

ampicillin or kanamycin, as evidenced by the black bar in

Figure 7(f), which shows the smallest wavelength shift,

indicative of no biofilm growth. Notably, the authors were

Figure 7: (a) Shift of surface plasmon resonance (SPR) angle induced by exposing susceptible Escherichia coli tethered on the SPR sensor to
ampicillin and tetracycline [26]. (b) Sketch of the gold nanoholes used by Kee et al. and Scanning Electron Microscope (SEM) image of a
fabricated array [122]. Scale bar: 200 nm. (c) Resonance wavelength shift for ampicillin resistant and tetracycline susceptible in the presence
of ampicillin (blue curve) and tetracycline (red curve). (d) Gold nanomushroom array proposed by Funari et al. [125], (e) SEM image of the
nanomushroom sensor’s surface. (f) Wavelength shift for growing biofilm in presence of different antibiotics. (g) SEM image of a Si3N4 grating
supporting aGMRmode. (h) Resonancewavelength shift for an E. coli biofilm growing over the grating and later exposed to ciprofloxacin [128].
(i) Confocal microscopy showing an established biofilm (top panel) and confirming the disruption of the biofilm (bottom panel). Scale
bar = 10 μm.
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able to reach this conclusion in 2–3 h and with a relatively

simple measurement configuration. This was enabled by

the light confinement at the surface making the sensor

sensitive only to the cell membrane of the first layer of

bacteria, similar to other evanescent-wave sensors dis-

cussed in this section.

As an alternative to plasmonic resonances, we recently

presented related work using GMRs excited in Si3N4 grat-

ings (see Figure 7(g)). GMRs are quasi-guided modes

excited in the near-wavelength regime of a grating [127].

Electromagnetic energy is confined in the slab, therefore

resulting in the generation of an evanescent wave at the

surface. The mode, however, can be readily coupled out to

external radiation because of its leaky nature,whichmakes

GMRs attractive because of the ease of measurement [20].

We exploited both the surface sensitivity and the spatial

localization offered by the GMR mode to monitor the bot-

tom layer of the biofilm as well as image the biofilm

morphology and spatial distribution through hyper-

spectral imaging [128].

Similar to the plasmonic methods, the biofilm devel-

opment and response to antibiotics was monitored at

different time points, especially at the early stages of biofilm

establishment.We showed thatwhile somedrugsmay affect

the top surface of the biofilm, they do not eradicate it.

Conversely, antibiotics effective at destroying the biofilm,

such as ciprofloxacin, caused a decrease of the resonance

wavelength (see Figure 7(h)), thereby indicating that the

bottom layerwasbeingaffected to theextent that itdetached

from the surface. The result was verified by confocal mi-

croscopy with live/dead staining, as shown in Figure 7(i),

wherealivebacteriaappeargreenanddeadonesappear red.

Notably, the grating surfacewas not functionalizedwith any

capture molecules and did not require any fluorescent

labelling. These aspects are particularly important for real

applications where the species of the biofilm-forming bac-

teria may not be known. In that case, functionalizing the

surface with antibodies that target specific bacterial mem-

brane proteins may miss the bacteria of interest. As a

downside, the lack of functionalization delayed the attach-

ment of the bacteria and their colonization of the surface.

These examples show that monitoring the first and

arguably most important layer of the biofilm leads to the

early detection of its formation. Furthermore, it allows

monitoring very clearly the attack by some antimicrobials

compared with traditional techniques that are destructive

and require either lengthy and resource-consuming stain-

ing procedures or a confocal microscope to observe the

bottom layer [129].

Overall, these techniques offer several interesting in-

sights. First, physical changes induced by antibiotics to the

bacterial membrane can be detected on a timescale shorter

or comparable with that of growth by cell division, with the

surface sensitivity being a particular asset. Second, sensing

Figure 8: (a) Diagram of the SPR sensor
demonstrate by Syal et al. [51]. (b) SPR
contrast images of a single Escherichia coli

tethered on the gold surface at different
time points. Scale bars: 2 μm (c)
z-movement of a single bacterium over
time, before and after the addition of
0.5 mg/mL of polymyxin B. (d) Distribution
of nanomotion amplitudes of different
individual bacteria before (blue bars) and
after (red bard) exposure to the antibiotic.
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with a guided mode reduces time even for a growth assay

because the guided mode is sensitive to a single layer of

bacteria, therefore enabling the detection of bacterial di-

vision at a much lower bacterial concentration. Notably,

none of the traditional microbiological techniques enables

such an insightful observation and reduction in time.

Because of the increased sensitivity and reduction of

detection time offered by sensing fewer bacteria with an

evanescent tail, one would expect that pushing light-matter

interaction to the level of individual bacteria would further

reduce detection time. In fact, this reduction has been

demonstrated by using SPRi [51]. As introduced in Section

2.1.4. The SPRi configuration, sketched in Figure 8(a), was

used to monitor a single bacterium tethered to the surface

via antibody binding. The contrast of the image fluctuates

over time because of themotion of the boundbacteria as the

bacterium moves within the evanescent tail of the resonant

mode, as shown in Figure 8(b). The fluctuations in intensity

can be converted into a z-movement of the bacterium

because the exponential decay is well known (equation 1)

and can be used to quantify the bacterial motion perpen-

dicular to the surface.

After the exposure of tethered bacteria to 0.5mg/mL of

the antibiotic polymyxin B, the bacterial motion is almost

immediately reduced to levels comparable with the fluc-

tuations of dead bacteria, as illustrated in Figure 8(c).

Although the authors ascribe the sudden decrease to the

loss of viability and halting of the bacterial metabolism, it

is important to note that the impressively rapid response is

due to the very high concentration of antibiotic used,

which corresponds to 25 times the MIC for polymyxin B.

Nevertheless, when the bacteria are exposed to a near-MIC

concentration, a similar response occurs within 1 h, which

is still much faster than conventional tests. Moreover, the

single-cell capability afforded by the SPRi method allows

probing bacterial heterogeneity by studying the distribu-

tion of nanomotion amplitudes of tens of individual bac-

teria as shown in Figure 8(d).

The response time was also confirmed in later work

from the same group, where the nanomotion was measured

with a simple brightfield microscope. It was observed that a

near-MICof the same antibiotic, the decrease innanomotion

happened over 1–1.5 h [130]. Although this second config-

uration is inherently easier to operate, it can only detect 2D

nanomotion across the plane where bacteria attach.

Nevertheless, in this second work, the single-cell capability

allowed the authors to distinguish subpopulations showing

different sensitivities to the antibiotic administration. This is

a clear example of heteroresistance, a phenomenon that,

despite being crucial to characterizing the response of a

bacterial population to an antibiotic treatment [11, 12, 131], is

commonly neglected in traditional bulk experiments.

4 Conclusions

Wehave reviewed and critically assessed progress in the use

of photonic and nanophotonic techniques for the detection

and monitoring of bacteria. By comparing the more

advanced sensing and imaging techniques against con-

ventional methods, we have attempted to answer the

question of what added value nanophotonics can bring to

the detection of bacteria and,more specifically, to the global

problem of antimicrobial resistance. How do nanophotonic

techniques allow us to better assess the response of bacteria

to antibiotic challenge, that is to assess their susceptibility?

Conventional techniques, such as the Kirby-Bauer test,

used in every hospital laboratory are based on measuring

the growth of entire bacterial colonies. Naturally, it takes at

least an overnight incubation for bacteria to grow to a con-

centration that is detectable by visual inspection or quanti-

fiable by a traditional ODmeasurement (OD600) [96, 97, 132].

We refer to this is a “macroscopic” test. By observing the

growthof fewerbacteria,weenter the “microscopic” regime,

whereby changes in individual bacteria can be detected. A

number of techniques, such as flow cytometry [114, 116],

forward laser light scattering [26, 109] and nanostructure-

enhanced methods [118, 121] can provide such microscopic

information and allow us to reduce the assessment of sus-

ceptibility from 24–48 h down to 2–6 h (see Table 3), simply

because they are able to observe a small number of bacteria

rather than large colonies.

Reducing the spatial dimension further, we enter the

“nanoscopic” domain, where only a part of the bacterium

is interrogated, most notably the cell wall. Guided mode

and resonant techniques such as those based on surface

plasmons or dielectric resonances allow us to enter this

regime because they are all based on the interaction be-

tween the evanescent tail of a confined mode and the

outside of the bacterium. This reduction in scale gives a

further reduction in assessment time, down to 0.5–2 h, as

highlighted in Table 3. This further decrease is enabled by

increasing the sensitivity to bacterial growth because only

the first layer of adherent bacteria is probed by the

evanescent tail [23, 122], therefore affording to probe

growth from amuch earlier stage. Such configuration lends

itself to the study of real-time biofilm growth [125, 128],

where the bottom layer is crucial, and represents an

attractive alternative to traditional cumbersome micro-

scopy or staining protocols [129].
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In terms of sensitivity, we have also highlighted a

number of techniques that successfully use interferometry

to amplify the observation of bacterial presence. As is well

known, phase-based measurements are among the most

sensitive in photonics, so it is no surprise that this strategy

is also successful in the detection andmonitoring of a small

number of bacteria, both formeasuring low concentrations

[68–70] and for assessing bacterial susceptibility to anti-

biotics [121].

Another parameter that is not picked up by

culturing methods is the heterogeneity of the bacterial

response. Bacteria, like any other living organism,

exhibit heterogeneity, so it is an oversimplification to

assume that they all respond in the same way. Ignoring

heterogeneity is a mistake made by every averaging

method such as culturing. In particular, it ignores the

issue of heteroresistance and the presence of persister

cells [10, 12]. Flow cytometry [114, 116] and droplet

microfluidics [131] are already able to pick up hetero-

geneity, but only at the microscopic scale. We therefore

see exciting opportunities for techniques such as SPRi

[51] or GMR imaging [32, 79] to add their nanoscale

sensing ability to this problem.

In addition, the strong light-bacterium interaction

provided by nanoscopic techniques allows probing bacte-

rial properties alternative to growth, with extreme sensi-

tivity, that escape the traditional Kirby-Bauer test. A first

example is the OD of the bacterial cell wall [22, 23], which

was shown to be affected by antibiotics on a timescale

comparable to or shorter than the bacterial division time.

This suggests that changes to the cell wall become evident

before the bacterium exhibits changes on a microscopic

scale and represent a further avenue worth exploring for

future ASTs. The OD of the cell wall was also exploited to

identify different bacteria and classify Gram-positive and

Gram-negative strains [21, 22].

Similar to the cell wall, the ability of bacteria to swim

and colonize surfaces has been used as a signature of their

viability,whereby a significant reduction inphysicalmotion

can be interpreted as an indicator of a successful antibiotic

challenge. A number of articles we highlight [51, 118, 130]

have demonstrated this phenomenon by using nano-

photonic techniques and have also verified it against con-

ventional susceptibility tests that nanomotion and motility

are relatively fast (∼1 h) indicators of susceptibility.
Altogether, these findings indicate that the ability to

optically assess bacteria on a nanoscopic length scale al-

lows us to observe antibiotic susceptibility on a biological

timescale rather than on a timescale dictated by physical

observation. This marks a profound change and improve-

ment on the Kirby-Bauer test.

Importantly, we note that the advantage of using some

of these indicators alternative to growth is also supported by

other findings which do not necessarily use photonics, such

asmicrofluidic techniques [25, 119, 133, 134], AFM cantilever

deflection [24, 120, 135] or electrochemical platforms [136–

138]. For example, bacterial metabolism drives ion-

exchange across the membrane, so we see the measure-

ment of electrical impedance at the single-cell level as a very

promising method that could be added to the toolkit [90,

136]. These observations suggest that a synergistic approach

betweendifferent domains is desirable, as itmight be able to

provide even greater insight and meet important needs that

still pose challenges. For instance, microfluidics is crucial

for tasks such as sample handling, filtration, delivery and

enrichment while requiring low volumes of solutions [15,

28]. Therefore, further developments in microfluidics are

expected to bring significant benefit to photonic biosensors.

Bacterial identification is also challenging and currently

requires lengthy cultivation and specialized personnel. In

this respect, Raman [139–142] and IR spectroscopy [143, 144]

represent promising alternative candidates to address the

issue, while also being able to carry out susceptibility tests.

For these reasons, overall, we believe that the ideal

bacterial detection and testing device will likely be multi-

parametric, thereby making it able to measure several pa-

rameters at the same time. In fact, it seems naive to assume

that the diversity of the bacterial world can be captured by

measuring a single parameter; similarly, antibiotics have

many different modes of action. Antibiotic susceptibility is

a multidimensional problem that can only be solved with a

multiparameter approach. Several techniques have

already recognized this need by measuring multiple re-

sponses in parallel, for example, morphology in conjunc-

tion with motility [25] or single-cell division [132, 133],

electrical impedancewithmotility [90] or bacterial division

[138], as well as growth and motility [118].

Photonics can play a significant role in this develop-

ment roadmap, thanks to the desirable features we high-

lighted in this article. However, despite some of the

conceptual leaps described here, no real major techno-

logical breakthrough has happened at the clinical level

since Kirby and Bauer developed their disk diffusion test.

This is due to some major hurdles that still need to be

overcome to make these platforms suitable for translation

into the clinic.

First, it is important to note that most of the photonic

techniques discussed here only address part of the issues of

current ASTs in terms of total assay time. In fact, an

important bottleneck of currentASTs is the timeneeded for a

clinical sample to be precultured to isolate a pure bacterial

colony. All the photonic techniques presented here were
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tested directly with a pure colony or a standardizes inoc-

ulum, namely a known bacterial strain which was cultured

overnight and then suspended in a known medium [4, 5].

This implies that the reduction in assay time discussed

throughout this review only concerns the time needed for

the actual detection of susceptibility (termed drug test time

in Table 3), not for the entire AST process. To reduce the

entire assay time, a synergistic approach with microfluidics

and other photonics identification techniques is expected to

bring significant advantages, as discussed previously.

Second, such emerging devices ought to be made

scalable and cost-effective. Reducing the optical probed

volume often comeswith the need of using nanostructures,

whose fabrication requires electron beam lithography and

cleanroom procedures, which are neither easy nor cost-

effective to scale. Although significant progress has been

made in this direction and many point of care detection

platforms have been demonstrated [65, 145, 146], these

devices still need to be validated for reproducible and ac-

curate on-field operation. In addition, many portable

technologies still suffer from insufficient sensitivity to be

able to perform early diagnosis [147]. To this purpose, we

expect technologies such as nanoimprint lithography,

3D printing and paper microfluidics to play important roles

in nanostructures fabrication, sensor assembly and

microfluidic circuitry realization, respectively. This will

contribute to decreasing cost and making nanophotonic

technologies easier to translate [148].

Finally, becausemany of these novel techniques are still

emerging, they need to be extensively tested, both at the

research level and in the clinic to meet the stringent re-

quirements of regulatory bodies. These regulations entail

lengthy and costly validations, which are however necessary

to ensure safety, performance and low rates of errors.

Broader targets of this testing include reproducibility, fidelity

and applicability to the largest possible number of bacteria-

drug combinations. In this context, closer collaborations

with clinicians, microbiologists and health economists is of

paramount importance to assess the viability of developed

platforms and their impact on the health care system.
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Houdré, “Observation of backaction and self-induced trapping
in a planar hollow photonic crystal cavity,” Phys. Rev. Lett., vol.
110, p. 123601, 2013.

[87] T. Van Leest and J. Caro, “Cavity-enhanced optical trapping of
bacteria using a silicon photonic crystal,” Lab Chip, vol. 13,
pp. 4358–4365, 2013.

[88] J. Juan-Colás, A. Parkin, K. E. Dunn, M. G. Scullion, T. F. Krauss,
and S. D. Johnson, “The electrophotonic silicon biosensor,”
Nat. Commun., vol. 7, pp. 1–7, 2016.

[89] J. Juan-Colás, T. F. Krauss, and S. D. Johnson, “Real-time
analysis of molecular conformation using silicon
electrophotonic biosensors,” ACS Photonics, vol. 4,
pp. 2320–2326, 2017.

[90] D. Conteduca, G. Brunetti, F. Dell’Olio, M. N. Armenise, T. F.
Krauss, and C. Ciminelli, “Monitoring of individual bacteria
using electro-photonic traps,” Biomed. Opt. Express, vol. 10,
p. 3463, 2019.

[91] H. Xin, Q. Liu, and B. Li, “Non-contact fiber-optical trapping of
motile bacteria: dynamics observation and energy estimation,”
Sci. Rep., vol. 3, pp. 1–8, 2014.

[92] M. Tardif, J. B. Jager, P. R.Marcoux, et al., “Single-cell bacterium
identification with a SOI optical microcavity,” Appl. Phys. Lett.,
vol. 109, 2016.

[93] J. C. Lagier, S. Edouard, I. Pagnier, O. Mediannikov, M.
Drancourt, and D. Raoult, “Current and past strategies for
bacterial culture in clinical microbiology,” Clin. Microbiol. Rev.,
vol. 28, pp. 208–236, 2015.

[94] J. H. Jorgensen and M. J. Ferraro, “Antimicrobial susceptibility
testing: a review of general principles and contemporary
practices,” Clin. Infect. Dis., vol. 49, pp. 1749–1755, 2009.

[95] B. Behera, G. K. Anil Vishnu, S. Chatterjee, et al., “Emerging
technologies for antibiotic susceptibility testing,” Biosens.
Bioelectron., vol. 142, 2019.

[96] A. W. Bauer, “Single-disk antibiotic-sensitivity testing of
staphylococci,” AMA Arch. Intern. Med., vol. 104, p. 208, 1959.

[97] C. A. Rotilie, R. J. Fass, R. B. Prior, and R. L. Perkins,
“Microdilution technique for antimicrobial susceptibility
testing of anaerobic bacteria,” Antimicrob. Agents Chemother.,
vol. 7, pp. 311–315, 2012.

[98] D. H. Pincus, “Microbial identification using the bioMérieux
VITEK® 2 system,” Encycl. Rapid Microbiol. Methods, pp. 1–32,
2010.

[99] A. McGregor, F. Schio, S. Beaton, V. Boulton, M. Perman, and G.
Gilbert, “The microscan walkaway diagnostic microbiology
system—An evaluation,”Pathology, vol. 27, pp. 172–176, 1995.

[100] K. C. Carroll, B. D. Glanz, A. P. Borek, et al., “Evaluationof the BD
Phoenix automated microbiology system for identification and
antimicrobial susceptibility testing of Enterobacteriaceae,”
J. Clin. Microbiol., vol. 44, pp. 3506–3509, 2006.

[101] A. Lupetti, S. Barnini, B. Castagna, P. H. Nibbering, and M.
Campa, “Rapid identification and antimicrobial susceptibility
testing of Gram-positive cocci in blood cultures by direct

inoculation into the BD phoenix system,” Clin. Microbiol.

Infect., vol. 16, pp. 986–991, 2010.
[102] M. Ligozzi, S. Barnini, B. Castagna, A. L. Capria, and P. H.

Nibbering, “Rapid identification and antimicrobial
susceptibility profiling of Gram-positive cocci in blood cultures
with the Vitek 2 system,” Eur. J. Clin. Microbiol. Infect. Dis., vol.
40, pp. 89–95, 2002.

[103] F. Garcia-Garrote, E. Cercenado, and E. Bouza, “Evaluation of a
new system, VITEK 2, for identification and antimicrobial
susceptibility testing of enterococci,” J. Clin. Microbiol., vol. 38,
pp. 2108–2111, 2000.

[104] J. L. Burns, L. Saiman, S. Whittier, et al., “Comparison of two
commercial systems (Vitek and MicroScan-WalkAway) for
antimicrobial susceptibility testing of Pseudomonas

aeruginosa isolates from cystic fibrosis patients,” Diagn.
Microbiol. Infect. Dis., vol. 39, pp. 257–260, 2001.

[105] H. S. Sader, T. R. Fritsche, and R. N. Jones, “Accuracy of three
automated systems (MicroScan WalkAway, VITEK, and VITEK 2)
for susceptibility testing of,” Society, vol. 44, pp. 1101–1104,
2006.

[106] C. Kulah, E. Aktas, F. Comert, N. Ozlu, I. Akyar, and H. Ankarali,
“Detecting imipenem resistance in Acinetobacter baumannii by
automated systems (BD Phoenix, Microscan WalkAway, Vitek
2); high error rateswithMicroscanWalkAway,” BMC Infect. Dis.,
vol. 9, pp. 1–7, 2009.

[107] E. A. Idelevich, D. A. Freeborn, H. Seifert, and K. Becker,
“Comparison of tigecycline susceptibility testing methods for
multidrug-resistant Acinetobacter baumannii,” Diagn.
Microbiol. Infect. Dis., vol. 91, pp. 360–362, 2018.

[108] R.M. Berkman, P. J.Wyatt, andD. T. Phillips, “Rapiddetection of
penicillin sensitivity in Staphylococcus aureus,” Nature, vol.
228, pp. 458–460, 1970.

[109] J. Murray, P. Evans, and D. W. L. Hukins, “Light-scattering
methods for antibiotic sensitivity tests,” J. Clin. Pathol., vol. 33,
pp. 995–1001, 1980.

[110] A. L. Roberts, U. Joneja, T. Villatoro, E. Andris, J. A. Boyle, and J.
Bondi, “Evaluation of the BacterioScan 216Dx for standalone
preculture screen of preserved urine specimens in a clinical
setting,” Lab. Med., vol. 49, pp. 35–40, 2018.

[111] F. Hassan, H. Bushnell, C. Taggart, et al., “Evaluation of
BacterioScan 216Dx in comparison to urinalysis as a screening
tool for diagnosis of urinary tract infections in children,” J. Clin.
Microbiol., vol. 57, pp. 1–7, 2019.

[112] J. V. Bugrysheva, C. Lascols, D. Sue, and L. M. Weigel, “Rapid
antimicrobial susceptibility testing of Bacillus anthracis,
Yersinia pestis, and Burkholderia pseudomallei by use of laser
light scattering technology,” J. Clin. Microbiol., vol. 54,
pp. 1462–1471, 2016.

[113] E. A. Idelevich, M. Hoy, D. Knaack, et al., “Direct determination
of carbapenem-resistant Enterobacteriaceae and
Pseudomonas aeruginosa from positive blood cultures using
laser scattering technology,” Int. J. Antimicrob. Agents, vol. 51,
pp. 221–226, 2018.

[114] M. A. C. Broeren, Y. Maas, E. Retera, and N. L. A. Arents,
“Antimicrobial susceptibility testing in 90 min by bacterial cell
countmonitoring,” Clin.Microbiol. Infect., vol. 19, pp. 286–291,
2013.

[115] T. H. Huang, Y. L. Tzeng, and R. M. Dickson, “FAST: rapid
determinations of antibiotic susceptibility phenotypes using
label-free cytometry,” Cytometry A, vol. 93, pp. 639–648, 2018.

4470 G. Pitruzzello et al.: Nanophotonics for bacteria



[116] D. Fonseca e Silva, A. Silva-Dias, R. Gomes, et al., “Evaluation of
rapid colistin susceptibility directly from positive blood
cultures using a flow cytometry assay,” Int. J. Antimicrob.

Agents, vol. 54, pp. 820–823, 2019.
[117] L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection

and quantification of bacterial autofluorescence at the single-
cell level by a laboratory-built high-sensitivity flow cytometer,”
Anal. Chem., vol. 84, pp. 1526–1532, 2012.

[118] D. Volbers, V. K. Stierle, K. J. Ditzel, et al., “Interference
disturbance analysis enables single-cell level growth and
mobility characterization for rapid antimicrobial susceptibility
testing,” Nano Lett, vol. 9, no. 2, pp. 643–651, 2019.

[119] V. Kara, C. Duan, K.Gupta, S. Kurosawa, D. J. Stearns-Kurosawa,
and K. L. Ekinci, “Microfluidic detection of movements of
Escherichia coli for rapid antibiotic susceptibility testing,” Lab
Chip, vol. 18, pp. 743–753, 2018.

[120] H. Etayash, M. F. Khan, K. Kaur, and T. Thundat, “Microfluidic
cantilever detects bacteria and measures their susceptibility to
antibiotics in small confined volumes,” Nat. Commun., vol. 7,
p. 12947, 2016.

[121] H. Leonard, S. Halachmi, N. Ben-Dov, O. Nativ, and E. Segal,
“Unraveling antimicrobial susceptibility of bacterial
networks on micropillar architectures using intrinsic phase-
shift spectroscopy,” ACS Nano, vol. 11, pp. 6167–6177,
2017.

[122] J. S. Kee, S. Y. Lim, A. P. Perera, Y. Zhang, and M. K. Park,
“Plasmonic nanohole arrays for monitoring growth of bacteria
and antibiotic susceptibility test,” Sensors Actuators B Chem.,
vol. 182, pp. 576–583, 2013.

[123] S. Szunerits and R. Boukherroub, “Sensing using localised
surface plasmon resonance sensors,” Chem. Commun., vol. 48,
pp. 8999–9010, 2012.

[124] E. Petryayeva and U. J. Krull, “Localized surface plasmon
resonance: nanostructures, bioassays and biosensing – A
review,” Anal. Chim. Acta, vol. 706, pp. 8–24, 2011.

[125] R. Funari, N. Bhalla, K. Y. Chu, B. Söderström, and A. Q. Shen,
“Nanoplasmonics for real-time and label-free monitoring of
microbial biofilm formation,” ACS Sensors, vol. 3,
pp. 1499–1509, 2018.

[126] M. C. Maher, J. Y. Lim, C. Gunawan, and L. Cegelski, “Cell-based
high-throughput screening identifies rifapentine as an inhibitor
of amyloid and biofilm formation in Escherichia coli,” ACS
Infect. Dis., vol. 1, pp. 460–468, 2016.

[127] S. S. Wang and R. Magnusson, “Theory and applications of
guided-mode resonancefilters,”Appl.Opt., vol. 32, p. 2606, 1993.

[128] Y. Wang, C. P. Reardon, N. Read, et al. “Attachment and
antibiotic response of early-stage biofilms studied using
resonant hyperspectral imaging,” Under Review, https://arxiv.
org/abs/2009.03451.

[129] F. Pantanella, P. Valenti, T. Natalizi, D. Passeri, and F. Berlutti,
“Analytical techniques to study microbial biofilm on abiotic
surfaces: Pros and cons of the main techniques currently in
use,” Ann. Ig., vol. 25, pp. 31–42, 2013.

[130] K. Syal, S. Shen, Y. Yang, S. Wang, S. E. Haydel, and N. Tao,
“Rapid antibiotic susceptibility testing of uropathogenic E. coli
by tracking submicron scale motion of single bacterial cells,”
ACS Sensors, vol. 2, pp. 1231–1239, 2017.

[131] O. Scheler, K. Makuch, P. R. Debski, et al., “Droplet-based
digital antibiotic susceptibility screen reveals single-cell clonal
heteroresistance in an isogenic bacterial population,”Sci. Rep.,
vol. 10, pp. 1–8, 2020.

[132] J. Choi, J. Yoo, M. Lee, et al., “A rapid antimicrobial susceptibility
test based on single-cell morphological analysis,” Sci. Transl.
Med., vol. 6, p. 267ra174, 2014.

[133] B. Li, Y. Qiu, A. Glidle, et al., “Gradient microfluidics enables
rapid bacterial growth inhibition testing,” Anal. Chem., vol. 86,
pp. 3131–3137, 2014.

[134] Ö. Baltekin, A. Boucharin, E. Tano, D. I. Andersson, and J. Elf,
“Antibiotic susceptibility testing in less than 30 min using
direct single-cell imaging,” Proc. Natl. Acad. Sci. U. S. A., vol.
114, pp. 9170–9175, 2017.

[135] S. Kasas, F. S. Ruggeri, C. Benadiba, et al., “Detecting
nanoscale vibrations as signature of life,” Proc. Natl. Acad. Sci.
U. S. A., vol. 112, pp. 378–381, 2015.

[136] M. Mallén-Alberdi, N. Vigués, J. Mas, C. Fernández-Sánchez,
and A. Baldi, “Impedance spectral fingerprint of E. coli cells on
interdigitated electrodes: a new approach for label free and
selective detection,” Sens. Bio-Sensing Res., vol. 7,
pp. 100–106, 2016.

[137] A. Rohani, J. H.Moore, Y. H. Su, V. Stagnaro, C.Warren, andN. S.
Swami, “Single-cell electro-phenotyping for rapid assessment
of Clostridium difficile heterogeneity under vancomycin
treatment at sub-MIC (minimum inhibitory concentration)
levels,” Sensors Actuators B Chem, vol. 276, pp. 472–480,
2018.

[138] Y. Yang, K. Gupta, and K. L. Ekinci, “All-electrical monitoring of
bacterial antibiotic susceptibility in a microfluidic device,” Proc.
Natl. Acad. Sci. U. S. A., vol. 117, no. 20, pp. 10639–10644, 2020.

[139] D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent
progress in surface-enhanced Raman spectroscopy for
biological and biomedical applications: from cells to clinics,”
Chem. Soc. Rev., vol. 46, pp. 3945–3961, 2017.

[140] B. Lorenz, C. Wichmann, S. Stöckel, P. Rösch, and J. Popp,
“Cultivation-free Raman spectroscopic investigations of
bacteria,” Trends Microbiol., vol. 25, pp. 413–424, 2017.

[141] A. Tannert, R. Grohs, J. Popp, and U. Neugebauer,
“Phenotypic antibiotic susceptibility testing of pathogenic
bacteria using photonic readout methods: recent
achievements and impact,” Appl. Microbiol. Biotechnol.,
vol. 103, pp. 549–566, 2019.

[142] V. O. Baron, M. Chen, B. Hammarstrom, et al., “Real-time
monitoring of live mycobacteria with a microfluidic acoustic-
Raman platform,” Commun. Biol., vol. 3, pp. 1–8, 2020.

[143] W. Adamus-Białek, Ł. Lechowicz, A. B. Kubiak-Szeligowska, M.
Wawszczak, E. Kamińska, and M. Chrapek, “A new look at the
drug-resistance investigation of uropathogenic E. coli strains,”
Mol. Biol. Rep., vol. 44, pp. 191–202, 2017.

[144] A. Salman, U. Sharaha, E. Rodriguez-Diaz, et al., “Detection of
antibiotic resistant: Escherichia coli bacteria using infrared
microscopy and advanced multivariate analysis,” Analyst, vol.
142, pp. 2136–2144, 2017.

[145] M. Drancourt, A. Michel-Lepage, S. Boyer, and D. Raoult, “The
point-of-care laboratory in clinical microbiology,” Clin.
Microbiol. Rev., vol. 29, pp. 429–447, 2016.

G. Pitruzzello et al.: Nanophotonics for bacteria 4471



[146] O. Pashchenko, T. Shelby, T. Banerjee, and S. Santra, “A
comparison of optical, electrochemical, magnetic, and
colorimetric point-of-care biosensors for infectious
disease diagnosis,” ACS Infect. Dis., vol. 4, pp. 1162–1178,
2018.

[147] M. R. Pulido, M. García-Quintanilla, R. Martín-Peña,
J. M. Cisneros, and M. J. McConnell, “Progress on the

development of rapid methods for antimicrobial susceptibility
testing,” J. Antimicrob. Chemother., vol. 68, pp. 2710–2717,
2013.

[148] A. Drayton, K. Li, M. Simmons, C. Reardon, and T. Krauss,
“Performance limitations of resonant refractive index sensors
with low-cost components,” Under Review, https://doi.org/10.
1364/OE.400236.

4472 G. Pitruzzello et al.: Nanophotonics for bacteria


	Nanophotonics for bacterial detection and antimicrobial susceptibility testing
	1 Introduction
	1.1 The role and advantages of photonic in bacterial detection and ASTs

	2 Photonics for bacterial detection
	2.1 Plasmonic configurations
	2.1.1 SPR devices
	2.1.2 Plasmonic nanohole arrays
	2.1.3 Plasmonic imaging
	2.1.4 Plasmonic nanotweezers

	2.2 Dielectric configurations
	2.2.1 Optical waveguides and interferometric approaches
	2.2.2 Resonant metasurfaces
	2.2.3 Dielectric nanotweezers


	3 Photonic techniques for antimicrobial susceptibility testing
	3.1 Traditional microbiological techniques
	3.2 Commercial devices
	3.3 Free-space photonic techniques
	3.3.1 Elastic light scattering
	3.3.2 Flow cytometry
	3.3.3 Nanostructure-enhanced detection

	3.4 Evanescent wave-based ASTs

	4 Conclusions
	References

