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Abstract
There is an increased interest in studying the biomechanics of the facet joints. For in silico studies, it is therefore important 
to understand the level of reliability of models for outputs of interest related to the facet joints. In this work, a systematic 
review of finite element models of multi-level spinal section with facet joints output of interest was performed. The review 
focused on the methodology used to model the facet joints and its associated validation. From the 110 papers analysed, 18 
presented some validation of the facet joints outputs. Validation was done by comparing outputs to literature data, either 
computational or experimental values; with the major drawback that, when comparing to computational values, the baseline 
data was rarely validated. Analysis of the modelling methodology showed that there seems to be a compromise made between 
accuracy of the geometry and nonlinearity of the cartilage behaviour in compression. Most models either used a soft contact 
representation of the cartilage layer at the joint or included a cartilage layer which was linear elastic. Most concerning, soft 
contact models usually did not contain much information on the pressure-overclosure law. This review shows that to increase 
the reliability of in silico model of the spine for facet joints outputs, more needs to be done regarding the description of the 
methods used to model the facet joints, and the validation for specific outputs of interest needs to be more thorough, with 
recommendation to systematically share input and output data of validation studies.
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1 Introduction

There is an increased interest in analysis of the facet joints 
in biomechanical studies of the spine. The facet joints (zyga-
pophysial joints) constitute with the intervertebral disc the 
three joints complex of the functional spinal unit (motion 
segment). They are synovial joints located posterior to the 
vertebrae and the intervertebral disc and contribute to the 
motion and stability of the spine. Osteoarthritis of the facet 
joints is thought to be a widespread cause of back pain (Gell-
horn et al. 2013), in part because of its high prevalence and 
early development, with facet joints degeneration associ-
ated with a radiological narrowing of the joint space (Path-
ria et al. 1987). Studies have shown association between 
intervertebral disc degeneration and facet osteoarthritis, even 
though the latter can exist without the former (Jaumard et al. 

2011b; Gellhorn et al. 2013). Moreover, some disc treat-
ments leading to adjacent disc disease are thought to exac-
erbate facet osteoarthritis (O’Leary et al. 2018).

Finite element analysis of spine biomechanics can be use-
ful to assess different scenario for a range of spinal disorders 
or associated surgical interventions (e.g. among many oth-
ers Rohlmann et al. 2006b; Bashkuev et al. 2018 or Ottardi 
et al. 2016; Calvo-Echenique et al. 2018, respectively). It can 
complement in vitro or in vivo experiments with scenario 
testing and inclusion of a wider variation in the anatomy and 
tissue degeneration.

Key requirements for using in silico models in clinical 
or preclinical contexts are the assessment of their credibil-
ity defined from a clear understanding of their applicabil-
ity (Morrison et al. 2019) and known validation processes 
(Jones and Wilcox 2008; Henninger et al. 2010). Validation 
of in silico model is the process of making sure that the right 
equations are solved, and the correct parameters are used for 
a given scenario. A model is never “valid” for all possible 
scenarios and applications; a validation process is linked to 
a specific question of interest (Viceconti et al. 2020).
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Finite element models of the multi-level spinal unit 
include different levels of complexity, either in the mate-
rial behaviour or in the type of tissues included in mod-
els. Most finite element models of the human spine are 
validated against range of motion (e.g. Ayturk and Puttlitz 
2011; Azari et al. 2018; Barthelemy et al. 2016; Holzapfel 
and Stadler 2006; Khoddam-Khorasani et al. 2018; Noailly 
et al. 2012; Rohlmann et al. 2006a; Schmidt et al. 2013), 
facet joint forces (e.g. Ayturk and Puttlitz 2011; Azari 
et al. 2018; Barthelemy et al. 2016) or intervertebral disc 
pressure (e.g. Ayturk and Puttlitz 2011; Azari et al. 2018; 
Khoddam-Khorasani et al. 2018; Liu et al. 2018; Rohlmann 
et al. 2006a); with the majority of work comparing their 
outcome to experimental or computational data available in 
the literature. This provides a validation process which gives 
confidence that models can predict outcomes within a range 
of values for given outputs of interest.

The aim of this review was to assess the methods used in 
modelling the facet joints in finite element models of multi-
level spinal units, and the validation processes used for the 
facet joints biomechanics in such models. To avoid assessing 
the same model used for different clinical scenarios, only 
original models (with model development presented for 
the first time) and their validation studies were included in 
this review. With its focus on methods and validation, this 
work is complementary to recent reviews on the role of each 
spinal component in load transmission (Ghezelbash et al. 
2020), on the structure–function relationship of the facet 
joints (O’Leary et al. 2018), or on finite element analysis 
of the cervical spine biomechanics (Suarez-Escobar and 
Rendon-Velez 2018; Kim et al. 2018).

2  Methods

Three databases (PubMed, Web of Science and Scopus) 
were searched for papers up to August 2020 with key-
words [“finite element” or computational] AND [“facet 
joint” or zygapophysial] (Fig. 1). Papers not written in 
English, duplicates, and conference proceedings were 
excluded. Due to a previous literature search supporting 
a computational validation study for ovine facet joints in 
2015 (Mengoni et al. 2016), different criteria were used 
to include papers based on their titles and abstracts up 
to 2014 or from 2015: the more recent were screened 
for containing keywords “finite element” or “in silico”, 
while the older ones were screened to also contain explicit 
information about facet joints outputs and model develop-
ment (by opposition to using an existing model). From the 
remaining papers, 11 were excluded because they were 
not available through the University library (n = 5) , were 
reviews (n = 4) or were animal models (n = 2) . Full papers 
were screened to include only those which were studies 

of at least one functional unit with facet joints (n = 195) 
and presented original models (n = 153) . From papers 
excluded because of the latter criteria, nine new “par-
ent” papers were included, after screening for explicitly 
containing information about facet joints outputs and new 
model development.

Of the 162 analysed papers (Fig. 2), 52 did not con-
tain outputs of interest related to the facet joints (all from 
2015 given the differential in inclusion criteria) and are 
not reported here. In summary, from an initial set of 905 
abstracts, 110 studies were analysed in this review (47 pub-
lished before 2015), 18 of which contained some validation 
method on facet joints biomechanical behaviour: just under 
one in six original models using facet outputs had some vali-
dation for the facet joints.

Fig. 1  Inclusion and exclusion criteria

Fig. 2  Analysed papers contained studies which did not extract out-
puts of interest for facet joints (32%) or studies with validation of 
facet joints biomechanics (11%)



391Biomechanical modelling of the facet joints: a review of methods and validation processes in…

1 3

Key aspects of the modelling methodology for facet 
joints were extracted: geometry representation, contact 
model, and, when relevant, cartilage material model. 
Attention was paid to the validation processes for facet 
joints outputs of interest.

3  Methodologies for facet joints models

3.1  Facet joint representation

Of studies reporting relevant information, just over half 

Table 1  Contact models for studies which do not explicitly include a cartilage layer at the facet joints (empty cells refer to a lack of relevant 
information)

References Friction model Pressure-overclosure information

Azari et al. (2018) Frictionless Initial joint space of 0.6 mm
Campbell et al. (2016) Frictionless Initial joint space as per CT; linear formulation
Cao et al. (2020) Initial joint space of 0.5 mm
Chen et al. (2002) Initial joint space of 1 mm
Chen et al. (2009) Friction coefficient of 0.1 Initial joint space of 0.5 mm
Du et al. (2016b) Frictionless Initial joint space of 0.5 mm
Galbusera et al. (2008) Frictionless
Goel et al. (1988) Frictionless Initial joint space of 0.45 mm
Guo et al. (2007) Frictionless
Guo and Li (2020) Frictionless Initial joint space of 0.5 mm
Khoddam-Khorasani et al. (2018) Max gap of 1.25 mm
Kim et al. (2012) Exponential formulation
Kim et al. (2017) Frictionless Exponential formulation
Kong et al. (1998) Initial joint space of 1.25 mm, contact initiated at gap of 0.75 mm, exponential 

formulation, pressure at zero gap of 35 GPa
Liu et al. (2011) Friction coefficient of 0.1 Initial joint space of 0.5 mm
Liu et al. (2018) Frictionless Max gap of 1.5 mm
Liu et al. (2020) Frictionless Initial joint space of 0.5 mm
Mustafy et al. (2014) Frictionless
Naserkhaki et al. (2016) Frictionless Max gap of 2 mm
Niemeyer et al. (2012) Frictionless Initial joint space of 0.01 mm to 0.4 mm (uniform probability distribution), 

contact initiated for overclosure of 0.01 to 0.3 mm (uniform probability distri-
bution), exponential formulation, pressure at zero gap of 170 MPa

Nikkhoo et al. (2019) Frictionless Initial joint space of 0.3 mm, exponential formulation
Nikkhoo et al. (2020) Frictionless Initial joint space of 0.5 mm, contact initiated at gap of 0.5 mm, exponential 

formulation, pressure at zero gap of 120 MPa
Rohlmann et al. (2006b) Initial joint space of 0.5 mm, gap/pressure curve with a pressure at zero gap of 

12 GPa
Rundell et al. (2011) Frictionless
Sharma et al. (1995) Initial joint space of 0.6 mm, contact initiated at gap of 0.4 mm, gap/pressure 

curve with a pressure at zero gap of 12 GPa
Shen et al. (2019) Frictionless
Shirazi-Adl et al. (1986) Frictionless
Shirazi-Adl and Drouin (1987) Frictionless Initial joint space of 1 mm, max overclosure 0.5 mm
Shirazi-Adl (1994) Frictionless Contact initiated at overclosure of 1.25 mm, compression moduli of 75 and 

150 MPa
Sterba et al. (2019) Frictionless
Teo et al. (2003) Frictionless Normal penalty increasing linearly from 0 to 12 GPa at overclosure of 0.2 mm
Tsouknidas et al. (2015) Friction coefficient of 0.1 Initial joint space of 0.5 mm
Wang et al. (1997) Frictionless Initial joint space of 0.4 mm, pressure at zero gap 1.6 MPa
Wang et al. (2020) Friction coefficient of 0.1
Xu et al. (2017) Frictionless Initial joint space of 0.5 mm
Zhu et al. (2017) Frictionless Initial joint space 0.5 mm
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(n = 50/95, Table 1) did not include the cartilage explic-
itly but represented its function through contact pairs and 
a soft-contact pressure-overclosure model. The studies 
which explicitly included cartilage (n = 45/95, Table 2) 
usually modelled its behaviour as a linear elastic material 
(n = 37/45). Quite a few studies (n = 15/110, Table 3) did 
not include sufficient information to know how the facet 
joint was represented (i.e. studies that may mention some 
information about friction but not if cartilage was repre-
sented explicitly or through a soft contact model, or that 
mention the presence of cartilage without information on 
material model used).

When cartilage was included explicitly, it was always 
reconstructed from the bone anatomy, and from reported 

observation of facet joint space and/or cartilage thickness 
in facet joints.

3.2  Facet joint contact model

Whether or not the cartilage is included explicitly, a contact 
model is required to represent the interaction between oppo-
site facet surfaces.

When cartilage was not included, the pressure-overclo-
sure model in the soft contact formulation represents both 
the direct contact behaviour and the compliance of the car-
tilage in compression. It was rarely described with sufficient 
details (Table 1): most studies included information about 
initial joint space (initial bony gap with no physical cartilage 

Table 2  Material model and parameters, and friction models of studies explicitly including a cartilage layer at the facets (empty cells refer to a 
lack of relevant information)

References Friction model Cartilage material model

Bashkuev et al. (2018, 2020) Frictionless Linear elastic: E variable, � = 0.3
Cai et al. (2020) Friction coefficient of 0.01 Linear elastic: E = 10MPa , � = 0.4
Calvo-Echenique et al. (2018); Kang et al. (2015, 2017); Kim 

et al. (2013); Schmidt et al. (2012)
Frictionless Linear elastic: E = 35MPa , � = 0.4

Ezquerro et al. (2011) Frictionless Linear elastic
Guo et al. (2019) Frictionless Linear elastic: E = 10 kPa

Huang et al. (2018); Li et al. (2017b, 2018); Mo et al. (2017); 
Rong et al. (2017); Wu et al. (2017)

Frictionless Linear elastic: E = 10.4MPa , � = 0.4

John et al. (2018) Linear elastic: E = 10MPa , � = 0.3
Kang et al. (2010) Linear elastic: E = 0.5MPa , � = 0.45
Lee et al. (2011, 2016); Li et al. (2017c); Sun et al. (2020) Linear elastic: E = 10.4MPa , � = 0.4
Li et al. (2017a) Friction coefficient of 0.07 Linear elastic: E = 10.4MPa , � = 0.4
Li et al. (2019) Frictionless Linear elastic: E = 10MPa , � = 0.4
Mesfar and Moglo (2013) Linear elastic: E = 10MPa , � = 0.45
Mills and Sarigul-Klijn (2019) Linear elastic: E = 35MPa , � = 0.4
Moumene and Geisler (2007); Park et al. (2013b) Linear elastic: E = 11MPa , � = 0.4
Ottardi et al. (2016) Linear elastic: E = 23.8MPa , � = 0.4
Panzer and Cronin (2009) Squeeze-film-bearing 

model + frictionless
Linear elastic: E = 10MPa , � = 0.4

Park et al. (2013a) Frictionless Linear elastic: E = 11MPa , � = 0.4
Tang and Meng (2011) Frictionless Linear elastic: E = 3500MPa , � = 0.25
Wang et al. (2013) Frictionless Linear elastic: E = 75MPa , � = 0.4
Wang et al. (2016a) Frictionless Linear elastic
Wang et al. (2016b) Friction coefficient of 0.01 Linear elastic: E = 23.8MPa , � = 0.4
Xin-Feng et al. (2020) Friction coefficient of 0.1 Linear elastic: E = 10.4MPa , � = 0.4
Zhou et al. (2020) Friction coefficient of 0.2 Linear elastic: E = 50MPa , � = 0.3
Ayturk and Puttlitz (2011); Du et al. (2016a) Frictionless Neo Hooke
Holzapfel and Stadler (2006) Friction coefficient of 0.06 Neo Hooke
Schmidt et al. (2013) Frictionless Mooney-Rivlin 1st order
Barthelemy et al. (2016) Frictionless Mooney-Rivlin 2nd order
Noailly et al. (2012) Mooney-Rivlin 2nd order, incompressible
Noailly et al. (2007) Asymmetric tension/compression, with 

hypoeleastic cartilage in compression
Hussain et al. (2010) Poroelastic using: E = 10.4MPa , � = 0.4
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present) or maximum overclosure values (max gap) but usu-
ally did not provide much information about the pressure-
overclosure relationship. Fourteen studies (out of 49) did not 
provide any other information than using a “soft contact” or 
“non-linear contact” formulation (Aroeira et al. 2018; Ber-
mel et al. 2018; Campbell and Petrella 2016; Charles et al. 
2013; Cheung et al. 2003; Deng et al. 2017; Goto et al. 2002; 
Kim et al. 1991; Lo et al. 2019; Pitzen et al. 2002; Song et al. 
2014, 2018; Teo and Ng 2001; Zeng et al. 2017). Only six 
of the 50 models with cartilage behaviour modelled as soft 
contact reported all required information on the pressure-
overclosure law, of which only four also reported friction 
behaviour.

Of studies which included information on the fric-
tion model (Table 1, n = 30∕35 studies with soft contact 
and Table 2, n = 31∕45 studies with cartilage), a major-
ity assumed the contact behaviour to be frictionless 
(n = 50∕61) , while only eleven included some friction (with 
a friction coefficient ranging from 0.01 to 0.2). None of the 
model with friction specified the type of friction law used.

3.3  Cartilage material model

Of studies which incorporate a 3D deformable cartilage 
layer, only one did not consider the cartilage as a purely elas-
tic material, but used a poroelastic model instead (Hussain 
et al. 2010). Most other studies used a linear elastic mate-
rial law with a large variation in Young’s modulus (median 
10.4  MPa, range 10 kPa–3.5  GPa) and Poisson’s ratio 
(median 0.4, range 0.25–0.45). Those using a hyperelastic 

material law used a Neo-Hooke model or first- or second-
order Mooney–Rivlin model; only one giving information 
on the compressibility of the material used. Finally, only one 
study (Noailly et al. 2007) used a material law asymmetric in 
tension and compression, representing the different behav-
iour of the cartilage in these configurations.

4  Validation processes used in facet joints 
biomechanics

There were as many recent studies ( n = 9∕63 since 2015) 
as older ones ( n = 9∕47 before 2015) which included some 
validation of the facet joints biomechanics (Table 4). While 
ten studies assessed their outcomes with respect to ranges of 
experimental values available in the literature, 11 assessed 
their outcomes with respect to FE models outputs, three 
of which also comparing to experimental data from the 
literature.

The assessment of the effect of using diverse contact 
algorithm on facet joints biomechanics was studied by evalu-
ating the contact pattern (Holzapfel and Stadler 2006). Of 
these 18 studies with validation, none also reported sensitiv-
ity analysis on facet joints inputs to outputs of interest. Only 
one study, whose study aim was to assess the validity of a 
statistical shape model, reported sensitivity to the geometry 
of the spinal level of interest (Campbell et al. 2016).

4.1  Comparison with literature experimental data

The source of experimental data from the literature used in 
validation work was limited, with four experimental studies 
used for the lumbar spine (Wilson et al. 2006; Niosi et al. 
2008; Zhu et al. 2008 from the University of British Colum-
bia, and Sawa and Crawford 2008 from St. Joseph’s Hospital 
and Medical Center) and one for the cervical spine (Jaumard 
et al. 2011a).

When comparing outcome of FE models with otherwise 
published experimental data, all lumbar spine studies used 
one source of data (Wilson et al. 2006), often alongside oth-
ers, which includes in its discussion comments about experi-
mental accuracy, reporting a likely overestimation of facet 
joints forces. This aspect was not acknowledged in valida-
tion studies which rarely consider experimental error as a 
source of error on the validation of computational models. 
Moreover, for L3/L4, some studies compared their results 
to both Wilson et al. (2006) and Sawa and Crawford (2008) 
for which the latter has a mean value almost half of the for-
mer. In that case, computational results are usually closer to 
the highest values (Wilson et al. 2006) than the lower ones 

Table 3  Contact information of studies which are unclear about the 
representation of cartilage (empty cells refer to a lack of relevant 
information)

References Friction model

Chen et al. (2015) Friction coefficient of 0.1
Choi et al. (2016) Frictionless
Choi et al. (2017)
Chuang et al. (2012) Frictionless, initial facet space 0.5 mm
Guo and Li (2019) Frictionless
Kong et al. (1996)
Kosalishkwaran et al. (2019) Frictionless
Li et al. (2020)
Lin et al. (2014) Friction coefficient of 0.1
Yang and King (1984)
Yu et al. (2020) Friction coefficient of 0.1
Yuchi et al. (2019) Friction coefficient of 0.01, initial 

facet space 0.5 mm
Wu et al. (2017) Frictionless
Zhu et al. (2020) Friction coefficient of 0.1
Zhang et al. (2018) Frictionless
Zhu et al. (2015)
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(Sawa and Crawford 2008), while the corresponding L1/L2 
is validated against Sawa and Crawford (2008)’s data.

Most FE studies compared their outputs with literature 
reporting data for the same spinal levels (L1–2 or L3–4), 
however, some reported validation while mixing experimen-
tal data from several levels (e.g. Mustafy et al. 2014 compar-
ing one cervical level with the range reported for C2–C6), 
artificially increasing the range of validity.

4.2  Comparison with literature computational data

Eleven studies provided validation of facet joints outputs 
against computational data. All validation studies against 
computational data were able to replicate exactly boundary 

and loading conditions with respect to study providing 
target values but none of the target computational studies 
was specifically validated for facet joints biomechanics.

Five out of six studies performed after 2014 compared 
their results to the pooled outcomes resulting from the 
comparison study of eight lumbar models (Dreischarf et al. 
2014). This type of validation protocol uses an artificially 
large variance in the target values for validation. In par-
ticular, the range of mean facet joint force values across 
all eight models in extension and in axial rotation ( ∼ 10 N 
to ∼ 110 N and ∼ 40 N to ∼ 135  N) was up to twice larger 
than corresponding experimental data ( ∼ 10 N to ∼ 55 N 
and ∼ 55 N to ∼ 115 N, Wilson et al. 2006), defining an 
“easier” validation target.

Table 4  Study aim and validation work performed for the 18 studies mentioning some validation of facet joints biomechanics (references 
denoted with * are included in the comparison work in Dreischarf et al. 2014)

References Study aim Validation work for facet joints

Comparison of facet joint force or pressure
Azari et al. (2018) Estimate internal stresses and strains under 

realistic load conditions
Pooled range of values from eight FE models 

(Dreischarf et al. 2014)
Ayturk and Puttlitz (2011)* Validation work Experimental data (Wilson et al. 2006; Niosi 

et al. 2008; Sawa and Crawford 2008)
Barthelemy et al. (2016) Validation of composition-based disc model Experimental data (Wilson et al. 2006; Niosi 

et al. 2008; Zhu et al. 2008); computational 
data (Noailly et al. 2012)

Campbell et al. (2016) Development of statistical shape modelling Experimental data (Wilson et al. 2006; Niosi 
et al. 2008; Sawa and Crawford 2008)

Chen et al. (2009) Comparison between TDR and fusion FE models (Chen et al. 2002; Shirazi-Adl 1994)
Goel et al. (1988) Effect of fixation device FE models (Shirazi-Adl and Drouin 1987; Yang 

and King 1984)
Guo et al. (2007) Effect of denucleation with vibration FE model (Shirazi-Adl and Drouin 1987)
Guo and Li (2020) Validation in static and dynamic conditions Experimental data (Wilson et al. 2006; Niosi 

et al. 2008; Sawa and Crawford 2008)
Kim et al. (2013) Effect of facet joints orientation and facet 

tropism
Experimental data (Wilson et al. 2006)

Khoddam-Khorasani et al. (2018) Coupling passive FE and active MSK Pooled range of values from eight FE models 
(Dreischarf et al. 2014)

Liu et al. (2011)* Effect of stabilisation system FE models (Shirazi-Adl et al. 1986; Chen et al. 
2009)

Mills and Sarigul-Klijn (2019) Validation work Pooled range of values from eight FE models 
(Dreischarf et al. 2014) and experimental data 
(Wilson et al. 2006)

Mustafy et al. (2014) Effect of impact loading rates on load sharing Experimental data (Jaumard et al. 2011a)
Naserkhaki et al. (2016) Assessment load share in flexion-extension Pooled range of values from eight FE models 

(Dreischarf et al. 2014) and experimental data 
(Wilson et al. 2006)

Nikkhoo et al. (2020) Effect of lordosis on fusion Pooled range of values from eight FE models 
(Dreischarf et al. 2014)

Wang et al. (1997) Validation of a viscoelastic model FE model (Shirazi-Adl and Drouin 1987)
Xu et al. (2017) Validation work from multiple subjects Experimental data (Wilson et al. 2006; Niosi 

et al. 2008; Sawa and Crawford 2008)
Other comparison
Holzapfel and Stadler (2006) Role of facet curvature Qualitative comparison of “waviness” of contact 

pattern
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For five out of six studies performed before 2014, refer-
ence studies used were early computational studies (Shirazi-
Adl et al. 1986; Shirazi-Adl and Drouin 1987; Yang and 
King 1984) for which the accuracy of the geometry could 
be questioned with respect to accuracy of contact forces.

5  Discussion

This review of 110 papers from the last 30+ years has shown 
that there is, to date, no finite element model of the human 
functional spinal unit (two or more levels) which provides 
direct validation of the facet joint behaviour. Direct vali-
dation is here defined as the direct comparison between a 
computational result and an experimental result of the same 
specimen, when the computational model and the experi-
ment match as closely as possible (Jones and Wilcox 2008; 
Mengoni et al. 2017). All quantitative validation processes 
for the facet joints in the reviewed studies use comparison 
with the existing literature data, either computational data 
or experimental data, all assuming healthy facet joint prop-
erties. This process of indirect validation is useful to verify 
that model outputs are within a range of plausible values. 
Even when those models are built from patient-specific 
geometry, it does not demonstrate that the model outputs 
are valid for a specific geometry, or that the method is able 
to appropriately capture variation within the population.

One in three studies without facet joint validation focus 
on the effect of different constructs or disc degeneration on 
the facet joints. Moreover, while a clinical correlation has 
been established between intervertebral disc degeneration 
and facet joints degeneration (Jaumard et al. 2011b; Gell-
horn et al. 2013), studies modelling degenerated disc and 
also including degeneration of the facet joint cartilage mate-
rial properties or friction behaviour are only those which 
perform statistical sweeps. As such, most studies evaluate 
the effect of a disruption for which there is no initial indica-
tion of baseline validity or without including concomitant 
factors. While some qualitative comparison may still be 
appropriate, there is no indication that quantitative assess-
ment should be taken for granted.

There is often a lack of critical analysis about the meth-
odology used. For example, the facet joint being a synovial 
joint, it has almost perfect lubrication (Guilak 2005). As 
such, when healthy, it is likely that the friction coefficient 
is well below 0.05. Using a higher friction coefficient may 
be the result of needing to reduce sliding for computational 
stability rather than a representation of a physical charac-
teristic. When such parameters choices do not seem to be 
based on the physics of the problem, more should be done 
in discussing “the art of modelling” and modelling assump-
tions openly (i.e. choices made so that a model solution can 

converge). This would contribute to a more honest discus-
sion on the capacity of the modelling approach chosen.

Less than one in five studies provide sufficient details 
on the facet joint behaviour modelling assumptions (mate-
rial parameters or pressure-overclosure model and compu-
tational representation of friction). This lack of informa-
tion is somewhat contributing to reduced confidence in the 
outcomes and mostly to poor reproducibility. The lack of 
information on soft contact models is the most common, 
often only mentioning the use of “soft contact” or “nonlinear 
contact”. This may be due to using default approaches in 
commercial finite element software without a clear under-
standing of what these are or of what they represent physi-
cally. The use of software-specific terminology reinforces 
that interpretation. Issues linked with poor reproducibility 
in joint biomechanics is not specific to modelling of the facet 
joints. For example, the likely shortcomings of natural knee 
modelling are the basis of a large multi-centre reproducibil-
ity study, assessing the effect of the “art of modelling” on 
model outputs variability (Erdemir et al. 2019).

There is often a trade-off between the accuracy of carti-
lage geometry and materials in facet joint modelling assump-
tions. Including a complex representation of the cartilage, 
combined with a nonlinear material law may increase the 
overall non-linearity of a computational model to a point 
where solving becomes too difficult. As such, models which 
represent the cartilage geometry explicitly often have lin-
ear material properties, while models with nonlinear soft 
contact assumptions do not include any inhomogeneity in 
the cartilage anatomy (in particular its thickness). The car-
tilage geometry, even when explicitly included, is always 
an approximation, based on general anatomical knowledge 
such as setting a given initial joint space or an average carti-
lage thickness. Sensitivity studies including heterogeneous 
thickness of the cartilage (Woldtvedt et al. 2011; Niemeyer 
et al. 2012) showed that while the ranges of motion were 
not altered with respect to homogeneous cartilage, outputs 
related to contact and load share were highly affected. Vari-
able cartilage thickness models could be done by incorporat-
ing data from MR images to models that are often built from 
CT images. This comes with the difficulty of poor anatomi-
cal resolution in clinical MR (where standard MR protocols 
do not capture many slices within each facet joints) and may 
therefore be more suited for cadaveric studies where high-
resolution MR can be acquired with very few artefacts.

There is no extensive sensitivity study on the effect that 
cartilage material law has on facet outputs of interest. As 
the initial facet joint space and the cartilage thickness seem 
to have a major effect on contact pressure obtained during 
normal range of movements (Niemeyer et al. 2012), the 
effect of material law may be secondary. In theory, mate-
rial models for the cartilage should represent its different 
behaviour in tension and compression (Noailly et al. 2007). 
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Using a soft-contact model for the cartilage has the benefit to 
include this aspect by default, while models with an explicit 
representation of the cartilage should include this behav-
iour in the material law. This effect needs to be included if 
the cartilage may sustain loads which are not compressive. 
However, as most contact models used are frictionless and 
inactive once the surfaces are not overlapping, it is unlikely 
that the facet cartilage sustain loads other than compressive 
loads. As such, including the different behaviour in tension 
and compression may only have a secondary effect.

In a validation process comparing data to the literature, 
the aim is to obtain model outputs within a range of equiv-
alent literature values. By nature of working with natural 
tissues and somewhat different testing protocols, there is a 
large variability in experimental data on facet joints found 
in the literature. Comparing computational outcome to 
experimental data obtained with a protocol as similar as the 
computational model is therefore critical when choosing 
what experimental data to use in validation studies. Data to 
compare against should not be chosen a-posteriori to fit com-
putational outcomes. Computational studies are often unable 
to replicate facet joint forces of two adjacent levels from a 
unique data source. This lack of consistency between levels 
does not provide confidence that one model can replicate 
one experimental protocol but rather that models are able to 
replicate average values coming from different testing pro-
tocols. There is also a large variability in computational data 
on facet joints in the literature, which increases by including 
studies which are not specifically validated against facet joint 
outputs. Performing validation studies against computational 
data which is not known to be valid for facet joint outputs 
increases the risk of a model being wrongly deemed valid 
and should be avoided.

Validation can be done comparing model outcomes to 
equivalent data from the literature or to data correspond-
ing directly to the specimen being modelled. While most 
validation studies analysed here replicate as closely as pos-
sible an equivalent experimental or computational proto-
col, they do not report on how sensitive the model outputs 
are to its inputs or which assumptions can be modified and 
still produce a valid outcome. When building model geom-
etries from patient- or specimen-specific images, this means 
that there is no indication on the patient-specificity of the 
outcomes produced by a modelling method deemed to be 
valid with respect to literature data. A validation process 
comparing a model to its direct experimental equivalent 
has the benefit that the specificity of the validation can be 
assessed (Jones and Wilcox 2008). When performing such 
a direct validation across several specimens, it also has the 
advantage that it provides confidence in the ability to model 
the specimen-to-specimen variation in the outputs of inter-
est (Mengoni 2020b). However, there is often a trade-off 
between having a model representative of a realistic, often 

uncertain, situation and replicating closely a given specimen 
and its testing conditions (Cooper et al. 2019).

While model validation is always limited to a given set 
of inputs and outputs, using models or methodologies out-
side their validation range is where computational model-
ling can become useful, providing new information. This 
should be performed with clear identification of the context 
of use (Viceconti et al. 2020), justifying using appropriate 
variation in inputs or outputs with respect to the validation 
study. Systematically providing comprehensive information 
on model methodologies (“the art of modelling”) and on the 
physical data used in validation studies (input and output 
data) would provide better confidence in the context of use 
of “valid” models and increase the possibility to directly 
compare model methodologies against the same physical 
data. In the case of facet joints biomechanics for which no 
direct validation study exists, systematically sharing data, 
including 3D imaging, through open-repositories would 
allow more users to demonstrate that their model outputs 
are valid for specific inputs, and that their method is able to 
appropriately capture variation within the population.
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