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ABSTRACT In the history of databases, eXtensible Markup Language (XML) has been thought of as the

standard format to store and exchange semi-structured data. With the advent of IoT, XML technologies

can play an important role in addressing the issue of processing a massive amount of data generated

from heterogeneous devices. As the number and complexity of such datasets increases there is a need for

algorithms which are able to index and retrieve XML data efficiently even for complex queries. In this

context twig pattern matching, finding all occurrences of a twig pattern query (TPQ), is a core operation in

XML query processing. Until now holistic joins have been considered the state-of-the-art TPQ processing

algorithms, but they fail to guarantee an optimal evaluation except at the expense of excessive storage costs

which limit their scope in large datasets. In this article, we introduce a new approach which significantly

outperforms earlier methods in terms of both the size of the intermediate storage and query running time.

The approach presented here uses Child Prime Labels (Alsubai &North, 2018) to improve the filtering phase

of bottom-up twig matching algorithms and a novel algorithmwhich avoids the use of stacks, thus improving

TPQs processing efficiency. Several experiments were conducted on common benchmarks such as DBLP,

XMark and TreeBank datasets to study the performance of the new approach. Multiple analyses on a range

of twig pattern queries are presented to demonstrate the statistical significance of the improvements.

INDEX TERMS XML, holistic joins, XML databases, structural XML query processing.

I. INTRODUCTION

XML technology has emerged as the de facto standard for

storage of semi-structure data and for data exchange in

e-business [19]. Twig Pattern Matching (TPM) is a core oper-

ation in XPath [41] and XQuery [42] which are popular XML

query languages. A Twig Pattern Query (TPQ) is an XML

path expression which represents the basic building block

of XML query languages. The existing literature on XML

query processing is extensive and focuses particularly on the

twig pattern matching problem because it is the hardest [6],

[40]. A Twig Pattern Match is defined as mapping functionM

between a given tree pattern query Q and an XML document

D, M : Q → D that maps nodes of the query Q into nodes

of the document D preserving structural relationships and

satisfying the predicates of Q. Formally, TPM has to find all

matches of a given tree pattern queryQ on an XML document

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

D [1], [10], [16], [18], [21], [33], [40]. For a document D

and a query Q with n nodes (q1, . . . , qn), a complete match

is an n-dimensional tuple (e1, . . . , en) which consists of the

database elements that identify a distinct match of Q in D.

An output match is a projection of a complete match such

that the database elements corresponding to non-output query

nodes are excluded [36]. The answer to Q on D is an ordered

set of all the output matches of Q on D where the tuples are

sorted in order of the common prefixes of the individual root-

to-leaf paths.

The pioneering twig join algorithm, TwigStack was pro-

posed in [10]. In the literature several twig join algorithms

have been proposed to improve on this initial approach. In dis-

cussing them in this article, these algorithms have been

grouped into the two main categories. On one hand, top-

down twig join algorithms process TPQs by reading the

nodes in pre-order traversal of the input document and check-

ing child descendant extensions for internal query nodes.

On the other hand, bottom-up algorithms store elements of
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the input document in post-order manner and inspect match-

ing elements through virtual sub-trees. A major drawback

of this second approach is its high memory consumption

because all elementsmapping to leaf query nodes reside in the

main memory until the entire document has been completely

processed but, in terms of processing time, it is faster than top

down algorithms [6].

In the literature, top-down processing, which is based on

getNext() [10], has been combinedwith bottom-up algorithms

as a filter in order to reduce memory usage and thus improve

the overall performance. The main weakness of using a top-

downfilter is that it does not provide an optimal evaluation for

TPQs which include Parent-Child (P-C) relationships. This

is a major bottleneck because such relationships are common

in queries. The problem is a result of the restricted access

mechanism (i.e., a single sequential scan of partitions of the

input document) adopted in order to guarantee linear I/O

Cost. Figure 1 depicts the simple partition technique used by

XML query processing called a tag streaming scheme where

each query node q is associated with a stream Tq consisting of

all nodes with the same tag as q sorted in an order compatible

with the depth-first traversal of the XML tree. Holistic algo-

rithms can not guarantee that the head elements would form

matches to TPQs comprising of P-C edges [6], [13], [20].

This dilemma (i.e., two head elements block each other with

respect to P-C relationship) means that holistic algorithms

must either output useless intermediate results or risk missing

some potential answers to TPQs. The advantages of a top-

down filter in bottom-up algorithms are that they speed up

the sequential reading of the input streams but avoid storing

elements which do not have ancestors likely to participate in

the final solution. However, no top-down filter algorithm can

remove leaf query nodes effectively when a mixture of P-C

and A-D queries are processed.

The work of [3] proposed a new filtering strategy in twig

joins which takes advantage of the the properties of prime

numbers to avoid an additional pre-processing step. The

Child Prime Label (CPL) algorithm is an extension of the

getNext() core function in the classical holistic twig joins

algorithm, TwigStack [10]. This new filtering function can

filter out irrelevant elements efficiently without either vio-

lating the document order or consuming additional space.

A new top-down holistic algorithm TwigStackPrime was pre-

sented, which reduced memory consumption and the com-

putation overhead of twig pattern matching when P-C edges

are involved. In particular, holistic algorithms using the CPL

indexing technique were shown to be I/O and CPU optimal

when a TPQ has only A-D edges or where there are P-C edges

to connect leaf query nodes. This analysis was confirmed by

experimental results on a wide range of real-world, bench-

mark and artificial datasets.

Over the past decade, two holistic joins, proposed in [7],

[20], have been considered as the best top-down and bottom-

up combinations. The authors of [20] proposed a new pre-

order filtering function called getPart()which introduced two

improvements to the original getNext() function. Compared

FIGURE 1. Tag streaming model of a query node q [50].

with the existing preorder filtering function, getPart() returns

child query nodes if and only if they have a relevant ancestor

processed by previous calls of getPart() and stored in inter-

mediate storage. The second improvement is to skip irrelevant

elements depending on the current query node’s descendants

and ancestors, in contrast to the getNext() which is only able

to skip useless elements based on the current query node’s

descendants. Other authors [7] further improved the getPart()

function by avoiding unnecessary function calls. The new

advanced preorder filtering function is called getMatch(). The

getPart() function serves as the advanced preorder filtering

strategy for a family of twig matching algorithms devised in

[20]. The alternative is the GTPStack algorithm [7] which

uses the getMatch() function.

However, two issues must be taken into account when a

combination of preorder and postorder filtering is considered

[7], [20], [29]:

1) The filtering algorithm must return each element of

a query node q in document order. This is impor-

tant because when visiting document elements in pos-

torder (i.e, reversed order) it is possible to determine

whether or not e satisfies the twig pattern query directly

without further investigation because all its descendants

have been visited.

2) Elements must be pushed into the intermediate storage

in preorder since the answer to TPQ Q with n nodes

can be represented as an n-ary relation where each tuple

(e1, . . . , en) consists of the database elements that iden-

tify a distinct match of Q in D. Some fields may be

duplicated and some may not be in the document order,

but tuples have to be sorted in order of the common

prefixes of the individual root-to-leaf paths. As a result,

if we push elements into the intermediate storage in

postorder, the enumeration outputs the resulting tuples

unordered.

In this article, we explain how the improvement of the

recent top-down algorithm, TwigStackPrime [3] can be trans-

formed into new state-of-the-art bottom-up algorithm by

exploiting ideas proposed in [3], [7], [20], [29], [50] and

extend the original holistic join approach to solve these

issues. We also show that it is not necessary to maintain a set

of stacks to adopt the level split vectors intermediate storage

when preorder storing is required. As a result, we can prove

that for a certain class of TPQs our bottom-up approaches

have linear time complexity with respect to the size of the
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input and output and the linear space complexity with respect

to the longest path of the XML tree. To the best of our

knowledge, this is the first work which guarantees optimal

worst case evaluation for bottom-up holistic joins without

performing pre-processing (i.e., stream pruning). The main

contributions of this article are summarized as follows:

• Introducing the CPL approach to the advanced pre-

order filtering functions used by the TJStrictPre and

GTPStack algorithms, namely getPart() and getMatch(),

respectively.

• A set of novel bottom-up holistic twig matching algo-

rithms which are based on a new advanced preorder fil-

tering function which has the ability to preserve the doc-

ument order, unlike previous filtering strategies, such as

[30], [32], and filter out irrelevant elements when P-C

relationships are invloved in TPQs. Full proofs of cor-

rectness for the algorithms necessary to evaluate subsets

of TPQs containing P-C and A-D axes are provided as

well.

• Lastly, the paper provides an empirical proof of

improvements of the holistic algorithms proposed, based

on the CPL approach, over other related methods from

the literature.

The paper is organized as follows. The following section,

Section II, reviews the related work. In Section III, we give

an overview of models and techniques used in this article.

Section IV introduces the TwigPrime algorithm and its opti-

misations while Section V experimentally verifies and vali-

dates the advantages of the new approaches. Finally, the paper

is concluded in Section VI.

II. RELATED WORK

A. NODE LABELLING SCHEME

Most existing XML query processing algorithms [5], [7],

[10], [20], [25], [29], [32], [43] rely on XML indexing tech-

niques to access only XML data relevant to the XML query.

In XML, there are two basic types of index. The first indexes

each node in an XML document by recording its position.

This group are known as node labels or labelling schemes.

Node indexing approaches index each node in an XML doc-

ument by assigning an unique label (based on a labelling

scheme) to every node. This label encodes its positional

information within the XML tree. The values of labels are

a reflection of the chosen labelling scheme. This group of

indices uses nodes as the basic unit of a query which provides

the opportunity to perform structural queries very efficiently

by exploiting information encoded in the labels. According

to [37], a labelling scheme has to guarantee uniqueness and

order preservation of node labels, and ensure that the hier-

archical relationships between a pair of data nodes can be

determined directly from the labels. To better explain the

mechanisms of node indexing methods and their properties,

[22] classified node indexing into four distinct types; Sub-tree

labelling, Prefix-based labelling, Multiplicative labelling and

Hybrid labelling. A full discussion of the different categories

lies beyond the scope of this article but, all XML query pro-

cessing algorithms which perform structural join operations

to match a given query against an XML document rely on

either sub-tree labelling schemes or prefix-based labelling

schemes. A well-known example of sub-tree labelling is the

regional labelling scheme proposed in [49]. In this approach,

each node is assigned with a 3-tuple as <start, end, level>.

Start and end contain values of positions corresponding to

the opening tag <tag> and the closing tag </tag> of the

subtree and level represents the depth of the node within the

XML tree. The two basic relationships Ancestor-Descendant

(A-D) and Parent-Child (P-C) can be determined easily from

this. Given two nodes u and v, u is an ancestor of v if and

only if u.start < v.start < v.end < u.end . Furthermore, a P-

C relationship is defined as node u is the parent of node v if

and only if u.start < v.star < v.end < u.end, v.level =

u.level + 1. An example of the regional labelling scheme

can be found in Figure 5. A classic example of multiplica-

tive labelling is a prime number labelling scheme. This was

proposed to support labelling dynamic XML documents. In a

prime number labelling scheme [46], every node is given a

unique prime number called the self-label. Then the label

for each node is the product of its self-label and its parent-

label. This labelling scheme completely avoids re-labelling

when a new data node is inserted, only the simultaneous

congruence value to determine the document order needs to

be recalculated.

B. TWIG QUERIES

The holistic join was introduced by [10] as a new approach

to evaluate query twig patterns efficiently. The work was

an extension to the sophisticated PathStack algorithm which

decomposed queries into a set of binary structural relation-

ships. They proposed the decomposition of twigs into a set

of root-to-leaf paths and evaluated each root-to-leaf path

using the PathStack algorithm. The final results are produced

by a merge join operation on the intermediate results. The

algorithm is called TwigStack and has shown a significant

performance improvement in reducing intermediate results

in comparison to the binary structural join algorithms. The

TwigStack algorithm only guarantees an optimal evaluation

of twig queries with A-D relationships connecting all query

nodes. The optimal evaluation in an holistic approach means

every query node pushed into the encoding data structure (in

the case of TwigStack is a chain of stacks) must be part of the

final result. This is established by scanning them sequentially

[15]. However, TwigStack’s performance suffers from its

generation of useless intermediate results when twig queries

encounter P-C relationships. TwigStack performs twig eval-

uation in two phases: the first phase is to decompose a twig

pattern query into single root-to-leaf paths and the second is

to match them against XML data. The second phase is the

merge phase in which all matching results produced by the

first phase are merged to compute the final query results.

Obviously, the second phase is an expensive process since

an n-way merge has to be performed where n is the number
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of single paths in the twig query. TwigStack is considered

the keystone for algorithms in this family and many research

papers have suggested improvements to it [2], [4], [11]–[13],

[20], [23], [24], [26], [31]–[35], [38], [43], [44], [47], [48].

Nevertheless, an optimal evaluation of a tree pattern query

with any arbitrary combination of A-D and P-C relationships

has been proven to be impossible by [15] for the TwigStack

algorithm and its variants. In order to speed up the query pro-

cessing and avoid reading useless data nodes, the authors of

TwigStack [10] proposed an XB-tree index, which is a variant

of B-tree index, to reduce the disk-read costs of TwigStack

by skipping over input streams corresponding to inner query

nodes which do not satisfy A-D relationships with child query

nodes.

In [13], the authors reviewed the sub-optimality of the

existing clustering technique used in TwigStack where an

XML document is clustered into tag streams which group

together elements with the same tag name. They proposed

two different novel streaming schemes, namely: prefix path

and tag + level streaming schemes. A tag + level streaming

scheme clusters all the elements which have the same tag

and are located at the same level. A prefix-path streaming

scheme, or PPS for short is an ordered set of elements

which have the same prefix path. Figure 2 presents different

streaming schemes over a given XML tree, elements are

grouped based on similarity in tag names and level in case

of tag + level streaming scheme or unique path in case of

prefix path streaming scheme. For the sake of simplicity,

the number associated with each tag indicates the level using

tag + level streaming scheme as in Figure 2c and the path

associated with each tag indicates the unique path using prefix

path streaming scheme as in Figure 2d. For example, a1

streaming list contains all elements with a-tagged node and

appear at level 1. Based on the new streaming schemes, they

proposed an extension to TwigStack called iTwigJoin. Their

algorithm is optimal for queries with A-D edges only when

tag streaming schemes (i.e., label lists) are applied. The use

of tag + level streaming scheme in iTwigJoin guarantees

the optimality in two classes of queries: A-D or P-C edges

only. In addition, the iTwigJoin depends on prefix path (i.e,

iTwigJoin + PPS) and is optimal in three classes of queries:

A-D, P-C edges or one branching query node only. It has been

proven in [28] that the efficiency of iTwigJoin reduces when

the number of streams for every query node is increased.

TwigStack and its variants described above all work by

decomposing twig queries into individual root-to-leaf paths

and processing the queries top-down to filter out irrelevant

nodes which may match query nodes’ tags but do not satisfy

its structural constraints. Top-down filtering can be seen as

prefix path matching where a sequence of steps in an XPath

expression connects descendants to their ancestors. For exam-

ple, consider a given query which consists of k query nodes

as q1/q2/ . . . /qk . If a document element e corresponding to

q2 in the mapping function q2 → e such that e is satisfied

and if and only if it has an ancestor element corresponding

to q1 which also satisfies the mapping function and so on

FIGURE 2. Illustration of different data partitioning schemes.

to the leaf query node qk , then each element in the entire

path will be pushed into their corresponding stacks in the

intermediate storage. This means that the top-down process

checks document elements in pre-order and stores them in

post-order.

The alternative approach of examining XML queries

against document elements in post-order was first introduced

by [12]. In this article the authors prove that decomposition

of twigs into a set of single paths and enumeration of these

paths is not necessary to process twig pattern queries. The key

idea of their approach is based on the proposition that when

visiting document elements in post-order (i.e, reversed order)

any element e the determination whether or not e satisfies the

twig query sub-rooted at e is implicit because all its descen-

dants have been visited. They proposed a new algorithm to

process twig queries without merge joining single paths using

a new encoding to store twig results in main memory. Their

representation is a tree of stacks in which every query node

n is associated with a hierarchical stack HSn which consists

of an ordered sequence of stack trees. Pointers are heavily

used to capture the basic relationships between elements

in different hierarchical stacks as shown in Figure 3. The

researchers developed a new algorithm called Twig2Stack to

evaluate awider range ofXMLqueries than TwigStack and its

192572 VOLUME 8, 2020
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variations including generalized twig pattern (GTP) queries

which are a fundamental building block for XQuery process-

ing. GTP queries contain both mandatory (corresponding to

the FOR or WHERE clauses) and optional (corresponding to

LET clause) relationships. Twig2Stack produces its solution

using an enumeration function over the pointers in the hier-

archical stacks. In the same context, a new algorithm was

proposed in [26], called HolisticTwigStack. This algorithm

combined the filtering strategy of TwigStack to Twig2Stack

in order to reduce memory consumption. The major limita-

tions with both algorithms is the complex stack structure.

Although they both reduce the cost of query execution by

eliminating the merge phase (second phase in TwigStack),

the pointers in both algorithms, especially Twig2Stack, are

complex and expensive to maintain. In the worst case the

entire document needs to be loaded into the main memory. To

overcome these drawbacks, a new algorithm called TwigList

was proposed in [38]. TwigList replaced hierarchical stacks

with a list for every node and used simple intervals to capture

structural relationships. TwigList used a global stack to read

the whole document in pre-order and adds data nodes to the

corresponding lists in post-order manner if they satisfy the

mapping function conditions. To demonstrate the difference

between the two algorithms consider Figure 3b; element a1
in La has two intervals specified by four pointers in two

2-tuples, namely <starty, endy> and <startx , endx>, starty
records first element matches a1 as one of its descendants

with y-tagged node while endy records last element is one

of a1’s descendants with a y-tagged node. a1 has <1, 2> as

its recorded interval for contained elements corresponding to

query node y. Reference [29] extended TwigList by combin-

ing the features of two-phased holistic algorithms and one-

phased algorithms, namely TwigStack and TwigList. They

improved TwigList by applying the filtering strategy applied

in TwigStack to select useful elements before pushing them

into the TwigList stack. To do this they proposed two novel

algorithms, called TwigMix and TwigFast to improve the effi-

ciency of TwigList. When twig pattern queries contain only

A-D edges both algorithms guarantee all elements in inter-

mediate results contribute to the final results. In their exper-

iments TwigMix and TwigFast significantly outperformed

TwigList.

The authors in [20] proposed a new storage scheme, called

a level split approach which splits the intermediate list con-

nected to its parent list into levels equal to the depth of the

XML tree as shown in Figure 4 for the same XML tree and

a given query as in Figure 3. In their paper, a combination

of preorder and postorder filtering methods is adopted to

develop two algorithms, namely: TJStrictPre and TJStrict-

Post. Their experimental results demonstrated the ability of

the new method to eliminate useless elements in inner lists,

and so the number of intermediate results is far smaller than

in TwigList and TwigFast. These approaches can guarantee

linear CPU and I/O complexity of the output enumeration

relative to the output size. However, they suffer from large

intermediate results in comparison to the query output. In [7],

FIGURE 3. The intermediate storage of Twig2Stack and TwigList when
processing a TPQ Q1 = a[//y]/x over the XML tree T1 in Figure 5.

FIGURE 4. Illustration of level split list approach introduced in [20]. L2
x

stores elements which have level values equal to 2 in the XML tree.

the authors improved the filtering strategy proposed in [20]

by eliminating unnecessary self-nested matching checks (i.e.,

recursive calls) similar to the approach introduced in [28].

Table 1 provides the breakdown of twig matching algorithms

according to filtering strategies, intermediate storage and

optimal query types.

III. PRELIMINARIES

A. DOCUMENT AND QUERY MODEL

In XML, both data and queries are represented using a tree-

structured model. An XML Tree is a rooted, node-labelled

tree as T = (V ,E, r,
∑

V , µ) where V = {v1, . . . , vn} is a

finite set of nodes. E = {(u, v) ∈ V × V } is a set of edges.

r ∈ V is a distinguished node called the root.
∑

V is the set

of element names appearing in T. µ : V − {r} →
∑

V is

a labelling function which associates an element name with

each node other than the root. The level of any node in T is

the number of distinct element(s) in the unique path between

it and the root thus level(r) = 0.

Definition 1 (Child Relationship): Given two nodes u and

v in a rooted, labelled tree where u, v ∈ V , v is a child of u if

and only if ∃e ∈ E : e = (u, v). This relationship is denoted

as PC or P-C and if v is a child of u then u is a parent of v.

VOLUME 8, 2020 192573



S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

TABLE 1. Previous algorithms and their filtering properties. A simple vector is the default for algorithms adopting element references to store
intermediate results.

Definition 2 (Descendant Relationship): Given two nodes

u and v in a rooted, labelled tree where u, v ∈ V , v is a

descendant of u if and only if ∃n1, . . . , nk ∈ V such that

(u, n1) ∈ E, (n1, n2) ∈ E, . . . , (nk , v) ∈ E where 1 ≤ k <

the depth of the tree. If v is a descendant of u then u is an

ancestor of v. This relationship is denoted as AD or A-D.

Formally, Twig Pattern Query (TPQ) is also a rooted,

node-labelled tree TPQ = (V ,E, r,
∑

V , µ) where V =

{v1, . . . , vn} is a finite set of query nodes. E = {(u, v) ∈ V ×

V } is a set of edges which represents parent-child or ancestor-

descendant relationships between connected query nodes.

The set of child edges is denoted by E/, while the set of

descendant edges is denoted by E//. r ∈ V is a distinguished

query node called the root.
∑

V is the set of element names

appearing in TPQ.µ : V →
∑

V is a labelling functionwhich

associates an element name with each node. The difference

between an XML tree and a twig pattern is in the type of

their edges, an XML tree can only have parent-child edges

connecting its nodes, while the twig pattern is an extension

that can handle the Ancestor-Descendant structural relation-

ships as edges connecting its nodes. In practice, a twig pattern

is much smaller than the original XML tree. It can be seen

as a representation of a user query although translating an

XML query plan into a twig pattern is not a simple task

[21]. Complex XML queries are divided into several twig

patterns because a single twig pattern can represent only

a single XPath path expression. The complexity of XML

queries determine the difficulty of translating them into twig

pattern(s). In XML query optimization, the process of trans-

lating user queries to twig patterns and then optimising them

has been the subject of considerable research [51].

B. CHILD PRIME LABELS

In holistic twig joins, head elements pointed to by cursors of

streams are classified to three types with respect to a twig

pattern query Q with n nodes:

• Matching element where en has a minimal extension to

qn.

FIGURE 5. A sample XML tree, XQuery query and the corresponding TPQ.

• Useless element where en can not participate in a match

to Q with the current or future elements.

• Blocked element where en is a neither amatching or use-

less element.

Recently, a new indexing technique which can be used in

conjunction with existing labelling schemes and minimises

the number of blocked nodes during the processing of TPQs

with P-C edges was proposed in [3]. The key idea of this work

is that it can be used in addition to the triplet of range-based

labelling scheme to prevent elements becoming blocked. The

name of the new approach, Child Prime Labels (for short

CPL), arises from the exploitation of child relationships in

XML trees and the property of prime numbers. All the distinct

tags in the XML tree are identified and assigned unique

prime numbers. Then, the intuition of the CPL is to use the

modulo function to test whether or not an element has an

element with a particular tag name among its children. The

leaf elements will be annotatedwith 1 as their CPLs, while the

inner elements (i.e., parent elements) are assigned CPLs by

multiplying the prime numbers of the distinct tags its of child

elements. The immediate child elements of inner elements
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FIGURE 6. An XML tree labelled with range-based augmented with CPL
and the corresponding tag indexing.

can be derived from their labels so that the process of handling

P-C relationship among head elements in the streams can be

resolved by computation.

For illustration, consider an element e, with all distinct

names of children, C = {c1, c2, . . . , cm} and a list of prime

numbers P = {p1, p2, . . . , pm}. The bijective mapping func-

tion f : C → P for all element p ∈ P, there is a unique

element c ∈ C such that f (c) = p. Then, the CPL for element

e can be computed as follows:

CPL(e) =







m
∏

i=1

f (ci), if m ≥ 1

1, otherwise

(1)

The unique prime number associated with q is obtained

from tag indexing where a lookup table to find unique prime

numbers associated with distinct tags within a given XML

document during query processing. As in the original work

of [3], the original range-based labelling scheme is extended

to incorporate the CPL information so that each range-based

label with CPL is a quadruple =(start, end, level, CPL). The

first three attributes are those of the original labelling scheme,

see Figure 5 and the last is the CPL. For illustration, consider

the XML tree in Figure 6. The tag names are assigned prime

numbers as they are identified when scanning the tree in

depth-first traversal. Prime numbers are assigned as follows:

a → 2, x → 3, y → 5. The element a2 has a CPL value

equals to 15 as CPL(a2) = f (x) × f (y) = 3 × 5 = 15

while the element a3 has a CPL with value of 6 as CPL(a3) =

f (a) × f (x) = 2 × 3 = 6.

The most important advantage of the CPL approach over

other related filtering strategies is that it has the ability to

filter out elements without consuming extra storage or dis-

torting the node processing order which is a problem of the

TwigStackList algorithm [32].

C. NOTATION

Throughout this article, the term element is a reference to a

data node in an XML tree and node refers to a query node

in a twig pattern. It is also useful to name some auxiliary

operations on TPQ and its nodes used in the twig matching

process. These operations are:

• children(q) which returns all child nodes of q.

• subtree(q) returns all nodes of the subtree rooted at q.

• childrenAD(q) returns all child nodes which have A-D

relationship with q.

• childrenPC(q) returns all child nodes which have P-C

relationship with q.

• isRoot(q) returns true if q is the root and false otherwise.

• isLeaf(q) returns true if q is a leaf node and false other-

wise.

• getRoot(TPQ) returns the root of the query.

• parent(q) returns the parent query node of q.

• getVector(q,Integer level) returns the regular intermedi-

ate result list if q is below an A-D edge or a split list by

level if q is below a P-C axis.

Streams are implemented by a retrieval mechanism simi-

lar to inverted lists in the field of Information retrieval [9].

Every stream Tq in TPQ is equipped with a cursor, Cq,

which initially points to the first element in Tq. As shown

in Figure 1, the stream of query node q has two parts: head

which is pointed by Cq and the remaining elements referred

to as the tail. As with earlier approaches the streams end

with a virtual end element labelled with infinity values as

(∞, ∞, ∞).

The following operations are defined over every cursor of

a stream in TPQ.

• getStart(Cq) returns the start attribute of the head ele-

ment for query node q.

• getEnd(Cq) returns the final attribute of the head element

corresponding to query node q.

• getLevel(Cq) returns the level attribute of the head ele-

ment for query node q.

• advance(Cq) moves the cursor of q forward by one

position to point to the next element.

• eof (Tq) returns true if Cq points to the end of stream for

Tq and false otherwise.

IV. OPTIMAL TWIG JOINS

This section introduces a new bottom-up holistic twig match-

ing algorithm which combines the advantages of the previous

approaches [3], [7], [20], [29]. The new algorithm is called

TwigPrime and is based on a total rewrite of TwigFast [29].

In other words, the algorithm combines the efficient selec-

tion of useful elements for TPQs with both P-C and A-D

edges introduced in [3] and uses a level split data structure

as the primary intermediate storage. It contains a further

improvement on TwigFast by strictly checking prefix path

matching for P-C relationships before storing the interme-

diate results. It includes an extension to the state-of-the-art

filtering strategies getPart() and getMatch() which can apply

the CPL approach in order to explore the potential benefit

of the CPL approach in a contemporary one phased holistic

algorithms.
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A. TwigPrime

The TwigPrime approach can be seen as a new alternative to

the TwigFast algorithm. It differs from the original TwigFast

in that it adopts the advanced preorder function getNext()

which is based on the CPL approach and the use of a level

split data structure to store the intermediate results. The use

of pointers in TwigPrime and its refined versions is similar to

that in [29].

The structure of the main algorithm, TwigPrime presented

in Algorithm 1 is more complex than the original TwigFast

algorithm. In [29], there is one list containing matches for

each query node, the list is sorted in preorder. Each element

in the list records intervals for each child query node. Interval

start values are recorded as elements appended to intermedi-

ate lists while interval end positions are recorded only when

the elements can not be part of any other match. In order

to construct intervals whilst avoiding the use of stacks, each

element appended to the list has a pointer to the closest

ancestor in that list. Each list also has a tail pointer which

indicates the candidate parent query node. An advantage of

this approach is that there is no overhead from maintaining

a set of stacks. However, it does not perform prefix path

filtering checks so that elements can be added without having

relevant parents.

TwigFast can not be adapted to a level split data structure

directly because there are specific families of nodes that have

to be treated exceptionally. To illustrate the difficulty Fig-

ure 8 shows the intermediate results after running TwigFast

to process Q1 against T2 in Figure 7. When f2 is returned,

the algorithm will record the interval end positions for x1 and

x2 since the tail for x-node points to x2 and x2 has an ancestor

pointer to x1 in the same list. When a level split approach is

used, if x2 is only pointed by the tail pointer, then a match

including x1 could be missed. Thus, to ensure the descendant

intervals are set correctly, there must be a tail for each level

and each tail must be checked separately introducing a new

form of filtering.

The level split tail filtering described by Algorithm 2

only happens in one situation, but a relatively common one.

It is necessary if the incoming element for a query node

qn has an A-D relationship to the parent query node qp
that has, in turn, a P-C relationship with the parent query

node, the tail for every level split list corresponding to the

query node qp must be checked to record the end positions

correctly. This definition can be formalized as in Defini-

tion 3. It should be also noted that using a pointer to the

closest ancestor in the same list is unnecessary when an

element has a P-C relationship to the parent as they are stored

in different lists. Henceforth, a tail pointer is sufficient to

track potential parents or ancestors for query nodes under

P-C edges.

Definition 3 (AD Follows PC): Given a query node p,

which is connected with P-C edge to its parent, and its A-D

child c, suppose n separate level split lists of p has been

visited. In intermediate lists of p, all elements which are

pointed by n tails will be checked. The tail elements that are

FIGURE 7. An example to illustrate tail pointers for level split data
structure.

FIGURE 8. Intervals for intermediate storage handling approaches after
processing f1.

not ancestors of the current element ec will be assigned their

end interval values.

Definition 4 (Strictly Matching): A query node in a TPQ

Q as qn ∈ Q with an edge e = (qn, qv) ∈ E is a strict match

of an XML element M (qn) ∈ D if and only if M (qn) and

M (qv) are related as specified by e.

Definition 5 (Weakly Matching): A query node in a TPQ

Q as qn ∈ Q with an edge e = (qn, qv) ∈ E is a weak match

of an XML element M (qn) ∈ D if M (qn) is an ancestor of

M (qv).

Definition 6 (Prefix-Path Matching): A query node in a

TPQ Q as qn ∈ Q is a strict/weak prefix-path match of an

XML element M (qn) ∈ D if and only if the simple path

q1, . . . , qn is a strict/weak match of qn, where q1 is the root

query node.
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Algorithm 1 TwigPrime

Input: A TPQ Q with n nodes (q1, . . . , qn)

Output: All n-dimensional tuples (e1, . . . , en) as

answers for Q

1 // initialise Lni = ∅ for each ni ∈ TPQ Q if ni is

root or ni ∈ childrenAD(parent(ni)) and ni.tail = −1

2 // initialise an array of L[]ni = ∅ for each ni ∈ TPQ Q

if ni ∈ childrenPC(parent(ni))

3 while ¬end(getRoot(Q)) do

4 qact = getNext(getRoot(Q)) or get-

Part(getRoot(Q)) or getMatch(getRoot(Q)) // using

CLP filtering Introduced in [3]

5 vact = getElement(qact )

6 if ¬ isRoot(qact ) then

7 setEndPointerParent(qact ,parent(qact )) // see

Algorithm 2

8 end

9 if isRoot(qact ) ∨ getParentTail(qact ) 6= −1 then

10 if qact ∈ childrenPC(parent(qact )) then

11 h = level(vact ) - 1 // parent should be stored

one level higher

12 vp = getVectorElement(parent(qact ),h)

13 if ¬ PCrealtionship(vp,vact ) then

14 // here to perform strict prefix path

filtering which TwigFast [29] misses

15 advance(qact )

16 continue // skip the following lines and

moves to the next cycle

17 end

18 end

19 if ¬ isLeaf(vact ) then

20 // set the end values for all elements in Lqact
which are not ancestor of vact

21 // ∀ ni ∈ children(qact ) vact .startni =

length(getVector(ni))

22 // vact .ancestor = getTail(qact ) // pointer to

the closest ancestor or −1 if it does not have

one

23 // setTail(qact ) to length(getVector(qact )) //

this to set the tail pointing to vact as the open

element for this list

24 end

25 // append vact to the corresponding list

26 end

27 advance(qact )

28 end

29 // Process remaining open elements using an imaginary

‘‘end’’ element whose start and end are all ∞

30 // Clean intermediate results with postorder checks

31 // Enumerate results

Definition 7 (Subtree Matching): A node in a TPQ Q as

qn ∈ Q is a strict/weak subtree match of an XML element

M (qn) ∈ D if and only if all query nodes which are

Algorithm 2 Level Split Tail Filtering

1 Function isADfollowsPC(Query node q):

2 p = parent(q)

3 if q ∈ ChildrenAD(p) then

4 if p ∈ ChildrenPC(parent(p)) then
return: true

5 end

6 end

return: false
7 Function getTail(Query node q, Integer h):

8 if isRoot(q) ∨q ∈ childrenAD(parent(q)) then
return: q.tail

9 else
return: q[h].tail

10 end

11 Function getParentTail(Query node q,Query node p):

12 h = level(getElement(q))

13 if ¬ isADfollowsPC(q) then
return: getTail(p, h-1)

14 else

15 ∀ level ∈ used level if getTail(p,level) 6=−1) then
return: getTail(p,level)

16 end

return: −1
17 end

18 Procedure setEndPointerParent(Query node q,

Query node p):

19 if isADfollowsPC(q) then

20 ∀ level ∈ used level of Lp
21 if getTail(p,level) 6= −1) then

22 vact = getVectorElement(p,level)

23 if getEnd(vact)<getStart(getElement(q)) then

24 markEnd(vact ) // set the end valuse for ecah

ni ∈ children(p)

25 // vact .endni = length(getVector(ni)) −1

26 end

27 end

28 else

29 while getParentTail(q,p) 6= −1 do

30 vact = getVectorElement(p,0)

31 if getEnd(vact)<getStart(getElement(q)) then

32 markEnd(vact ) // set the end values for each

ni ∈ children(p)

33 setTail(vact ) // set tail for the particular

query node.
34 else

35 break

36 end

37 end

38 end

39 Function getVectorElement(Query node q, Integer

level):

40 // return the current element pointed by the tail of the

regular intermediate result list if q is below an A-D

edge or split list given by level if q is below a P-C axis.

41 Procedure setTail(Query node q,Integer level):

42 // set the tail to point to the closest ancestor of the

current tail if any exists, otherwise −1. if q is below an

A-D edge q.tail or q[level].tail given by level if q is

below a P-C axis.
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child or descendant nodes of qn are in a strict/weak prefix-

path match of the simple paths starting from qn as the root to

each one of its children and descendants in Q.

The above definitions are fundamental to the new

approach. The main algorithm of TwigPrime, Algorithm 1

describes the general framework for constructing interme-

diate results in preorder sequence, thus extending TwigFast

[29]. It supports any combination of preorder and postorder

filtering and either simple or level split vectors. It also can be

extended to use advanced preorder filtering functions such

as getPart() and getMatch() since elements are stored in

preorder. It invokes getNext() iteratively based on the CPL

approach [3] to identify the next query node for processing.

Unlike the original TwigFast algorithm, elements are passed

straight to the intermediate result storage if they pass a strict

prefix path filtering (see Definition 6). If the head element

of qact fails to satisfy the strict prefix path matching, its

cursor is shifted to point to the next element in the stream

and the algorithm proceeds to the next iteration. But first the

algorithm performs a weak prefix match by determining the

end positions for any element which is not an ancestor of the

head element of qact the intermediate lists corresponding to

parent(qact ) according toDefinition 3when level split vectors

are used to avoid false negative errors. This is performed by

calling the setEndPointerParent in Algorithm 2. After that,

if the head element of qact has the right ancestor extension

and qact is not a leaf query node, the algorithm updates the end

values for elements in the same list which are not ancestors.

Then, the start positions for intervals of element vact will be

determined. These are equal to the current lengths of vact ’s

child lists and the tail and ancestor pointers are updated.

The purpose of these pointers is to identify elements which

still have potential descendants. For example, in Figure 8,

when y2 is the head element of qact = y, it indicates that

a2 will not have any further descendant so that the end

positions intervals for a2 are recorded. Then, the current

element is appended into the corresponding list. The cursor

of the current query node qact is advanced and the algorithm

proceeds to the next cycle. When all streams have ended,

the algorithm concludes the top-down processing by using the

largest range-based label (∞, ∞, ∞) to update the intervals

of all open elements. To perform strict subtree matching

checks, the intermediate results are filtered bottom-up in post-

processing order which ensures optimal enumeration. That is,

an internal element eq is removed from the list Lq if and only

if for any ni ∈ children(q), eq.startni > eq.endni . Finally,

once the intermediate storage contains elements with their

intervals, TwigPrime will enumerate the output by applying

the enumeration algorithm introduced in [38] and extended

in [7], [20] to use child intervals when level split approach is

applied.

The improvement of TwigStackPrime [3] can trivially be

ported to algorithms in bottom-up approach such as TJStrict-

Pre, TJStrictPost and GTPStack. In this article, we propose

new algorithms, namely TJStrictPrePrime, TJStrictPostPrime

and GTPStackPrime, which are less involved modifications

of the original ones. This is due to the fact that they are based

on advanced preorder filtering strategies (i.e., getPart and

getMatch) which are extensions of getNext. To achieve such

an improvement, getPart and getMatch are modified to use

the CPL approach to improve structural relationship checks.

As a result, getPart(q) and getMatch(q) return an element eq
of a query node q ∈ TPQ with four properties:

1) eq has a descendant element eqi in each of the streams

corresponding to its child elements where eqi is the head

element of a query node qi = children(q).

2) each of its child elements satisfies recursively the first

property.

3) if q has P-C edge(s) connected to its child query nodes,

then eq has a child eqi in Tqi for each query node qqi =

childrenPC(q) (this property is checked using the CPL

approach).

4) if ¬isRoot(q), then eq has a relevant ancestor ep stored

in the main algorithm which has been the head element

of a query node p = parent(q) in previous calls of

getPart(p) or getMatch(p), respectively).

In the same way, TwigPrimePart and TwigPrimeMatch

are proposed as refined versions of TwigPrime to utilise the

getPart() [20] and getMatch() [7] functions.

1) ANALYSIS OF TwigPrime

This section shows the correctness of the new algorithms and

analyses their complexities.

Lemma 1: Let eq be an element corresponding to the query

node q in the intermediate storage. Then its child and descen-

dant intervals are correctly recorded.

Proof: Query node q is either leaf or internal. If q is

a leaf query node, the lemma holds. Otherwise, it is shown

by the proof of TwigStackPrime in [3], eq is returned by the

advanced preorder filtering because it satisfies the following

properties (1) the current element in stream q has a descen-

dant element in each stream qi, for qi ∈ childrenAD(q),

(2) the current element in stream q has a child element in

each stream qi, for qi ∈ childrenPC(q), and (3) each current

element in stream qi recursively satisfies the first and second

property. Therefore, eq is appended into the intermediate list

before child and descendant elements of eq are stored in their

corresponding lists, and the start positions of the intervals

thus can be set correctly at Line 21 of TwigPrime. Using an

advanced preorder filtering strategy property, it will be known

that all elements in the XML tree which are part of some

solutions at subtree rooted at eq will be returned in preorder.

Henceforth, all child and descendant elements of eq are stored

in the intermediate storage while eq is pointed by the tail of q

and the procedure setEndPointerParent correctly records the

end values for eq’s intervals. For both cases the lemma holds.

The next theorem will be used to prove the correctness of

TwigPrime, TwigPrimePart and TwigPrimeMatch.

Theorem 1: Given a twig pattern query Q and an XML

document D, Algorithms TwigPrime, TwigPrimePart and
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TwigPrimeMatch correctly construct the intermediate results

of Q on D.

Proof: In Algorithm TwigPrime, getNext(getRoot(Q))

is repeatedly invoked to determine the next query node to be

processed. It is shown by the proof of TwigStackPrime in [3]

that all elements returned by qact = getNext(getRoot(Q))

satisfy the following properties (1) the current element in

stream q has a descendant element in each stream qi, for

qi ∈ childrenAD(q), (2) the current element in stream q has

a child element in each stream qi, for qi ∈ childrenPC(q),

and (3) each current element in stream qi recursively satisfies

the first and second property. If qact 6= getRoot(Q), Line

7, the algorithm sets the end values for all elements in the

intermediate lists Lparent(qact ) that are not ancestors of the

head element of qact by Using an advanced preorder filtering

strategy property. After that, it is already known qact satisfies

the three properties so that Line 9 checks whether the tail

of parent(qact ) is pointed to proper ancestor or not. If so,

it indicates that it does not have the ancestor extension, and

it can be discarded safely to continue with the next iteration.

Otherwise, the current head element of qact has the ancestor

extension which guarantee its participation in a weak match

of prefixed path from itself to the root. After that, if qact is

connected to the parent query node with P-C edge, Lines 13-

16 ensure that the current element has a strict match of a

prefixed path. If the head element fails to pass a strict prefix

path filtering, then it can be skipped safely to proceed to the

next cycle. Otherwise, the corresponding list of vact is cleaned

by setting end values of intervals for elements which do not

contain the head of vact , and the start positions of intervals

for vact are recorded, using Lemma 1. Then, if vact has an

ancestor in the same list, the ancestor pointer of vact is pointed

to qact .tail. Otherwise, vact .ancestor is set to −1 indicating

that it does not have a proper ancestor in the list. Finally,

qact .tail is updated to point to vact , and vact is appended

into its corresponding intermediate list. Once the intermediate

storage containing elements with their intervals correctly set,

it is straightforward to perform the output enumeration.

The correctness of the enumeration algorithm follows

from the correctness of the TwigList enumeration method

[38] which is trivially extended to use child intervals when

elements are stored in level split lists as in [20]. More-

over, TJStrictPrePrime, TJStrictPostPrime and GTPStack-

Prime are correct due to the correctness of the preorder

filtering used in TwigStackPrime [3] and the correctness of

the original algorithms introduced in [7], [20].

With respect to the space and time complexity of these

algorithms, the new algorithms read elements from data

streams only once in a single forward scan through advanced

preorder filtering functions. When elements are appended

to the intermediate storage, each child check and interval

set take constant time. Therefore, the worst-case time and

space complexity when building the intermediate storage is

O(f × |Input|) where f is the maximum fanout at any query

node in a TPQ with n query nodes and Input is the sum of

the lengths of the n input lists. Therefore it is possible to

FIGURE 9. An example to illustrate the basic notations of TwigPrime.

suggest that the new approaches guarantee optimal evaluation

for the case where the TPQ has A-D edges or there are only

P-C edges connected to the leaf query nodes similar to that

provided by TwigStackPrime. Interested readers may refer to

[3] to find more details on the optimality conditions. Thus,

elements are only stored in the intermediate result if they

contribute to the final result. Thismeans that, the intermediate

result can be enumerated in linear time O(|Output|) where

Output is the number of matched elements. However, in the

case where P-C axes connect internal query nodes, linear

performance for output enumeration can be achieved by per-

forming a strict subtree filtering (i.e., cleaning intermediate

result lists bottom-up in the query, by overwriting elements

not satisfying subtree matches), but the algorithms can not

guarantee optimal evaluation. To put it another way, they can

provide optimal enumeration (i.e., all elements in internal

lists must be part of the final result). Consequently, the worst-

case I/O and CPU time complexity is linear with respect to

the sum of the input list sizes and the size of the output result.

For example, to demonstrate the difference between optimal

evaluation and enumeration, TwigPrime in Figure 10a guar-

antees optimal evaluation while TJStrictPre and GTPStack

of Figure 10b provides optimal enumeration by performing

extra passes over the intermediate lists. The space complexity

of the new approaches is O(|Intput|) which is linear with

respect to the total number of elements whose tags appear in

TPQs. This is because they construct the intermediate results

directly. However, when the new algorithms are optimal,

the �(u) lower bound is matched, where u is the total num-

ber of elements to which query nodes can be matched (i.e.,

optimal evaluation) [19], [39]. However, an early enumera-

tion approach introduced in [12] can significantly reduce the

intermediate storage size necessary. The early enumeration

starts when the incoming element corresponding to the first

branching query node does not have a relevant ancestor in the

corresponding intermediate list or stack of the first branching

query node.

V. EXPERIMENTAL EVALUATION

This section describes experiments that explore the effects

of the CPL approach, different advanced preorder filtering

strategies and different intermediate storage approaches in
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FIGURE 10. One-phased algorithms and their corresponding intermediate
storages for processing Q2 against T3 in Figure 9.

TABLE 2. Characteristics of the experimental datasets.

TABLE 3. Zipf TPQ templates for XPath expressions.

bottom-up holistic twig matching algorithms. It compares the

performance of the new bottom-up twigmatching algorithms,

namely TwigPrime, TwigPrimePart, TwigPrimeMatch,

TJStrictPrePrime, TJSTrictPostPrime and GTPStackPrime

against state-of-the-art holistic algorithms: TwigList [38],

TwigFast [29], TJStrictPre [20], TJStrictPost [20] and GTP-

Stack [7], across a variety of significantly different XML

datasets. To improve the efficiency of the output enumeration,

TwigList and TwigFast include the strategy of next sibling

links introduced in [38]. With the exception of TwigList and

TwigFast, the algorithms in the experiments are implemented,

by default, to use the level split approach except those

labelled with the ‘‘_’’ as suffix to indicate intermediate results

are stored in simple lists (e.g., TwigPrime_). When Twig-

Prime, TwigPrimePart, TwigPrimeMatch TJStrictPrePrime,

TJSTrictPostPrime and GTPStackPrime use the simple list

approach, they apply next sibling links. TwigPrime_N, Twig-

PrimePart_N and TwigPrimeMatch_N stand for TwigPrime,

TwigPrimePart and TwigPrimeMatch which use the simple

list approach and the strategy of next sibling links. Through-

out this section, the term ‘‘CPL’’ refers to bottom-up holistic

algorithms based on the CPL approach combined with the

level split, while the term ‘‘CPL_’’ refers to bottom-up holis-

tic algorithms based on the CPL and simple list approaches.

As a result, the ‘‘CPL’’ includes TwigPrime, TwigPrimePart,

TwigPrimeMatch, TJStrictPrePrime, TJSTrictPostPrime and

GTPStackPrime algorithms. The ‘‘CPL_’’ refers to the set

of algorithms including TwigPrime_, TwigPrimePart_ Twig-

PrimeMatch_, TJStrictPrePrime_, TJSTrictPostPrime_. Note

that the CPL approaches are used to denote bottom-up twig

matching algorithms using the CPL relationship introduced in

[3] regardless the approach used to store intermediate results.

Versions of algorithms are implemented as new algorithms

to make sure the overhead of the complex methods does not

affect the simpler ones.1

A. XML DATASETS AND QUERIES

The algorithms were tested using five datasets with a variety

of characteristics and sizes, these collections are commonly

used in many approaches [7], [20], [29]; DBLP, XMark,

TreeBank, Random and Zipf. Table 2 shows the datasets used

in the experiments and their properties. They were deliber-

ately chosen to test the algorithms as thoroughly as possible.

DBLP is highly structured and is very wide and shallow,

while TreeBank is a deep-recursive dataset with a very many

distinct tags and an irregular structure. The XMark dataset is

well-known benchmark XML dataset which can be generated

with the factor f to control the size: we used f = 1. We also

generated two synthetic datasets called Random and Zipf.

The Random dataset contains six tags and has maximum

depth sets to 13 and fan-out ranging from 0 to 6. The Zipf

dataset was generated using the Zipfian distribution to spread

the node labels within the dataset. In this article, the Zipf

dataset contains seven different labels from a to g, where a

is the most common (≈38.55%) and g the least ((≈0.055%).

Queries for DBLP, XMark, TreeBank and Random datasets

are similar to those used in the experiments of [3]. The

XML structured queries for evaluation over the Zipf dataset

were generated using five query templates shown in Table 3.

Templates specify relationships between query nodes. For

each template, ten TPQs were randomly generated such that

α, β, χ, δ ∈ {a, b, d, g} and ǫ, η, γ ∈ {a, b, c, d, e, f , g}.

In order to illustrate the difference between the algorithms

clearly and make the experiment more comprehensive, ten

1All the algorithms were implemented in Java JDK 1.8. The experiments
were performed on 2.9 GHz Intel Core i5 with 8GB RAM running in Mac
OS X El Capitan.
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recursive TPQswere generated abased on the template t5. The

complete list of the TPQs can be found in Table 4.

B. METRICS

Our experiments compared two variables for each TPQ. The

comparisonwas based on twometrics; storage and processing

time. The storage measure is simply the number of elements

stored in the intermediate storage. The running time is more

complicated. It is the running time (in milliseconds) of the

whole TPQ including filtering and listing the results. All

TPQs were executed 103 times, with the timing for the first

three runs excluded to avoid cold cache issues. The I/O cost

for tag indexing files for the set of algorithms in ‘‘CPL’’ and

‘‘CPL_’’ was not included because it is negligible, and the

cost of reading the tag indexing is constant over the TPQs for

each dataset [3] because it only needs to be read once for a

set of TPQs over a particular dataset.

C. EXPERIMENTAL RESULTS

The experimental results are very similar over the five

datasets so, in this article, we focus on the results from the

TreeBank dataset because it is the most complex XML doc-

ument from most aspects of query processing [6], [35] even

though it is not the largest in our experiments. This means that

the suboptimal evaluation of the existing approaches can be

demonstrated here most clearly. This is shown in Figure 11.

This dataset also demonstrates the effectiveness of the CPL

filtering strategy in bottom-up approaches.

1) INTERMEDIATE STORAGE

The most significant attribute, with regard to efficiency,

of any of the holistic twig matching algorithms is the inter-

mediate storage size. The intermediate result size for each

algorithm was evaluated by computing a ratio of the number

of elements stored by each algorithm and the number of

relevant elements for each collection. A ratio of 1, indicates

the algorithm was optimal for all queries tested because no

unnecessary results were stored. Beyond that, the smaller the

ratio the better, since this shows how successful the algorithm

was in filtering out irrelevant elements. As shown in Table 5,

the ‘‘CPL’’ and ‘‘CPL_’’ approaches failed to provide optimal

evaluation for TQ2, TQ5, TQ8 and TQ11 because useless ele-

ments were stored but they stored several orders of magnitude

fewer elements than the comparable algorithms. This result

may be explained by the fact that the ‘‘CPL’’ and ‘‘CPL_’’

approaches use the CPL information to eliminate irrelevant

elements from the parent streams, but due to the restricted

access mechanism, they may store useless elements as they

consider only the CPL relationship between two streams

while processing TPQs in bottom-up (i.e., elements are for-

warded to contain their descendants). As a result, when there

are P-C edges between internal query nodes, many useless

elements can be removed from the streams safely (e.g., TQ11).

For TQ6, the ‘‘CPL’’ and ‘‘CPL_’’ approaches performed

efficiently by storing only useful elements of 16 062, whereas

the number of elements stored in the state-of-the-art algo-

rithms (i.e., TJStrictPre and GPTStack) was between 374 370

for the level split approaches and 563 741 for the simple

list approaches. On the other hand, TwigList and TwigFast

built up the intermediate storage with 770 052 and 669 312

elements in order to evaluate TQ6, respectively.

Figure 11 provides a summary of an analysis of the experi-

mental results. To avoid extreme value differences in storage

ratio, experimental results of TwigList regarding the number

of elements stored in the intermediate storage are not included

in the illustrative graphs since the remaining algorithms use

an improved version of TwigList. However, TwigList has

storage ratios 577.95 for DBLP, 6.34 for XMark, 34.42 for

TreeBank and 65 for Random. It can be seen from the data

in this figure that the CPL algorithms significantly outper-

formed other methods. An almost optimal evaluation was

achieved in complex datasets with many recursions in the

structure (e.g., Treebank, Random and Zipf datasets) and

an optimal evaluation was achieved for relatively structured

XML collections with a lot of repetitive subtrees (e.g., DBLP

and XMark datasets).

2) PROCESSING TIME

Processing time has also been improved but to make the

evaluation easier a ratio showing the improvement of all algo-

rithm pairs for all TPQs over each dataset in the experiments

has been used to demonstrate the scale of this improvement.

The improved ratio (IR) of algorithm A over algorithm B for

a set of queries issued over an XML dataset can be computed

using Formula 2 [7], [28], where TA and TB are the median

running times for algorithms A and B, respectively.

IRA,B =
TB − TA

TB
(2)

The ‘‘CPL’’ and ‘‘CPL_’’ approaches significantly outper-

formed the other algorithms tested with respect to processing

time. Eleven different versions of the new approaches are all

noticeably faster than the other algorithms, and the combina-

tion of TwigPrime and the getMatch() function using the sim-

ple list approach showed a better performance than the other

combinations of TwigPrime (i.e., TwigPrimeMatch_). The

reason for this is the use of the CPL approach to filter useless

elements and the getMatch() to avoid redundant computa-

tions. When the new algorithm TwigPrime uses the level split

approach, the getPart() function has the best performance of

all. This is can be attributed to the use of an additional vector

which stores one extra value for each query node to check

the latest ancestors that form a weak full match for the entire

TPQ in getPart(). The alternative, getMatch() has to check

several tails and ancestors to determine whether an element

is useful or not. Figure 12 shows results for running TQ6 with

cost divided into two phases, GTPStack algorithm is excluded

because it is almost 382 slower than the fastest algorithm.

The CPL filtering minimises the cost of constructing inter-

mediate results because the size is reduced, and the cost of

enumerating results because unnecessary traversal is avoided.

Note that TQ6 is the most expensive query in the experiments,
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TABLE 4. Experimental TPQs.

TABLE 5. Ratio of the number of elements stored in intermediate storage and the number of relevant elements for each query.

it touches a very high proportion of the document and has

a great many query results. It was chosen because it shows

the effects of the CPL approach. For TQ6, only the ‘‘CPL’’

and ‘‘CPL_’’ algorithms can provide optimal evaluation and

hence the reduction in the CPU cost of the algorithms.

Figure 13 shows the summary of the results for this exper-

iment on DBLP. Overall, these results show that the CPL_

approaches (i.e., TJStrictPostPrime_, TwigPrimeMatch_N

and TwigPrimePart_) provided an efficient solution and

improved the overall performance. The results obtained

from the experiments on XMark, TreeBank and Random

datasets can be compared in Figure 14. For example, on the

XMark dataset, the improvement of TwigPrimeMatch_N

over TJStrictPre and GPTStack is more than 11% and

72%, respectively. Interestingly, the improvement of Twig-

PrimeMatch_N was on the TreeBank dataset, over TJStrict-

Pre and GPTStack was observed to be more than 73% and

98%, respectively.

The Zipf collection and queries were included to gain

an insight into the advantages and disadvantages of using
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FIGURE 11. Ratio of the number of elements stored in intermediate storage and the number of relevant elements for each dataset. The y-intercepts
equal 1 indicating the optimal approach.

FIGURE 12. Running TQ6 on TreeBank dataset. Cost divided into constructing intermediate results (TQ6_const) and
result enumeration (TQ6 _enum).

combinations of the CPL approach, different preorder fil-

tering functions (i.e., getNext(), getPart() and getMatch())

and level split intermediate results. In order to do a sensible

comparison only algorithms using the level split approach

to build the intermediate storage and storing elements in

preorder were compared. Approaches which store elements

in postorder in the intermediate storage, such as TJStrictPost

and TJStrictPostPrime, were not included in the performance

comparison because they output the result tuples unordered,

hence they are not directly comparable. One of the properties

of the Zipf dataset is that every element has exactly two

children and the longest path in the document is 26. Figure 13

provides the experimental data on Zipf dataset. From this

data, we can see that the use of the CPL approach improved

the existing TJStrictPre by 52%. Moreover, the improvement

of the winning algorithm, i.e., TJStrictPrePrime,

Closer inspection of Figures 13 and 14 shows that GPT-

Stack and GPTStackPrime have their performance degraded

because of the use of linked lists as the main data structure

to store intermediate results. This affects the enumeration

performance when A-D relationships exist in TPQs issued

over datasets with high repetitive structures such as TreeBank

dataset as descendants may overlap, see Figure 12.

3) SUMMARY

The experimental results described above have shown that the

CPL approach can filter out irrelevant elements effectively

mostly without any overhead. The number of elements stored
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FIGURE 13. The IR of TJStrictPostPrime_ compared to all approaches tested for all queries on DBLP and The IR of
TJStrictPrePrime compared to all approaches tested for all queries on Zipf.

FIGURE 14. The IR of TwigPrimeMatch_N compared to all algorithms tested for all queries on XMark, TreeBank and
Random.

by the new algorithms (i.e., ‘‘CPL’’ and ‘‘CPL_’’) is always

fewer than that stored by the other up-to-date approaches.

In most cases the algorithms proposed have a far better per-

formance than state-of-the-art algorithms. This is because the

CPL approach can filter out many useless elements before

storing them in the intermediate storage, thus the overall

running time is decreased. Surprisingly, the use of simple

list to store intermediate results was found to outperform

the utilization of the level split technique for all the pro-

posed approaches. This must be because the CPL filtering

minimises the cost of building intermediate results because

their results are smaller and the cost of enumerating results

because redundant traversal is avoided. The outcomes of

the experiments appear to support the assumption that using

of the same advanced preorder filtering function and the

same design of algorithm (e.g., pointers, local stacks with

references and level split technique) for all TPQs is not

always the best approach. In all cases, however, the algo-

rithms based on the CPL_ and CPL approaches significantly

outperformed the other-related algorithms in the experiments.

The improvement of the new approaches over state-of-the-art

algorithms on common benchmarks such as DBLP, XMark

and TreeBank datasets reaches 20%, 72% and 98%, respec-

tively.
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VI. CONCLUSION

In this article, we have presented new approaches that use

the CPL indexing to improve filtering phase of bottom-up

twig matching algorithms. We also introduced a novel design

of algorithm which uses the level split approach along with

the CPL technique thus avoiding stacks. We have performed

experiments that compare our technique with the fastest pre-

vious solutions: GTPStack, TJStrictPre, TJStrictPost, Twig-

Fast and TwigList. For common benchmark queries our new

CPL algorithms are more than an order of magnitude faster

than the other related methods. In terms of space consump-

tion, the new algorithms can filter out many irrelevant ele-

ments effectively and it can be observed that the number of

elements stored by the algorithms is significantly fewer than

that stored by the existing approaches. However, there is still

room for improvement.

In future work we would like to combine the algorithms

proposed with previous orthogonal approaches such as use-

less elements skipping [17], [24], [24], refined partitioning

[8], [11], virtual streams [27] and content search [44], [45].

Since the study was limited to holistic algorithms which do

not use structural summaries, it was not possible to evaluate

the performance of the CPL approaches with methods which

combine structural summaries and node labelling schemes.

Lastly, it would be interesting to address general subclass

of TPQs rather than A-D and P-C edges. Further work also

needs to be done to investigate the behaviour of the CPL

approachwhen processing logical expressions and in support-

ing the GTP semantics.
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