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Abstract: A viscoelastic turbulence model in a fully-developed drag reducing channel flow is
improved, with turbulent eddies modelled under a k − ε representation, along with polymeric
solutions described by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model.
The model performance is evaluated against a wide variety of direct numerical simulation data,
described by different combinations of rheological parameters, which is able to predict all drag
reduction (low, intermediate and high) regimes with good accuracy. Three main contributions
are proposed: one with a simplified viscoelastic closure for the NLTij term (which accounts
for the interactions between the fluctuating components of the conformation tensor and the
velocity gradient tensor), by removing additional damping functions and reducing complexity
compared with previous models; second through a reformulation for the closure of the viscoelastic
destruction term, Eτp , which removes all friction velocity dependence; lastly by an improved modified
damping function capable of predicting the reduction in the eddy viscosity and thus accurately
capturing the turbulent kinetic energy throughout the channel. The main advantage is the capacity
to predict all flow fields for low, intermediate and high friction Reynolds numbers, up to high drag
reduction without friction velocity dependence.

Keywords: drag reduction; FENE-P fluid; viscoelastic RANS model; OpenFoam CFD

1. Introduction

Since the pioneering experiment by Toms [1], it is known that the additions of small
(parts per million) amounts of long-chain flexible polymers to a turbulent flow can drastically reduce
the transport energy by decreasing the turbulent drag. The effects are most evident in turbulent
shear flow, in which dissolving the polymers in solution can reduce friction losses by as much as 80%
compared to the solvent alone [2]. After the discovery of the drag reduction (DR) phenomena,
several comprehensive studies were carried out to understand the physical mechanisms of the
interactions between the turbulent structures and polymer chains. Early comprehensive studies
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in this area come from Lumley [3,4], Hoyt [5] and Virk [6]. Lumley suggests that the DR phenomenon
is the result of an increase in effective viscosity in an area outside the viscous sub-layer and in the
buffer layer, caused by polymer chains stretching in a turbulent flow.

More recent studies have been proposed for the theory of the mechanisms of drag-reducing
polymer additives [7,8]. Several Direct Numerical Simulation (DNS) studies were conducted to
understand further the energy exchanges between the polymer chains and turbulence structures [9–14].
It is now known to at least low to moderate levels of DR, that the mechanism is the suppression of
the near-wall streamwise vortices by polymers that stretch in the extensional flow, and then relax as
they are rolled into other vortices, generating forces that tend to weaken these vortices. Quantitatively,
this can be expressed as a polymer body force [9], which is positive in the streamwise direction, with
an opposite sign (anti-correlation) in the wall direction.

DNS is a great resource to explore the underlying mechanics of drag-reducing viscoelastic
turbulent flows. However, for the majority of engineering motivations, DNS is not practical because of
the high number of variables which requires a substantial expense of memory and CPU-time. This cost
is more prevalent in high DR (HDR) schemes in which the near-wall velocity streaks become more
elongated, requiring an increased demand on computational resources.

An alternative approach in capturing flow features at much less computational demands is the
application of Reynolds-averaged Navier–Stokes (RANS) models, whose interest has increased in
recent years. One of the original implementations of elastic effects within turbulence models was
achieved by Pinho [15] and Cruz et al. [16]. Their work focused on low-Reynolds number k − ε

turbulence models, applying a Generalised Newtonian Fluid (GNF) constitutive equation involving
dependency of the fluid strain hardening on the third invariant of the rate of deformation tensor.
Following these studies, an anisotropic version was also developed which included an increased
Reynolds stress anisotropy [17], along with a Reynolds stress turbulence model [18], both able to
satisfactorily predict drag-reducing behavior. Nevertheless, the models are constrained because of the
inelastic formulation of the GNF constitutive equations.

Further developments in viscoelastic RANS models became possible owing to the emergence
of DNS data regarding turbulent viscoelastic fluids. The first elastic model was developed by
Leighton et al. [19], which was based on the finitely extensible nonlinear elastic with Peterlin closure
(FENE-P) dumbbell constitutive equation model. Their study involved the development of a polymer
strain–stress coupling based on the tensor expansion, which incorporated the conformation tensor
and Reynolds stress. From this work, more attention arose to the FENE-P model given the molecular
roots of the equations. Later, based on a-priori analysis of DNS data, Pinho et al. [20] developed a
low-Reynolds number k − ε model for FENE-P fluids which could predict flow features up to the
low drag reduction regime (LDR < 20%). Turbulent viscoelastic closures were proposed, including
the non-linear term involving the conformation tensor and the strain rate fluctuations within the
conformation tensor equation (denoted NLTij following the nomenclature of Housiadas et al. [21]
and Li et al. [22]); along with the viscoelastic turbulent transport term of the turbulent kinetic energy.
One of the key difficulties that arose in this initial study was the decrease in the magnitude of
turbulent kinetic energy as viscoelasticity increased, opposite to that found in the DNS literature [23].
Subsequently, the model closures were improved by Resende et al. [24] and the capacity of the
model predictions were extended to the intermediate drag reduction regime (20% < IDR < 40%).
However, the model closures involved complex damping functions and model constants which gave
spurious results for the high drag reduction regime (HDR > 40%). Resende et al. [25] applied the same
viscoelastic closures to a low-Reynolds number k−ω model with only a mathematical transformation
of the governing terms involving ω. The closures had identical limitations as the k − ε model for
predicting DR behaviour but demonstrated great versatility and robustness given its application to
alternative two-equation models.

During this time, a k− ε− v2 − f model for FENE-P fluids in fully developed channel flow was
proposed by Iaccarino et al. [26], following the initial studies of Dubief et al. [27]. They introduced the
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idea of a turbulent polymer viscosity which accounts for the effects of viscoelasticity and turbulence
on the polymer stress within the momentum equation. The reduction in the Reynolds shear stress
is assumed by a-priori DNS data analysis from the decreasing v2 shown within the DNS studies [9].
The model closure for the NLTij is much simpler than the one developed by Resende et al. [24],
but contains only the trace and not the individual components. The model was later improved by
Masoudian et al. [28] and can predict flow features up to maximum DR (MDR). The key advancement
of the closures were an NLTij closure based on DNS analysis and comparisons to the local eddy
viscosity peaks; the viscoelastic stress work in the turbulent kinetic energy equations; viscoelastic stress
in the momentum equation; and a viscoelastic destruction term in the dissipation transport equation.
The viscoelastic turbulent closures within the v2 equation (transverse viscoelastic stress work, εV

yy)
should be strictly a function of NLTyy, which is a key component in the formulation of an effective
polymer viscosity. However, because only the trace of the NLTij term is present within the model,
the closure had to be formulated using DNS analysis of alternative parameters.

Subsequently, after this study, a second-order Reynolds stress model for FENE-P fluids was
proposed by Masoudian et al. [29], extending on the idea of a correlation between the Reynolds stresses
and the NLTij components, similar to Leighton et al. [19]. The model can predict all DR regimes but
is generally unattractive due to the higher number of Newtonian terms resulting from higher-order
modeling. Masoudian et al. [30] then further improved the k − ε − v2 − f model capabilities via
the NLTij term by introducing a simple extension to include heat transfer, along with removing
wall dependence via the friction velocity. There are concerning features when one examines the
Bousinesq-type NLTij term, which has a zero NLTyy component, along with an opposite sign for NLTxy,
both terms being crucial for the polymer shear stress in the momentum balance (see Appendix 1 in
Pinho et al. [20]). Further, the increase of k in the buffer layer is small, meaning the decoupling
of the v2 component may not be enough to decrease the eddy viscosity. This is compensated by an
opposite trend in the dissipation rate, ε, for increasing DR, which subsequently balances the momentum
equations and causes the necessary increase in the velocity profiles.

An alternative approach in predicting DR flow features other than the use of higher-order models
such as the k− ε− v2 − f and Reynolds stress models mentioned previously, is that of a modified
damping function or polymer eddy viscosity, accounting for the effect the polymer has on reducing
the Reynolds shear stress. Tsukahara and Kawaguchi [31] proposed a modified damping function
for a low-Reynolds k− ε model for fluids described by the Giesekus constitutive equation, following
the same ideas as Pinho [15] and Cruz. The closure was developed based on the energy-dissipative
range and the dynamic characterization of the viscoelastic fluid. The model successfully captures the
increase in the magnitude of the turbulent kinetic energy, along with the shift through the buffer layer.
Although the magnitudes of k are largely over-predicted in many cases, which is counterbalanced
by a lack of closure for the viscoelastic destruction term. In some instances, the model predicts a
DR of 1% with a DNS result of 23%. Resende et al. [32] proposed a modified damping function for
a low-Reynolds number k− ε model for FENE-P fluids which can capture the increase of turbulent
kinetic energy as flow viscoelasticity is increased, improving on model predictions made previously by
Pinho et al. [20] and Resende et al. [24]. The study also improved largely on the NLTij closure accuracy
and simplicity formulated in the previous work. The model is able to predict flow features for a large
range of rheological parameters but is limited to a friction Reynolds number of Reτ0 = 395, along
with friction velocity still present in the model. For model applicability in flows with reattachment,
the friction velocity dependence poses a problem as the values become null at these points and lead to
spurious results or floating point errors within computational solvers.

In the present study, an improved k− ε model for FENE-P fluids is proposed, validated for all
drag reduction regimes (low, intermediate, high) and up to the largest friction Reynolds number
(Reτ0 = 1000) available in the DNS data. The important contribution to the current model is improved
and simplified NLTij term that removes complexity from the most recent model developed by
Resende et al. [32]; along with a modified damping function which accurately predicts the viscoelastic
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contributions near and away from the wall, effectively reducing the eddy viscosity and thickening
the buffer-layer as DR increases. Further, a reformulation of the viscoelastic destruction term, Eτp ,
which removes all friction velocity present in the previous k− ε models. The model is assessed against
DNS data covering a wide range of flow conditions in terms of the friction Weissenberg number, Wiτ0 ,
maximum polymer extension, L2, viscosity ratio, β, and friction Reynolds number, Reτ0 ; along with
comparisons against other turbulent FENE-P models within the literature.

The paper is organized as follows: Section 2 introduces the instantaneous and time-averaged
governing equations and identifies the viscoelastic terms that will require modeling; Section 3 explains
in detail the development of the viscoelastic turbulent closures; Section 4 summarises the model;
Section 5 gives the numerical procedure applied; Section 6 presents the results of the flow fields in
fully developed channel flow, covering all range of DR and flow conditions; and finally in Section 7,
the main conclusions are presented.

2. Governing Equations

The governing equations for incompressible turbulent flow of dilute polymer solutions are the
continuity and momentum equations respectively:

∂ûk
∂xk

= 0, (1)

ρ
Dûi
Dt
≡ ρ

(
∂ûi
∂t

+ ûk
∂ûi
∂xk

)
= − ∂ p̂

∂xi
+

∂τ̂ik
∂xk

, (2)

where the hat represents instantaneous quantities of velocity ûi, pressure p̂, stress tensor τ̂ij, and fluid
density ρ. The stress tensor is the sum of the Newtonian solvent which obeys Newton’s law of viscosity,
τ̂s

ij = 2µs ŝij, with µs representing the solvent viscosity coefficient, and polymeric contributions, τ̂
p
ik,

τ̂ij = τ̂s
ij + τ̂

p
ij . (3)

The kinematic viscosity is used alternatively throughout this study and is defined as ν = µ/ρ.
The instantaneous rate of strain tensor, ŝij, is defined as

ŝij =
1
2

(
∂ûi
∂xj

+
∂ûj

∂xi

)
. (4)

The instantaneous polymer contributions are based on the FENE-P rheological dumbbell
model [33], with closure given by

τ̂
p
ij =

µp

λ

(
f (ĉkk)ĉij − δij

)
, (5)

with

f (ĉkk) =
L2 − 3

L2 − ĉkk
, (6)

known as the Peterlin function, and ĉkk is the trace of the instantaneous conformation tensor.
The other parameters that are associated with the FENE-P model are: λ, the relaxation time of
the polymeric fluid; L2, the maximum extensibility of the dumbbell model; and µp, the polymer
viscosity coefficient.

The behaviour of the instantaneous conformation tensor follows a hyperbolic differential equation
of the form,

∂ĉij

∂t
+ ûk

∂ĉij

∂xk
−
(

ĉkj
∂ûi
∂xk

+ ĉik
∂ûj

∂xk

)
=
∇
ĉ ij = −

τ̂
p
ij

µp
. (7)
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The Oldroyd’s upper convective derivative of the instantaneous conformation tensor is here

denoted with
∇
ĉ ij. The local and advective derivatives are the first and second terms respectively.

The bracketed term accounts for the effect of polymer stretching by the instantaneous flow.
The Reynolds averaging process [34] is applied to the governing equations via a Reynolds

decomposition of the flow fields such that, ûi = Ui + ui; where the use of overbars or upper-case
represents the averaged quantity; and primes or lower-case represent the instantaneous quantities.
The continuity and momentum equations now take the form:

∂Uk
∂xk

= 0, (8)

ρ
∂Ui
∂t

+ ρUk
∂Ui
∂xk

= − ∂p
∂xi

+ µs
∂2Ui

∂xk∂xk
− ∂

∂xk
(ρuiuk) +

∂τ
p
ik

∂xk
, (9)

referred to as the Reynolds-averaged Navier–Stokes (RANS). The Reynolds stress tensor is uiuk and
requires a closure model. The Reynolds-averaged polymer stress is τ

p
ik and written fully as

τ
p
ij =

µp

λ

[
f (Ckk)Cij − δij

]
+

µp

λ
f (Ckk + ckk)cij, (10)

where the additional term on the right requires a closure. The Peterlin function becomes

f (Ckk) =
L2 − 3

L2 − Ckk
. (11)

After Reynolds averaging, the instantaneous conformation tensor equation becomes

DCij

Dt
−Mij + CTij − NLTij =

τ
p
ij

µp
, (12)

Mij = Cjk
∂Ui
∂xk

+ Cik
∂Uj

∂xk
, (13)

CTij = uk
∂cij

∂xk
, (14)

NLTij = cjk
∂ui
∂xk

+ cik
∂uj

∂xk
, (15)

which is referred to as the Reynolds-averaged conformation evolution (RACE). Mij is the mean
flow distortion term; it is non-zero, but requires no closure. The remaining two terms are named
following the nomenclature of Li et al. [22] and Housiadas et al. [21]. They are labelled with CTij;
representing the contribution to the transport of the conformation tensor due to the fluctuating
advective terms; and NLTij, which accounts for the interactions between the fluctuating components
of the conformation tensor and the velocity gradient tensor.

Following the analysis of Pinho et al. [20], the nonlinear fluctuating correlation of the average
polymeric stress, f (Ckk + ckk)cij in Equation (10) was shown to be negligible for LDR and HDR when
compared with the linear part. This was later neglected in the models of Resende et al. [24] and
Masoudian et al. [28] and is also neglected here. The CTij term can also be omitted for all DR regimes
following a budget analysis of the RACE carried out by Housiadas et al. [21] and Li et al. [22].
The NLTij term cannot be neglected since it is a significant contributor to the RACE and therefore
requires a suitable closure.
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2.1. Model for the Reynolds Stress Tensor

The Reynolds stress tensor is computed by adopting the Boussinesq turbulent stress
strain relationship,

− ρuiuj = 2ρνTSij −
2
3

ρkδij, (16)

where k is the turbulent kinetic energy, Sij is the mean rate of strain tensor and µT = ρνT
is the eddy viscosity. νT is modelled by the typical isotropic k − ε turbulence model for low
Reynolds numbers, which includes a damping function fµ to account for near-wall effects:

νT = Cµ fµ
k2

ε̃N , (17)

where ε̃N = νs
∂ui
∂xj

∂ui
∂xj

is the viscous dissipation of k by the Newtonian solvent,

fµ =

[
1− exp

(
−y+

aµ

)]2

, (18)

and aµ = 26.5. The dimensionless wall scaling is y+ = uτ0 y/ν0, where uτ0 is the friction velocity,
y is the distance to the nearest wall, and ν0 is the sum of solvent and polymer viscosity coefficients
(ν0 = νs + νp). The damping function requires additional modelling to capture the anisotropy of
the drag reducing flow as a result of viscoelastic flow effects, to be discussed further in this study
(Section 3.2).

2.2. Transport Equation for the Turbulent Kinetic Energy

The governing transport equation for the turbulent kinetic energy of turbulent flow with FENE-P
fluids is given by,

ρ
∂k
∂t

+ ρUi
∂k
∂xi

=ρ
∂

∂xi

[(
νs +

ftνT

σk

)
∂k
∂xi

]
+ Pk − ρ(ε̃N + D)

+ QV − ρεV , (19)

with

D = 2νs

(
d
√

k
dxi

)2

. (20)

Pk = −ρuiuj
∂Ui
∂xj

is the rate of production of k.
The Newtonian closures of Equation (19) are those present in the Nagano et al. [35,36] models.

To increase numerical stability, a modified Newtonian rate of dissipation of k is applied instead of
the true dissipation, which are related by εN = ε̃N + D. For better model performance and to correct
for the turbulent diffusion near walls, a turbulent variable Prandtl number is added of the form,
ft/σk = 1 + 3.5 exp(−(ReT/150)2) with ReT = k2/(νs ε̃) and model constant σk = 1.1. More details of
the form of Equation (19) can be found in Pinho et al. [20] and Resende et al. [24].

The last two terms on the right side of the Equation (19) are:

QV =
∂τ′ik,pui

∂xk
and εV =

1
ρ

τ′ik,p
∂ui
∂xk

, (21)

which are the viscoelastic turbulent transport and the viscoelastic stress work, respectively.
They represent the fluctuating viscoelastic turbulent part of the k transport equation and require
suitable closure models.
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A budget analysis for each term in the k transport equation was performed by Pinho et al. [20]
for different regimes of DR. They demonstrated that the magnitude of QV has more impact on the
overall budget in the IDR, and also developed a closure. In the HDR, the amplitude of QV is the
same as εV but has a different location in the buffer layer, in which the effects of QV are overcome by
turbulent diffusion, thus, revealing negligible effects to overall flow predictions. Masoudian et al. [28]
had chosen to neglect the QV contributions in the k− ε− v2 − f model and is also not included here
as well.

2.3. Transport Equation for the Rate of Dissipation of Turbulent Kinetic Energy

The corresponding governing transport equation for the modified Newtonian rate of dissipation
of k is given by,

ρ
∂ε̃N

∂t
+ ρUi

∂ε̃N

∂xi
=ρ

∂

∂xi

[(
νs +

ftνT

σε

)
∂ε̃N

∂xi

]
+ f1Cε1

ε̃N

k
Pk

− f2Cε2 ρ
(ε̃N)2

k
+ ρE + Eτp , (22)

with

E = νsνT(1− fµ)

(
∂2Uj

∂xi∂xk

)2

. (23)

As mentioned in the previous sub-section, all terms are modelled in the Newtonian context
(excluding Eτp ). The damping functions of Equation (22) are f1 = 1 and f2 = 1− 0.3 exp (−(ReT)

2);
with model coefficients σε = 1.3, Cε1 = 1.45 and Cε2 = 1.90.

The last term in Equation (22) is the viscoelastic contribution to the overall ε̃N balance. This term
acts as a Newtonian destruction to the dissipation and is given by,

Eτp = 2µs
µp

λ(L2 − 3)
∂ui
∂xm

∂

∂xk

{
∂

∂xm
[ f (Cnn) f (Ĉpp)cqqCik]

}
. (24)

It has non-negligible effects on flow predictions for all DR regimes and thus requires a
suitable model.

3. Development of Viscoelastic Closures

In this section, the turbulent viscoelastic cross-correlations that were isolated in the previous
section are presented with model closures. The closures are developed on the basis of the DNS data case
(19) (Table 1), and then subsequently compared with other DNS data sets for accurate model predictions.
The DNS data in Table 1 pertain to all DR regimes with a large variation in rheological parameters
and flow viscosity for fully-developed channel flow established by: Li et al. [23]; Thais et al. [37,38];
Masoudian et al. [28,30,39] and Iaccarino et al. [26].

The non-dimensional numbers that define the different DNS data sets are defined as follows:
the friction Reynolds number Reτ0 = huτ/ν0 is based on the friction velocity (uτ), the channel
half-height (h), the zero shear-rate kinematic viscosity of the solution, which is the sum of the kinematic
viscosity of the solvent and polymer (ν0 = νs + νp); The Weissenberg number Wiτ0 = λu2

τ/ν0; and the
ratio between the solvent viscosity and the solution viscosity at zero shear rate is β = νs/ν0.

In the following sub-sections, closures are developed for: the NLTij term of Equation (12) with
focus on the dominant NLTxx component; a modification of the damping function fµ (Equation (18)),
named fν, which accounts for the reduction of the Reynolds shear stress due to viscoelastic effects;
the viscoelastic stress work, εV of Equation (19); and the viscoelastic destruction, Eτp , of Equation (22).
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Table 1. Independent Direct Numerical Simulation data for turbulent channel flow of finitely extensible
nonlinear elastic-Peterlin (FENE-P) fluids at β = 0.9, with drag reduction (DR) model predictions.

Case Reference
Rheological Parameters Drag Reduction (%)

Reτ0 Wiτ0 L2 DNS Current Model Model [32]

(1) Li et al. [23] 125 25 900 19 20 -
(2) Li et al. [23] 125 25 3600 22 23 -
(3) Li et al. [23] 125 25 14,400 24 25 -
(4) Li et al. [23] 125 50 900 31 30 35
(5) Li et al. [23] 125 100 900 37 36 39
(6) Li et al. [23] 125 100 1800 45 43 -
(7) Li et al. [23] 125 100 3600 56 51 51
(8) Masoudian et al. [28] 180 25 900 19 19 -
(9) Li et al. [23] 180 50 900 31 30 34
(10) Masoudian et al. [28] 180 100 900 38 38 39
(11) Masoudian et al. [28] 180 100 3600 54 53 51
(12) Thais et al. [37] 180 116 10,000 64 60 -
(13) Iaccarino et al. [26] 300 36 3600 33 32 34
(14) Iaccarino et al. [26] 300 36 10,000 35 35 32
(15) Iaccarino et al. [26] 300 120 10,000 59 59 58
(16) Masoudian et al. [30] 395 25 900 19 22 19
(17) Masoudian et al. [30] 395 50 900 30 30 -
(18) Masoudian et al. [30] 395 50 3600 38 38 -
(19) Masoudian et al. [30] 395 100 900 37 37 38
(20) Masoudian et al. [30] 395 100 3600 48 47 52
(21) Masoudian et al. [39] 395 100 10,000 55 55 -
(22) Masoudian et al. [30] 395 100 14,400 61 60 62
(23) Thais et al. [37] 395 116 10,000 62 60 -
(24) Li et al. [23] 395 200 14,400 75 69 67
(25) Masoudian et al. [30] 590 50 3600 39 40 64
(26) Thais et al. [37] 590 116 10,000 61 59 74
(27) Thais et al. [38] 1000 50 900 30 33 60

3.1. Closure for NLTij

The NLTij exact transport equation is greatly simplified based on the DNS analysis of

Pinho et al. [20]: Following the transport equation of f (ĉmm)ckj
∂ui
∂xk

+ f (ĉmm)cik
∂uj
∂xk

, it is assumed that

f (ĉmm)ckj
∂ui
∂xk

+ f (ĉmm)cik
∂uj

∂xk
≈ f (Cmm)

(
ckj

∂ui
∂xk

+ cik
∂uj

∂xk

)
= f (Cmm)NLTij. (25)

The full details of this approximation and the exact transport equation of NLTij can be found in
Pinho et al. [20] and Resende et al. [24].

The complete closure of NLTij is presented below and was developed to improve model
predictions based on better physical modeling compared with the most recent model developed
by Resende et al. [32].

NLTij = ckj
∂ui
∂xk

+ cik
∂uj

∂xk

≈ fNCN1
λ
√

L̃εN

ν0 f (Cmm)
δij︸ ︷︷ ︸

I

− f 1/4
N CN2Mij︸ ︷︷ ︸

I I

+CN3
k
ν0

√
L̃Mnn

γ̇

∂Ui
∂xk

∂Uj
∂xk

γ̇2︸ ︷︷ ︸
I I I

,
(26)

where fN = νT/ν0 is the local eddy viscosity, γ̇ =
√

2SpqSpq is the shear rate invariant, L̃ =
√

L2/900 is
the normalised maximum extension with the lowest DR, with model constants CN1 = 0.11, CN2 = 0.3
and CN3 = 0.3.
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The closure of Equation (26) is modelled in three parts: parts I and I I are modeled in the same
fashion as the model of Resende et al. [32], part I I I is greatly improved and is the main contribution to
the NLTij closure.

Part I is approached by introducing the Taylor’s longitudinal micro-scale, λ f , to the relationship
between the double correlation of fluctuating strain rates and the turbulent kinetic energy in
homogeneous isotropic turbulence. More details can be found in Resende et al. [32], with adjustments
L0.42 to

√
L and f (Cmm)0.8 to f (Cmm).

Part I I is primarily responsible for capturing the shear component, NLTxy. The correlation here is
with the exact term, Mij (see Equation (13)), and by the local eddy viscosity, f 1/4

N . The L0.15 variation is
removed from the model developed by Resende et al. [32]. The negative part of the NLTxx component
is also captured here via the Mxx term, which according to Dubief et al. [27], is the region where
polymers inject energy into turbulence.

Part I I I is developed to predict the NLTxx component which is the dominant term in the trace of
NLTij, responsible for the stretch of the polymer chains due to turbulent fluctuations. Following the
same assumption as Masoudian et al. [29], one can see that NLTxx ∼ u′xu′x ∼ k. In physical terms,
the turbulent stretching terms represent the ability of the turbulent fluctuations to act on the polymer
chains. This stretching is effective if the polymer shear and maximum extensibility are large enough.
So,

√
L̃Mnn/γ̇ is included here with k. Note that for fully developed channel flow, this term reduces

to
√

L̃Cxy which increases proportionally to drag reduction. This new term includes the same physical
assumption as Masoudian et al. [28,30], and is simplified from the very complex ad-hoc approach of
Resende et al. [32], viz

NLTResende
I I I = f 0.9

N exp

(
− − fN

1.05
√

β(10 + 0.3L + L̃− (L̃− 1)2)

)

×
(

Cmm

(β/0.9)0.7β

(
2−

[
1− exp

(
−2Ubh/νs

3500

)]4
))0.7 dUi

dxk

dUj
dxk√

dUp
dxq

dUp
dxq

. (27)

The performance of the NLTij closure can be analysed in Figure 1 by comparing the predictions
with DNS data case (19) in Table 1, and with the model of Resende et al. [32]. Figure 1a–c plots
each normal component of NLTij, with the predictions as accurate as the previous model [32].
The new NLTxx component is capable of predicting the maximum value and peak location of the
destruction effect away from the wall along with the negative part near the wall, but requires a much
simpler closure. The closure performance becomes more noticeable at higher Reynolds numbers,
in which the polymer extension is largely overestimated previously. The NLTyy component is the
leading order term in the Cyy component away from the wall, which is the dominant contributor
to an effective polymeric viscosity. This strongly influences the turbulent dynamics according to
Thais et al. [40] and Benzi et al. [41] with their DNS and toy model analysis respectively. This term is
represented by the first term in Equation (26), along with NLTzz. The NLTzz component was shown
by Pinho et al. [20] to have low impact, and thus NLTzz = NLTyy is an appropriate approximation.
The shear component, NLTxy, can be viewed in Figure 1e, where the predictions omit similar results
compared with the previous model [32], but do not require additional L2 variation via L0.15.

Overall, all main features of NLTij are well captured such as the peak locations and
magnitudes, but with a much simpler closure for the dominant contributor of polymer stretch, NLTxx.
Further, the NLTxy and NLTyy terms responsible for the polymer shear stress contribution in the
momentum balance are featured, which were previously represented ad-hoc with friction velocity
dependence [26,28] or misrepresented [30].
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(a) (b)

(c) (d)

(e)
Figure 1. Comparison of the NLTij model between DNS data (+DR = 37%, case (19)) and predictions
with the new model (continuum lines), and previous model (dash lines): (a) NLT+

xx; (b) NLT+
yy;

(c) NLT+
zz ; (d) NLT+

kk and (e) NLT+
xy.
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3.2. Model for the Modified Damping Function, fν

There have been many attempts to predict the eddy viscosity reduction as flow viscoelasticity
increases for drag-reducing flows. In the case of low-Reynolds k− ε models for FENE-P fluids, this was
examined firstly by Pinho et al. [20] for the LDR regime; then later by Resende et al. [24] for the
IDR regime. In both cases, there was a consistent reduction in the magnitude of k as DR increased,
contrary to the DNS findings [23]. Similar attempts to model a modified damping function were made
by Pinho [15]; Cruz et al. [16]; Resende et al. [17] and Tsukahara and Kawaguchi [31] to develop
viscoelastic turbulence models using different constitutive equations.

Recently, Resende et al. [32] proposed a modified damping function which was able to predict
the correct behavior of the eddy viscosity close to the wall, leading to the appropriate increase for the
magnitude of k, and the shift away from the wall into the buffer layer as DR increased. This proposal
was founded from the a-priori DNS data analysis by Resende et al. [42], demonstrating the necessary
increase to the production of k close to the wall. The model derived by Resende et al. [32] is based
on the DNS analysis of Li et al. [23], with an approximation of the form DR ∼ Ckk/L, giving rise to
the correct damping of near-wall eddies as DR increases. In the k− ε− v2 − f models proposed by
Iaccarino et al. [26] and Masoudian et al. [28], the near-wall eddy viscosity damping effect is achieved
by v2, as νT = Cµv2k/ε. However, the reduction in v2 is not enough to increase k as given by the
DNS data.

The approach by Resende et al. [32] works well in increasing k in the buffer layer, but fails
to capture the viscoelastic effects away from the wall, due to the fact that f Previous

µ → 1 as y → h,
which is contrary to the DNS data of Li et al. [22] and the analogous behavior of v2 away from the
wall. Therefore an additional model is required to capture the effect of nonequilibrium away from
the wall, similarly to the Newtonian model of Park et al. [43]. Benzi et al. [41] demonstrated that the
overall effect of polymer stretching is to introduce an effective viscosity proportional to Cyy, which is
dominated by the NLTyy component (modeled here with the first term in Equation (26)). An additional
term is multiplied to the eddy viscosity to account for the global reduction of eddy structures for
increasing DR. This approach is similar to the model of Resende et al. [24] and the study using DNS
data of Resende et al. [42] which multiplies the damping function by a factor of 1− g(VE), where
g(VE) is a function of the viscoelastic terms, VE.

The final model presented for the modified damping function, fν, is

fν = (1− A)

[
1− exp

(
− y∗

aµ

(
1 + B/aµ

))]2

, (28)

A = CA

(
fN

λ2 L̃3/2

f (Ckk)2
ε

ν0

)0.3

, (29)

B = CB(Ckk − 3)1.25/L, (30)

with model constants CA = 0.071 and CB = 0.44. An additional contribution in the present model
comes from an alternative representation of the dimensionless wall scaling y+ = uτ/νw, where νw is the
wall viscosity. The presence of the wall friction velocity poses a problem for flows with re-circulation
or reattachment were the friction velocity becomes null at these points, causing floating point errors
within computational solvers. Possibilities other than y+ that solve this issue are Rey ≡ ky/ν0 or the
turbulent Reynolds number, Ret. Wallin and Johansson [44] formulated an alternative scaling, y∗,
in terms of Rey so that y∗ ≈ y+ for y+ ≤ 100 in channel flows. The form proposed is

y∗ = Cy1Re1/2
y + Cy2Re2

y, (31)
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where Cy1 = 2.4 and Cy2 = 0.003. The Rey-term is motivated by the fact that the near-wall asymptotic
behaviour for Re1/2

y is ∼ y2. The Re2
y-term is artificially introduced to obtain a near linear relation in

the buffer region.
The performance of the fν closure can be analyzed in Figure 2 by comparing the predictions

with DNS data cases (16, 19, 20) for LDR, IDR and HDR respectively in Table 1 and with the
model of Resende et al. [32]. The predictions offer significant improvement away from the wall
compared to the previous model. The effects can be viewed for the turbulent kinetic energy and
the eddy viscosity in the results section, offering improved results for various levels of DR and
Reynolds numbers. The fν closure more accurately represents the anisotropic effect akin to the v2 − f
models of Masoudian et al. [28,30], with the thickening of the buffer layer from the stretched polymers,
along with a global reduction with the new closure.

Figure 2. Comparison of the fν model between DNS data (× crosses) and predictions with the new
model (continuum lines), and previous model (dash lines): each colour represents a different drag
reduction regime: red (low drag reduction (LDR), case 16); blue (intermediate drag reduction (IDR),
case 19); green (high drag reduction (HDR), case 20).

3.3. Development of Closures for εV and Eτp

The closure model for εV is approached following the DNS budget analysis of the governing
terms proposed by Pinho et al. [20]. In their work, they verified that the double correlation can be
neglected with respect to the triple correlation at LDR. This was later confirmed for IDR and HDR by
Resende et al. [24] and Masoudian et al. [28], respectively. Pinho et al. [20] extended this analysis and
demonstrated that the triple correlation can be decoupled and modeled as a function of NLTmm/2.
Following this, Masoudian et al. [28] confirmed the model capabilities within 5% accuracy for all DR
regimes via an extensive pdf study, and is the model used here given by

εV ≈
νp

2λ
f (Cmm)NLTmm. (32)

The closure model derived for Eτp assumes that it depends on the same quantities as the classical
Newtonian destruction term of the transport equation of ε, but involving a viscoelastic quantity,
typically with the viscoelastic stress work used by Resende et al. [24,32] and Masoudian et al. [28,30].
However, as εV contains a negative part close to the wall via the NLTmm contribution, it is not feasible
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to include εV in a suitable model for EτP , based on the DNS analysis of ε being strictly decreasing near
the wall for increasing DR.

The closure derived by Resende et al. [32] is complex with Wiτ0 dependence to force the correct
trend in ε. Here, a much simpler approach is obtained with dependence through k and some viscoelastic
quantities which increases proportional with DR. The closure is given by

Eτp ≈ −CN4
ε̃N

k

[
νp

√
Cµ fµ L̃3/4

(
k
ν0

)2
]

, (33)

with model constant CN4 = 0.083. The effect of Equation (33) on ε predictions can be viewed in the
results section for LDR and HDR.

Overall, it is clear that all the developed viscoelastic closures presented in this study perform well
compared with DNS data. Most importantly, this was achieved without the use of friction velocity
dependence. The simplicity of the governing closures allows easy implementation into 3D codes and
can be extended to flows with reattachment when DNS data becomes available.

4. Summary of the Present Model

The governing equations with complete closure models that were developed in the previous
sections are presented here.

Momentum equation:

ρ
DUi
Dt

= − ∂p
∂xi

+ ρ
∂

∂xk

[
(νs + νT)

∂Ui
∂xk

]
+ ρ

∂

∂xk

(νp

λ
[ f (Cnn)Cik − δik]

)
, (34)

where the eddy viscosity is given by

νT = Cµ fν
k2

εN , (35)

with modified damping function

fν = (1− A)

[
1− exp

(
− y∗

aµ

(
1 + B/aµ

))]2

, (36)

A = CA

(
fN

λ2 L̃3/2

f (Ckk)2
ε

ν0

)0.3

, (37)

B = CB(Ckk − 3)1.25/L, (38)

with constants aµ = 26.5, CA = 0.071 and CB = 0.44. y∗ is given by Equation (31).
Conformation tensor equation:

DCij

Dt
−Mij − NLTij = −

1
λ
[ f (Ckk)Cij − δij], (39)

with

NLTij ≈ fNCN1
λ
√

L̃εN

ν0 f (Cmm)
δij − f 1/4

N CN2Mij + CN3
k
ν0

√
L̃Mnn

γ̇

∂Ui
∂xk

∂Uj
∂xk

γ̇2 , (40)

where fN = νT/ν0 is the local eddy viscosity, γ̇ =
√

2SpqSpq is the shear rate invariant, L̃ =
√

L2/900 is
the normalised maximum extension with the lowest DR, with model constants CN1 = 0.11, CN2 = 0.3
and CN3 = 0.3.
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Transport equation of k:

ρ
Dk
Dt

= ρ
∂

∂xi

[(
νs +

ftνT

σk

)
∂k
∂xi

]
+ Pk − ρ(ε̃N + D)−

νp

λ
f (Cmm)

NLTmm

2
, (41)

where Pk = −ρuiuj
∂Ui
∂xj

is the rate of production of k.
Dissipation transport equation:

ρ
Dε̃N

Dt
=ρ

∂

∂xi

[(
νs +

ftνT

σε

)
∂ε̃N

∂xi

]
− f2Cε2 ρ

(ε̃N)2

k
+ ρE

+

(
Cε1 Pk − CN4νp

√
Cµ fµ L̃3/4

(
k
ν0

)2
)

ε̃N

k
, (42)

with model constant CN4 = 0.083.
The remaining constants are from the Newtonian model and are Cε1 = 1.45, Cε2 = 1.90, Cµ = 0.09,

σk = 1.1 and σε = 1.3.

5. Numerical Procedure

This section presents the numerical methods applied in order to examine the viscoelastic
turbulence model against the available DNS data identified within the literature. A new finite
volume C++ computational solver was developed in the OpenFOAM software by modifying the
k− ε sub-class files and introducing the FENE-P viscoelastic quantities such as: the polymer stress to
the momentum equation; conformation tensor transport equation; and modified damping function to
include elastic effects.

A fully-developed channel flow using half of the channel height, h, is applied given the
symmetry of the governing geometry. We assigned 100 cells in the transverse (wall) direction with
approximately 10 cells located inside the viscous sublayer. This is to provide mesh independent results,
with errors within 0.5% for the mean velocity and the friction factor compared with a very fine mesh,
similarly with [30]. The initial state of the simulation is the Newtonian solution until a steady-state
solution was reached for each run case, except for HDR where a similar IDR developed case is applied
to reduce computational time. Relaxation factors for the additional conformation tensor field are set
to 0.2, along with residual control set to 10−5. To improve numerical stability, an artificial diffusion term
is added to the RACE of the form, κ∂2

kCij, where κ denotes a constant, isotropic, artificial numerical
diffusivity. In earlier studies [10], the dimensionless artificial numerical diffusivity is taken to be
κ/huτ ∼ O(10−2). Here, κ/huτ ∼ O(10−3) and has negligible effect on mean values.

A pressure gradient is forced in the stream-wise direction to be unity, with periodic boundary
conditions for all other flow fields, mimicking the DNS procedure of Li et al. [22]. No-slip boundary
conditions were imposed on the solid wall for the velocity field U, along with k and ε̃ set to
zero (or very small, ∼ 10−15). A Dirichlet boundary condition for Cij is reported in Appendix A
(similar to [26], but for all components), which is imposed within OpenFOAM under the swak4Foam
library using the groovyBC functionality developed by Gschaider [45].

When normalizing the governing equations and inherently the various physical quantities, the
velocity scale is taken to be the friction velocity (leading to the use of superscript +) and the length
scale is the viscous length, xi = x+i ν0/Uτ . The conformation tensor is already in dimensionless form.

6. Results and Discussion

Following the numerical procedure proposed in the previous section, the model performance
is assessed against a range of different flow and rheological parameters presented in the DNS data
within Table 1.
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6.1. Analysis of Conformation Tensor

Figure 3 compares the individual components of the conformation tensor with the present model
against the model of Resende et al. [32] and selected DNS data covering L2, Wiτ0 and Reτ0 variations
(cases 16, 19, 20 and 26 in Table 1). as can be viewed in Figure 3a, the Cxx predictions are consistent
with the DNS data. The new closure for NLTxx (see term III in Equation (26)) is responsible for the
improved predictions and can capture the Reτ0 , L2 and Wiτ0 variations with much greater simplicity,
especially for increased Reynolds number (Reτ0 = 590) compared with the model of Resende et al. [32].

(a) (b)

(c) (d)

Figure 3. Comparison of the conformation tensor between DNS data (× crosses) and predictions with
the new model (continuum lines), and previous model (dash lines): (a) Cxx; (b) Cyy; (c) Czz and (d) Cxy.
Each colour represents a different drag reduction regime: red (LDR, case 16); blue (IDR, case 19); green
(HDR, case 20) and orange (very HDR, case 26. DNS data not available for Cxy).

Figure 3b plots the Cyy component, showing good agreement with the DNS data and improving
upon the most recent model, especially away from the wall. The important feature is the location of
the value at the centre-line and the peak location which both show good improvement, especially
for higher Reynolds numbers (Reτ0 = 590). The improvements are a result of the new Eτp closure
(see Equation (33)) which directly impacts εN in the NLTyy closure (see term I in Equation (26)).
Figure 3c plots the Czz component and shows an under-prediction due to the isotropic assumption
used in the model of NLTij, however, its impact is not significant.
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The model predictions of the Cyy term are important in capturing the features of the
Cxy component. As can be observed in Figure 3d, the model is able to capture the near-wall region,
which, according to the findings of Li et al. [22], is the region of high chain dumbbell extension
(limited to y+ < 50) where the effect of Cxy acts towards the polymer shear stress.

It is evident that the overall predictions of the individual conformation tensor components are
improved compared to the model of Resende et al. [32]. This is a result of the new NLTij and Eτp

closures developed in the present work, which allows more scope of predictability and increased
numerical stability with simpler closures.

6.2. Analysis of k, ε and νT

The predicted k profiles are shown in Figure 4a for cases 16 and 19 in Table 1, and Figure 4b
for low and high Reynolds number cases (7 and 27). There is reasonable improvement of the profile
away from the wall as a result of the new fν closure for increasing drag reduction and for various
Reynolds numbers.

(a) Reτ0 = 395 (b) Reτ0 = 125 and 1000
Figure 4. Comparison of turbulent kinetic energy between DNS data (× crosses) and predictions with
the new model (continuum lines), and previous model (dash lines): (a) Reτ0 = 395—red (LDR case
16)—and blue (IDR case 19); (b) Reτ0 = 125—green (HDR, case 7) and Reτ0 = 1000—blue (IDR, case 27).

In Figure 5, the prediction of the dissipation rate are compared with the DNS data of both LDR
(case 16) and very HDR (case 22), along with predictions for the v2 − f model of Masoudian et al. [28].
The predictions for LDR are captured well with the DNS for both near and far from the wall. For HDR,
there is a significant improvement near the wall compared with the v2 − f model. This is a result
of the Eτp closure formulated (See Equation (33)) which decreases ε as flow viscoelasticity increases.
The model of Resende et al. [32] shows similar results to the current model and is not plotted so that
the figure is clearer. However, the complexity of the present Eτp closure model is reduced substantially
and removes all friction velocity dependence, but can still predict all the main flow features with
good performance.

The local eddy viscosity is plotted in Figure 6a for all ranges of DR. The combined performance
of fν, k and ε gives rise to the predictions shown. We observe a reduction in the eddy structures within
the buffer-layer and log-layer for increasing DR, as the DNS suggests. The damping function predicts
well this behavior with the near-wall polymer extension via Ckk and the global reduction via (1− A).
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Figure 5. Comparison of the rate of Newtonian dissipation of k between DNS data (× crosses) and
predictions with the new model (continuum lines), and v2 − f model of Masoudian et al. [28]
(dash lines). Each colour represents a different drag reduction regime: red (LDR case 16); orange
(HDR case 22).

(a) (b)
Figure 6. Comparison of the (a) local eddy viscosity and (b) mean stream-wise velocity profile, between
DNS data (× crosses) and model predictions (continuum lines). Each colour represents a different
drag reduction regime: red (LDR case 16); blue (IDR case 19); green (HDR case 20); orange (very HDR
case 22).

6.3. Analysis of Velocity Profiles

Figure 6b shows the mean stream-wise velocity profiles for all ranges of DR at Reτ0 = 395. All of
the profiles reduce to the linear distribution u+ = y+ in the viscous sub-layer. Further from the wall,
the velocity profiles are well-captured for all ranges of DR.

The model can also predict well a range of Reynolds numbers with varying rheological parameters
as can be viewed in Figure 7a. This is extended in Figure 7b for high Reynolds numbers, where there is
a significant improvement compared with the model of Resende et al. [32]. This is a result of the new
closure model for NLTxx which scales well with Reynolds number and with reduced complexity.

The advantage of the current model is the ability to capture all velocity profiles well within
the model limits, with more simplicity with regards to model closures and without friction
velocity dependence.
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(a) Reτ0 = 125, 180, 300 (b) Reτ0 = 590, 1000
Figure 7. Comparison of the velocity profiles between DNS data (× crosses), current model predictions
(continuum lines) and previous model predictions [32] (dashed lines). Each colour represents a
different drag reduction regime: (a) red (LDR case 1); blue (IDR case 10); orange (very HDR case 15).
(b) blue (IDR case 27); orange (very HDR case 26).

7. Conclusions

A viscoelastic turbulence model in fully-developed drag-reducing channel flow is improved,
with turbulent eddies modeled under a k− ε representation, along with polymeric solutions described
by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model. A new finite volume
C++ computational solver was developed in the OpenFOAM software by modifying the k− ε sub-class
files and introducing the FENE-P viscoelastic quantities such as: the polymer stress to the momentum
equation; conformation tensor transport equation; and modified damping function to include
elastic effects. The model performance is evaluated against a variety of rheological parameters within
the DNS data literature, including: friction Reynolds number Reτ0 = 125, 180, 300, 395, 590, 1000;
Wiessenberg number Wiτ0 = 25, 36, 50, 100, 116, 200; and maximum molecular extensibility of the
dumbbell chain L2 = 900, 1800, 3600, 10, 000, 14, 400. The DNS data case (19) in Table 1 (Reτ0 = 395,
DR = 37%) is used for the calibration of the closures developed for the turbulent cross-correlations
identified in Section 3. The model is capable of predicting all flow features for low and high Reynolds
numbers at all regimes of DR and improves significantly on the model of Resende et al. [32], with its
ability to capture higher Reynolds numbers with simpler and physical-based closures.

The main feature is the formulation of the NLTij term which accounts for the interactions
between the fluctuating components of the conformation tensor and the velocity gradient tensor.
The advantage of the closure is the reduction in the complexity and use of damping functions in
the dominant contribution, NLTxx, modeled here to increase with turbulent kinetic energy as the
flow viscoelasticity increases, demonstrating significant improvement with a range of rheological
parameters and flow conditions.

Further improvements are developed for the viscoelastic destruction term, Eτp , within the
dissipation rate transport equation. Modeled here with dependence on k and viscoelastic quantities,
showing the ability to predict ε for low and high drag reduction.

An improved modified damping function, fν, is also presented, which is able to predict the global
reduction of the eddy viscosity and shift away from the wall for increasing viscoelasticity, whilst also
improving the profiles of turbulent kinetic energy.

Overall, predictions compare very well with a wide range of DNS data and significantly improves
on capturing all flow features with simplicity and performance compared with the most recent
k − ε model developed by Resende et al. [32]. The simplicity of the present model allows easy
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implementation into 3D codes and increases numerical stability. All friction velocity dependence
is removed in the present model which is the first of its kind for damping function k − ε models,
whose main advantage is the realization of simulations in geometries with reattachment. Future work
to extend to this study includes the development of an improved k−ω model based on the present
model [25]. This would require the same concept of the modified damping function developed in this
paper to be applied, with capabilities to predict flow behavior in industrially represented geometries
such as pipes and constrictions.
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Appendix A

The FENE-P equations simplify considerably if we consider 1D, laminar, parallel flow:
ux = uz = 0 and ux = ux(y) ≡ u. The system becomes:

Cyy
du
dy
− 1

λ
( f (Ckk)Cxy) = 0 (A1)

1
λ

(
1− f (Ckk)Cyy

)
= 0 (A2)

1
λ
(1− f (Ckk)Czz) = 0 (A3)

2Cxy
du
dy
− 1

λ
(1− f (Ckk)Cxx) = 0, (A4)

where f (Ckk) =
L2

L2−Ckk
. Introducing the Weissenberg number as Wi = λ du

dy and solving the system of
equations above, one finds the following cubic equation in f (Ckk) ≡ f :

f 3 − f 2 − 2Wi2

L2 = 0, (A5)

which omits one real solution, fR, that satisfies the laminar equations applicable at the wall:

Cxx =
1
fR

(
2Wi2

f 2
R

+ 1

)
(A6)

Cyy =
1
fR

(A7)

Czz =
1
fR

(A8)

Cxy =
Wi
f 2
R

(A9)

where

fR =
1
3

(
B

21/3 +
21/3

B
+ 1

)
(A10)

with

B = (A + [(A + 2)2 − 4]1/2 + 2)1/3 and A = 54
(

Wi
L

)2
. (A11)
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In our numerical simulations, the explicit definition of the wall value using Equations (A6)–(A9)
as a Dirichlet boundary condition considerably improves the stability of the solution procedure and is
preferred over a zero-flux Neumann boundary condition for the conformation tensor.
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