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Abstract 

Copy number variations (CNV) at the 16p11.2 chromosomal region are rare high-risk CNVs 

associated with various clinical features and psychiatric disorders including intellectual 

disability, developmental delays, and autism spectrum disorder. No study to date has 

investigated whether spontaneous neural activity is altered for 16p11.2 CNV carriers and 

whether this relates to psychiatric traits. The aim of this study is to examine the impact of 

16p11.2 deletions (del) and duplications (dup) on spontaneous neural activity and its 

relationship to psychiatric problems. EEG was previously collected as part of the Simons 

Searchlight initiative. Using spectral power (delta, theta, alpha, and beta frequency bands), 

complexity index (CI), and multiscale entropy analysis techniques, we analyzed frontal 

resting-state EEG data collected from 22 16p11.2 del carriers, 14 dup carriers, and 13 

controls. We then examined associations between neural activity and psychiatric traits, 

measured with the Child Behavior Checklist. Results indicated that EEG entropy was higher 

for del and dup compared to controls, respectively, at all timescales. CI was also higher for 

del and dup compared to controls. Theta power of 16p11.2 dup carriers was higher than 

controls. A strong association was found between entropy at higher timescales and anxiety 

problems. In addition, a strong correlation was found between theta power and pervasive 

developmental problems. Atypical spontaneous neural activity is implicated in 16p11.2 

CNVs. With higher entropy or theta power, psychiatric traits increase in severity. Our 

findings provide evidence of the link between genotype, neural activity, and phenotypes in 

16p11.2 CNVs.  

Keywords: 16p11.2 Copy Number Variants, Rare Genetic Syndromes, CBCL, EEG, Resting-

State, Entropy. 
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Introduction  1 

Deletions (del) and duplications (dup) of the 16p11.2 chromosomal region (~600 kb 2 

breakpoints 4–5) are pathogenic copy number variations (CNVs) that increase the risk of 3 

developing one or more of the possible associated disorders and difficulties (Shinawi et al., 4 

2010; D’angelo et al., 2016; Hanson et al., 2015; Niarchou et al., 2019). The consequences of 5 

this CNV are heterogenous as they vary from one individual to another in their severity and 6 

phenotypes (Girirajan and Eichler, 2010; Niarchou et al., 2019), including intellectual 7 

disability, developmental delays, autistic and other psychiatric traits. Evidence suggests that 8 

16p11.2 CNV carriers additionally present with atypical neural activity in response to various 9 

sensory, sensorimotor, and social stimuli (see Table 1 for a summary of this work). Overall, 10 

anomalies were identified in M/EEG signal features of event-related potentials (and its 11 

variability) and power at alpha and beta frequencies, evoked by different events. These 12 

studies are pioneering works investigating M/EEG activity in this rare CNV, however further 13 

work is necessary to assess features detectable from spontaneous neural activity, using 14 

conventional and other promising techniques, such as multiscale entropy (MSE). Entropy 15 

features may serve as reliable endophenotypes informing prognosis and treatment progression 16 

in 16p11.2 CNV carriers. 17 

Atypical M/EEG entropy has been implicated in various psychiatric disorders that are 18 

associated with 16p11.2 CNVs (for a review, see Chu et al., 2017; Takahashi, 2013; Yang 19 

and Tsai, 2013), but has not yet been investigated in individuals who have either a deletion or 20 

a duplication at this chromosomal region. With MSE analysis (Costa et al., 2002; Costa et al., 21 

2005), in particular, it is possible to quantify the level of entropy or irregularity of moment-22 

to-moment patterns of amplitudes in the signal across different scales. Higher entropy 23 

indicates higher irregularity in the signal, while lower entropy indicates a more regular, 24 

predictable pattern. Interestingly, both higher and lower entropy have been found in 25 

psychiatric disorders (relative to typical controls) in a manner that is task- (e.g., Mišić et al., 26 

2015), scale-, and brain region-dependent (e.g., Ghanbari et al., 2015). For example, 27 

compared to controls, higher entropy was found in ASD at higher scales in the occipital, 28 

parietal, and temporal areas at resting-state (Takahashi et al., 2016), while lower entropy at 29 

higher scales was found in a face and chair detection task (Catarino et al., 2011) in the same 30 

brain areas. In addition, Milne et al. (2019) found lower overall entropy in ASD at resting-31 

state across all scales and brain regions. Other psychiatric disorders, associated with 16p11.2 32 
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CNVs, that have shown atypical MSE include epilepsy and seizures (Bosl et al., 2017; Lu et 33 

al., 2015), attention deficit hyperactivity disorder (ADHD, Chenxi et al., 2016), 34 

Schizophrenia (Takahashi et al., 2010), and Alzheimer’s (Yang et al., 2013; Mizuno et al., 35 

2010).  36 

To our knowledge, no study has investigated whether EEG neural activity is altered 37 

for 16p11.2 CNVs at rest, using either entropy-based approaches or conventional analyses of 38 

spectral power. As frontal resting-fMRI activity has been implicated in 16p11.2 del and 39 

linked with cognitive and social traits (Bertero et al., 2018), the current study will focus on 40 

frontal neural activity and its link to psychiatric traits in 16p11.2 CNVs. Thus, the purpose of 41 

the current study is twofold: 1) To determine whether frontal spontaneous neural activity, 42 

indexed by EEG power and entropy, in 16p11.2 CNVs is altered compared to controls; 2) To 43 

establish whether this spontaneous neural activity is related to psychiatric traits in 16p.11.2 44 

del.  45 

46 
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Methods and Materials 47 

Data source  48 

The dataset was obtained from the Simons Foundation Autism Research Initiative (SFARI), 49 

specifically the Simons Searchlight initiative, previously named Simons Variation in 50 

Individuals Project (SVIP, The simons vip consortium, 2012). Datasets collected as part of 51 

Simons Searchlight, which include 16p11.2 CNV data, are available to approved researchers 52 

via the data request process (https://www.sfari.org/resource/simons-searchlight/). For this 53 

study, data of individuals with 16p11.2 deletion, the reciprocal duplication, and typically 54 

developing individuals were obtained from SFARI. Participant identification, recruitment, 55 

and inclusion/exclusion criteria of Simons Searchlight have been described previously (see 56 

The simons vip consortium, 2012; Jenkins et al., 2016; LeBlanc and Nelson, 2016). Briefly, 57 

eligibility criteria consisted of having a deletion or duplication of the 16p11.2 region. 58 

Exclusion criteria consisted of having any other pathogenic CNVs or known genetic 59 

syndromes. The control participants analyzed in this study did not undergo the Simon's VIP 60 

battery of assessments. LeBlanc and Nelson (2016) recruited the control group independently 61 

through the Boston Children's Hospital participant registry. The group consisted of typical 62 

individuals without any neurological or developmental disorders. 63 

Ethical approval 64 

The investigation was carried out in accordance with the latest version of the Declaration of 65 

Helsinki. The local institutional ethical review board reviewed and approved the secondary 66 

analyses presented here. Our request to obtain access to phenotypic and imaging data on 67 

SFARI Base was approved after submitting the required information and signing the joinder 68 

to the researcher distribution agreement (https://www.sfari.org/resource/sfari-base/). SFARI 69 

obtained initial ethical approval for the SVIP (IRB of record: Columbia University Medical 70 

Center, The simons vip consortium, 2012). As part of the SVIP, approval was obtained for 71 

data collection on individuals with 16p11.2 deletions or duplications and for their de-72 

identified data to be shared with approved researchers.  73 

Participants  74 

Data from a total of 53 participants were obtained (n = 14 control, 25 del, and 14 dup). 75 

Participants identified as extreme outliers for the respective entropy and power analyses were 76 

excluded (n = 1 control and 3 del for MSE and CI analyses; n = 2 control, 3 del, 2 dup for 77 

power analyses). Therefore, 49 participants (n = 13 control, 22 del, and 14 dup) were 78 

https://www.sfari.org/resource/simons-searchlight/
https://www.sfari.org/resource/sfari-base/
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analyzed using entropy analyses, and 46 participants were analyzed using power analyses (n 79 

= 12 control, 22 del, and 12 dup). Participant information (of those included in the entropy 80 

group analyses) relating to age, sex, CNV inheritance, number of diagnoses, and IQ scores 81 

are reported in Table 2.  82 

The diagnoses in the current sample are listed in Supplementary Table S1. 83 

Information regarding current medication was extracted from the SFARI medication 84 

questionnaire; four CNV carriers were currently taking medication for anxiety, ADHD, and 85 

epilepsy/ seizures. There was no significant age difference between the three groups (χ2(2) = 86 

1.50, p = 0.472); and no association between group and sex (χ2(2) = 0.36, p = 0.834). Other 87 

than age and sex, participant details and phenotypic data were not available for the control 88 

group. Therefore, IQ comparisons between del and dup with controls, respectively, were not 89 

possible. 90 

EEG recording and pre-processing  91 

EEG data collection and some pre-processing were conducted prior to the current study by 92 

collaborators of SVIP, as described in Supplementary Information. Briefly, using a 128 93 

channel HydroCel Net (Electrical Geodesics Inc., Eugene, OR, USA), EEG was collected for 94 

2 to 12 minutes during which participants rested and watched silent videos on a monitor. 95 

Infant participants were seated on their caregiver’s lap. Additional pre-processing steps were 96 

conducted by the current authors after obtaining the dataset. For each participant, a channel 97 

was identified as ‘bad’ (not suitable for further analyses) if more than 10% of its datapoints 98 

were outside of the predefined range [-150 uV, 150 uV]. If a particular channel was bad for 99 

more than 11 participants, then the channel was removed for all participants. Under this 100 

criterion, 38 channels out of 128 channels were not used for main analyses or as input 101 

channels for interpolation where required. From the remaining channels, 27 frontal channels 102 

were selected for analysis (Supplementary Fig. S1). The frontal channels marked as bad, for 103 

the respective participant, were removed and interpolated. On average, two channels [range: 104 

0, 13] were interpolated per participant. The signal was then detrended by removing the linear 105 

trend in the data. (Note that embedded in the sample entropy function described later, the 106 

mean is subtracted and divided by the standard deviation of the signal prior to computing 107 

sample entropy). 108 
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Behavioral and psychiatric assessments 109 

Child Behavior Checklist for ages 1.5-5 (CBCL) and IQ participant data were accessed from 110 

the Simons VIP Phase 1 16p11.2 dataset at SFARI Base 111 

(http://www.sfari.org/resources/sfari-base). The CBCL/1.5-5 (Rescorla, 2005) is an 112 

assessment of parent or caregiver report of behavioral and psychiatric problems in preschool 113 

children. The CBCL yields the following categories based on the summed scores of items of 114 

the respective category: affective problems, anxiety problems, attention deficit/hyperactivity 115 

problems, pervasive developmental problems, oppositional defiant problems, and sleep 116 

problems. For this paper, T-scores of each category were taken for correlational analyses with 117 

the EEG measures of interest. Data from nine del carriers are missing. See Supplementary 118 

Information for details regarding the CBCL assessment and the CBCL severity levels in the 119 

current sample (Supplementary Table S2), in addition to details regarding the previously 120 

conducted IQ assessments.  121 

EEG measures 122 

Multiscale entropy 123 

Multiscale entropy (MSE) analysis was performed on scales 1-20 for a continuous EEG 124 

signal of 60,000 data-points (2 minutes; 500 Hz sampling rate). From the whole signal of 125 

length <10 minutes, the chosen two-minute segment range was from 8000 to 68,000 data-126 

points. (This range allows the exclusion of the first 16 seconds of recording in order to avoid 127 

potentially contaminated data due to participant movement and other artifacts while the 128 

participant became settled at the start of the session. Visual inspection of the data suggested 129 

that ‘noise’ was often present within the first 16 seconds of recording). The following 130 

software and toolboxes were used for the analyses, MATLAB (The MathWorks Inc.), 131 

EEGlab toolbox (Delorme and Makeig, 2004), and multiscale entropy toolbox 132 

(http://www.psynetresearch.org/tools.html) (Liang et al., 2014). The MSE method measures 133 

sample entropy (Richman and Moorman, 2000) on multiple time scales (see Supplementary 134 

Information, Costa et al., 2002, 2005). MSE consists of two main steps as follows. Based on 135 

previous M/EEG studies (e.g., Takahashi et al., 2016; Ghanbari et al., 2015) and 136 

recommendations by Richman and Moorman (2000), the following MSE parameters were 137 

chosen: m was set to 2 and r = 0.2. MSE was first determined for each channel and then 138 

averaged over the frontal region, in line with Takahashi et al. (2016). Entropy of scales 1-20 139 

was averaged into four bins: scales of 1-5, 6-10, 11-15, and 16-20. The data was further 140 

http://www.sfari.org/resources/sfari-base
http://www.psynetresearch.org/tools.html
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reduced for correlation analyses; Entropy was averaged into two ‘bins’ of scales 1-10 and 11-141 

20.  142 

Complexity index 143 

The complexity index (CI) is another measure of entropy as described by Costa et al. (2005). 144 

For each channel, CI was computed by estimating the area under the MSE curve via 145 

integrating entropy values of all scales by using a trapezoidal numerical integration via the 146 

‘trapz’ function in MATLAB. The average CI was then calculated over channels at the 147 

frontal region. 148 

Power spectral density 149 

Power spectral density (PSD) of each channel was computed using the ‘pwelch’ MATLAB 150 

function. The signal was first detrended and subtracted from the mean signal amplitude. In 151 

accordance with Welch’s method, the signal (60,000 data-points or 2 minutes) was divided 152 

into segments of equal length (2-second segments in this case) with a 50% overlap. Given a 153 

sampling rate of 500 Hz and N = 1000 data-points per segment, the resultant frequency 154 

resolution was 0.5 Hz. Each segment was windowed with a Hamming window and modified 155 

periodograms (PSDs of each Hamming window) were estimated. The final PSD was obtained 156 

by averaging the periodograms of all segments. Absolute and relative power were then 157 

computed for the following frequency bands: delta [2-4 Hz], theta [4-8 Hz], alpha [8-14 Hz], 158 

and beta [14-30 Hz]. Absolute power of each frequency band was obtained via the 159 

trapezoidal integration method, using the ‘trapz’ MATLAB function. Prior to obtaining the 160 

relative power, the total spectral power was defined as the entire range between 1-50 Hz (the 161 

upper limit was set to avoid the frequency range effectively removed by a notch filter applied 162 

at 60 Hz). Relative power at each frequency band was subsequently calculated as the ratio of 163 

power of the respective frequency band to the total spectral power defined earlier. Relative 164 

power of each frequency band was respectively averaged over the frontal region.  165 

Statistical analyses 166 

Permutation tests (Rodgers, 1999) were conducted to investigate whether there were group 167 

differences in neural activity in the frontal region between del/control, dup/control, and 168 

del/dup comparisons. This was conducted, as described previously in Al-Jawahiri et al. 169 

(2019). To account for multiple comparisons, the false discovery rate (FDR) was controlled 170 

using the Benjamini-Hochberg procedure, with q < 0.05. We also applied the permutation 171 

approach to Spearman’s correlation analyses to examine whether age, IQ, and psychiatric 172 
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traits (i.e., CBCL) impact neural responses in 16p11.2 CNV. All the outcomes were corrected 173 

by controlling the FDR using the Benjamini-Hochberg procedure, with q < 0.05. Correlation 174 

permutation tests between age and neural responses were performed separately for del, dup, 175 

and control groups (initial sample size: n = 14 control, n = 14 dup, n = 25 del). Prior to 176 

conducting analyses, outliers were identified, using Cook’s distance, for the respective 177 

correlation pairs and removed (control: median number of outliers = 2, range = [1, 2]; dup: 178 

median = 1.5, range = [1, 2]; del: median = 2.5, range = [2, 3]). As IQ and CBCL data were 179 

either not available or insufficient for the control and dup groups (n = 14 prior to excluding 180 

outliers for IQ vs EEG measures’ correlations for dup), correlation permutation analyses were 181 

conducted for only the del group (n = 25). However, there were some missing IQ (n = 3) and 182 

CBCL (n = 9) data for del. Outliers from the remaining IQ (n = 22) and CBCL (n = 16) data 183 

were removed (median number of outliers = 2; range = [0, 4]) prior to conducting analyses.  184 
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Results 185 

Multiscale entropy 186 

Significant group differences (p ≤ 0.033) were found in entropy at all the respective scales 187 

(i.e., 1-5, 6-10, 11-15, and 16-20) in the frontal region (Table 3; Fig. 1A). Specifically, 188 

entropy was higher in both del and dup than controls. No significant differences in entropy 189 

were found between del and dup. 190 

Complexity index  191 

CI was significantly higher for del and dup compared to controls, respectively (p ≤ 0.033), at 192 

the frontal region (Table 3; Fig. 1B). No significant difference in CI was found between del 193 

and dup. 194 

Power spectral density  195 

Fig. 2 shows the average spectra used to derive the relative power for each group. Group 196 

differences in relative power within each frequency band (delta, theta, alpha, and beta) at the 197 

frontal region were examined (significance threshold at p ≤ 0.004, Table 3, Fig. 1C). Theta 198 

power was significantly higher in dup than in controls (Fig. 1D). No other significant 199 

differences in power were found between the three groups. 200 

The impact of age on MSE and power 201 

Due to the wide age range of participants, we assessed the impact of age on EEG measures of 202 

interest. Correlation permutation tests were performed separately for del, dup, and control 203 

groups. Specifically, correlations were performed between age and the following EEG 204 

measures: lower scale entropy (1-10) and higher scale entropy (11-20); power of delta, theta, 205 

alpha, and beta bands (significance threshold at p ≤ 0.025 for MSE measures and p ≤ 0.013 206 

for power measures). No significant correlations were found between age and any of these 207 

EEG measures at the frontal region in any group (Supplementary Table S3). 208 

The relationship between EEG activity and psychiatric traits 209 

Correlation permutation tests were performed to examine correlations between MSE (i.e., 1-210 

10 and 11-20 scales; Fig. 3A) and power measures (Fig. 3B) against psychiatric traits (i.e., 211 

CBCL and IQ) in the del group (Table 4). Due to the small sample size, the dup group was 212 

not included in this analysis. A strong correlation was found between entropy at higher scales 213 

(scales 11-20) and anxiety problems (significance threshold at p ≤ 0.004). A strong 214 
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correlation was also found between theta power and pervasive developmental problems 215 

(significance threshold at p ≤ 0.002). Overall, with higher entropy or power, psychiatric traits, 216 

i.e., anxiety and pervasive developmental problems, increase in severity in del. No other 217 

significant correlations were found between any of the EEG measures and CBCL subscales 218 

or IQ.  219 

The relationship between entropy and power 220 

The EEG signal is information-rich and, thus, it can be challenging to perfectly isolate certain 221 

features and determine all possible influences from other features in the signal. Nevertheless, 222 

in recognition of the possible interplay between entropy and power features, we have 223 

conducted correlation permutation tests to examine this, separately for each group 224 

(significance threshold at p ≤ 0.033, corrected for multiple comparisons). Specifically, the 225 

power measures of interest for this post-hoc analysis in the current study are theta and alpha 226 

power as the former was correlated with anxiety in del and showed group differences in dup 227 

compared to controls. The latter, i.e., alpha power, has been found to be a dominant 228 

frequency impacting entropy in eyes-open resting-state paradigms (Kosciessa et al., 2020). 229 

Here, entropy variables were collapsed into two categories: lower scales (1-10) and higher 230 

scales (11-20) – consistent with the earlier correlation analyses in this study (see 231 

Supplementary Fig. S2 for correlation analyses with entropy collapsed into four categories 232 

scales 1-5, 6-10, 11-15, 16-20). Results (Fig. 4) showed moderate to strong positive 233 

correlations between entropy, at lower scales and higher scales, and alpha power for the del, 234 

dup, and controls groups, respectively. For del, there were also moderate positive correlations 235 

between entropy, at lower and higher scales, and theta power. Overall, the results suggest that 236 

alpha and, to a lesser extent, theta power may impact on entropy levels at all scales. 237 

Therefore, it is important to note that entropy group differences, identified earlier, are not 238 

solely due to signal features of entropy. Other factors, such as alpha and theta power, may 239 

have contributed to the different presentation of entropy in each group (despite no group 240 

differences in alpha power). 241 
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Discussion 242 

The aims of the current study were 1) to determine whether frontal spontaneous neural 243 

activity, as revealed by EEG power and MSE, in 16p11.2 CNVs is altered compared to 244 

controls; and 2) to examine links between spontaneous neural activity and psychiatric traits in 245 

16p11.2 del. The main findings are 1) MSE and CI were higher for 16p11.2 CNVs (i.e., del 246 

and dup) than controls at all respective scales over the frontal region; 2) Theta power was 247 

higher for dup compared with controls; 3) In del, strong associations were found between 248 

MSE and anxiety problems, and between theta power and pervasive developmental problems 249 

as measured with the CBCL. Together, these results suggest atypical frontal spontaneous 250 

neural activity that seems to strongly reflect or impact on certain psychiatric traits.  251 

Taking the ESSENCE approach of considering interrelated psychiatric disorders 252 

together (Gillberg, 2010), certain commonalities emerge in neural entropy between these 253 

disorders and 16p11.2 CNVs. We have shown similar neural changes in a genetic condition 254 

that underpins various psychiatric disorders, thus suggesting a mechanism for which genetic 255 

conditions could lead to these diagnoses or psychiatric traits. Notably, the current study found 256 

higher entropy in 16p11.2 CNVs at both lower and higher scales compared to controls, as 257 

jointly reflected by CI and MSE analyses. This is reminiscent of findings previously reported 258 

in relation to ASD and absence epilepsy (Bosl et al., 2017) where an overall higher entropy at 259 

resting-state was also found compared to controls. Findings from many other studies, though, 260 

suggest that it is more common in psychiatric disorders for there to be scale-dependent 261 

variations in the level of entropy, compared to controls. Higher spontaneous frontal entropy 262 

has been more frequently observed at higher scales in particular (ASD, Ghanbari et al., 2015; 263 

Schizophrenia, Takahashi et al., 2010; Alzheimer’s, Yang et al., 2013; Mizuno et al., 2010). 264 

This implies that psychiatric disorders, in the aforementioned studies, showed atypical long-265 

range spontaneous neural connectivity involving the frontal region, as it has been suggested 266 

that neural entropy at lower and higher scales respectively reflect local/shorter-range and 267 

longer-range neural connectivity (McDonough and Nashiro, 2014; Vakorin et al., 2011). In 268 

contrast, findings in the current study may indicate a disruption in both shorter- and longer-269 

range neural connectivity involving the frontal region and spontaneous neural activity in 270 

general.  271 
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 Our findings additionally implicate theta power in 16p11.2 dup. Interestingly, 272 

although we found higher entropy in both 16p11.2 del and dup compared to controls, higher 273 

theta power was observed solely in dup. This could indicate that entropy, relative to power, is 274 

a more sensitive measure useful for capturing certain properties of neural information 275 

processing in 16p11.2 del, not possible by conventional power analyses alone. Notably, this 276 

finding of higher theta is consistent within the literature of a range of psychiatric disorders 277 

(e.g., Schizophrenia, ADHD) and genetic syndromes (e.g., Angelman syndrome, Frohlich et 278 

al., 2019; Newson and Thiagarajan, 2018; Wang et al., 2013). Higher power at lower 279 

frequencies in these disorders and 16p11.2 dup may indicate a similar dysfunction or 280 

compensatory mechanism that affects psychiatric traits shared among these disorders. Theta 281 

power has been commonly regarded as implicating memory processes (Berens and Horner, 282 

2017). In this study, higher theta was associated with higher severity in pervasive 283 

developmental problems, which could be affected by disruptive learning and memory 284 

processes.  285 

Evidence from a previous study (Takahashi et al., 2010) suggests that higher entropy 286 

might relate to atypical dopaminergic and/or serotonergic activity – both systems associated 287 

with anxiety and cognitive processes. Specifically, Takahashi et al. (2010) studied EEG MSE 288 

activity in drug-naïve schizophrenia participants, pre- and post-treatment with antipsychotics, 289 

and compared MSE with typical controls. Takahashi et al. (2010) found increased entropy at 290 

higher scales in fronto-centro-temporal areas in schizophrenia (pre-treatment) compared to 291 

typical controls. This is somewhat similar to the findings in the current study as higher 292 

entropy was found at higher scales (but also lower scales) in the frontal region in 16p11.2 293 

CNVs compared to controls. Notably, Takahashi et al. (2010) also found that this higher 294 

entropy in schizophrenia was lowered to the control participants’ level in fronto-central areas 295 

in response to antipsychotic treatment. In other words, the observed atypically high entropy 296 

observed in schizophrenia was reversed in response to medications that act on attenuating 297 

dopaminergic and, to a lesser extent, serotonergic activity. Thus, the identified atypical neural 298 

entropy in 16p11.2 CNVs, in the current study, along with the observed strong links between 299 

neural activity and psychiatric traits, could, therefore, signify a dysregulation in multiple 300 

neurotransmitter systems including dopamine and serotonin, in 16p11.2 CNVs.  301 

Future work should examine whether these EEG features are similarly present in 302 

16p11.2 CNV mouse models by conducting parallel human and mouse studies. If common 303 

conserved EEG features are identified cross-species, the mouse model can be used to 304 
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investigate the reversibility of these features and associated phenotypes/ pathophysiology. In 305 

addition, parallel studies could examine whether these EEG features are indeed 306 

endophenotypes that reflect particular dysregulations in dopaminergic or serotonergic activity 307 

– thus paving the way to identifying potential drug treatments.  308 

As is typical of EEG studies of rare CNVs and genetic syndromes, key limitations 309 

include the small sample size and therefore the lack of examination of possible confounding 310 

factors such as seizure susceptibility/epilepsy (Table S1) and current medication use. 311 

Nevertheless, analyses in this study were based on group averages and conservative 312 

significance thresholds. Despite this, it is important to highlight that it would be valuable to 313 

support the current findings by replicating the results in future samples. Another limitation of 314 

this, and CNV studies in general, is the complexity of CNV screening, which may generate 315 

false-positive or false-negative results for pathogenic CNV. In addition, inclusions of 316 

unknown benign versions of the same CNV, based on the allelic background, are also 317 

possible.  318 

Overall, the current study established that 16p11.2 CNVs present with atypical 319 

resting-state neural activity as revealed with entropy and power measures. Neural entropy 320 

levels were consistently higher in the frontal region for 16p11.2 CNVs relative to controls at 321 

all scales. Therefore, we speculate that this implicates interactions between local and long-322 

range neural processing at resting-state networks. Higher theta power was additionally 323 

identified in 16p11.2 dup carriers. Whether reflecting a compensatory or dysfunctional 324 

mechanism, neural activity in 16p11.2 CNVs was strongly associated with psychiatric traits, 325 

namely, anxiety and pervasive developmental problems. Thus, this study presents the first 326 

evidence of links between the 16p11.2 CNV genotype, spontaneous neural activity, and 327 

psychiatric phenotypes. 328 
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Figure legends 

 

Fig. 1. Group differences in entropy and power. Error bars representing 95% confidence 

intervals. Subfigure (A) shows entropy group differences across scales collapsed into four 

categories. Subfigure (B) shows group distributions of CI. Subfigure (C) shows power group 

differences in delta, theta, alpha, and beta bands. Subfigure (D) shows group distributions of 

theta power. Asterisks in subfigures (B) and (D) indicate significant results.   
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Fig. 2. Power spectral densities of each group. The power spectrum was used to estimate 

the relative power of delta, theta, alpha, and beta for each participant. Shaded region 

representing standard error.  

 

Fig. 3. Correlations between EEG activity and psychiatric traits in del. Radar plots 

displaying associations (Spearman’s r coefficient) between (A) entropy (lower scales 1-10 

and higher scales 11-20) and CBCL traits, and (B) power (delta, theta, alpha, and beta) and 

CBCL traits. Asterisks indicate significant correlations.  

 

Fig. 4. Correlations between entropy and power. Heatmaps displaying associations 

(Spearman’s r coefficient) between entropy (lower scales 1-10 and higher scales 11-20) and 

power (theta and alpha) for each group. Asterisks indicate significant correlations.  

Power spectral densities of each group. The power spectrum was used to estimate the relative 

power of delta, theta, alpha, and beta for each participant. Shaded region representing 

standard error. 


