

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/167663/>

Version: Accepted Version

Article:

Kunstler, G., Guyennon, A., Ratcliffe, S. et al. (2021) 'Demographic performance of European tree species at their hot and cold climatic edges'. *Journal of Ecology*, 109 (2). pp. 1041-1054. ISSN: 0022-0477

<https://doi.org/10.1111/1365-2745.13533>

This is the peer reviewed version of the following article: Kunstler, G., Guyennon, A., Ratcliffe, S., Rüger, N., Ruiz-Benito, P., Childs, D.Z., Dahlgren, J., Lehtonen, A., Thuiller, W., Wirth, C., Zavala, M.A. and Salguero-Gómez, R. (2020), 'Demographic performance of European tree species at their hot and cold climatic edges'. *Journal of Ecology*, which has been published in final form at <https://doi.org/10.1111/1365-2745.13533>. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

UNIVERSITY OF LEEDS

**University of
Sheffield**

**UNIVERSITY
of York**

¹ Title: 'Demographic performance of European tree
² species at their hot and cold climatic edges.'

³ Running title: 'Demographic performance at climatic
⁴ edges.'

⁵ Georges Kunstler¹, Arnaud Guyennon¹, Sophia Ratcliffe^{2,3}, Nadja Rüger^{4,5}, Paloma Ruiz-
⁶ Benito^{6,7}, Dylan Z. Childs⁸, Jonas Dahlgren⁹, Aleksi Lehtonen¹⁰, Wilfried Thuiller¹¹, Chris-
⁷ tian Wirth^{2,4,12}, Miguel A. Zavala⁷, Roberto Salguero-Gomez¹³.

⁸ ¹Univ. Grenoble Alpes, INRAE, LESSEM, 2 rue de la Papeterie-BP 76, F-38402 St-Martin-d'Hères,
⁹ France.; ²Department of Systematic Botany and Functional Biodiversity, University of Leipzig, Johannisallee
¹⁰ 21-23, 04103 Leipzig, Germany.; ³NBN Trust, 14-18 St. Mary's Gate, Lace Market, Nottingham NG1 1PF,
¹¹ UK.; ⁴German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e,
¹² 04103 Leipzig, Germany.; ⁵Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón,
¹³ Panama.; ⁶Environmental Remote Sensing Research Group, Department of Geology, Geography and the
¹⁴ Environment, Universidad de Alcalá, Spain.; ⁷Forest Ecology and Restoration Group, Departamento de
¹⁵ Ciencias de la Vida, Universidad de Alcalá, Spain. Grupo de Ecología y Restauración Forestal, Departamen-
¹⁶ to de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus Universitario, 28805
¹⁷ Alcalá de Henares, Madrid, Spain.; ⁸Department of Animal & Plant Sciences, The University of Sheffield,
¹⁸ Sheffield, UK.; ⁹Swedish University of Agricultural Sciences, Umea, 90183 Sweden.; ¹⁰Natural Resources
¹⁹ Institute Finland (Luke), Latokartanonkaari 9 FI-00790 Helsinki Finland.; ¹¹Univ. Grenoble Alpes, CNRS,
²⁰ Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France.; ¹²Max-
²¹ Planck-Institute for Biogeochemistry, Hans-Knöllstr. 10, 07745 Jena, Germany; ¹³Department of Zoology,
²² University of Oxford, 11a Mansfield Rd OX1 3SZ, Oxford, UK.*

²³ **Abstract**

²⁴ 1. Species range limits are thought to result from a decline in demographic performance at range
²⁵ edges. However, recent studies reporting contradictory patterns in species demographic perfor-
²⁶ mance at their edges cast doubt on our ability to predict climate change demographic impacts. To

27 understand these inconsistent demographic responses at the edges, we need to shift the focus from
28 geographic to climatic edges and analyse how species responses vary with climatic constraints at
29 the edge and species' ecological strategy.

30 2. Here we parameterised integral projection models with climate and competition effects for 27
31 tree species using forest inventory data from over 90,000 plots across Europe. Our models esti-
32 mate size-dependent climatic responses and evaluate their effects on two life trajectory metrics:
33 lifespan and passage time – the time to grow to a large size. Then we predicted growth, survival,
34 lifespan, and passage time at the hot and dry or cold and wet edges and compared them to their
35 values at the species climatic centre to derive indices of demographic response at the edge. Using
36 these indices, we investigated whether differences in species demographic response between hot
37 and cold edges could be explained by their position along the climate gradient and functional
38 traits related to their climate stress tolerance.

39 3. We found that at cold and wet edges of European tree species, growth and passage time were
40 constrained, whereas at their hot and dry edges, survival and lifespan were constrained. Demo-
41 graphic constraints at the edge were stronger for species occurring in extreme conditions, i.e. in
42 hot edges of hot-distributed species and cold edges of cold-distributed species. Species leaf nitro-
43 gen content was strongly linked to their demographic responses at the edge. In contrast, we found
44 only weak links with wood density, leaf size, and xylem vulnerability to embolism.

45 4. Synthesis. Our study presents a more complicated picture than previously thought with demo-
46 graphic responses that differ between hot and cold edges. Predictions of climate change impacts
47 should be refined to include edge and species characteristics.

48 *Keywords:* “demography, IPM, passage time, vitale rate, climatic range edge”

49 *Corresponding author:* Georges Kunstler, georges.kunstler@inrae.fr, +33 4 76 76 27 61, 2 Rue de la
50 Papeterie, 38402 Saint-Martin-d'Heres.

52 Introduction

53 In the face of climate change there are increasing concerns about the future redistribution of
54 plant species ranges (Zimmermann et al., 2013). Range shifts are thought to be directly related
55 to changes in population dynamics. The classical view of the link between population dynam-
56 ics and species ranges comes from a long-standing hypothesis in biogeography known as the
57 ‘abundant-centre hypothesis’ (hereafter ACH, Brown, 1984; Pironon et al., 2017), which proposes
58 that demographic performance decline at the range edge results in a decrease in abundance, occu-
59 pancy and genetic diversity (Pironon et al., 2017). This is directly related to the hypothesis that at
60 equilibrium, a species’ range edge should occur where the mean population growth rate (λ) drops
61 below one ($\lambda < 1$) due to changes in one or more vital rates (*i.e.* survival, growth, or reproduction)
62 (Case, Holt, McPeek, & Keitt, 2005; Holt & Keitt, 2005).

63 Understanding the demographic pathways of population response at range edges is crucial
64 for forecasting climate change impacts. However, existing studies comparing population growth
65 rates or vital rates in the periphery *vs.* the centre of species geographic range provide weak sup-
66 port for the ACH (Pironon et al., 2017). Transplant experiments have shown a decline in popula-
67 tion growth rate or vital rates beyond the geographic edge but not necessarily right at the edge
68 (Hargreaves, Samis, & Eckert, 2014; Lee-Yaw et al., 2016). Similarly, model-based analyses of
69 natural population monitoring data have found no clear evidence of a decrease in demographic
70 performance at the geographic edge (Csergo et al., 2017; Purves, 2009).

71 Recent reviews have highlighted the difficulties of synthesising existing results because most
72 studies explored performance of geographically peripheral populations without a clear under-
73 standing of the local climatic or environmental constraints (Pironon et al., 2017; Vilà-Cabrera, Pre-
74 moli, & Jump, 2019). Changes in demographic performance are, however, likely to vary depend-
75 ing on the type of biophysical constraints at the edge (Gaston, 2009) and therefore, demographic
76 performance at the edge should be analysed in relation to the local main climatic constraints (the
77 “central-marginal” hypothesis in Pironon et al., 2017). Firstly, demographic constraints could dif-
78 fer between drought- and cold-limited edges because tolerance to different abiotic stresses requires
79 different adaptative strategies (Niinemets & Valladares, 2006) resulting in different vital rates be-
80 ing constraint at these edges (Gaston, 2009; Hargreaves et al., 2014). Secondly, it has been proposed

81 that biotic interactions (*e.g.* competition) could be key constraints of demographic performance at
82 the edge and that this effect would be stronger for edges in productive environments than in un-
83 productive environments. However, support for this hypothesis is limited (see Hargreaves et al.,
84 2014; Cahill et al., 2014; Louthan, Doak, & Angert, 2015). Thirdly, constraints on the demographic
85 performance at a climatic edge are likely to vary with species' physiological strategy (Anderegg,
86 Anderegg, Kerr, & Trugman, 2019). These physiological differences can be captured by species'
87 climatic optimum and by functional traits related to species physiological climate response, such
88 as wood (Chave et al., 2009) or leaf characteristics (Wright et al., 2017). Finally, an additional
89 difficulty arises in long-lived organisms such as trees because the response of their vital rates to
90 climatic constraints at the edge might vary depending on the size of the individual (Tredennick,
91 Teller, Adler, Hooker, & Ellner, 2018). This size-dependent response to climate can be crucial for
92 size-structured populations (De Roos, Persson, & McCauley, 2003; Tredennick et al., 2018) and can
93 affect the population performance at the edge. We thus need to analyse the performance at the
94 edge with size-structured models translating size-dependent climatic responses and the demo-
95 graphic compensation effect they may occur between size or vital rates into life trajectory metrics.

96 Here, we explored these questions in European forests, which play a crucial role for mul-
97 tiple ecosystem services such as sheltering a significant proportion of biodiversity and carbon
98 stocks and contributing to the livelihoods of local populations (van der Plas et al., 2018). We used
99 size-structured models fitted to forest inventory data documenting survival and growth of more
100 than one million adult trees across the continent covering Mediterranean, temperate and boreal
101 biomes. Firstly, we fitted survival and growth models for 27 species to capture size-dependent
102 climate and competition responses of these vital rates. Secondly, we built size-structured popula-
103 tion models using integral projection models (IPM) (Ellner, Childs, & Rees, 2016) to evaluate how
104 size-dependent responses to climatic constraints at the edge translate into two life trajectory met-
105 rics - mean lifespan and passage time (time to grow from small to large size). We then used these
106 models to compare species' predicted demographic performance at the hot and dry or cold and
107 wet climatic edges with their performance at the climatic centre. Using these metrics we tested
108 the following hypotheses: (1) vital rates and IPM-derived performance metrics are reduced at the
109 climatic edge compared to the climatic centre but the demographic metrics affected differ between
110 cold and hot edges; (2) the decline in demographic performance at the climatic edges is stronger

111 in the presence of local competition than without; and (3) demographic performance at the cli-
112 matic edge depends on species' position along the climate gradient and functional traits related
113 to species' climate stresses tolerance (testing the effect of wood density, leaf economic spectrum
114 traits, leaf size, and xylem vulnerability to embolism).

115 **Materials and Methods**

116 In this section we present: (1) the development of climate-dependent IPMs based on growth and
117 survival models and the data used to fit them; (2) the development of species distribution models
118 used to select climatic edges corresponding to a species distribution limits; (3) the derivation of
119 metrics of demographic performance at the climatic edge *vs.* the climatic center of the species
120 distribution from the IPMs; and (4) the methodology to test our three hypotheses.

121 ***Forest inventory***

122 We used the European forest inventory (NFI) data compiled in the FunDivEUROPE project (Baeten
123 et al., 2013; Ratcliffe et al., 2015). The data covers 91,528 plots and more than one million trees in
124 Spain, France, Germany, Sweden and Finland. NFIs record information on individual trees in each
125 plot, including species identity, diameter at breast height (dbh), and status (alive, dead, harvested
126 or ingrowth). Plot design varies between countries but generally plots are circular with variable
127 radii depending on tree size (see Supporting Information). The minimum dbh of trees included
128 in the dataset was 10 cm and plots were remeasured over time allowing estimations of individual
129 growth and survival. The time between two survey varied from 4 to 16 years. Only the French NFI
130 is based on a single measurement but provides a measurement of radial growth from cores (over
131 5 years) and an estimation of time since death. We selected species with > 2,000 individuals and
132 > 500 plots, to ensure a good coverage of their range, growth, and survival. We excluded exotic
133 species for which the distribution is mainly controlled by plantation operations. For the demo-
134 graphic analyses, we also excluded all plots with records of harvesting operations or disturbances
135 between the two surveys, which would otherwise influence our estimation of local competition.

136 **Climate variables**

137 We used two bioclimatic variables known to control tree demography (Kunstler et al., 2011): (1)
138 the sum of degree days above 5.5 °C (*sgdd*), and (2) the water availability index (*wai*). *sgdd* is
139 the cumulative day-by-day sum of the number of degrees > 5.5 °C and is related to the mean
140 annual temperature and the length of the growing season. It was extracted from E-OBS, a high
141 resolution (1 km²) downscaled climate data-set (Moreno & Hasenauer, 2016) for the years between
142 the two surveys plus two years before the first survey. In preliminary analyses we also explored
143 the number of frost days but it was too correlated with *sgdd* to be included in the models. *wai*
144 was computed using precipitation (*P*, extracted from E-OBS) and potential evapotranspiration
145 (*PET*) from the Climatic Research Unit (Harris, Jones, Osborn, & Lister, 2014) data-set, as (*P* –
146 *PET*) / *PET* (see Ratcliffe et al., 2017) and is related to the water availability. We also explored
147 other water stress indices but they did not improve the demographic models so we decided to use
148 *wai*.

149 **Integral projection models**

150 An IPM predicts the size distribution, $n(z', t + 1)$, of a population at time $t + 1$ from its size dis-
151 tribution at t , $n(z, t)$, where z the size at t and z' the size at $t + 1$, based on the following equation
152 (Easterling, Ellner, & Dixon, 2000; Ellner et al., 2016):

$$n(z', t + 1) = \int_L^U K(z', z) n(z, t) dz \quad (1)$$

153 The kernel $K(z', z)$ can be split into the survival and growth kernel ($P(z', z)$) and the fecundity
154 kernel ($F(z', z)$), as follow $K(z', z) = P(z', z) + F(z', z)$. $P(z', z)$ is defined as $P(z', z) = s(z)G(z', z)$
155 and represents the probability that an individual of size z survives between t and $t + 1$ and reaches
156 the size z' . The size of the individuals z can range between L and U . NFI data do not provide
157 direct information on tree fecundity, thus our models describe the fate of a cohort (a cohort IPM
158 for individuals with dbh ≥ 10 cm) by focusing only on $P(z', z)$. Even without covering the full
159 life cycle, cohort IPMs are useful to estimate demographic performance because they allow to
160 predict life trajectory metrics accounting for size-dependent climate responses and compensatory
161 effect between vital rates.

162 For each of the 27 species, we fitted growth and survival functions depending on tree size, the
163 two climatic variables (*sggd* and *wai*) and local competition estimated as the sum of basal area of
164 competitors (following Kunstler et al., 2011). The shape of the climatic response curves and the
165 type of interaction between climate and tree size and climate and competition (which represents
166 a size-dependent response) can have a large impact on vital rates predictions and IPM derived
167 life trajectory metrics. To account for such uncertainties, we re-sampled 100 times 70% of the data
168 to fit the growth and survival models and select the best type of climatic response curves and
169 interactions based on the Akaike information criteria (*i.e.*, lowest AIC) (Burnham & Anderson,
170 2002). Because there were fewer plots in extreme climatic conditions, we re-sampled the data with
171 a higher probability of sampling plots in extreme climatic conditions for the given species (see
172 details in Supporting Information). Then we used the remaining 30% of the data to evaluate the
173 goodness of fit of the growth and survival models. Goodness of fit and response curves of growth
174 and survival models are presented in the Supporting Information (Figs 4 to 13).

175 *Growth model*

176 After preliminary exploration, we selected two alternative shapes of the climatic response curves:
177 asymptotic or quadratic polynomial corresponding respectively to the equation 2 and the equation
178 3. These equations are flexible and allow for increasing, decreasing, bell or U-shape responses.
179 These two equations also allowed to represent two alternative biological models: (i) either all
180 species have their optimum at high water availability and sum of degree days; or (ii) species have
181 bell-shaped climate response curves with different optima along the climatic variables.

$$\begin{aligned} \log(G_{i,p}) = & a_0 + a_{0,p} + a_1 D_i + a_2 \log(D_i) + \\ & a_3 BA_i + a_4 \frac{1}{sgdd_p} + a_5 \frac{1}{wai_p} + \varepsilon_i \end{aligned} \tag{2}$$

$$\begin{aligned} \log(G_{i,p}) = & a_{0,c} + a_{0,p} + a_1 D_i + a_2 \log(D_i) + a_3 BA_i + \\ & a_4 sgdd_p + a_5 sgdd_p^2 + a_6 wai_p + a_7 wai_p^2 + \varepsilon_i \end{aligned} \tag{3}$$

182 Where $G_{i,p}$ is the annual diameter growth of tree i in plot p , D_i is the dbh of tree i , BA_i is
183 the sum of basal area of local competitors of tree i per ha (sum basal area of both conspecific and
184 heterospecific trees in the plot in a single local competition index), $sgdd_p$ is the sum of growing
185 degree days, wai_p is the water aridity index, a_0 to a_7 are estimated parameters, and $a_{0,p}$ is a normal
186 random plot effect accounting for unexplained variation at the plot level. The intercept $a_{0,c}$ is
187 country specific to account for differences in sampling protocol between the NFIs and ε_i is the
188 unexplained tree level variability following a normal distribution. We also tested models with
189 interactions between the climatic variables - $1/sgdd_p$ and $1/wai_p$ for model (2) and $sgdd_p$ and wai_p
190 for model (3)) - and size (D_i and $\log(D_i)$) and the climatic variables and competition. We fitted
191 the models in R-cran separately for each species (R Core Team, 2019) using the 'lmer' function
192 ("lme4" package, Bates, Mächler, Bolker, & Walker, 2015).

193 *Survival model*

194 Survival models were fitted with a generalised linear model with a binomial error. The predictors
195 and interactions explored were the same as in the growth model. To account for variable survey
196 times between plots we used the complementary log-log link with an offset representing the num-
197 ber of years between the two surveys (y_p) (Morris, Vesk, & McCarthy, 2013). We fitted the model
198 in R-cran using the 'glm' function. We did not include a random plot intercept because in most
199 plots no individuals died between the surveys, making the estimation of the random plot effect
200 challenging.

201 *Tree harvesting*

202 Although we excluded plots with evidence of harvesting between the two surveys to fit the sur-
203 vival functions, most European forests are subject to management, which has a strong impact on
204 population dynamics (Schelhaas et al., 2018). Preferential harvesting of dying or damaged trees
205 before their death probably results in an underestimation of the natural mortality rate. To make
206 sensible predictions with our IPMs it was necessary to incorporate a harvesting rate to prevent an
207 overestimation of tree lifespan. We set the individual tree harvesting rate, as the mean harvest-
208 ing annual probability across all species and countries. The estimate was 0.5% per year. We did
209 not model size and climate dependence of the harvesting rate, as we focused on climatic and not

210 anthropogenic constraints on tree demography.

211 *Prediction of demographic metrics at the climatic edges and centre of species range*

212 *Species distribution*

213 To identify the climatic edge of a species range, a simple representation of its distribution in cli-
214 mate space is necessary. Across Europe, there is a strong correlation between *sgdd* and *wai*, and so
215 we described species ranges along a single climatic axis corresponding to the first axis (PC1) of the
216 PCA of *sgdd* and *wai* (Supporting Information, Fig. 3). Species showed a clear segregation along
217 this climatic axis in Europe (Fig. 1). Based on the coordinates on PC1 of the plots where the species
218 was present, we identified the median climate as their median value of PC1 (which we used as an
219 index of species position along the climate gradient), the hot and dry edge (hereafter hot edge) and
220 the cold and wet edge (hereafter cold edge), respectively, as their 5% and 95% quantiles. These
221 quantiles represent two extreme climatic conditions experienced by the species. By focusing on
222 climatically marginal populations, our approach differs from most tests of the ACH reviewed in
223 Pironon et al. (2017) that studied populations at the periphery of the species geographic range.

224 To evaluate which species' edges corresponded to an actual limit in the species distribution and
225 not just to limits in data coverage, we fitted species distribution models with BIOMOD2 (Thuiller,
226 Lafourcade, Engler, & Araújo, 2009) using presence/absence data covering all Europe (Mauri,
227 Strona, & San-Miguel-Ayanz, 2017) (see Supporting Information). For comparison of the demo-
228 graphic performance at the edge *vs.* the centre of the distribution, we retained only the edges
229 where the SDM predicted at least a 10% drop in the probability of presence of the species (Fig. 1).

230 *Demographic metrics*

231 To evaluate how individual tree performance varied between the species' median climate and the
232 climatic edges, we derived four metrics representing key dimensions of population performance.
233 The first two metrics were related to individual vital rates, and were defined by the growth and
234 survival of 15 cm dbh individuals. We focused on small individuals because of their large effect on
235 population dynamics (Grubb, 1977). The last two metrics were life trajectory metrics integrating
236 the vital rates and size-dependent responses to climate in the IPM, and were defined by the mean

237 lifespan of a 10 cm dbh individual and the passage time of a 10 cm dbh individual to 60 cm. The
238 details of the numerical methods used to compute lifespan and passage time from the IPM are
239 provided in the Supporting Information. Model diagnostics showed that our numerical approach
240 was not sensitive to the number of size bins retained for the IPM (*i.e.* # bins > 800, see Fig. 14 in
241 Supporting Information).

242 We predicted the four demographic metrics at the centre and the hot and cold climatic edges of
243 the species using their positions on the climatic axis. The median, and 5% and 95% quantiles on the
244 PC1 correspond to the projection of a unique combination of *sggd* and *wai* for which we predicted
245 the metrics. We integrated uncertainty into our estimates by deriving each demographic metric
246 for all 100 re-sampled growth and survival models (see above). Because competitive interactions
247 may also be important in controlling species demography at the edge of the range (Louhan et al.,
248 2015), we made these predictions either without local competition (by setting *BA* to 0) or with a
249 high level of local competition (by setting *BA* to $30m^2ha^{-1}$, corresponding to a closed forest).

250 *Analysis of the relative demographic performance at the climatic edges*

251 For each demographic metric (m) we computed the relative difference in the metric at the edge
252 (hot or cold) *vs.* the centre as: $\Omega_{edge}^m = (m_{edge} - m_{centre}) / m_{centre}$. We integrated uncertainty by
253 deriving estimates of Ω_{edge}^m for each of the 100 re-sampled growth and survival models. Then we
254 used Ω_{edge}^m to evaluate our three hypotheses.

255 Firstly, for each metric, we tested whether species demographic performance declined at the
256 climatic edge compared to the climate centre (hypothesis 1) by fitting a mixed model to test
257 whether m was function of the range position type (edge *vs.* centre) using the function *lmer* in
258 *lme4*. We included a random species effect to account for the non-independence of the 100 re-
259 sampled estimates per species. We ran this analysis separately for hot and cold edges to see how
260 demographic responses differed between them. Secondly, we tested whether the effects were dif-
261 ferent without or with competition (hypothesis 2).

262 Thirdly, we explored whether Ω_{edge}^m was dependent on species median climate and functional
263 traits related to species' climatic response (hypothesis 3). We used Phylogenetic generalised least
264 squares (PGLS) regression using a phylogeny extracted from Zanne et al. (2014) to account for
265 phylogenetic dependence between species. We accounted for the uncertainty in the demographic

266 response by including a weight proportional to the inverse of the variance of Ω_{edge}^m (estimated over
267 the 100 re-sampled growth and survival models). The PGLS regression with maximum likelihood
268 estimation of Pagel's lambda (a measure of the phylogenetic signal ranging between 0 and 1) did
269 not always converged. In those cases we fitted a PGLS model with a Brownian model (Pagel's
270 lambda set at 1). We retained only the regressions that were both significant (after a Bonferroni
271 correction to account for multiple comparisons) and had a non-negligible magnitude of the effect
272 (Camp, Seavy, Gorresen, & Reynolds, 2008). The magnitude of the effect was considered negligible
273 when the confidence interval of the effect size intercepted the interval -0.10 and 0.10 (Camp et al.,
274 2008). Effect sizes were computed as the standardised slope (Schielzeth, 2010).

275 To test the link between Ω_{edge}^m and species median climate, we ran the PGLS regression between
276 Ω_{edge}^m and the species median position on PC1. To test the links between Ω_{edge}^m and functional traits,
277 we ran the same type of PGLS regressions with four functional traits that are known to influence
278 tree response to climate. We selected the following traits: (i) wood density, because of its links
279 with drought and temperature response (Chave et al., 2009; Stahl, Reu, & Wirth, 2014); (ii) the leaf
280 economic spectrum (LES) because species at the conservative end of the spectrum are thought to
281 be more tolerant to extreme climate (Reich, 2014); (iii) leaf size, because of its links with water
282 stress and frost response (Wright et al., 2017); and (iv) xylem vulnerability to embolism measured
283 by the water potential leading to 50% loss of xylem conductivity, Ψ_{50} , because of its link with
284 drought-induced mortality (Anderegg et al., 2016). LES is based on the covariance of specific leaf
285 area, leaf lifespan, and leaf nitrogen per mass (Wright et al., 2004). We used leaf nitrogen per mass
286 (N_{mass}), as it was the LES trait with the best coverage across our species. Trait data were sourced
287 from open databases (Chave et al., 2009; Choat et al., 2012; Maire et al., 2015; Wright et al., 2017,
288 2004).

289 **Results**

290 ***Growth and survival size-dependent responses to climate***

291 For most species the growth and survival models showed evidence of interactions between cli-
292 mate and tree size and for a smaller subset of species also between climate and competition (see
293 Tables 2 and 3 Supporting Information). This indicates that size-dependent climatic responses

294 were common. Model selection over the 100 re-sampled data showed that for 23 species out of 27
295 the most frequently selected growth model included interactions between climate variables and
296 tree size (see Table 2 in Supporting Information). Selection of the best survival model was more
297 variable between the 100 data re-sampling than for the growth models. For 17 species out of 27
298 the most frequently selected survival models included interactions between climatic variables and
299 tree size (see Table 3 Supporting Information). For both growth and survival several species also
300 showed evidence of interactions between climate variables and competition (respectively 12 and
301 11 species out of 27, see Tables 2 and 3 Supporting Information).

302 ***Demographic responses differ between edge types and metrics***

303 Across the 27 species, we found evidence of a significant decrease in growth and increase in pas-
304 sage time (longer time needed to grow from 10 to 60 cm) at the cold edge in comparison with
305 the median climate but no effect at the hot edge (Fig. 2). In contrast, at the hot edge, we found
306 evidence of a significant decrease in both tree survival and lifespan (Fig. 2). This is consistent
307 with the hypothesis that at least one metric will decline in performance at the edge, and that dif-
308 ferent metrics are affected depending on the edge type. In contrast, we found that lifespan was
309 significantly longer at the cold edge than at the median climate (Fig. 2). Generally, these patterns
310 were unaffected by local competition (Fig. 3). It is, however, important to note that the relative
311 decrease in survival at the hot edge and the increase of passage time at the cold edge became
312 non-significant at high levels of competition (Fig. 3).

313 Despite the overall demographic response at the edge, there were large variations between
314 species. For each metric and edge type we found species showing a decrease and species showing
315 an increase in performance (Supporting Information; Figs 16 to 19).

316 ***Demographic responses vary with species median climate***

317 Growth response at the hot and cold edges was related to the median climate of the species; species
318 associated with hot climates were more constrained at their hot edge while species associated with
319 cold climates were more constrained at their cold edge. This result is depicted in Fig. 4 by a pos-
320 itive relationship between the median climate of the species and $\Omega_{hot\ edge}^{growth}$ and a negative relation-
321 ship with $\Omega_{cold\ edge}^{growth}$. The same pattern is visible for passage time, but in the opposite direction,

322 because passage time is longer when growth is slower (Fig. 4). The responses of Ω_{edge}^m for survival
323 and lifespan were much weaker or null. We found a negative relationship for $\Omega_{hot\ edge}^{survival}$, which was
324 largely related to a few extreme species, and no effect for lifespan (Fig. 4).

325 ***Weak links between demographic response and species traits***

326 N_{mass} had the strongest relationship with Ω_{edge}^m of all the traits we tested. At the hot edge, species
327 with high N_{mass} experienced a stronger decrease in their survival and lifespan than species with
328 a low N_{mass} (Fig. 5). In contrast, at the cold edge, species with low N_{mass} experienced a stronger
329 decrease in their survival and lifespan than species with high N_{mass} (Fig. 5). In addition, species
330 with high N_{mass} had less limitation of their growth at the hot edge than species with low N_{mass}
331 (Fig. 5). In contrast, species with high N_{mass} had stronger limitation of their growth at the cold
332 edge (Fig. 5).

333 Relationships between Ω_{edge}^m and wood density, leaf size and xylem vulnerability to embolism
334 (Ψ_{50}) were generally weak (Supporting Information, Figs 21 to 23). Most of these relationships
335 were driven by only a few species (Supplementary Information, Figs 21 22 23). Species with small
336 leaf area had better survival and lifespan at the hot edge and better passage time at the cold edge
337 than large leafed species (Supplementary Information, Fig. 23). Species with high Ψ_{50} experienced
338 a stronger decrease in their growth at the hot edge than species with low Ψ_{50} (Supplementary
339 Information, Fig. 22).

340 **Discussion**

341 Our analysis based on pan-European forest inventory data and integral projection models of 27
342 tree species, found weak support for the ACH prediction that demographic performance is lower
343 at the climatic edge than at the centre of the species range. Instead, decline in demographic per-
344 formance was strikingly different between the cold and the hot edges. At cold and wet edges,
345 growth and passage time were constrained, whereas at hot and dry edges, survival and lifespan
346 were constrained. Beyond these general patterns, we found important variability between species
347 in their demographic performance at the edge, which was partially explained by species' median
348 climate and traits.

349 **Different demographic responses at the hot and the cold edge**

350 We found mixed support for the ACH; not all the demographic metrics were limited at the two
351 edges and patterns were variable between species. This is consistent with observational studies
352 that found limited evidence of a relationship between species demography and their distribution.
353 For instance, both Thuiller et al. (2014) and Csergo et al. (2017) found limited correlation between
354 plants demographic performance and probability of presence. In addition, Purves (2009) reported
355 mixed evidence of a decrease in demographic performance at the south and north edges of North
356 American tree species.

357 Growth and passage time were constrained at the cold edge in comparison with the centre of
358 the species climatic range. This is consistent with studies on North American tree species, that
359 found a decrease in growth at the cold edge in adult trees (Purves, 2009) and juveniles (Ettinger
360 & HilleRisLambers, 2017; Putnam & Reich, 2017). In contrast with the ACH, we found a tendency
361 for a slightly faster growth at the hot edge than at the centre, which has also been reported in
362 North American trees (Ettinger & HilleRisLambers, 2017; Purves, 2009; Putnam & Reich, 2017).
363 Interestingly, studies on *Fagus sylvatica* radial growth in Europe found a higher drought resistance
364 at the hot edge than at the core of the range (Cavin & Jump, 2017).

365 At the hot and dry edge, tree survival and lifespan were lower than at the centre of the climatic
366 range. The same decrease of survival at the hot edge was also found by Archambeau et al. (2020)
367 for *Fagus sylvatica* and *Pinus sylvestris* in Europe. In contrast, Purves (2009) found no such decrease
368 in survival at the hot edge of eastern North American species. This difference could be explained
369 by the fact that the hot edge of most European species corresponds to both a hot and a dry climate,
370 whereas in eastern America the hot edge is less constrained by drought (Zhu, Woodall, Ghosh,
371 Gelfand, & Clark, 2014). We found that lifespan was longer at the cold edge than at the centre of
372 the distribution, which contradicts the classical view that survival is constrained in cold climates
373 and the results of Purves (2009). Given that tree diameter growth is constrained at the cold edge,
374 this longer lifespan could be explained by a tradeoff between tree growth rate and tree longevity
375 (see Black, Colbert, & Pederson, 2008; Di Filippo et al., 2015) and the observation that survival rate
376 correlates negatively with site productivity (Stephenson et al., 2011).

377 We found strong evidence of size-dependence of growth and survival responses to climatic

378 constraints. Our results agree with previous studies which found that tree growth or survival
379 responses to climate varied with ontogeny (Canham & Murphy, 2017; Trouillier et al., 2019). For
380 instance, Canham & Murphy (2017) found a displacement of the climatic optimum of growth and
381 survival between seedlings, saplings, and canopy trees. These size-dependent climatic responses,
382 however, did not strongly influence the life trajectory metrics derived with IPMs as the response
383 of lifespan at the edge was closely connected to the survival of a 15 cm dbh tree and the passage
384 time was closely related to the growth of a 15 cm dbh tree. This means that these size-dependent
385 responses were either of small magnitude or led to few compensation effects between size classes.
386 Tredennick et al. (2018) also found that the size-dependence of vital rates responses to exogenous
387 environmental fluctuations had limited effect on the population growth rate of perennial plant
388 species.

389 *Lack of competition effect*

390 Numerous studies have proposed that competitive interactions could be crucial in setting demo-
391 graphic limits, particularly when site productive is high (see Hargreaves et al., 2014; Alexander,
392 Diez, Hart, & Levine, 2016; Ettinger & HilleRisLambers, 2017; HilleRisLambers, Harsch, Ettinger,
393 Ford, & Theobald, 2013; Louthan et al., 2015). In our analyses, we explored the effect of compe-
394 tition by comparing the relative demographic performance at the edge in comparison with the
395 centre (Ω) without local competition or with a high level of local competition. Despite the strong
396 direct effects of competition on both growth and survival and interactions between competition
397 and climate (see the variables importance reported in Supplementary Information, Tables 4 and 5),
398 the relative demographic responses at the edges *vs.* the centre (measured by Ω) were not strongly
399 influenced by the degree of local competition. Competition is thus a strong determinant of demo-
400 graphic rates but its effect is not stronger at the climatic edge than at the climatic centre (rejecting
401 hypothesis 2). Rather competition blurs demographic constraints at the edge. Indeed, limitations
402 of survival at the hot edge and passage time at the cold edge were significant without competition
403 but not with a high level of competition.

404 Three main reasons could explain the lack of competition effect on the demographic response
405 at the edges in our study. Firstly, properly estimating competition effect with observational data
406 is notoriously difficult (Tuck, Porter, Rees, & Turnbull, 2018). Secondly, we did not differentiate

407 between intra- and inter-specific competition, whereas inter-specific competition might have the
408 strongest impact at the edge (Alexander et al., 2016). Thirdly, as our cohort IPMs do not cover
409 the full life cycle it was not possible to evaluate whether competitive exclusion - the final effect of
410 competition (Chesson, 2018) - occurs at the edge.

411 ***Strong effect of species median climate on growth response at the edge***

412 We found that the hotter the centre of the species range, the greater were the constraints on growth
413 and passage time at its hot edge. The same pattern was found with the cold edge and the species
414 median climate proximity to cold extreme. This is in agreement with the general observation that,
415 in Europe, vegetation productivity in Europe is at its maximum in temperate climates where both
416 drought and cold stress are limited (Jung et al., 2007).

417 ***Weak trait effect on species demographic response at the edge***

418 Part of the variation in the demographic response at the edge between species was related to N_{mass} ,
419 a key dimension of the leaf economic spectrum. An important difficulty in the interpretation of
420 these results is that our understanding of the link between leaf economic traits and climate is
421 limited. Multiple mechanisms, some of them contradictory, have been proposed to explain the
422 link between leaf N and climate. For instance, it is generally considered that species with low
423 N_{mass} have a more conservative strategy of resource use and perform better in stressful conditions
424 than species with high N_{mass} (Reich, 2014). In agreement with this finding, we found that species
425 with low N_{mass} had a better survival and lifespan at the hot edge. In contrast, high leaf N has
426 been linked with photosynthesis tolerance to drought and low temperatures because of higher
427 enzyme activities (Reich & Oleksyn, 2004; Wright, Reich, & Westoby, 2003). Consistent with this
428 mechanism, we found that species with high N_{mass} had a higher growth rates at the hot edge and
429 better survival and lifespan at the cold edge.

430 We found limited relationships between wood density, leaf size or xylem vulnerability to em-
431 bolism and demographic responses at the climatic edge, which was surprising as the mechanisms
432 related to climate response are better understood for these traits. Smaller leaves were related to
433 a longer lifespan and a better survival at the hot edge and a better passage time at the cold edge.
434 This in agreement with Wright et al. (2017) who proposed that large leaves are disadvantaged

435 in hot and dry climates because their transpiration rate during the day is too high and are dis-
436 advantaged in cold climate because they have greater risks of reaching critical low temperatures
437 during the night. Anderegg et al. (2019) also reported weak links between traits and drought-
438 related mortality at the edge, with only an effect for xylem vulnerability to embolism. The effect
439 was, however, that drought-adapted species experienced higher drought mortality at the edge
440 (Anderegg et al., 2019). In this study we found no link between xylem vulnerability to embolism
441 and survival response at the edge. In contrast a low xylem vulnerability to embolism (drought-
442 adapted species) was related to better growth at the hot edge (Supplementary Information, Fig.
443 22).

444 Finally, our traits analysis might underestimate the role of traits because we ignore intraspecific
445 traits variability. Traits phenotypic plasticity and local adaptation might however be large for
446 species with a broad distribution (see for instance results for *Pinus sylvestris* in Reich, Oleksyn, &
447 Tjoelker, 1996).

448 *On the challenge of connecting population dynamics and species ranges*

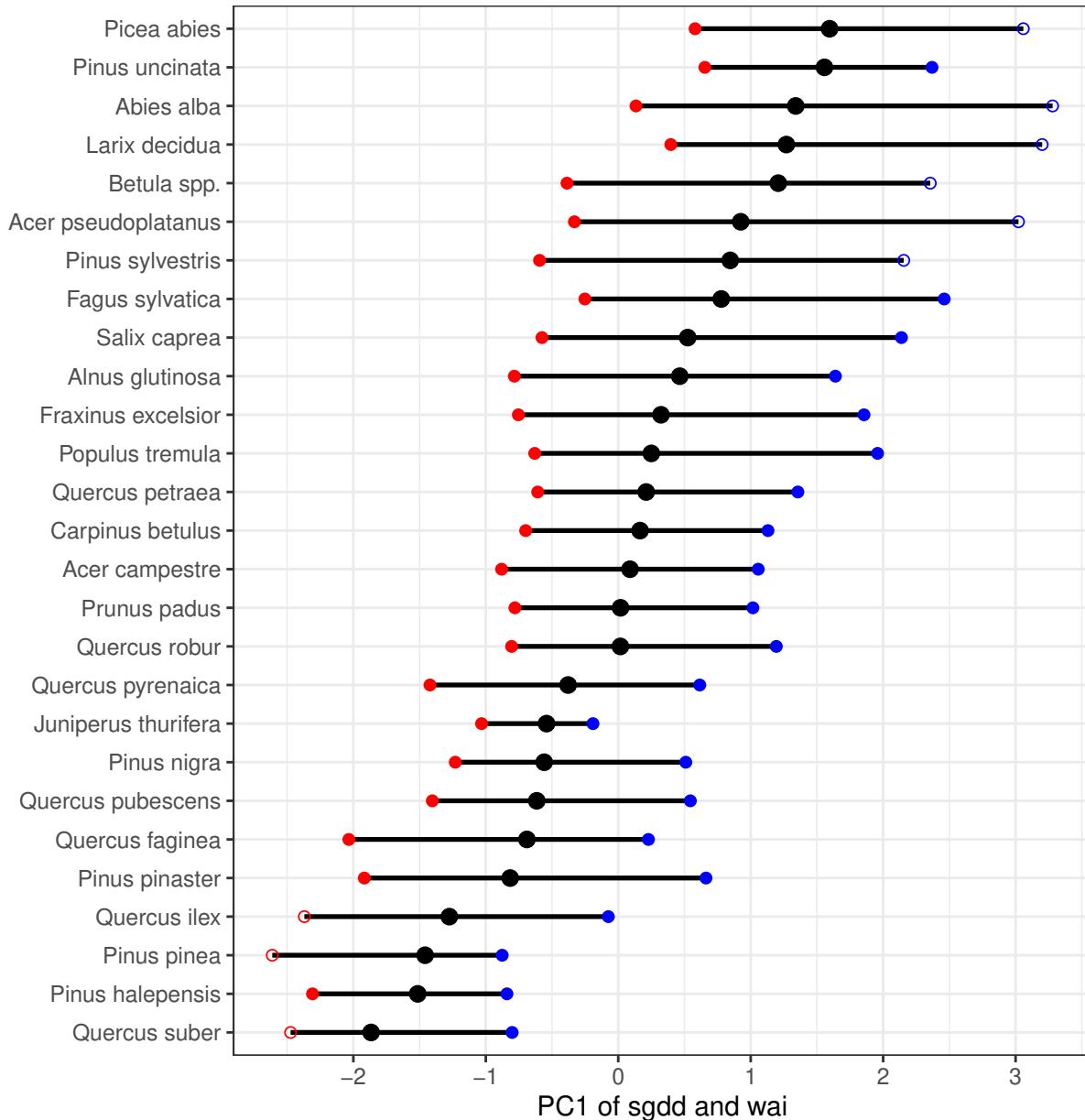
449 A key limitation of our analysis is that it did not include the regeneration phase, which is con-
450 sidered a bottleneck in tree population dynamics and is key to cover the full life cycle to estimate
451 population growth rate (Grubb, 1977). Thus we can not conclude whether our estimates of adult
452 growth and survival are crucial drivers of the population growth rate. In the Supporting Infor-
453 mation, we provide an evaluation of the relative importance of the regeneration phase for tree
454 population growth rate with an elasticity analysis of matrix population models extracted from the
455 COMPADRE Plant matrix database (Salguero-Gómez et al., 2015). The elasticity analysis showed
456 that the regeneration and adult phases were equally important (see Fig. 25 in Supporting Infor-
457 mation). Our IPMs analysis thus captures an important part of a tree's life cycle for the population
458 growth rate. However, we can not rule out the possibility that the regeneration phase has a dis-
459 proportional importance for the dynamics at the edge, as several studies have shown that this
460 phase is extremely sensitive to climate (Canham & Murphy, 2016; Clark, Bell, Kwit, & Zhu, 2014;
461 Defossez, Courbaud, Lasbouygues, Schiffers, & Kunstler, 2016). Integrating fecundity and juve-
462 nile lifestages in tree-IPMs is challenging because we have much less data on them (Needham,
463 Merow, Chang-Yang, Caswell, & McMahon, 2018; Ruiz-Benito et al., 2020; but see Lines, Zavala,

464 Ruiz-Benito, & Coomes, 2019).

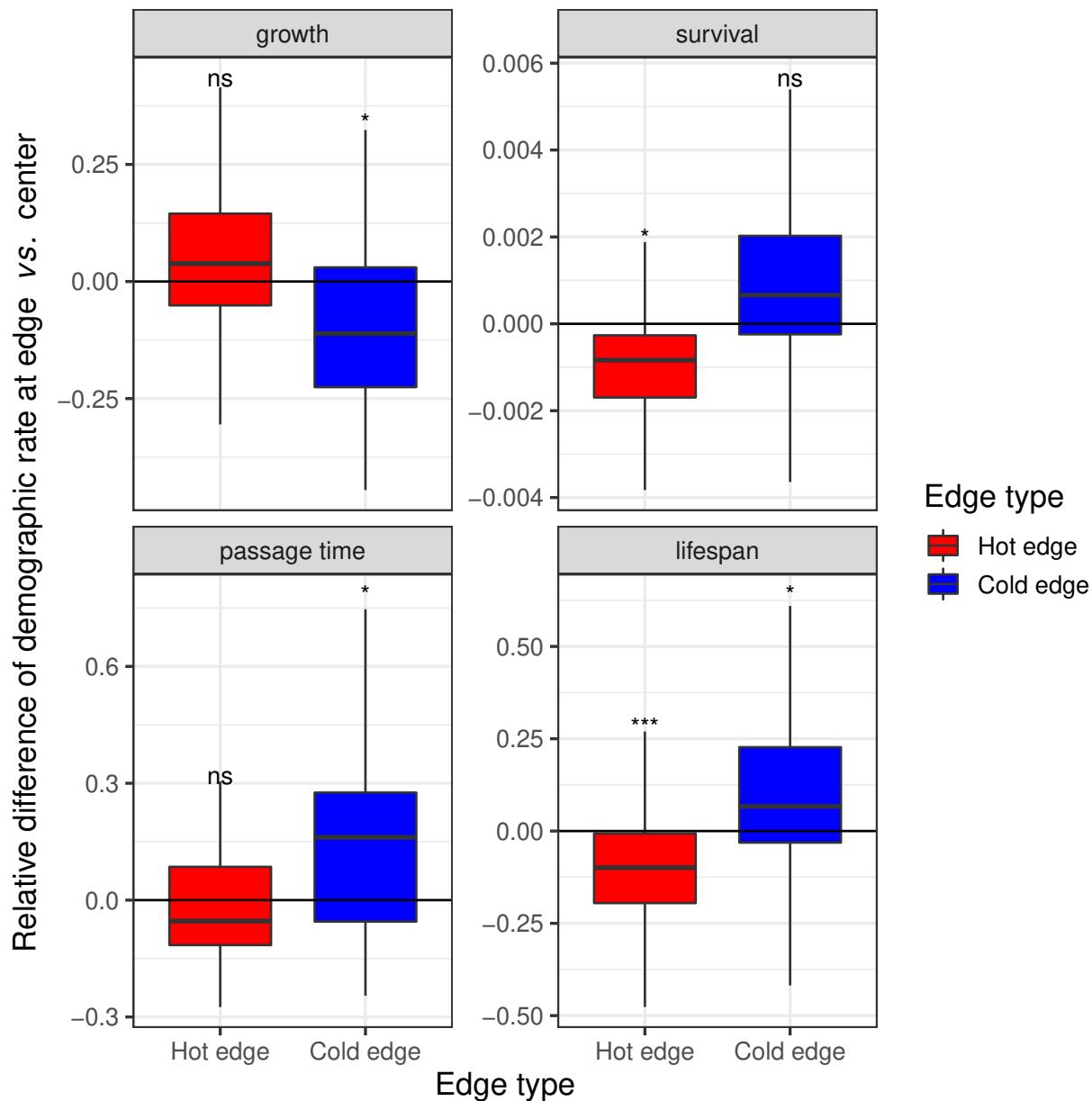
465 It is also important to keep in mind that species ranges are not necessarily only related to the
466 mean population growth rate but could also be related to other processes controlling extinction
467 risk. For instance, the temporal variability of population growth rate and the population resilience
468 to disturbances could be crucial at the edge (Holt et al., 2005) but it was not possible to evaluate
469 these processes in our study with the NFI data. Another explanation is that suitable habitats
470 where population growth rates are unaffected might exist up to the edge due to the presence of
471 suitable microsites (Cavin & Jump, 2017). In this case, the species edges arise because the fraction
472 of suitable habitats available to the metapopulation decreases (Holt & Keitt, 2000).

473 Finally, tree species distributions might not be in equilibrium with the current climate. This
474 could be because species are either still in the process of recolonising from their ice age refugia
475 (Svenning & Skov, 2004) or already affected by climate change. Such disequilibrium should how-
476 ever be visible by better performance at the cold edge (Talluto, Boulangeat, Vissault, Thuiller, &
477 Gravel, 2017) and we found no evidence for this in our results.

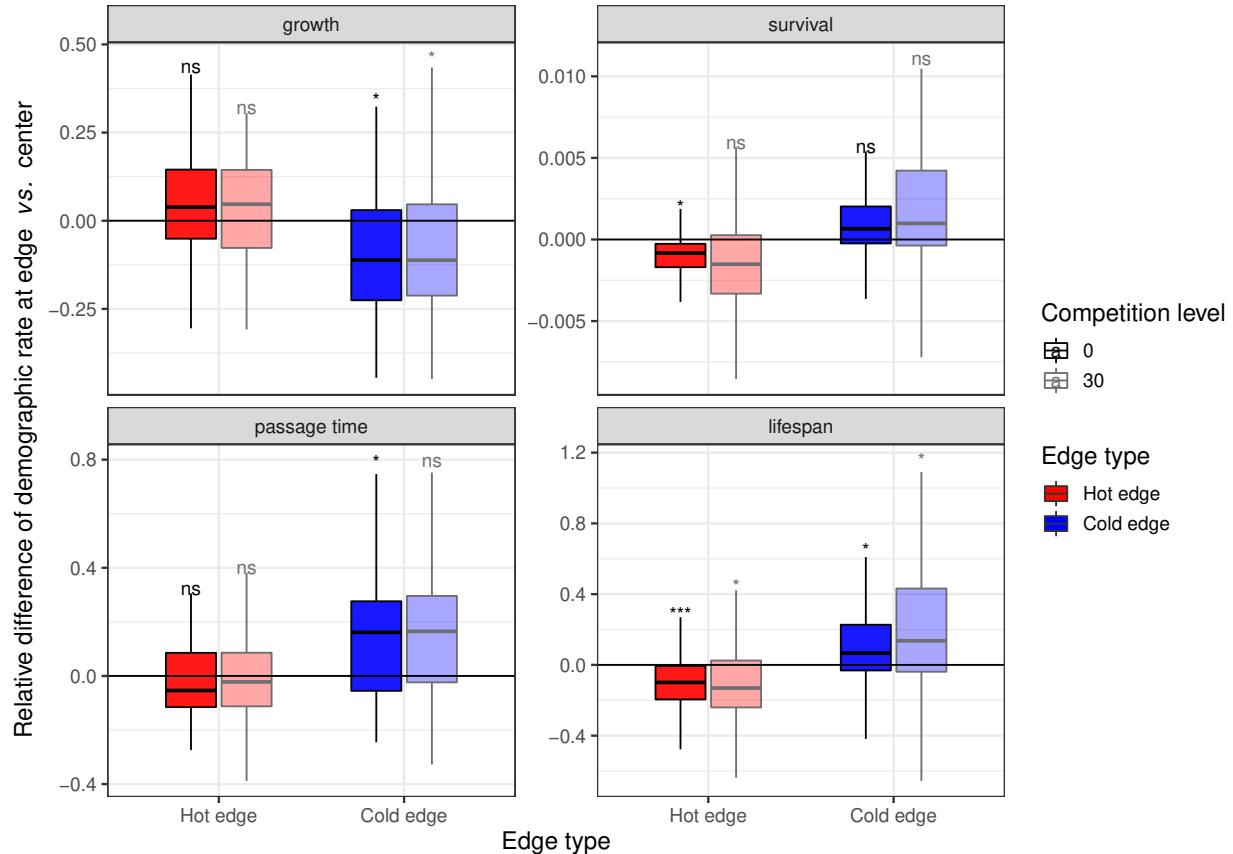
478 *Synthesis*

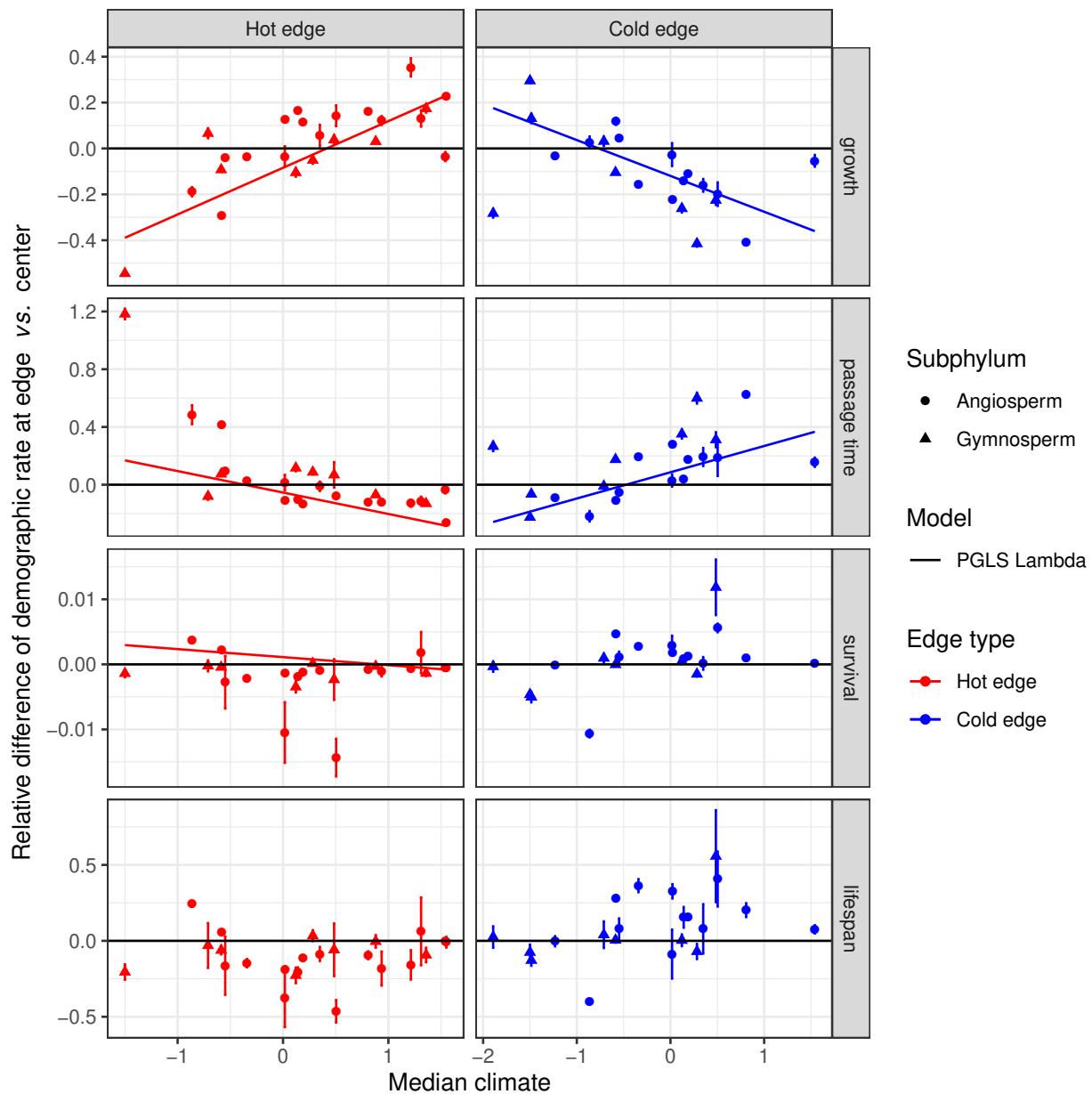

479 Our study shows that trees' demographic responses at range edges are more complex than pre-
480 dicted by the ACH. Here, the patterns of demographic response of the 27 European tree species
481 differed between their hot and cold edges. We only found strong evidence of demographic limits
482 for edges occurring in extreme conditions (hot edges of hot-distributed species and cold edges
483 of cold-distributed species). Our findings open an important perspective, as they show that one
484 should not expect the same demographic response at the hot *vs.* the cold edge and that we need to
485 refine predictions of climate change impacts as a function of the edge and species characteristics.

486 *Acknowledgments*


487 This paper is a joint effort of the working group sAPROPOS - 'Analysis of PROjections of POp-
488 ulationS', kindly supported by sDiv (Synthesis Centre of the German Centre for Integrative Bio-
489 diversity Research - iDiv), funded by the German Research Foundation (FZT 118). GK and AG
490 received support from the REFORCE - EU FP7 ERA-NET Sumforest 2016 through the call "Sus-
491 tainable forests for the society of the future", with the ANR as national funding agency (grant

492 ANR-16-SUMF-0002). N.R. was funded by a research grant from DFG (RU 1536/3-1). N.R. and
493 C.W. acknowledge the support of the German Centre for Integrative Biodiversity Research (iDiv)
494 funded by Deutsche Forschungsgemeinschaft DFG (FZT 118). MAZ and PRB were supported
495 by grant RTI2018-096884-B-C32 (MICINN, Spain). The NFI data synthesis was conducted within
496 the FunDivEUROPE project funded by the European Union's Seventh Programme (FP7/2007–
497 2013) under grant agreement No. 265171. We thank Gerald Kandler (Forest Research Institute
498 Baden-Württemberg) for his help to format the German data. We thank the MAGRAMA, the Jo-
499 hann Heinrich von Thunen-Institut, the Natural Resources Institute Finland (LUKE), the Swedish
500 University of Agricultural Sciences, and the French Forest Inventory (IGN) for making NFI data
501 available. We are grateful to the Glopnet, the global wood density, the global leaf size, and the
502 global xylem embolism vulnerability data bases for making their data publicly available. We are
503 grateful to all the participants of the sAPROPOS working group for their stimulating discussion.
504 We are grateful to Fabian Roger for his help to build the species phylogeny.


505 **FIGURES**


Figure 1: Species distribution along the first axis of the PCA of the two climatic variables sgdd and wai. The median of the species distribution along this axis is represented by a black circle and the hot and dry edge and the cold and wet edge by red and blue circle respectively. Filled circles represent edges with a clear drop of the probability of presence as predicted by species distribution models that were selected for the analysis.

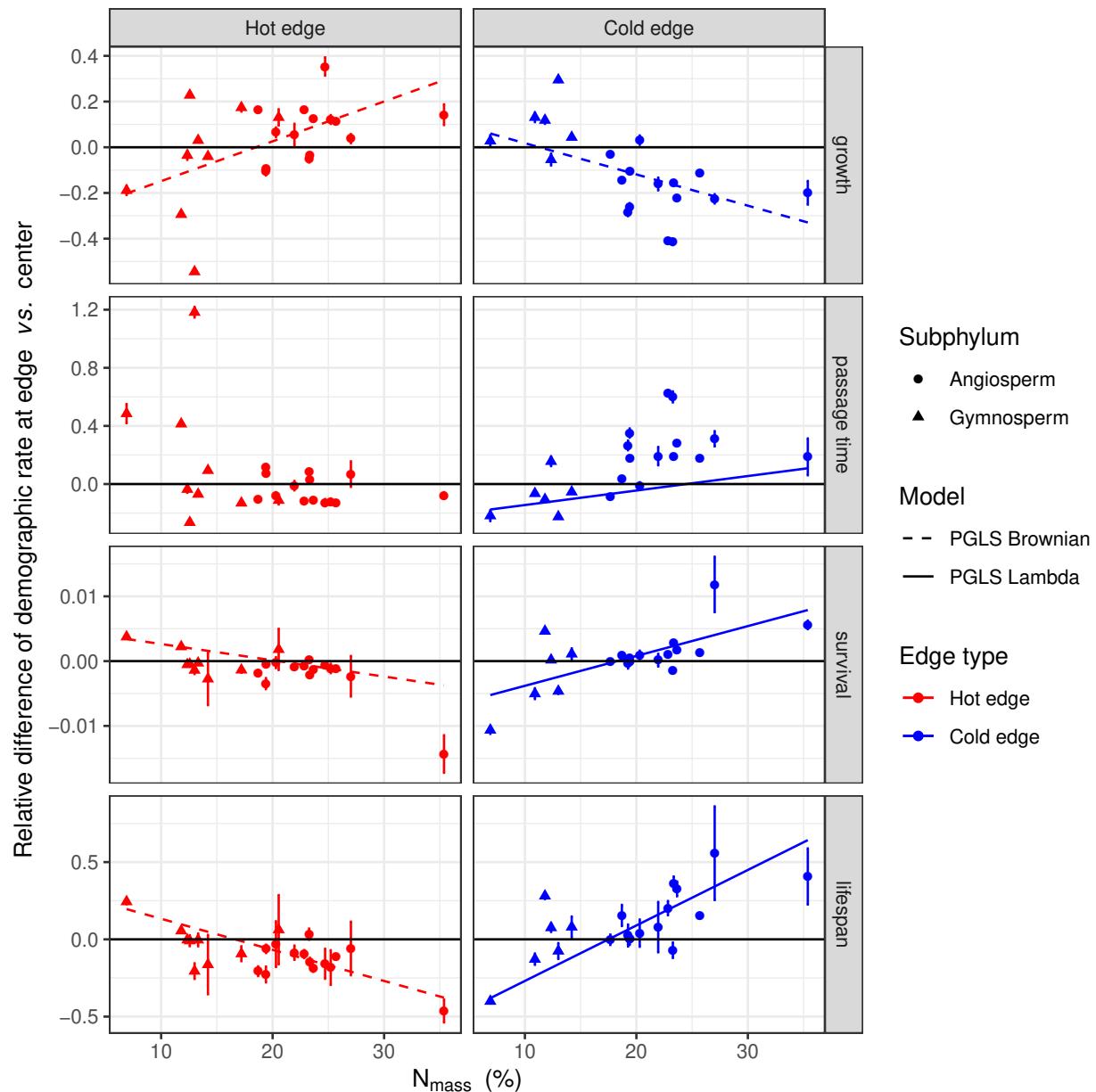

Figure 2: Differences in the demographic metrics at climatic edge *vs.* the median climate of the species distribution. The box-plots represent the relative difference of the demographic metrics between the climatic edge and the median climate computed over the 100 data resampling and the 27 species for the four demographic metrics (annual diameter growth and survival for an individual 15cm in diameter, passage time from 10cm in diameter to 60cm in diameter and lifespan of tree 15cm in diameter) and the two edge types (hot in red, cold in blue). The p value of the test for the difference in each demographic metric between the edge and the median climate is presented at the top of the box-plot (ns : non significant, * : p value < 0.05, ** : p value < 0.01, *** : p value < 0.001). The p value was computed with a mixed model with species as a random effect (see Methods for details).

Figure 3: Differences in the demographic metrics at climatic edge *vs.* the median climate of the species distribution without and with a high level of competition. The box-plots represent the relative difference the demographic metrics between the climatic edge and the median climate over the 100 data resampling and the 27 species for the four demographic metrics (annual diameter growth and survival for an individual 15cm in diameter, passage time from 10cm in diameter to 60cm in diameter and lifespan of tree 15cm in diameter), the two edge types (hot in red, cold in blue), and the two levels of competition (without competition: basal area of competitors, $BA = 0$, no transparency, with a high level of competition: basal area of competitors, $BA = 30m^2 ha^{-1}$ color transparency). The p value of the test for the difference in each demographic metric between the edge and the median climate is presented at the top of the box-plot (ns : non significant, * : p -value < 0.05 , ** : p -value < 0.01 , *** : p -value < 0.001). The p -value was computed with a mixed model with species as a random effect (see Methods for details)

Figure 4: Changes in demographic responses at the edge in function of species median climate. Species demographic response at the edge - measured as the relative differences of the demographic metrics at climatic edge *vs.* the median climate of the species distribution - in function of the median position of the species on the first axis of the climate PCA. For each species the mean (point) and the 95% quantiles (error bar) of the demographic response over the 100 data resampling is represented for both the hot (red) and the cold (blue) edges. Phylogenetic generalised least squares (PGLS Lambda) regressions are represented only for significant relationship with a non negligible magnitude of the effect. Gymnosperm and angiosperm species are represented with different symbols.

Figure 5: Changes in demographic responses at the edge in function of species leaf N per mass. Species demographic response at the edge - measured as the relative differences in the demographic metric at climatic edge *vs.* the median climate of the species distribution - as a function of species leaf nitrogen per mass. For each species the mean (point) and 95% quantiles (error bar) of the demographic response over the 100 data resampling is represented for both the hot (red) and the cold (blue) edges. Phylogenetic generalised least squares (PGLS) regressions are represented only for significant relationship with a non negligible magnitude of the effect (see details in caption of Fig. 4).

506 REFERENCES

507 Alexander, J. M., Diez, J. M., Hart, S. P., & Levine, J. M. (2016). When Climate Reshuffles Com-
508 petitors: A Call for Experimental Macroecology. *Trends in Ecology & Evolution*, 31, 831–841. doi:
509 [10.1016/j.tree.2016.08.003](https://doi.org/10.1016/j.tree.2016.08.003)

510 Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F., Choat, B., & Jansen, S. (2016).
511 Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree
512 mortality across the globe. *Proceedings of the National Academy of Sciences of the United States of*
513 *America*, 113(18), 5024–5029.

514 Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L., & Trugman, A. T. (2019). Widespread
515 drought-induced tree mortality at dry range edges indicates that climate stress exceeds species'
516 compensating mechanisms. *Global Change Biology*, gcb.14771. doi: [10.1111/gcb.14771](https://doi.org/10.1111/gcb.14771)

517 Archambeau, J., Ruiz-Benito, P., Ratcliffe, S., Fréjaville, T., Changenet, A., Muñoz Castañeda,
518 J. M., ... Benito Garzón, M. (2020). Similar patterns of background mortality across Europe are
519 mostly driven by drought in European beech and a combination of drought and competition in
520 Scots pine. *Agricultural and Forest Meteorology*, 280, 107772. doi: [10.1016/j.agrformet.2019.107772](https://doi.org/10.1016/j.agrformet.2019.107772)

521 Baeten, L., Verheyen, K., Wirth, C., Bruehlheide, H., Bussotti, F., Finér, L., ... Scherer-Lorenzen,
522 M. (2013). A novel comparative research platform designed to determine the functional signif-
523 icance of tree species diversity in European forests. *Perspectives in Plant Ecology, Evolution and*
524 *Systematics*, 15(5), 281–291. doi: [10.1016/j.ppees.2013.07.002](https://doi.org/10.1016/j.ppees.2013.07.002)

525 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using
526 lme4. *Journal of Statistical Software*, 67(1), 1–48. doi: [10.18637/jss.v067.i01](https://doi.org/10.18637/jss.v067.i01)

527 Black, B. A., Colbert, J. J., & Pederson, N. (2008). Relationships between radial growth rates and
528 lifespan within North American tree species. *Écoscience*, 15(3), 349–357. doi: [10.2980/15-3-3149](https://doi.org/10.2980/15-3-3149)

529 Brown, J. H. (1984). On the relationship between abundance and distribution of species. *Amer-
530 ican Naturalist*, 124, 255–279.

531 Burnham, K. P., & Anderson, D. R. (2002). *Model selection and multimodel inference: A practical
532 information-theoretic approach*. Springer-Verlag, New-York.

533 Cahill, A. E., Aiello-Lammens, M. E., Caitlin Fisher-Reid, M., Hua, X., Karanewsky, C. J.,
534 Ryu, H. Y., ... Wiens, J. J. (2014). Causes of warm-edge range limits: Systematic review, prox-

535 imate factors and implications for climate change. *Journal of Biogeography*, 41(3), 429–442. doi:
536 [10.1111/jbi.12231](https://doi.org/10.1111/jbi.12231)

537 Camp, R. J., Seavy, N. E., Gorresen, P. M., & Reynolds, M. H. (2008). A statistical test to show
538 negligible trend: comment. *Ecology*, 89(5), 1469–1472. doi: [10.1890/07-0462.1](https://doi.org/10.1890/07-0462.1)

539 Canham, C. D., & Murphy, L. (2016). The demography of tree species response to climate:
540 Seedling recruitment and survival. *Ecosphere*, 7(8), e01424. doi: [10.1002/ecs2.1424](https://doi.org/10.1002/ecs2.1424)

541 Canham, C. D., & Murphy, L. (2017). The demography of tree species response to climate:
542 Sapling and canopy tree survival. *Ecosphere*, 8(2), e01701. doi: [10.1002/ecs2.1701](https://doi.org/10.1002/ecs2.1701)

543 Case, T. J., Holt, R. D., McPeek, M. A., & Keitt, T. H. (2005). The community context of species'
544 borders: Ecological and evolutionary perspectives. *Oikos*, 108(1), 28–46.

545 Cavin, L., & Jump, A. S. (2017). Highest drought sensitivity and lowest resistance to growth
546 suppression are found in the range core of the tree *Fagus Sylvatica* L. Not the equatorial range
547 edge. *Global Change Biology*, 23(1), 362–379. doi: [10.1111/gcb.13366](https://doi.org/10.1111/gcb.13366)

548 Chave, J., Coomes, D. A., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). To-
549 wards a worldwide wood economics spectrum. *Ecology Letters*, 12(4), 351–366. doi: [10.1111/j.1461-0248.2009.01285.x](https://doi.org/10.1111/j.1461-0248.2009.01285.x)

550 Chesson, P. (2018). Updates on mechanisms of maintenance of species diversity. *Journal of
551 Ecology*, 106(5), 1773–1794. doi: [10.1111/1365-2745.13035](https://doi.org/10.1111/1365-2745.13035)

552 Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., ... Zanne, A. E.
553 (2012). Global convergence in the vulnerability of forests to drought. *Nature*, 491(7426), 752–755.
554 doi: [10.1038/nature11688](https://doi.org/10.1038/nature11688)

555 Clark, J. S., Bell, D. M., Kwit, M. C., & Zhu, K. (2014). Competition-interaction landscapes
556 for the joint response of forests to climate change. *Global Change Biology*, 20(6), 1979–1991. doi:
557 [10.1111/gcb.12425](https://doi.org/10.1111/gcb.12425)

558 Csergo, A. M., Salguero-Gomez, R., Broennimann, O., Coutts, S. R., Guisan, A., Angert, A. L.,
559 ... Buckley, Y. M. (2017). Less favourable climates constrain demographic strategies in plants.
560 *Ecology Letters*, 20, 969–980. doi: [10.1111/ele.12794](https://doi.org/10.1111/ele.12794)

561 Defossez, E., Courbaud, B., Lasbouygues, O., Schiffers, K., & Kunstler, G. (2016). Are variations
562 of direct and indirect plant interactions along a climatic gradient dependent on species' strategies?
563 An experiment on tree seedlings. *Oikos*, 125(5), 708–717. doi: [10.1111/oik.02331](https://doi.org/10.1111/oik.02331)

565 De Roos, A. M., Persson, L., & McCauley, E. (2003). The influence of size-dependent life-
566 history traits on the structure and dynamics of populations and communities. *Ecology Letters*, 6(5),
567 473–487.

568 Di Filippo, A., Pederson, N., Baliva, M., Brunetti, M., Dinella, A., Kitamura, K., ... Piovesan,
569 G. (2015). The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests:
570 Insights from tree-ring series. *Frontiers in Ecology and Evolution*, 3, 46. doi: [10.3389/fevo.2015.00046](https://doi.org/10.3389/fevo.2015.00046)

571 Easterling, M. R., Ellner, S. P., & Dixon, P. M. (2000). Size-specific sensitivity: Applying a new
572 structured population model. *Ecology*, 81(3), 694–708. doi: [10.1890/0012-9658\(2000\)081\[0694:SSAAN\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2000)081[0694:SSAAN]2.0.CO;2)

573 Ellner, S. P., Childs, D. Z., & Rees, M. (2016). Data-driven modelling of structured populations.
574 *Springer International Publishing*.

575 Ettinger, A., & HilleRisLambers, J. (2017). Competition and facilitation may lead to asym-
576 metric range shift dynamics with climate change. *Global Change Biology*, 23(9), 3921–3933. doi:
577 [10.1111/gcb.13649](https://doi.org/10.1111/gcb.13649)

578 Gaston, K. J. (2009). Geographic range limits: Achieving synthesis. *Proceedings of the Royal
579 Society B: Biological Sciences*, 276(1661), 1395–1406. doi: [10.1098/rspb.2008.1480](https://doi.org/10.1098/rspb.2008.1480)

580 Grubb, P. J. (1977). The maintenance of species-richness in plant communities: The importance
581 of the regeneration niche. *Biological Review*, 52, 107–145.

582 Hargreaves, A. L., Samis, K. E., & Eckert, C. G. (2014). Are Species' Range Limits Simply Niche
583 Limits Writ Large? A Review of Transplant Experiments beyond the Range. *American Naturalist*,
584 183(2), 157–173. doi: [10.1086/674525](https://doi.org/10.1086/674525)

585 Harris, I., Jones, P., Osborn, T., & Lister, D. (2014). Updated high-resolution grids of monthly
586 climatic observations - the CRU TS3.10 Dataset: updated high-resolution grids of monthly climatic
587 observations. *International Journal of Climatology*, 34(3), 623–642. doi: [10.1002/joc.3711](https://doi.org/10.1002/joc.3711)

588 HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., & Theobald, E. J. (2013). How
589 will biotic interactions influence climate change-induced range shifts?: Biotic interactions and
590 range shifts. *Annals of the New York Academy of Sciences*, 1297, 112–125. doi: [10.1111/nyas.12182](https://doi.org/10.1111/nyas.12182)

591 Holt, R. D., & Keitt, T. H. (2000). Alternative causes for range limits: A metapopulation per-
592 spective. *Ecology Letters*, 3(1), 41–47.

593 Holt, R. D., & Keitt, T. H. (2005). Species' borders: A unifying theme in ecology. *Oikos*, 108(1),
594 3–6.

595 Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A., & Taper, M. L. (2005). Theoretical models
596 of species' borders: Single species approaches. *Oikos*, 108(1), 18–27.

597 Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., ... Heimann, M.
598 (2007). Uncertainties of modeling gross primary productivity over Europe: A systematic study on
599 the effects of using different drivers and terrestrial biosphere models: effects on simulated GPP.
600 *Global Biogeochemical Cycles*, 21(4), GB4021. doi: [10.1029/2006GB002915](https://doi.org/10.1029/2006GB002915)

601 Kunstler, G., Albert, C. H., Courbaud, B., Lavergne, S., Thuiller, W., Vieilledent, G., ... Coomes,
602 D. A. (2011). Effects of competition on tree radial-growth vary in importance but not in intensity
603 along climatic gradients. *Journal of Ecology*, 99, 300–312. doi: [10.1111/j.1365-2745.2010.01751.x](https://doi.org/10.1111/j.1365-2745.2010.01751.x)

604 Lee-Yaw, J. A., Kharouba, H. M., Bontrager, M., Mahony, C., Csergo, A. M., Noreen, A. M., ...
605 Angert, A. L. (2016). A synthesis of transplant experiments and ecological niche models suggests
606 that range limits are often niche limits. *Ecology Letters*, 19(6), 710–722. doi: [10.1111/ele.12604](https://doi.org/10.1111/ele.12604)

607 Lines, E. R., Zavala, M. A., Ruiz-Benito, P., & Coomes, D. A. (2019). Capturing juvenile tree
608 dynamics from count data using Approximate Bayesian Computation. *Ecography*, ecog.04824. doi:
609 [10.1111/ecog.04824](https://doi.org/10.1111/ecog.04824)

610 Louthan, A. M., Doak, D. F., & Angert, A. L. (2015). Where and When do Species Interactions
611 Set Range Limits? *Trends in Ecology & Evolution*, 30(12), 780–792. doi: [10.1016/j.tree.2015.09.011](https://doi.org/10.1016/j.tree.2015.09.011)

612 Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., Bodegom, P. M. van, ... Santi-
613 ago, L. S. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates: Effects
614 of soil and climate on photosynthetic traits. *Global Ecology and Biogeography*, 24(6), 706–717. doi:
615 [10.1111/geb.12296](https://doi.org/10.1111/geb.12296)

616 Mauri, A., Strona, G., & San-Miguel-Ayanz, J. (2017). EU-Forest, a high-resolution tree occur-
617 rence dataset for Europe. *Scientific Data*, 4, 160123. doi: [10.1038/sdata.2016.123](https://doi.org/10.1038/sdata.2016.123)

618 Moreno, A., & Hasenauer, H. (2016). Spatial downscaling of European climate data: Spatial
619 Downscaling of European Climate Data. *International Journal of Climatology*, 36(3), 1444–1458. doi:
620 [10.1002/joc.4436](https://doi.org/10.1002/joc.4436)

621 Morris, W. K., Vesk, P. A., & McCarthy, M. A. (2013). Profiting from pilot studies: Analysing
622 mortality using Bayesian models with informative priors. *Basic and Applied Ecology*, 14(1), 81–89.
623 doi: [10.1016/j.baae.2012.11.003](https://doi.org/10.1016/j.baae.2012.11.003)

624 Needham, J., Merow, C., Chang-Yang, C.-H., Caswell, H., & McMahon, S. M. (2018). Inferring

625 forest fate from demographic data: From vital rates to population dynamic models. *Proceedings of*
626 *the Royal Society B: Biological Sciences*, 285(1874), 20172050. doi: [10.1098/rspb.2017.2050](https://doi.org/10.1098/rspb.2017.2050)

627 Niinemets, Ü., & Valladares, F. (2006). Tolerance to shade, drought, and waterlogging of tem-
628 perate Northern Hemisphere trees and shrubs. *Ecological Monographs*, 76(4), 521–547.

629 Pironon, S., Papuga, G., Villegas, J., Angert, A. L., García, M. B., & Thompson, J. D. (2017).
630 Geographic variation in genetic and demographic performance: New insights from an old bio-
631 geographical paradigm: The centre-periphery hypothesis. *Biological Reviews*, 92(4), 1877–1909.
632 doi: [10.1111/brv.12313](https://doi.org/10.1111/brv.12313)

633 Purves, D. W. (2009). The demography of range boundaries versus range cores in eastern
634 US tree species. *Proceedings of the Royal Society B: Biological Sciences*, 276(1661), 1477–1484. doi:
635 [10.1098/rspb.2008.1241](https://doi.org/10.1098/rspb.2008.1241)

636 Putnam, R. C., & Reich, P. B. (2017). Climate and competition affect growth and survival of
637 transplanted sugar maple seedlings along a 1700-km gradient. *Ecological Monographs*, 87(1), 130–
638 157. doi: [10.1002/ecm.1237](https://doi.org/10.1002/ecm.1237)

639 Ratcliffe, S., Liebergesell, M., Ruiz-Benito, P., Madrigal Gonzalez, J., Munoz Castaneda, J. M.,
640 Kändler, G., ... others. (2015). Modes of functional biodiversity control on tree productivity across
641 the European continent. *Global Ecology and Biogeography*, 25, 251–262.

642 Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., ...
643 Baeten, L. (2017). Biodiversity and ecosystem functioning relations in European forests depend
644 on environmental context. *Ecology Letters*, 20(11), 1414–1426. doi: [10.1111/ele.12849](https://doi.org/10.1111/ele.12849)

645 R Core Team. (2019). *R: A language and environment for statistical computing*. Retrieved from
646 <https://www.R-project.org/>

647 Reich, P. B. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto.
648 *Journal of Ecology*, 102(2), 275–301. doi: [10.1111/1365-2745.12211](https://doi.org/10.1111/1365-2745.12211)

649 Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temper-
650 ature and latitude. *Proceedings of the National Academy of Sciences of the United States of America*,
651 101(30), 11001–11006.

652 Reich, P. B., Oleksyn, J., & Tjoelker, M. G. (1996). Needle Respiration and Nitrogen Concen-
653 tration in Scots Pine Populations from a Broad Latitudinal Range: A Common Garden Test with
654 Field-Grown Trees. *Functional Ecology*, 10(6), 768. doi: [10.2307/2390512](https://doi.org/10.2307/2390512)

655 Ruiz-Benito, P., Vacchiano, G., Lines, E. R., Reyer, C. P., Ratcliffe, S., Morin, X., ... Zavala, M.

656 A. (2020). Available and missing data to model impact of climate change on European forests.

657 *Ecological Modelling*, 416, 108870. doi: [10.1016/j.ecolmodel.2019.108870](https://doi.org/10.1016/j.ecolmodel.2019.108870)

658 Salguero-Gómez, R., Jones, O. R., Archer, C. R., Buckley, Y. M., Che-Castaldo, J., Caswell, H.,

659 ... Vaupel, J. W. (2015). The compadrePlant Matrix Database: An open online repository for plant

660 demography. *Journal of Ecology*, 103(1), 202–218. doi: [10.1111/1365-2745.12334](https://doi.org/10.1111/1365-2745.12334)

661 Schelhaas, M.-J., Fridman, J., Hengeveld, G. M., Henttonen, H. M., Lehtonen, A., Kies, U., ...

662 Nabuurs, G.-J. (2018). Actual European forest management by region, tree species and owner

663 based on 714,000 re-measured trees in national forest inventories. *PLOS ONE*, 13(11), e0207151.

664 doi: [10.1371/journal.pone.0207151](https://doi.org/10.1371/journal.pone.0207151)

665 Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients:

666 Interpretation of regression coefficients. *Methods in Ecology and Evolution*, 1(2), 103–113. doi:

667 [10.1111/j.2041-210X.2010.00012.x](https://doi.org/10.1111/j.2041-210X.2010.00012.x)

668 Stahl, U., Reu, B., & Wirth, C. (2014). Predicting species' range limits from functional traits for

669 the tree flora of North America. *Proceedings of the National Academy of Sciences of the United States of*

670 *America*, 111(38), 13739–13744.

671 Stephenson, N. L., Van Mantgem, P. J., Bunn, A. G., Bruner, H., Harmon, M. E., O'Connell, K.

672 B., ... Franklin, J. F. (2011). Causes and implications of the correlation between forest productivity

673 and tree mortality rates. *Ecological Monographs*, 81(4), 527–555.

674 Svenning, J.-C., & Skov, F. (2004). Limited filling of the potential range in European tree species.

675 *Ecology Letters*, 7, 565–573.

676 Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W., & Gravel, D. (2017). Extinction debt and

677 colonization credit delay range shifts of eastern North American trees. *Nature Ecology & Evolution*,

678 1, 0182. doi: [10.1038/s41559-017-0182](https://doi.org/10.1038/s41559-017-0182)

679 Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD - a platform for

680 ensemble forecasting of species distributions. *Ecography*, 32(3), 369–373. doi: [10.1111/j.1600-0587.2008.05742.x](https://doi.org/10.1111/j.1600-0587.2008.05742.x)

682 Thuiller, W., Münkemüller, T., Schifflers, K. H., Georges, D., Dullinger, S., Eckhart, V. M., ...

683 Schurr, F. M. (2014). Does probability of occurrence relate to population dynamics? *Ecography*,

684 37(12), 1155–1166. doi: [10.1111/ecog.00836](https://doi.org/10.1111/ecog.00836)

685 Tredennick, A. T., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment
686 interactions: A neglected dimension of species' responses to environmental variation. *Ecology Letters*,
687 21(12), 1757–1770. doi: [10.1111/ele.13154](https://doi.org/10.1111/ele.13154)

688 Trouillier, M., Maaten-Theunissen, M. van der, Scharnweber, T., Würth, D., Burger, A., Schnit-
689 tler, M., & Wilmking, M. (2019). Size matters—a comparison of three methods to assess age- and
690 size-dependent climate sensitivity of trees. *Trees*, 33(1), 183–192. doi: [10.1007/s00468-018-1767-z](https://doi.org/10.1007/s00468-018-1767-z)

691 Tuck, S. L., Porter, J., Rees, M., & Turnbull, L. A. (2018). Strong responses from weakly inter-
692 acting species. *Ecology Letters*, 21(12), 1845–1852. doi: [10.1111/ele.13163](https://doi.org/10.1111/ele.13163)

693 van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., ...
694 Allan, E. (2018). Continental mapping of forest ecosystem functions reveals a high but unrealised
695 potential for forest multifunctionality. *Ecology Letters*, 21(1), 31–42. doi: [10.1111/ele.12868](https://doi.org/10.1111/ele.12868)

696 Vilà-Cabrera, A., Premoli, A. C., & Jump, A. S. (2019). Refining predictions of population
697 decline at species' rear edges. *Global Change Biology*, 25(5), 1549–1560. doi: [10.1111/gcb.14597](https://doi.org/10.1111/gcb.14597)

698 Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., ... Wilf, P. (2017). Global
699 climatic drivers of leaf size. *Science*, 357(6354), 917–921. doi: [10.1126/science.aal4760](https://doi.org/10.1126/science.aal4760)

700 Wright, I. J., Reich, P. B., & Westoby, M. (2003). Least-cost input mixtures of water and nitrogen
701 for photosynthesis. *American Naturalist*, 161(1), 98–111. doi: [10.1086/344920](https://doi.org/10.1086/344920)

702 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., ... Villar, R. (2004).
703 The worldwide leaf economics spectrum. *Nature*, 428(6985), 821–827. doi: [10.1038/nature02403](https://doi.org/10.1038/nature02403)

704 Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., ...
705 Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments.
706 *Nature*, 506, 89–92. doi: [10.1038/nature12872](https://doi.org/10.1038/nature12872)

707 Zhu, K., Woodall, C. W., Ghosh, S., Gelfand, A. E., & Clark, J. S. (2014). Dual impacts of climate
708 change: Forest migration and turnover through life history. *Global Change Biology*, 20(1), 251–264.
709 doi: [10.1111/gcb.12382](https://doi.org/10.1111/gcb.12382)

710 Zimmermann, N. E., Jandl, R., Hanewinkel, M., Kunstler, G., Kliling, C., Gasparini, P., ... Pso-
711 mas, A. (2013). Potential Future Ranges of Tree Species in the Alps. In G. Cerbu, Hanewinkel,
712 Marc, Gerosa Giacomo, & Jandl, Robert (Eds.), *Management Strategies to Adapt Alpine Space Forests
713 to Climate Change Risks*. InTech.