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SUMMARY
Epithelial tissues represent vital interfaces between organisms and their environment. As they are constantly
exposed to harmful pathogens, innocuous commensals, and environmental microbes, it is essential they
sense and elicit appropriate responses toward these different types of microbes. Here, we demonstrate
that the epithelial cytokine interleukin-36g (IL-36g) acts as a global discriminator of pathogenic and harmless
microbes via cell damage and proteolytic activation. We show that intracellular pro-IL-36g is upregulated by
both fungal and bacterial epithelial microbes; yet, it is only liberated from cells, and subsequently processed
to its mature, potent, proinflammatory form, by pathogen-mediated cell damage and pathogen-derived pro-
teases. This work demonstrates that IL-36g senses pathogen-induced cell damage and proteolytic activity
and is a key initiator of immune responses and pathological inflammation within epithelial tissues. As an
apically located epithelial proinflammatory cytokine, we therefore propose that IL-36g is critical as the initial
discriminator of harmless microbes and invasive pathogens within epithelial tissues.
INTRODUCTION

As crucial interfaces between the body and its environment,

epithelial sites such as the skin, gut, and lungs are constantly

challenged by ubiquitous exogenousmicrobes. Onemechanism

by which the host can potentially discriminate harmful patho-

gens from commensals is via pathogenic damage. As host tissue

can be a non-permissive environment formicrobial growth, path-

ogens often produce cytotoxic virulence factors that assist colo-

nization by facilitating immunosuppression and nutrient acquisi-

tion. Damaging virulence factors result in the release of cellular

components known as alarmins such as interleukin-1a (IL-1a)

and high mobility group box 1 (HMGB1), which are normally

sequestered within healthy cells. Upon release, these function

to activate tissue-resident inflammatory cells and induce cyto-

kine production that recruits inflammatory cells to the site of

infection and skews the adaptive immune system toward an

appropriate response to ultimately clear infection (Bianchi
Cell R
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et al., 2017; Kono et al., 2010; Eigenbrod et al., 2008; Oppenheim

and Yang, 2005; Yang et al., 2017).

Interestingly, a significant number of epithelial pathogens have

evolved proteolytic enzymes for nutrient acquisition and the colo-

nization of extracellular matrix (ECM)-rich epithelial tissues (Singh

et al., 2012). For example, the clinically significant bacterial path-

ogen Streptococcus pyogenes, an etiological agent of pharyn-

gitis, cellulitis, and erysipelas, and Aspergillus fumigatus, which

causes invasive aspergillosis with fatality rates in excess of 50%

in immunocompromised individuals (Lin et al., 2001), both pro-

duce ECM-degrading proteases (Tamura et al., 2004; Burns

et al., 1996; Iadarola et al., 1998). Given that these proteases

are important mediators of invasion and that the ability for a

microbe to invade can be the difference between a pathogen

and a commensal, it is postulated that proteases are often essen-

tial mediators of pathogenicity. It would therefore be beneficial to

the host to identify the presence of such proteolytic virulence fac-

tors, enabling immediate recognition of a pathogenic presence.
eports 33, 108515, December 15, 2020 Crown Copyright ª 2020 1
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The IL-36 cytokines (IL-36a, IL-36b, IL-36g, receptor antago-

nist [RA]) are a recently characterized group of cytokines

belonging to the IL-1 superfamily (Dunn et al., 2001). While

many IL-1 cytokines can be found expressed throughout the

body, the IL-36 cytokines are predominately expressed in

epithelial tissue such as the skin, lungs, gut, and mucosa, partic-

ularly at apical locations, suggesting an important role in barrier

immune function (Dunn et al., 2001; Gabay and Towne, 2015;

Boutet et al., 2016). Indeed, it is now well established that IL-

36g is a proinflammatory mediator highly expressed in psoriasis

and is involved in the initiation and maintenance of pathological

inflammation (Johnston et al., 2011; He et al., 2013; Berekmeri

et al., 2018; Bridgewood et al., 2018). However, this cytokine is

also a critical mediator of immune responses to several classes

of invading pathogens at epithelial barriers (Kovach et al., 2017;

Gao et al., 2018). As a proinflammatory protein, IL-36g induces

expression of a range of antimicrobial peptides such as catheli-

cidin (LL-37), human beta defensins 2 and 3, and S100 proteins

as well as several cytokines and chemokines such as itself and

IL-1a/b, IL-8, IL-17, and CCL20, cytokines typically associated

with an immune response to extracellular pathogens (Foster

et al., 2014; Johnston et al., 2011; Carrier et al., 2011). Intra-

tracheal administration of IL-36g in mice leads to an influx of neu-

trophils and macrophages, in addition to T helper 1 (Th1) and

Th17 cells, crucial for the orchestration of an adaptive immune

response to invading pathogens (Ramadas et al., 2011; Carrier

et al., 2011). Furthermore, several studies have shown expres-

sion of IL-36g is elevated upon challenge by numerous invasive

bacterial and fungal pathogens, including Streptococcus pneu-

moniae, Klebsiella pneumoniae, Aspergillus fumigatus, and

Candida albicans, and subsequent studies have implicated IL-

36g involvement in initiating an inflammatory response following

infection by such organisms. Indeed, in mouse models of bacte-

rial pneumonia and mucosal candidiasis, deficiency of IL-36

signaling leads to increased mortality and fungal burdens (Ko-

vach et al., 2017; Gresnigt et al., 2013; Verma et al., 2018; Brae-

gelmann et al., 2018).

As with other IL-1 family cytokines, IL-36g is produced as an

inactive precursor that requires precise N-terminal processing

to become biologically active. The activating cleavage event oc-

curs between Gln17 and Ser18, nine amino acids upstream of the

conserved IL-1 motif, and deviation from this site by a single

amino acid reduces biological activity more than 1,000-fold

(Towne et al., 2011). Unlike the well-characterized IL-1b and

IL-18 cytokines, this activation has been shown to be an inflam-
Figure 1. Epithelial Pathogens Induce Expression and Release of IL-36
(A–N) TR146 cells (105 per well) were treated with M, zym (A; 100 and 500 mg/mL)

measured by ELISA (n = 3). (C) TR146 cells were treated with M or with either live o

by ELISA (n = 3). TR146 cells were treated with PGN (D; 10 mg/mL), fixed S. p, or fi

TR146s (F) were treated for 24 h with M or with either live or fixed S. p and S. e

subjected to media change with antibiotic-free DMEM and then left U, inoculated

0–6 h (G, S. p; I, S. epi) or Asp (106) for 0–22 h (H and J). Supernatant was collecte

blot (G and H) and IL-36g by ELISA (I and J) (n = 3). GAPDH band intensity was a

Precision-cut lung slices were treated with PAMPs (K) and zym (L; 100–500 mg/m

chemistry staining of sections from healthy (M) and T. rubrum-infected (N) skin.

ANOVA was used to determine statistical significance of differences between trea

SEM. Abbreviations are as follows: Asp, A. fumigatus conidia; Lys, lysate GAPDH;

U, uninfected; zym, zymosan.
masome-independent process, which, in psoriasis, is mediated

via the endogenous proteases cathepsin S and neutrophil elas-

tase (Ainscough et al., 2017; Henry et al., 2016). However, the

mechanisms by which IL-36g is released and activated during

microbial infection remain unknown.

Given the importance of proteolytic virulence factors in estab-

lishing pathogenic invasion, and the importance of proteolytic

processing in the activation of IL-36g at epithelial barriers, we

examined the effects of pathogen-mediated release and proteo-

lytic activation of IL-36g. The work presented here provides ev-

idence that IL-36g acts as a link between pathogenic proteolytic

activity and initiation of an immune response in epithelial tissue.

We demonstrate that IL-36g is upregulated by microbes,

released by pathogenic damage, and processed into its bioac-

tive form by several proteases from important fungal and bacte-

rial epithelial pathogens. We therefore propose that IL-36g is an

epithelial alarmin that acts as a global early sensor of pathogenic

invasion, enabling the innate immune response to discriminate

harmful from harmless microbes. This work builds a more com-

plete picture of how IL-36 signaling is initiated during microbial

infection and demonstrates the importance of IL-36 cytokines

in immune defense at epithelial barriers.

RESULTS

Epithelial Pathogens Upregulate and Release IL-36g
IL-36g is expressed at epithelial barriers and has been shown to

be upregulated in response to a number of pathogen-associated

molecular patterns (PAMPs), such as lipopolysaccharide (LPS),

b-glucans, and poly(I:C). While mechanisms of release of IL-

36g are currently unclear, one possibility is that IL-36g remains

in the cytoplasm until cellular damage results in release of the

immature protein into the surrounding extracellular space, where

it is available for activation by extracellular proteases.

To investigate the effect pathogenic challenge has on IL-36g

expression and release, the oral buccal epithelial cell line

TR146 was stimulated with varying concentrations of zymosan

and peptidoglycan for 0–48 h (Figures 1A and 1D). Measurement

of lysate IL-36g by ELISA showed both zymosan- and peptido-

glycan-induced expression of IL-36g. TR146 cells were also

treated with a varying amount of fixed A. fumigatus conidia,

S. pyogenes, and the harmless commensal Staphylococcus epi-

dermidis for 0–48 h, and lysate IL-36g was measured by ELISA

(Figures 1B and 1E). Again, an increase in IL-36g expression

was observed upon stimulation with all fixed microbes.
g

, or fixed Aspergillus conidia (B; 106 and 107) for 0–48 h, and lysate IL-36g was

r fixed Aspergillus conidia (107) for 24 h, and supernatant IL-36gwasmeasured

xed S. epi (E) (107) for 0–48 h, and lysate IL-36gwas measured by ELISA (n = 3).

pi, and supernatant IL-36g was measured by ELISA (n = 4). TR146 cells were

with either S. p (107) or S. epi (107) (supernatant GAPDH compared with Lys) for

d from cells at the indicated time points and measured for GAPDH by western

nalyzed in ImageJ software and plotted against IL-36g concentration (I and J).

L). Lysate IL-36g was measured by ELISA (n = 6). Anti-IL-36g immunohisto-

Western blots are representative of three individual experiments. A one-way

tment groups. *p < 0.05, **p < 0.01, and ****p < 0.0001. Data shown are mean ±

PGN, peptidoglycan; M, media alone; S. epi, S. epidermidis; S. p, S. pyogenes;
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However, while IL-36g expression was evident in the lysate, little

or no corresponding increase was observed in the supernatant

of stimulated cells, with IL-36g often undetectable (Figure S1).

TR146 cells were then treated with either fixed or viable

A. fumigatus conidia, S. pyogenes, or S. epidermidis (Figures

1C and 1F). Measurement of IL-36g in supernatants from cells

treated with live A. fumigatus and S. pyogenes, both of which

are pathogens, showed a significant increase in extracellular

IL-36g comparedwith their fixed counterparts, indicating release

of the cytokine only occurred when cells were inoculated with

viable pathogens. Strikingly, cells treated with the commensal

S. epidermidis did not release IL-36g into their culture superna-

tant, suggesting the live commensal was unable to induce IL-36g

release.

Given that extracellular IL-36g was only observed following

inoculation with live proliferating pathogens and that bacterial

and fungal growth can be destructive to cells, it was hypothe-

sized that cellular damage was responsible for release of IL-

36g. To test this, TR146 cells were infected with either

A. fumigatus, S. pyogenes, or S. epidermidis, and the release

of the cytosolic housekeeping protein glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) was monitored alongside that

of IL-36g. As shown in Figures 1G and 1H, extracellular GAPDH

was present only in the pathogen-infected samples, and release

of both GAPDH and IL-36g coincided over time (Figures 1I and

1J), suggesting release of IL-36gmay occur as a result of mem-

brane damage.We did not observe the release of either IL-36g or

GAPDH from cells infected with the commensal S. epidermidis,

suggesting this commensal is not inducing release of IL-36 as

it is not inducing cellular membrane damage.

To examine the relevance of IL-36g in other types of epithelial

tissues, the expression of IL-36g in response to PAMP stimula-

tion was examined in cultured human lung tissue using ex vivo

precision-cut lung slices (Temann et al., 2017). Slices were

treated with LPS, poly(I:C), and zymosan at the indicated con-

centrations, and lysate IL-36g was assessed by IL-36g ELISA.

As shown in Figure 1G, all PAMPs tested induced increased

expression of IL-36g, with zymosan inducing the strongest

expression (Figures 1K and 1L). Again, no measurable IL-36g

was detectable in the supernatants of the precision-cut lung sli-

ces. Furthermore, immunohistochemistry on sections from

healthy and Trichophyton rubrum-infected skin shows IL-36g is

highly expressed in the uppermost layers of the epidermis

following infection by T. rubrum (Figures 1M and 1N).

IL-36g Is Activated by Proteases Derived from a Range
of Human Pathogens
Asmany epithelial pathogens are known to express proteases to

facilitate invasion and nutrient acquisition, the effects of culture

filtrates from A. fumigatus, S. pyogenes, T. rubrum, and Staphy-

lococcus aureus on the processing of IL-36g were investigated.

Recombinant pro-IL-36g possessing an N-terminal small

ubiquitin-like modifier (SUMO) tag was incubated with culture fil-

trates from A. fumigatus, S. pyogenes, T. rubrum, and S. aureus

at 37�C for 1 h. Resolution by SDS-PAGE revealed that incuba-

tion with the culture filtrates from all pathogens tested results in

truncation of IL-36g (Figures 2A–2D). Analysis of the truncated

products by liquid chromatography-mass spectrometry (LC-
4 Cell Reports 33, 108515, December 15, 2020
MS) identified the prominent species as possessing a mass of

17,031 Da in all of the culture filtrates (Figure S2). This species

corresponds to the predicted mass of the highly active mature

IL-36g S18 (illustrated in Figure 2). In order to confirm that N-ter-

minal SUMO was not having an effect on cleavage, the culture

filtrate incubations were repeated using recombinant pro-IL-

36g without N-terminal SUMO and analyzed by LC-MS. Again,

the prominent species possessed a mass corresponding to

mature IL-36g S18 in all culture filtrates (Figure S2).

Culture filtrate-incubated pro-IL-36g was tested for biological

activity by utilizing an activity assay previously developed (Ain-

scough et al., 2017). Culture filtrates incubated with or without

pro-IL-36g were added to IL-36g-sensitive HaCaT cells in the

presence or absence of IL-36RA and monitored for IL-8 expres-

sion. While addition of either culture filtrate or pro-IL-36g alone

elicited only very low amounts of IL-8 secretion, the addition of

culture filtrate and pro-IL-36g induced strong responses (Figures

2E–2H). Furthermore, this response is shown to be IL-36 specific

as addition of IL-36RA significantly reduced IL-8 secretion.

These observations indicate several pathogens across different

domains of life secrete proteases that activate IL-36g.

In addition to human (h)IL-36g, we also examined the suscep-

tibility of mouse (m)IL-36g to activation by these epithelial path-

ogens to test whether this activation is evolutionarily conserved.

While hIL-36g and mIL-36g are structurally similar, the primary

amino acid sequences surrounding the cleavage site required

for generating biologically active IL-36g are distinct.

As with hIL-36g, mIL-36gwas incubated with culture filtrate of

A. fumigatus, S. pyogenes, and T. rubrum at 37�C for 1 h prior to

resolution by SDS-PAGE. As with hIL-36g, cleavage was

observed in all samples (Figures 3A–3C). While addition of pro-

mIL-36g or culture filtrate alone to mIL-36-sensitive mouse em-

bryonic fibroblasts (MEFs) did not induce significant secretion of

mIL-6, addition of culture-filtrate-incubated pro-mIL-36g

induced strongmIL-6 secretion (Figures 3D–3F). LC-MS analysis

again confirmed that IL-36gwas cleaved to the proactive form of

murine IL-36g (G13).

Activation of IL-36g by S. pyogenes Is Dependent upon
Virulence Factor SpeB
Upon identifying culture filtrates extracted from several impor-

tant human epithelial pathogens activated IL-36g, we next

endeavored to identify what was responsible for the activation.

We proceededwith S. pyogenes andA. fumigatus as these path-

ogens are the most destructive and medically important of those

originally tested.

In order to identify the S. pyogenes protease responsible for

cleavage and activation of IL-36g, SUMO-pro-IL-36g was incu-

bated with S. pyogenes culture filtrate in the presence of the

broad-range Ser inhibitor PMSF, Cys inhibitor E64, and metallo-

proteinase inhibitor EDTA for 1 h at 37�C. As shown in Figure 4A,

while cleavage was unaffected by addition of PMSF and EDTA,

addition of the Cys protease inhibitor E64 completely inhibited

cleavage. These samples were also tested for biological activity.

Initially, protease inhibitors were added to cells with IL-36g S18

to ensure they did not generate false negative results. A pan-pro-

tease inhibitor cocktail including E64, PMSF, and EDTA (PI)

added to HaCaT cells in combination with IL-36g S18 had no



Figure 2. Human IL-36g Is Activated by Pro-

teases Derived from a Range of Human Path-

ogens

(A–H) SUMO-tagged human IL-36g (1 mg) was

incubated at 37�C for 0 or 3 h, with or without 2 mL of

either Asp. CF (A), Tri. CF (B), Str. CF (C), or Sta. CF

(D). Samples were analyzed by Coomassie-blue-

stained SDS-PAGEgel. Cleaved products were also

analyzed by mass spectrometry, with diagrams

depicting the IL-36g truncation generated in

response to each CF. In addition, HaCaT cells (105

per well) were incubated for 24 h with M; pro-g

(10 nM); CF; a combination of pro-g and CF; or a

combination of pro-g, CF, and IL-36RA (50 nM; E–H)

(E–G, n = 3; H, n = 1). A one-way ANOVA was used

to determine statistical significance of differences

between treatment groups. **p < 0.01 and **p <

0.001. Data shown are mean ± SEM. Abbreviations

are as follows: Asp. CF, A. fumigatus culture filtrate;

pro-g, pro-IL-36g; Sta. CF, S. aureus culture filtrate;

Str. CF, S. pyogenes culture filtrate; Tri. CF,

T. rubrum culture filtrate.
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significant effect on IL-8 secretion, indicating the protease inhib-

itors themselves would not inhibit IL-36g activity (Figure 4B).

Addition of the culture-filtrate-incubated samples to HaCaT cells

revealed IL-36g truncated in the presence of PMSF and EDTA

both had IL-36g-specific activity, while the addition of E64 pre-

vented IL-36g-mediated IL-8 secretion (Figure 4C). These results

indicate a Cys protease secreted by S. pyogenes is responsible

for the activation of IL-36g.

During infection, S. pyogenes abundantly secretes the viru-

lence factor and Cys protease SpeB. We therefore examined

whether SpeB might also be responsible for the activation of

IL-36g by incubating SUMO-pro-IL-36g with culture filtrate

from a SpeB-deficient mutant strain of S. pyogenes (DSpeB).

Analysis by SDS-PAGE showed that in contrast to wild-type

S. pyogenes, IL-36g did not undergo cleavage upon incubation

with DSpeB S. pyogenes culture filtrate, and addition of the incu-

bated sample to HaCaT cells did not elicit a strong IL-8 secretion

(Figures 4D and 4E). These results suggest SpeB is responsible

for processing of IL-36g. For confirmation, SUMO-pro-IL-36g

was incubated with recombinant SpeB at 37�C for 1 h. Analysis
Cel
by SDS-PAGE showed truncation of IL-

36g (Figure 4F). Furthermore, addition of

SpeB and pro-IL-36g to HaCaT cells re-

sulted in secretion of IL-8 that could be in-

hibited by addition of IL-36RA (Figure 4G).

Addition of SpeB or pro-IL-36g alone re-

sulted in little or no IL-8 secretion. These

results therefore suggest IL-36g is acti-

vated by SpeB secreted by S. pyogenes.

Finally, the cleavage of pro-IL-36g by

SpeB was interrogated by LC-MS, which

identified the prominent species with a

mass corresponding to that of IL-36g S18

(illustrated in Figure 4F).

To assess whether mIL-36g is also sus-

ceptible to activation by SpeB, the
above-mentioned experiments were repeated with recombinant

pro-mIL-36g. Cleavage assays showed that while wild-type

S. pyogenes culture filtrate truncated mIL-36g, DSpeB culture

filtrate did not (Figure 4H). Furthermore, stimulation of MEFs

with DSpeB culture-filtrate-incubated mIL-36g did not elicit an

IL-36-dependent response (Figure 4I). Finally, incubation of

pro-mIL-36gwith recombinant SpeB resulted in rapid truncation

of pro-mIL-36g (within 5 min) that was identified by LC-MS as

biologically active mature mIL-36g (G13) (Figure 4J). Addition

of SpeB-processed pro-mIL-36g to MEFs also induced a strong

response (Figure 4K). These results indicate both hIL-36g and

mIL-36g are processed by SpeB to generate biologically active

IL-36g.

Aspergillus fumigatus Virulence Factor Asp F13 (Alp1)
Activates Released IL-36g in a Cell-Based Infection
Assay
A similar approachwas utilized to identify the activating protease

produced by A. fumigatus. SDS-PAGE analysis of culture-

filtrate-incubated SUMO-pro-IL-36g indicated that cleavage
l Reports 33, 108515, December 15, 2020 5



Figure 3. Mouse IL-36g (mIL-36g) Is Also

Activated by Proteases Derived from aRange

of Pathogens

(A–F) SUMO-tagged mIL-36g (1 mg) was incubated

at 37�C for 0 or 3 h, with or without 1 mL of either

Asp. CF (A), Tri. CF (C), or Str. CF (E). Samples were

analyzed by Coomassie-blue-stained SDS-PAGE

gel. Cleaved products were also analyzed by mass

spectrometry, with diagrams depicting the IL-36g

truncation generated in response to each CF. In

addition, MEF cells (105 per well) were incubated for

24 h with M, pro-g (10 nM), CF, or a combination of

pro-g and CF (B, D, and F). A one-way ANOVA was

used to determine statistical significance of differ-

ences between treatment groups. *p < 0.05 and

***p < 0.001. Data shown are mean ± SEM (n = 3).
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was unaffected when conducted in the presence of Cys prote-

ase inhibitor E64 and metalloproteinase inhibitor EDTA; howev-

er, the addition of Ser inhibitor PMSF completely ablated cleav-

age (Figure 5A). Testing these incubations for biological activity

by addition to HaCaT cells reflected the results observed by

SDS-PAGE.When added in combination with Aspergillus culture

filtrate and pro-IL-36g, the addition of E64 and EDTA had no ef-

fect on IL-36g activity; however, the addition of PMSF signifi-

cantly ablated IL-36g-mediated IL-8 secretion (Figure 5B). These

results implicate a Ser protease in the activation of IL-36g.

As the secreted Ser protease Asp F13 has been identified as a

major virulence factor secreted during infection, it provided a

good candidate protease as an activator of IL-36g. Therefore, cul-

ture filtrate from an Asp F13-deficient strain of A. fumigatus was

examined against the wild type. As a negative control, a deficient

strain of the virulence factor metalloprotease Asp F5 (Mep) was

also examined. SUMO-pro-IL-36g was incubated with wild-

type, Asp F5�/�, and Asp F13�/� A. fumigatus culture filtrate.

SDS-PAGE resolution of the samples showed both wild-type

and Asp F5�/� culture filtrates truncated IL-36g, while Asp

F13�/� did not (Figure 5C). Stimulation of HaCaT cells with wild-

type and Asp F5�/� culture-filtrate-incubated pro-IL-36g causes

strong IL-8 secretion, while stimulation with Asp F13�/� culture-

filtrate-incubated pro-IL-36g had little effect on IL-8 secretion (Fig-

ure 5D). Finally, for confirmation, SUMO-IL-36g was incubated

with recombinant Asp F13 and Asp F5 and analyzed by SDS-

PAGE and activity assay. Rapid cleavage was observed with re-

combinant Asp F13, but not Asp F5. Moreover, the addition of

the incubated proteins toHaCaTcells revealedAspF13-truncated
6 Cell Reports 33, 108515, December 15, 2020
IL-36g-induced IL-8 secretion could be in-

hibited by addition of IL-36RA, whereas

Asp F5-incubated pro-IL-36g had no effect

(Figures 5E and 5F). These results suggest

IL-36g is truncated and activated by

A. fumigatus Ser protease Asp F13

(confirmed by MS; Figure S3).

We also tested whether Asp F13 and

Asp F5 were capable of activating mIL-

36g. Recombinant pro-mIL-36g was incu-

bated with wild-type, Asp F13�/�, and

Asp F5�/� Aspergillus culture filtrate.
SDS-PAGE analysis showed both wild-type and Asp F5�/� cul-

ture filtrate truncated pro-mIL-36g, whereas Asp F13�/� did

not (Figure 5G). Addition of the incubated proteins to MEFs

showed that in contrast to wild-type- and Asp F5�/�-culture-
filtrate-incubated mIL-36g, Asp F13�/�-culture-filtrate-incu-
bated pro-mIL-36g had no biological activity (Figure 5I). Finally,

as with hIL-36g, mIL-36g was incubated with recombinant Asp

F13 and Asp F5. Analysis by SDS-PAGE showed that unlike

Asp F5, Asp F13 rapidly processed mIL-36g, and subsequent

addition to MEFs revealed the Asp F13-processed mIL-36g to

be biologically active (Figures 5H and 5J). These results indicate

Asp F13 processes both hIL-36g and mIL-36g to a biologically

active mature cytokine.

Finally, after establishing that Asp F13 can activate recombi-

nant IL-36g, we utilized a cell-based infection assay to examine

whether Aspergillus would also release and activate IL-36g in an

Asp F13-dependent fashion, or whether pathogen-mediated cell

damage in the absence of Asp F13 is in itself enough to induce

activation of IL-36g. A stable HEK293 cell line expressing C-ter-

minal FLAG-tagged pro-IL-36g (progF-293) was generated as

outlined in the STAR Methods (Figure S4). The progF-293 cells

were inoculated with conidia of wild-type and mutant strains of

A. fumigatus for 24 h, and the expressed IL-36g in the superna-

tant was immunoprecipitated by its C-terminal FLAG tag. West-

ern blot analysis showed IL-36g was released into the superna-

tant by all strains of Aspergillus. Furthermore, supernatant from

wild-type- and Asp F5�/�-infected progF-293 cells contained

truncated IL-36g, shown by activity assay to be biologically

active (Figures 6A and 6B). Supernatant from cells infected



Figure 4. Activation of IL-36g by S. pyogenes Is Dependent on SpeB
(A–K) (A) SUMO-tagged human IL-36g (1 mg) was incubated at 37�C for 3 h with Strep. CF, with and without the Ser inhibitor PMSF (10 mM), the Cys protease

inhibitor E64 (20 mM), or metalloproteinase inhibitor EDTA (5 mM). (B) HaCaT cells (105 per well) were incubated for 24 h with M or S18 (10 nM), with and without a

broad-range protease inhibitor that includes PMSF, E64, and EDTA (PI). (C–K) HaCaT cells (105 per well) were incubated for 24 h with M, pro-g, and S. pyogenes

CF (Sp; 1 mL), pro-g and S. pyogenesCFwith PMSF (0.1 mM), E64 (0.2 mM), or EDTA. SUMO-tagged human IL-36g (1 mg; D) or mouse pro-g (H) was incubated at

37�C for 3 h withwt andDSpeB S. pyogenesCF. HaCaT cells (E) or MEFs (I) (105 per well) were incubated for 24 h with M, pro-g (10 nM), or pro-g andwt (wt Sp) or

DSpeB S. pyogenesCF. HaCaT cells were stimulated with human pro-g, while MEFs were stimulated with mouse pro-g. SUMO-tagged human IL-36g (1 mg; F) or

mouse pro-g (J) was incubated at 37�Cwith 20 ng of recombinant SpeB for 0–30min. Cleaved products were also analyzed bymass spectrometry, with diagrams

depicting the IL-36g truncation generated. HaCaT cells (G) and MEFs (K) were stimulated with M, pro-g, recombinant SpeB, or pro-g with SpeB (and pro-g +

(legend continued on next page)

Cell Reports 33, 108515, December 15, 2020 7

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
with Asp F13�/� did contain pro-IL-36g, indicating cell damage

induced release of the cytokine; yet, IL-36g remained in its

pro-form and when tested by activity assay did not show any

biological activity. These results indicate in the context of an

infection, IL-36g is released in its inactive form as a result of

cell damage and then activated by Asp F13 secreted by

A. fumigatus during infection.

DISCUSSION

The mechanisms surrounding IL-36g release from cells are not

completely understood. As leaderless proteins, the IL-36 cyto-

kines do not enter the canonical secretory system following syn-

thesis, and unlike IL-1b and IL-18, the underlying mechanisms of

release are unclear. Indeed, in the majority of experimental sys-

tems examined, induced IL-36 cytokines appear to be retained

as intracellular cytokines. This is also true of the IL-1 family alar-

mins IL-33 and IL-1a, which function as proinflammatory media-

tors following release as a result of cellular damage. In this study,

we demonstrated that while microbial stimulation of epithelial

cells increased intracellular stores of IL-36g, the cytokine was

only released when incubated with live pathogens. The live

commensal S. epidermidis did not induce release of IL-36g

despite increasing its intracellular expression (Figure 1). Indeed,

release of IL-36g induced by pathogenic microbes paralleled

that of the cytosolic housekeeping protein GAPDH, suggesting

that in the context of infection the major mechanism of IL-36g

release may be a result of pathogen-induced membrane dam-

age or necrosis rather than through an active response to micro-

bial challenge, perhaps similarly to IL-33 and IL-1a. It therefore

seems likely that known cytotoxic components such as pore-

forming toxins secreted by the pathogens would be responsible

for release of IL-36g. The use of lytic factors to destroy host cells

for nutrient acquisition and immune evasion is a common feature

of many invasive pathogens, and both S. pyogenes and

A. fumigatus produce cytotoxins such as streptolysin O and

Asp-hemolysin, respectively, during infection (Singh et al.,

2012; Nilsson et al., 2006; Wartenberg et al., 2011). It may there-

fore be likely that numerous pathogens will have the ability to

release IL-36g from epithelial cells. Furthermore, by incubating

recombinant pro-IL-36g with pathogen culture filtrates, we

demonstrated that the epithelial pathogens A. fumigatus,

S. pyogenes, T. rubrum, and S. aureus all produce proteases

that process recombinant IL-36g into its mature form (Figure 2),

suggesting once released from epithelial tissue IL-36g will un-

dergo activation, as was demonstrated with A. fumigatus (Fig-

ure 6). Therefore, IL-36-mediated signaling is likely to occur

shortly after infection-induced damage, initiating and orches-

trating an immune response directed against extracellular path-

ogens. As the epithelial microbes tested spanned both fungi and

bacteria associated with infection at different epithelial sites, and

given the apical expression of IL-36g, we believe these results

indicate that IL-36g is broadly sensitive to pathogen-derived
SpeB with IL-36RA; G). HaCaT cells were stimulated with human IL-36g, while ME

stained SDS-PAGE gel (A, D, F, H, and J) or measured by ELISA (B, C, E, G, I,

differences between treatment groups. *p < 0.05, **p < 0.01, and ***p < 0.001. Data

Strep. CF, S. pyogenes culture filtrate; wt, wild type.
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proteases, and its release and activation following pathogen-

mediated damage implicate IL-36g as an epithelial alarmin.

The results were further supported by the fact that recombi-

nant mIL-36g was activated by the same culture filtrates (Fig-

ure 3). This was somewhat surprising as bioactive forms of hIL-

36g and mIL-36g were generated by disparate classes of path-

ogen-derived proteases despite the requirement of precise

cleavage (human Gln17-Ser18, mouse Tyr12-Gly13) and non-

conserved primary amino acid sequences proximal to the cleav-

age sites. Structural information obtained from the crystal struc-

ture of hIL-36g shows the N terminus to be a flexible, exposed

region that protrudes from the compact core of the protein’s

IL-1 domain and would therefore be more accessible for pro-

cessing (G€unther and Sundberg, 2014). Structural alignment of

multiple species suggests that despite the differences in primary

amino acid sequences, the exposed flexible N terminus is a com-

mon feature; therefore, protease sensitivity is likely to be an

evolutionarily conserved phenomenon. Furthermore, analogous

protease sensitivity has been recently described for other IL-1

family members, most notably IL-33, shown to be sensitive to

activation by numerous allergen proteases. Unlike IL-36g, how-

ever, protease sensitivity of IL-33 triggers type II immune re-

sponses (Cayrol et al., 2018). Additionally, while the other IL-36

cytokines were not extensively tested in this study, we did

demonstrate that IL-36a also undergoes activation following in-

cubation with A. fumigatus and T. rubrum culture filtrate (Fig-

ure S5). Having three functionally similar cytokines with structur-

ally distinct cleavage sites may prove advantageous in the

detection of invasive pathogens by enabling sensitivity to a wider

range of pathogens. It has also been proposed that the recent

evolution of multiple IL-36 genes from an ancestral IL-1 gene

could provide a system that would resist microbial immune

evasion (Jensen, 2017). Indeed, multiple pathogens, particularly

DNA viruses, are known to prevent IL-1 activity via cytokine bind-

ing proteins, increased cytokine degradation, and inhibition of

cytokine-activating proteases (Richards et al., 2014). The exis-

tence of three IL-36 agonists would therefore circumvent similar

immune evasion strategies (Jensen, 2017).

Identifying virulence factors secreted by pathogens as activa-

tors of IL-36g has implications for the role microbial infection

may have in inflammatory conditions. As several non-infectious

inflammatory conditions have microbial etiologies, these obser-

vations may provide a mechanism for the initiation of inflamma-

tion viamicrobe-induced IL-36-mediated signaling. In the clinical

setting, it is well established that streptococcal throat infection is

the major triggering factor of guttate psoriasis and that IL-36g is

abundantly expressed in the outermost skin layers of psoriatic

individuals (D’Erme et al., 2015; Telfer et al., 1992). In some pa-

tients the connection between streptococcal infection and pso-

riasis flare is so strong that guidelines recommend tonsillectomy

(Simões et al., 2015). As streptococcal SpeB is the most highly

secreted protein produced during infection and is known to

interact with host proteins with both pro- and anti-inflammatory
Fs were stimulated with mIL-36g. Samples were analyzed by Coomassie-blue-

and K). A one-way ANOVA was used to determine statistical significance of

shown are mean ± SEM (n = 3). Abbreviations are as follows: S18, IL-36g S18;



Figure 5. Activation of IL-36g by Aspergillus

Is Dependent on the Virulence Factor Asp

F13

(A–J) (A) SUMO-tagged human IL-36g (1 mg) was

incubated at 37�C for 3 h with Asp. CF, with and

without the Ser inhibitor PMSF (10 mM), the Cys

protease inhibitor E64 (20 mM), or metal-

loproteinase inhibitor EDTA (5 mM). (B–J) HaCaT

cells (105 per well) were incubated for 24 h with M,

or pro-g (10 nM) andAsp. CF filtrate (1 mL), with and

without PMSF (0.1 mM), E64 (0.2 mM), or EDTA.

SUMO-tagged human IL-36g (1 mg; C) or mouse

pro-g (G) was incubated at 37�C 3 h with wt, DF5,

or DF13 Asp. CF. HaCaT cells (D) or MEFs (I) (105

per well) were incubated for 24 h with M, pro-g

(10 nM), or pro-g and wt, DF5, or DF13 Asp. CF.

HaCaT cells were stimulated with human pro-g,

while MEFs were stimulated with mouse pro-g.

SUMO-tagged human IL-36g (1 mg; E) or mouse

pro-g (H) was incubated at 37�C with 20 ng of re-

combinant F13 or F5 for 0–30 min. HaCaT cells (F)

and MEFs (J) were stimulated with M, pro-g, re-

combinant F13, recombinant F5, pro-gwith F13, or

pro-g with F5. HaCaT cells were stimulated with

human IL-36g, while MEFs were stimulated with

mIL-36g. Samples were analyzed by Coomassie-

blue-stained SDS-PAGE gel (A, C, E, G, and H) or

measured by ELISA (B, D, F, I, and J). A one-way

ANOVA was used to determine statistical signifi-

cance of differences between treatment groups.

**p < 0.01, ***p < 0.001, and ****p < 0.0001. Data

shown are mean ± SEM (B, D, and J, n = 3; F, n = 2;

I, n = 1). Abbreviations are as follows: DF5, Asp

F5�/�; DF13, Asp F13�/�; F5, Asp F5; F13, Asp

F13.
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consequences, the data presented here may well provide a

mechanistic link between the proteolytic activation of IL-36g

by S. pyogenes SpeB and the initiation of guttate psoriasis

(Nelson et al., 2011; Elliott, 1945). Published data have also

shown that IL-36g is expressed in other inflammatory skin dis-

eases associated with microbial infection including hydradenitis

suppurative, eczema, and tinea, suggesting a potential causa-

tive role (Di Caprio et al., 2017; Hessam et al., 2018; Otobe

et al., 2018). IL-36g is also upregulated in inflamed intestinal tis-

sue as a result of stimulation from microbiota (Russell et al.,

2016; Nishida et al., 2016). With a heavy microbial presence in

the gut and increased expression of IL-36 cytokines, it seems

plausible tissue damage and production of microbial proteases

in inflammatory bowel disease might facilitate initiation of inflam-

mation through liberation and activation of IL-36 cytokines. In
Cell
addition to its pathological role, IL-36

signaling in the gut has been demon-

strated to be critical in both barrier de-

fense and wound repair (Ngo et al.,

2018). IL-36 signaling is a potent inducer

of IL-23—a cytokine that, in turn, is a sig-

nificant inducer of IL-22—providing a

bridge between immune activation and

epithelial repair. Although not examined

in this study, the protease sensitive nature
of IL-36 cytokines also provides a potential sensing mechanism

for gut parasites such as helminths. These parasites are well

documented to secrete a variety of proteases and cause signif-

icant epithelial damage (Caffrey et al., 2018; McKay et al., 2017).

The proteolytic activation of IL-36g in the gut may therefore pro-

vide a potential mechanism to facilitate an inflammatory

response and subsequent wound repair.

Epithelial barriers such as the skin, lungs, and gut performmul-

tiple essential physiological functions and represent critical inter-

faces between an organism and its environment. However, due

to the ubiquitous nature of commensal microbes and potentially

damaging pathogens, these sites must be able to mount robust

immune responses toward pathogens, while at the same time

prevent detrimental inflammatory responses toward harmless

commensals. The results obtained in this study have
Reports 33, 108515, December 15, 2020 9



Figure 6. Human Pathogen A. fumigatus Induces the Release and

Activation of Endogenous IL-36g

(A) The progF-293 cells were inoculated with wt, DF5, or DF13 A. fumigatus

conidia for 24 h. Supernatants were removed from cells, and FLAG-tag-

immunoprecipitated IL-36g was analyzed by western blot alongside progF-

293 lysate (L).

(B) HaCaT cells were stimulated with 50 mL of progF-293 supernatant after 24 h

incubation following mechanical lysis (L), inoculation with wt, DF5, DF13

A. fumigatus conidia in the presence or absence of 1 mg/mL IL-36RA (RA).

Harvested supernatants were tested for IL-8 concentration by ELISA. A one-

way ANOVA was used to determine statistical significance of differences be-

tween treatment groups. *p < 0.05 and **p < 0.01. Data shown aremean ±SEM

(n = 4).
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demonstrated a scenario in which IL-36g is induced, released

from cells via pathogenic damage, and subsequently activated

as a direct result of secreted proteolytic virulence factors by

invasive epithelial pathogens. Given the characteristics of IL-

36g as an apically located epithelial initiator of inflammation

and its sensitivity to pathogen-derived proteases, we believe

this work demonstrates that IL-36g functions as a global epithe-

lial alarmin and broad sensor of pathogenic infection. This pro-

vides a critical mechanismwhereby host organisms can discrim-

inate invasive pathogens from harmless microbes. In addition to

describing a general sensor of pathogenic presence, this work il-

lustrates the potential for microbial infection to act as a trigger for

IL-36-mediated pathological inflammation in susceptible individ-

uals and helps build amore complete picture of how IL-36-medi-

ated signaling is actually initiated in the context of epithelial

infection, giving us a greater understanding of immune defenses

at epithelial barriers.
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Antibodies

Polyclonal goat anti-IL-36g antibody R and D Systems Cat# BAF2320; RRID:AB_2280258

Monoclonal mouse anti-FLAG M2 antibody Sigma-Aldrich Cat# F3165; RRID:AB_259529

Bacterial and Virus Strains

BL21-CodonPlus (DE3)-RIL E. coli Agilent Cat# 230245

Biological Samples NA

Chemicals, Peptides, and Recombinant Proteins

Human IL-36g Ainscough et al., 2017; This lab PMID: 28289191

Human IL-36g S18 Ainscough et al., 2017; This lab PMID: 28289191

Human IL-36a Ainscough et al., 2017; This lab PMID: 28289191

Human IL-36RA V2 Ainscough et al., 2017; This lab PMID: 28289191

Mouse IL-36g This paper NA

Mouse IL-36g G13 This paper NA

Mouse IL-36a This paper NA

Protease Inhibitor Cocktail ThermoFischer Cat# A32955

PMSF Merck Millipore Cat# 52332

E64 Merck Millipore Cat# 324890

Critical Commercial Assays

IL-8 ELISA BioLegend 431504

IL-36g ELISA Berekmeri et al., 2018; This lab PMID: 29782895

Deposited Data

Experimental Models: Cell Lines

TR146 ECACC Cat# 10032305, RRID:CVCL_2736

HEK293T ATCC Cat# CRL-3216, RRID:CVCL_0063

HaCaT CLS Cat# 300493/p800_HaCaT,

RRID:CVCL_0038

progF-293 This paper NA

Experimental Models: Organisms/Strains

Streptococcus pyogenes Terao et al., 2008; Provided by

Prof. Yutaka Terao, Niigata University

PMID: 18160402

Streptococcus pyogenes DspeB Terao et al., 2008; Provided by

Prof. Yutaka Terao, Niigata University

PMID: 18160402

Staphylococcus aureus ATCC Cat# 6534

Staphylococcus epidermidis ATCC Cat# 12228

Aspergillus fumigatus Namvar et al., 2015; Provided by

Dr Sarah Herrick, University of Manchester

PMID: 25270353

Aspergillus fumigatus Asp F5�/� Namvar et al., 2015; Provided by

Dr Sarah Herrick, University of Manchester

PMID: 25270353

Aspergillus fumigatus Asp F13�/� Namvar et al., 2015; Provided by

Dr Sarah Herrick, University of Manchester

PMID: 25270353

Trichophyton rubrum ATCC Cat# 28188

Software and Algorithms

GraphPad Prizm 7 GraphPad https://www.graphpad.com
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin

Stacey (M.Stacey@leeds.ac.uk).

Materials Availability
All proteins and cell lines generated and used in this study are available on request from the Lead Contact, Martin Stacey.

Data and Code Availability
This study did not generate or analyze datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
TR146, HEK293T, and HaCaT cells were used in this study. The cell line progF-293 was also generated from HEK293 cells in the

following method. cDNA of pro-IL-36g was cloned into pcDNA3.1 vector containing a G418 resistance gene using reverse primers

containing a C-terminal FLAG tag to generate the fusion protein pro-IL-36g -FLAG. The vector was linearized prior to transfection into

HEK293 cells and stable transfectants were selected using G418 (500 mg/ml). Stable transfectants were subject to limiting dilution to

generate monoclonal colonies, which were bulked and screened for strong IL-36g expression by ELISA. Successful production of

FLAG-tagged IL-36g was confirmed by western blot (Figure S1).

All cells were cultured in FCS-supplemented culture medium (DMEM; Life technologies), containing 400 mg/ml penicillin/strepto-

mycin and 10% FCS (Life Technologies) at 37�C in a 5% CO2 incubator.

Microbial strains and culture conditions
A wild-type S. pyogenes strain and its isogenic DspeB mutant were isolated and generated as previously described (Terao et al.,

2008). S. pyogenes were cultured in Todd-Hewitt broth supplemented with 0.5% yeast extract (THY). S. aureus and

S. epidermidis were cultured in 2YT media. A. fumigatus and its Asp F 13 and Asp F 5 mutants were generated as previously

described (Namvar et al., 2015). A. fumigatus and T. rubrumwere cultured with Sabouraud dextrose or agar. Conidia were harvested

from agar by washing with 0.05% Tween-20 in PBS.

METHOD DETAILS

Reagents
The protease inhibitors PMSF and E64 were purchased from Merck Millipore. Total protease inhibitor cocktail was obtained from

Thermo Fischer. For Western-blot analysis, the primary antibodies used were a biotinylated goat anti-IL-36g antibody and mouse

anti-FLAG M2. HRP-conjugated avidin and HRP-conjugated anti-mouse were used for detection.

Generation of recombinant proteins
cDNA of full length, pro human and mouse IL-36g, IL-36a, IL-36RA V2, human IL-36g S18 and mouse IL-36gG13 were cloned into a

Champion pET SUMO expression vector (Invitrogen, UK). Proteins were expressed in BL21-CodonPlus (DE3)-RIL E. coli overnight at

25�C and soluble proteins purified via Ni2+-affinity and size exclusion chromatography. Proteins were further purified by Ni2+-affinity

chromatography prior to overnight cleavage of N-terminal SUMO by the Ulp1 protease, followed by subsequent ion exchange and

size exclusion chromatography into 20 mM Tris pH7.4, 300mMNaCl as previously described (Macleod et al., 2016; Ainscough et al.,

2017).

Activity assays
Activity assays were performed as previously described (Ainscough et al., 2017). Briefly, HaCaT cells were plated at 2x105 cells/well

(24-well plate) in complete culture media, and cultured to 90% confluence. The media was then removed and replaced with fresh

media. For most activity assay experiments, indicated treatments were added and cells incubated for 24 hours at 37�C. For activity
assay experiments involving protease inhibitors, samples were preincubated with protease inhibitors for 3 hours at 4�C before being

added toHaCaT cells. For the activity assay experiments involving cell supernatants from treated progF-293 cells, supernatants were

centrifuged for removal of microbial debris and preincubated with total protease inhibitors for 3 hours at 4�C prior to addition to Ha-

CaT cells. Following incubation, cell supernatants were removed and frozen at �80�C.

Culture filtrate production
5 mL of appropriate growth medium was inoculated with microbes and incubated at 37�C for 24 hours. Cultures were then centri-

fuged, and supernatants were removed and filtered.
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Infection assays
progF-293 s were plated in 6 well plates and grown to 90% confluence. Cells were washed 2x in PBS and media replaced with infec-

tion assay medium (PBS, 1 g/L dextrose, 100 mg/LMgCl2, 100mg/L CaCl2, 30 mMHEPES). Cells were inoculated with the indicated

amount of pathogen and incubated at 37�C 5% CO2 for the time indicated. Supernatants were removed and treated according to

FLAG immunoprecipitation or activity assay.

Immunohistochemistry
Formalin-fixed, paraffin-embedded skin sections were stained using standard hematoxylin and eosin, as well as periodic acid Schiff

staining. IL-36g protein expression was analyzed by IHC using the monoclonal mouse IgG1 anti-human-IL-36g antibody ab156783

(Abcam Inc., Cambridge, MA) without pretreatment with a dilution of 1:500. Visualization was performed using the REAL staining kit

(DAKO, Hamburg, Germany) with Fast Red as chromogen (Braegelmann et al., 2018).

ELISA
Supernatants were analyzed for IL-8 protein using a specific ELISA kit from Biolegend (San Diego, CA). Supernatants and lysates

were analyzed for IL-36g protein using an in-housemonoclonal based ELISA previously described (Berekmeri et al., 2018). IL-8 ELISA

was performed following the manufacturer’s instructions. IL-36g ELISA was performed as follows. Immunosorbent 96-well ELISA

plates were coated with 2 mg/mL capture antibody in PBS at 4�C overnight. Plates were then washed with 0.1% Tween 20/PBS

and blocked for 1 hour in 2% BSA in 0.1% Tween-20/PBS. Samples were incubated subsequently for 1 hour at room temperature

before washing and incubation with 1 mg/mL biotinylated detection antibody for 1 hour. Plates were then washed and incubated with

streptavidin–horseradish peroxidase (BioLegend, London, United Kingdom) for 20 minutes. After washing, TMBwas used as a chro-

mogenic substrate (ThermoScientific). The reaction was stoppedwith 2NH2SO4, andODwasmeasured at 450 nm. A standard curve

was obtained from a 7-point serial dilution of protein standard and used to calculate IL-36g concentrations (Berekmeri et al., 2018).

The lower limits of accurate detection for IL-8 and IL-36g were 15.6 pg/ml and 24 pg/ml respectively.

FLAG Immunoprecipitation
Supernatants were centrifuged at 10000 g for removal of microbial and cellular debris and total protease inhibitor added to working

concentration. M2-conjugated gel was washed and reconstituted to equivalent volume in PBS before adding 20 ml of M2-conjugated

gel per ml of supernatants. Supernatants were then mixed for 24h at 4�C before pelleting of the M2-conjugated gel by gentle centri-

fugation. The pellet was washed in PBS, boiled in SDS-loading dye and subsequent analysis by western blot.

LC-MS
1 mg of protein was loaded onto a MassPREP micro desalting column (Waters) and washed for 5 min with 10% (vol/vol) acetonitrile/

0.1% formic acid. Following a 1-min gradient to 85% (vol/vol) acetonitrile/0.1% formic acid, the protein was eluted into a Xevo G2-XS

QToF (Waters) using electrospray ionization for molecular mass measurement.

Gel electrophoresis and western blotting
Samples were diluted in sample buffer (50mMTris HCl pH 6.8, 2%SDS, 10%glycerol, 0.02%bromophenol blue) and heated at 90�C
for 5 min. Samples were resolved on a 15% (SUMO-tagged proteins) or 17% (immunoprecipitated samples) polyacrylamide gel and

either stained with Coomassie or proteins transferred to a nitrocellulose membrane for western blotting. IL-36g was detected using

anti-IL-36g antibody and avidin-HRP secondary. Proteins were visualized using enhanced chemiluminescence reagents (Sigma,

UK).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using the software Graphpad Prism 7. Statistical details of experiments can be found in the figure

legends. Data were analyzed by one-way ANOVA to determine overall differences and a Tukey post hoc test was performed to deter-

mine statistically significant differences between treatment groups. Differences were considered statistically significant when p <

0.05.
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Fig. S1: TR146 cells do not release IL-36 following non-viable pathogen stimulation, related 

to Figure 1. TR146 cells (105
 per well) were treated with fixed S. pyogenes (A; Fxd S.p), fixed 

A. fumigatus conidia (B; Fxd Asp) or media alone for 24 hours.  Lysate and supernatant IL-36 

concentration measured by ELISA. Data shown are mean ± SEM (n = 3). 



 

Fig. S2: Liquid chromatography-mass spectrometry traces of IL-36 cleavage, related to Figure 

2.  2 µg of recombinant full length IL-36 proteins were incubated with culture filtrates or 

recombinant proteases for 1 hour at 37C and analysed by liquid chromatography-mass 

spectrometry as outlined in methods and materials.  Liquid chromatography traces show 

resulting cleavage products from hIL-36 + A. fumigatus (A), hIL-36 + T. rubrum (B), hIL-

36 + S. pyogenes (C), hIL-36 + S. areus (D), mIL-36 + A. fumigatus (E), mIL-36 + T. 

rubrum (F), mIL-36 + S. pyogenes (G).  Peaks corresponding to the active IL-36 truncations 

are depicted above and labelled with their respective N-terminal amino acids.  hIL-36 S18 

(S18; 17031 Da), mIL-36 G13 (G13; 17331 Da). 



 

Fig. S3: Liquid chromatography-mass spectrometry traces of IL-36 cleavage, related to Figure 

2.  2 µg of recombinant full length IL-36 proteins were incubated with culture filtrates or 

recombinant proteases for 1 hour at 37C and analysed by liquid chromatography-mass 

spectrometry as outlined in methods and materials.  Liquid chromatography traces show 

resulting cleavage products from hIL-36 + SpeB (A), mIL-36 + SpeB (B), hIL-36 + Asp 

F13 (C), mIL-36 + Asp F13 (D), hIL-36α + A. fumigatus (E), hIL-36α + T. rubrum (F).  Peaks 

corresponding to the active IL-36 truncations are depicted above and labelled with their 

respective N-terminal amino acids.  hIL-36 S18 (S18; 17031 Da), mIL-36 G13 (G13; 17331 

Da), hIL-36α K6 (K6; 17113). 

  



 

Fig. S4: Confirmation of FLAG-tagged IL-36 expression by stable proF-293 cell line, related 

to STAR Methods.  Lysates of non-transfected 293 cells (NT) and stable proF-293 cells 

(proF) were analysed for expression of FLAG-tagged IL-36 by western blot.    

  



 

Fig. S5: IL-36a is also cleaved and activated by Aspergillus fumigatus and Trichophyton 

rubrum, related to Figure 2. 1 μg of SUMO-tagged human IL-36α was incubated at 37˚C for 0 

hours or 3 hours, with or without 2 μl of either A. fumigatus culture filtrate (Asp. CF; A) or T. 

rubrum culture filtrate (Tri. CF; C).  Samples were analysed by Coomassie stained SDS-PAGE 

gel. Cleaved products were also analysed by mass spectrometry, with diagrams depicting the 

IL-36α truncation generated in response to each culture filtrate.  In addition, HaCaT cells (105 

per well) were incubated for 24 hours with media alone (M), pro-IL-36α (pro-α; 10 nM), culture 

filtrate, a combination of pro-IL-36α and culture filtrate, or a combination of pro-IL-36α, 

culture filtrate and IL-36RA (50 nM; B, D). A one-way ANOVA was used to determine 

statistical significance of differences between treatment groups. *p < 0.05, **p<0.01, ****p < 

0.0001. Data shown are mean ± SEM (B; n=3, D; n=4). 
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