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Highlights 

● We use a global array of precisely geolocated plant traits data to assess the ability of Sentinel-

2 satellite imagery to map leaf traits in tropical forests. 

● Key plant functional traits can be mapped across tropical forests worldwide using Sentinel-2 

in combination with soil and climate information 

● Leaf photosynthetic and chemical traits, and some morphological traits such as leaf thickness, 
show the highest detectability 

 
● Textural information makes an important contribution to assessing and mapping leaf traits.  

 

Abstract 

Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental 

conditions and direct human impacts. However, we cannot adequately understand, monitor or 
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simulate tropical ecosystem responses to environmental changes without capturing the high diversity 

of plant functional characteristics in the species-rich tropics. Failure to do so can result in 

oversimplified understanding of responses of ecosystems to environmental disturbances. Innovative 

methods and data products are needed to track changes in functional trait composition in tropical 

forest ecosystems through time and space. This study aimed to track key functional traits by coupling 

Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy 

functional traits collected to a standardised methodology from field plots in countries spanning the 

four tropical continents (Australia, Brazil, Peru, Gabon, Ghana, and Malaysia). The spatial positions of 

individual trees above 10 cm DBH were mapped and their canopy size and shape recorded. From these 

data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery 

(i.e. 10m pixels). We use a geographical version of random forest to model and predict functional traits 

across our plots in the tropics. We demonstrate that key plant functional traits can be measured at a 

pantropical scale using the high spatial and spectral resolution of Sentinel-2 imagery in conjunction 

with climatic and soil related information. Pixel texture parameters were found to be key components 

of remote sensing information for predicting functional traits across tropical forests and woody 

savannas. Leaf thickness (R2=0.52) obtained the highest prediction accuracy among the morphological 

and structural traits and leaf carbon content (R2=0.70) and Amax (R2=0.67) obtained the highest 

prediction accuracy for leaf chemistry traits and photosynthesis related traits, respectively.  Overall, 

the highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits (Amax and 

Asat) in comparison to morphological and structural traits. Our approach offers new opportunities for 

mapping, monitoring and understanding biodiversity and ecosystem change in the most species-rich 

ecosystems on Earth. 

1. Introduction 

Some of the most pressing questions in ecology and ecosystem science today focus on how 

communities of organisms respond to global environmental changes (Naeem et al., 2009), how 
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biodiversity and ecosystem changes across the world can be consistently mapped and monitored 

(Navarro et al., 2017), and how spatial, temporal and taxonomic variability in biodiversity influences 

ecosystem resilience to climate change (Oliver et al., 2015). In terms of Earth system science, we need 

to understand and model how the terrestrial biosphere will respond (and already is responding) to 

global environmental change, and whether there are dangerous thresholds or “tipping points” beyond 

which major biomes may not be able to recover. Nowhere is the challenge more urgent or more 

daunting than in the species-rich tropical forest and woody savanna biomes, which together are home 

to more than half of global biodiversity and over 60% of terrestrial productivity (Beer et al., 2010). 

There is already evidence that atmospheric change may have effects on tropical forest productivity 

and tree functional composition (Esquivel‐Muelbert et al., 2019, Hubau et al., 2020). These effects may 

include a stimulation of productivity (perhaps due to rising CO2) and/or a degradation or dieback, 

possibly caused by increased seasonality and incurred intensity of extreme drought events (Malhi, et 

al., 2008, Malhi, et al., 2018). Such events are partly responsible for the increased tree mortality and 

decreased carbon residence time in tropical forests worldwide (McDowell et al., 2018). However, to 

adequately understand such responses we need to capture and map the high diversity of plant 

ecosystem function in the species-rich tropics and savannas. 

Species functional traits are defined as the morphological, physiological or phenological 

attributes which determine the fitness of organisms, their response to changes in the environment and 

their influence on ecosystem functions (Kissling et al., 2018, Dıaz & Cabido, 2001). Functional traits 

provide tangible and mechanistic means of assessing the ability of communities to adapt to climate 

change (Pacifici et al., 2015) and play a major role in determining ecosystem productivity, functioning 

and notably nature’s contribution to people (NCP; e.g. water and wood availability) (Díaz et al., 2019, 

Carmona et al., 2016). Hence, any tools or methods that facilitate quantification of functional traits 

across large spatial scales and at high spatial resolution would be invaluable for quantifying ecosystem 

functioning and ecological responses to disturbance at scales relevant for policy and management 

(Kissling et al., 2018). However, it is still challenging to map functional trait diversity in tropical regions 
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given the lack of plant trait data available for most of those locations (Jetz et al., 2016). Additional 

challenges come from different and often incompatible trait collection protocols and the lack of 

systematic high spatial, spectral and temporal resolution remote sensing imagery that coincides with 

data for functional traits at the canopy level.  

Ultimately, tracking functional traits can shed light on differences in ecosystem functioning 

across broad spatial extents and therefore aids policy and decision making, e.g. for creating adequate 

biodiversity conservation policies or for providing early warning of directional shifts in ecosystems. The 

key challenges of any functional traits approach are scalability and monitoring: how can functional 

shifts in highly diverse tropical forests and woody savannas be monitored and tracked over large spatial 

scales? Intensive field sampling of plant functional traits at a pantropical scale is time-consuming and 

economically unviable. There are large gaps in the availability of plant trait data globally, and the 

largest gaps are in the tropics (Jetz et al., 2016). Large plant trait datasets aim to overcome this issue 

and have advanced our ability to carry out plant functional trait analysis in an unprecedented way 

(Kattge et al., 2020, Gallagher et al., 2020). However, as with any database, the plant trait values from 

such databases will represent the local trait-environment relationships for the site where they were 

collected, which may not be the area of interest. A key assumption in trait-based ecology is that the 

environment is filtering for an optimal set of trait characteristics so that the resulting communities are 

best adapted to the environment where they are distributed (Fell & Ogle, 2018, Lebrija-Trejos et al., 

2010, Lortie et al. 2004). Hence, we might expect an optimal set of trait characteristics for a given 

location, which when analysed over time could quantify the dynamics of community trait distributions 

or shifts in functional composition relating to environmental change.  

High-resolution multispectral approaches have been carried out across large spatial extents to 

detect functional traits but have been limited by their spectral resolution and low frequency of 

measurements for the same location. With a few exceptions (see Tollefson, 2011), hyperspectral 

remote sensing has only been conducted across small spatial extents given the logistical difficulties 
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involved in obtaining  these measurements using airborne sensors. High temporal resolution is 

particularly important in the wet tropics, where clear days can be infrequent and several images may 

be required to construct a cloud-free composite. The field is on the brink of a step change in this area, 

through the Copernicus mission from the European Space Agency’s (ESA; www.esa.int). The Sentinel-

2 multispectral imager satellites are part of the Copernicus programme, which has the potential to 

provide new opportunities to evaluate canopy traits remotely. Sentinel-2 has 13 spectral channels 

covering the visible, near-infrared, and short-wave infrared, a spatial resolution of 10m for visible and 

near-infrared, 20m for short-wave infrared, revisit period of 5 days and it provides open  data 

availability. The numerous wavebands and  imagery have the potential to elucidate leaf chemistry, 

morphology and water content, although this remains largely untested. Multispectral sensors do not 

provide the rich information available from hyperspectral sensors, which have been used in numerous 

studies to map functional traits at small spatial extents (Townsend et al., 2003, Laurin et al., 2016, 

Asner et al., 2015), but high resolution open-access hyperspectral imagery is not currently available 

from space. Although the Landsat imagery has been used to predict a few functional traits at a local 

scale (Wallis et al., 2019), the superior extended spectral, spatial and temporal capabilities of the state-

of-the-art sensors onboard the Sentinel-2 satellites provide greater potential for mapping functional 

trait diversity in tropical forest ecosystems at large extents. 

Here, we employ a unique and large dataset of in-situ plant functional traits and vegetation 

census data collected with a standardised protocol at multiple sites across the tropics to calibrate and 

validate Sentinel-2 imagery for predicting community leaf trait composition. The data provide 14 

standardized measurements of in-situ collected plant functional traits, precisely geo-located and 

delineated individual tree crowns and vegetation censuses from Australia, South East Asia, Africa and 

South America to model and predict functional trait composition at the pixel level. We investigate how 

functional traits of tropical forests vary within and between these different tropical regions and 

whether Sentinel-2 spectral data in conjunction with climatic and soil information provide sufficient 

information to predict such pixel-level trait composition in long-term vegetation plots across the 
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tropics. We expected to find differences in trait variation among sites and regions given the different 

climatic and soil conditions observed across the tropics. Given the high spectral and spatial resolution 

of Sentinel-2 imagery we expected that raw spectral bands and pixel textural parameters would prove 

key predictors of functional traits distributions across the tropics. We predict that given the very high 

spatial resolution and local origin of the input plant traits and census dataset, which represent traits 

adapted to local environments, we will be able to produce realistic predictions of functional trait 

distributions that are potentially generalisable across the tropical forest biome. 

2. Methods 

2.1 Vegetation plots 

We collected vegetation census data from 47 permanent vegetation plots that are part of the Global 

Ecosystems Monitoring network (GEM; www.gem.tropicalforests.ox.ac.uk). These plots encompass 

wet tropical forests, seasonally dry tropical forests, and tropical forest-savanna transitional vegetation. 

The sampled vegetation plots have an area ranging from 0.1 to 1 ha, with most (61%) being 1 ha. The 

plots used are located across four tropical continents, in Australia, Brazil, Gabon, Ghana, Malaysian 

Borneo (from here onwards referred to as Malaysia) and Peru (Table 1). In each plot all woody plant 

individuals with a diameter ≥ 10 cm at breast height (DBH) or above buttress roots, except for two 

plots (NXV-01 and NXV-10) in Nova Xavantina, here onwards referred to as Brazil -NX, where diameter 

is measured near ground level as is standard in savanna monitoring protocols) were measured and 

their exact geographic location was recorded (see the ‘Individual tree crowns’ section below for more 

details).  

2.2 Functional traits 

We collected plant functional trait measurements from all woody plants located in each of the 47 

vegetation plots mentioned above (Table 2). All traits were gathered from the Global Ecosystems 

Monitoring network (GEM; www.gem.tropicalforests.ox.ac.uk) and were collected following a 

http://www.gem.tropicalforests.ox.ac.uk/
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standardized methodology across plots. Forest inventory data were used to stratify tree species by 

basal area dominance, a proxy for canopy area dominance. The tree species that contributed most to 

basal area abundance were sampled with 3-5 replicate individuals per species, with a goal of sampling 

60-80% of basal area across the sampling region. Eighty percent of basal area was often achieved in 

low diversity sites (e.g. montane or dry forests) but only around 60% was achieved in some high 

diversity sites (lowland humid rainforests). For each selected tree a sun and a shade branch were 

sampled and in each branch three to five leaves were used for traits measurements. In our analysis we 

only included the sun exposed branches, which represented a total sample of 2434 individual trees 

across the tropics (Table 1). Below we give an overview of the methods for individual leaf functional 

trait measurements. 

Photosynthetic related traits: Selected branches were immediately recut under water and leaf gas 

exchange measurements undertaken as soon as possible (within 1-2 hours). Photosynthetic capacity 

(light-saturated net assimilation rate) was measured at both saturating CO2 concentration (2000 ppm 

CO2; Amax), and at ambient CO2 concentration (400 ppm CO2; Asat) under saturating light conditions and 

at a temperature of 25 ◦C using a LICOR 6400-XT.  

Leaf chemistry traits: On a different branch, all leaves were removed for bulk chemical analysis. Leaf 

area (hereafter referred to as Area) was determined by scanning the adaxial side of the leaf lamina on 

a flatbed scanner Canon LiDE220® and analysing images with Matlab code available at 

https://github.com/bblonder/leafarea (see Neyret et al. 2016 for a full description of methodology). 

Trait values for compound leaves were analysed at the leaflet level.  

Morphological and structural traits: Specific leaf area (SLA) was determined by dividing leaf area by 

leaf dry mass. Leaf fresh mass (Fresh mass) was calculated as the fresh weight of the recently obtained 

leaves. Leaf dry mass (Dry mass) was determined after oven drying at 60 °C leaves for 72 hours or until 

constant weight. Leaf water content (LWC) was determined by subtracting the dry mass content from 

the fresh mass, multiplying by 100 and dividing by the fresh mass to obtain percentage water content. 
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The thickness of leaf lamina (Thickness) was measured by taking four micrometre measurements 

halfway between the mid-vein and the edge of the leaf, avoiding major secondary veins. 

Further details of measurements for the Peruvian Andes campaign are given in Martin et al. (2020) and 

Enquist et al. (2017), for the Malaysian campaign in Both et al. (2019), for the Ghana and Brazil 

campaigns in Oliveras et al. (2020) and Gvozdevaite et al. (2018). 

Given the trait sampling protocol some individuals from species not sampled in the plot lacked 

functional trait values. To assign representative trait values to individuals belonging to species sampled 

elsewhere in the same region and that were missing such information we did the following:  1) 

individuals from which traits were measured kept their original trait information, 2) for individuals with 

no trait information we randomly sampled trait values from other individuals from the same species 

present in the same plot, 3) if the species was not sampled in the given plot then we randomly sampled 

an individual from the same species that had trait information in other plots from the same region 

(Table 1). This protocol for trait values allocation allowed us to work with the existing range of trait 

values at the species level and avoid creating average values per species (Cadotte et al., 2011, 

Schneider et al., 2017). We did not assign trait values to the remaining individuals belonging to species 

from which no trait collection was obtained at the regional level. 

2.3 Individual tree crowns 

Tree crown locations and structural attributes were recorded for each tree, where crown area and 

shape were measured by direct crown field measurements in the case of plots in Malaysia and Peru 

(see protocol below), or by means of regional level allometric equations developed by Shenkin et al. 

(2019) (all other plots). In the latter case the crown’s shape was assumed to be circular. The direct field 

crown measurements were as follows: all trees ≥ 10 cm DBH (stem diameter at breast height, i.e., 1.3 

m from the ground) were mapped using a ground-based Field-Map laser technology (IFER, Ltd., Jílové 

u Prahy, Czech Republic) (Hédl et al., 2009). The Field-Map technology was based on a combination of 

Impulse 200 Standard laser rangefinder (with in-built tilt sensor for measuring vertical angles), MapStar 
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Module II electronic compass (both Laser Technology Inc., Colorado, USA), and the specialized mapping 

software Field-Map v. 11 (IFER, Czech Republic). The technology was used to record spatial positions 

of tree stems in three-dimensional space (x, y, z-coordinates) as well as to map individual horizontal 

projections of tree crowns in the plots. The horizontal crown projection of every tree was obtained by 

measuring spatial positions (x and y-coordinates) of series of points (ranging from 5 to 30 points 

depending on the size of the crown) at the boundary of a crown projected to the horizontal plane. The 

shape of crown projection was subsequently smoothed using the “smooth contour line” feature of 

Field-Map software v. 11. Heights of all trees with DBH ≥ 10 cm were measured by the Impulse and 

TruPulse 360 R laser rangefinders (both Laser Technology Inc., Colorado, USA). Thus, each individual 

crown was accurately geolocated rendering information about its shape and vertical and horizontal 

position.  

2.4 Calculating pixel level trait composition 

We calculated the community weighted mean of each trait for each 10×10m subplot (matching the 

highest pixel spatial resolution of the Sentinel-2 imagery) based on the mass ratio hypothesis, which 

states that the most dominant species drive the ecosystem processes by means of their functional 

traits (Grime, 1998). To this end we first geolocated the vegetation plot, with its already mapped tree 

crowns (see protocol above), to the Sentinel-2 imagery based on the plot’s corner coordinates. Then 

for each of the traits, t, and pixels, p, we calculated their community level weighted mean (CWM) 

using the individual tree crown horizontal area as the weighting factor (Fig. 1) as follows: 

 𝐶𝑊𝑀𝑡𝑝 = ∑𝑁𝑖=1 𝐶𝐴𝑖𝑝 × 𝑡𝑖𝑝𝐶𝐴𝑝  

(Eq. 1) 

Where CAip is the crown area of individual i in pixel p, tip is the trait value of individual i in pixel p, 𝑁 is 

the total number of individuals per pixel and CAp is the crown area of pixel p. The crown contribution 

to the CWM was weighted by its proportional cover of the corresponding pixel. The total number of 
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pixels used in our calculations are 403 for Australia, 449 for Brazil -NX (Nova Xavantina), 302 for Brazil 

-ST (Santarem),  464 for Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru. 

2.5 Sentinel-2 data, vegetation indices and canopy texture metrics 

We gathered Sentinel-2 imagery that was closest in time and season to the sampling dates of functional 

traits and vegetation census across the tropics for each of the study locations (Table S1). The Sentinel-

2 imagery was first selected using the European Space Agency (ESA) ScienceHub (scihub.copernicus.eu) 

choosing images with high pixel quality and low cloud cover (<10%). Atmospheric, radiometric and 

topographic corrections were applied to the selected imagery (Level 1C) using the Sen2Cor algorithm 

in the Sentinel SNAP toolbox (step.esa.int), thereby removing clouds and cirrus effects. The above-

mentioned steps allowed us to obtain level 2A imagery with surface reflectance values. We then 

resampled the 20m bands to 10m spatial resolution using bilinear interpolation. The Sentinel-2 60m 

resolution bands (B01, B09, B10) were not used as these are designed for cirrus, water vapour and 

cloud detection (Table 3). Band 8A was not used as it covers an overlapping spectral window with band 

8 and has a lower spatial resolution. Vegetation indices may increase prediction accuracy when 

modelling community weighted traits (Wallis et al., 2019), therefore we calculated three vegetation 

indices (Table 3) that we hypothesised may inform traits distributions given their quantification of 

chlorophyll and nutrients levels in the leaves and their use of the visible to red edge spectral bands.   

Canopy structure may play an important role in separating different vegetation types and 

differences in canopy spectral composition. To characterize canopy structure, we calculated the Grey 

Level Co-Occurrence Matrix (GLCM) (Haralick et al., 1973). The GLCM analyses the spectral relationship 

between pixel pairs. Based on the GLCM we calculated two variables that are least correlated with 

each other, the Entropy and Correlation, for each of the vegetation indices using a 3 x 3 pixel kernel 

window. While Entropy measures the homogeneity level for a given area, the Correlation measures 

the correlation between spectral reflectance across pixels in the analysis window (Haralick et al., 1973, 

Wallis et al., 2019). The texture metrics were calculated in ENVI (Exelis Visual Information Solutions, 

https://scihub.copernicus.eu/
https://step.esa.int/
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Boulder, Colorado, v.5.5). All other remote sensing analyses were carried out using the Sentinel SNAP 

toolbox and the R statistical environment (R Development Core Team, 2014) with the ‘Sen2R’ package.  

2.6 Environmental and soil data 

Climatic, topographic and soil characteristics may vary across regions and could at least partly 

determine the region’s vegetation and intrinsic trait composition. We obtained information on these 

three components for each sampling location. The three components were grouped as belonging to 

environmental (climate) or soil-terrain (texture, pH, cation exchange capacity and topography) drivers 

(Table 3).  

For climate and for each sampling location we gathered gridded data on the mean annual 

climatic water deficit (MCWD), which is a metric of drought intensity and severity, mean annual 

maximum temperature (MATmax), solar radiation (SRAD) and soil moisture (SM) (Table 3). All climatic 

data were obtained from the TerraClimate high resolution gridded climate product (Abatzoglou et al., 

2018). To characterise the climatic conditions for each location we used a climatology of 30 years 

(1986-2015) as suggested by the World Meteorological Organization (WMO; 

www.wmo.int/pages/prog/wcp/ccl/faqs.php). We used the terrain slope to characterise the plot’s 

topography, as it has been shown that topography may shape the composition and structure of tropical 

forests (Jucker et al., 2018) and may affect the vegetation spectral reflectance by modifying soil water 

and nutrient availability. Terrain slope was calculated using a high-resolution digital elevation model, 

~30m pixel size at the equator, from the Shuttle Topography Mission (Farr et al., 2007). At most sites 

soil data were sampled locally, and analysed to a standardised protocol in labs in either INPA, Manaus, 

Brazil or the University of Leeds, UK, following the RAINFOR soil protocol (Quesada et al 2012). From 

these data we summarised plot level soil data averaged over the first 30 cm for texture (Sand% and 

Clay%), cation exchange capacity (eCEC) and pH-H2O (pH). Plot level texture data were not available 

for plots in Australia and the NXV-10 plots and was thus derived from the SoilGrids dataset for those 

plots only (Hengl et al., 2017). 
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2.7 Comparing community level trait distributions across regions 

We tested if and to what extent the community-level trait distributions differed among regions. To this 

end we square-root transformed the trait value to improve normality and applied an analysis of 

variance (ANOVA). We then applied a Tukey's Honest Significant Difference (Tukey HSD) test to 

investigate the significance of the differences between the means of the community weighted mean 

(CWM) trait values among locations. The ANOVA and Tukey test were carried out using the ‘stats’ 

package for R (R Development Core Team, 2014).   

2.7 Relating pixel level trait composition to spectral reflectance, environment and soil conditions 

We modelled the community weighted mean (CWM) of each trait at the pixel level (10×10 m) as a 

function of the Sentinel-2 remote sensing, environmental and soil covariates (Table 3) using a ‘spatial’ 

version of the machine learning Random Forest (RF) algorithm (Breiman, 2001) named Geographic 

Random Forests (GRF) (Georganos et al., 2019). RF is a nonparametric algorithm that has been shown 

to be robust to overfitting and variable inputs thanks to the bagging process and its random feature 

selection (Hastie et al., 2009). Moreover, it has been extensively used to model and predict ecological 

and remote sensing data within and across ecosystems (Asner et al., 2016, Van der Plas et al., 2018). 

In contrast to RF, GRF disaggregates the underlying data into geographic space, in this case based on 

the spatial coordinates of the Sentinel-2 pixels, building global and local sub-models (plot level), thus 

making the modelling framework spatially explicit. The explicit inclusion of the spatial component (XY 

pixel location) in the models, which are sequentially fitted with different sets of the training data (the 

bagging process) may contribute to the observed reduced spatial autocorrelation of GRF in comparison 

to the common RF (Georganos et al. 2019). In the GRF a global model is built as in other RF applications. 

However, GRF also generates a local RF for each location, which includes a specified number of nearby 

observations, here defined by all pixels in the vegetation plot (mostly 1 ha; Table 1), called 

‘neighbourhood’, obtaining in this way metrics of local and global model predictive power and variable 

importance. For model predictions, a fuse between the global model (that uses more data) and local 
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models (with low bias) can be applied, weighting the contributions of the global and local models based 

on the parameters that increase the predictive accuracy and decrease the model’s Root Mean Square 

Error (RMSE). We used the spatial GRF to fit a global model for each functional trait and also fit a 

specific model for each region (Australia, Brazil -ST, Brazil -NX, Gabon, Ghana, Malaysia and Peru) using 

the SpatialML package in R. 

We performed an extensive set of model optimization and regularization procedures to reduce 

over-fitting. For the CWM models we selected the number of trees to fit by 10-fold cross-validation 

analysis with number of trees ranging between 500 and 1500 and the number of variables randomly 

sampled as candidates at each split (mtry) ranging between 1 to 10, using in the final model the 

combination of terms that generated the lowest RMSE. All covariates included in the models had 

pairwise Pearson correlation coefficients r ≤ 0.82 (Table 3). For the final global and local models, we 

used 80% of the data for model fitting and the remaining 20% for model evaluation. Variable 

importance for each model was computed as the decrease in node impurities from splitting on the 

variable, averaged over all trees and derived from the Out of Bag (OOB) error. Then the resulting 

importance was standardised to a 0–1 scale for comparison purposes.  

We carried out all analyses stated above with the full set of tree individuals present in each 

vegetation plot with functional traits assuming that the contribution of small individuals to the trait 

CWM value, and thus to the community reflectance at the pixel level, would be minimal given the 

weighting factor used (i.e. the individual’s crown area). However, to corroborate this we carried out 

all analyses on two smaller datasets, one where the 25th and other where the 50th percentile of the 

smallest trees per region were removed. All analyses were carried out in the R statistical environment 

(R Development Core Team, 2014) with the ‘caret’, ‘tidyverse’ and ‘SpatialML’ packages. 

3. Results 

3.1 Variation in trait composition across tropical forests 



15 
 

Most leaf functional traits exhibited significant differences across the tropics (Fig. 2) including wide 

trait range variation within the same region (Fig. S1), with leaf fresh mass and leaf thickness being on 

average less variable among locations (Table S4). Leaf chemistry and photosynthetic capacity (Amax and 

Asat) often showed significant differences among locations (Table S4). Drier locations as in Nova 

Xavantina (Brazil -NX) display trait adaptations to such seasonal rainfall and temperature environment 

with on average thicker and smaller (30 ± 0.05 mm and 56.2 ± 24.7 cm2 respectively) leaves at the 

community level, with some of the highest community level leaf nitrogen concentration (2.2 ± 0.3 %) 

and high photosynthetic capacity (mean Amax= 21.9 ± 4.3 μmol m−2 s−1, and Asat= 8.3 ± 2.5 μmol m−2 s−1). 

In contrast, wetter regions such as Malaysia display on average some of the biggest (113.5 ± 55 cm2) 

and thinner (0.25 ± 0.05 mm) leaves with high leaf water content (59.1 ± 5 %). The Peruvian altitudinal 

transect showed large variation in community level traits values, which often overlapped with trait 

values from all other sampled locations across the tropics (Fig. 2). For most nutrients, leaf nutrient 

concentration was often highest in forests found in Ghana (e.g. K%= 0.97 ± 0.27 and Mg%= 0.33 ± 0.1) 

and Malaysia (K%= 1.05 ± 0.27 and Mg%= 0.27 ± 0.1) across the study regions, and Australian forests 

showed on average some of the lowest community level N (1.3 ± 0.21 %) and P (0.07 ± 0.01%) leaf 

concentrations. 

3.2 Pantropical and local community level functional trait models 

The analyses carried out with the full dataset and the dataset where the 25th and 50th percentile of the 

smallest trees per region were removed gave similar results for the global (R2=0.95 and R2=0.97 

respectively; Table S2) and local (R2=0.81 and R2=0.80 respectively; Table S3) models of plant trait 

distributions. Therefore, in the following we only present the results for the models carried out with 

the full vegetation dataset. 

The accuracy of the pantropical prediction of functional traits ranged between a minimum of 

R2=0.26, for leaf fresh mass, and a maximum of R2=0.70 for leaf carbon content (C%) based on the out-

of-sampled (testing) data across the tropics (Table 4). The predictive accuracies of leaf chemistry and 
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photosynthetic traits were often higher than for morphological and structural traits such as leaf dry 

mass (R2=0.27) and leaf area (R2=0.43) (Fig. 3). At the pantropical level, the highest prediction accuracy 

was obtained for leaf thickness (R2=0.52) for morphological and structural traits, for leaf Ca (Ca%; 

R2=0.64) and leaf K (K%; R2=0.63) for the chemical traits other than carbon. Leaf N and P concentrations 

were also predicted with high accuracy (R2=0.59). Leaf photosynthetic capacity traits, Amax and Asat, 

showed some of the highest prediction accuracies ranging from R2=0.55 to 0.67, respectively. Model 

spatial predictions for several traits and locations is shown in Fig. 4.  

Models built for each location uncovered marked differences in prediction accuracy among 

tropical regions depending on traits (Fig. 5; Table 5 and Table S5). Leaf area prediction accuracy ranged 

from R2=0.04 (Brazil -ST) to 0.35 (Australia), and that of SLA ranged from R2=0.06 for Malaysia to 0.54 

for Brazil -NX (Table S5). The local models showed a higher accuracy for predicting local level leaf 

chemical nutrients (up to R2=0.68), especially for P, Ca, and N concentrations in comparison to 

morphological (e.g. leaf area and SLA) traits (Table 5; Fig. 5). Traits related to photosynthetic capacity 

showed an overall better prediction accuracy than leaf area and SLA with prediction values ranging 

between 0.36 (Peru) to 0.49 (Ghana) for Amax and up to 0.52 for Asat (Brazil -NX; Fig. 5). On average the 

highest prediction accuracy across regions for a given trait were reached for leaf P concentration 

(R2=0.47) and Amax (R2=0.44) and the locations with the highest average prediction accuracy across 

traits were the Nova Xavantina savanna (Brazil -NX, R2=0.40) and the Peru elevation gradient (R2=0.38; 

Table 5), both sites encompassing strong gradients in vegetation morphology and structure. 

3.3 Importance of spectral remote sensing, climatic and soil data for mapping trait distributions 

We included Sentinel-2 band derived reflectance values, vegetation indices, their canopy texture 

components, climatic and soil variables in the general trait models to predict community level traits at 

the pixel level (Table 3). The importance of these variables for predicting traits depended on the 

specific trait being addressed (Fig. 6). In the global model, the textural remote sensing derived variables 

were the first or second major contributor for predicting nine of the functional traits across the tropics 
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(Fig. 6 and Fig. S2). Raw spectral variables were the second most important group for predicting four 

of such functional traits but often lower in importance than the textural parameters. In the global 

model, soil and terrain factors were on average some of the most important for predicting 

photosynthetic traits and foliar P concentration. On average, climatic variables were important for 

predicting 11 out of 14 functional traits but their contribution was lower for predicting leaf dry and 

fresh mass and leaf water content (Fig. 6). However, it is evident that a combination of textural, 

spectral, climatic and soil information is required to obtain the best general model predictions across 

functional traits and no single variable appears as the most important across all traits (Fig. S2).  

The local models provide a site-specific view of the most important remote sensing derived 

variables, environmental and soil conditions for deriving community level traits composition (Fig. S3). 

Sentinel-2 remote sensing related variables were more important for detecting leaf morphology and 

nutrient values than environmental and soil related variables 88% of the time (in 75 out of 85 possible 

traits by region combinations). From those, 81% of the times (69 location by trait combinations) the 

canopy texture derived variables were more important than the raw spectral reflectance factors. In 

5.9% and 4.7% of the possible trait and region combinations, climatic or soil-topography related 

variables respectively were the most important for detecting community traits (Fig. S3). 

4. Discussion 

To the best of our knowledge this is the first study evaluating the ability of Sentinel-2 to map plant 

functional traits across tropical ecosystems using the Sentinel-2 satellites. Tropical forest trait mapping 

is fundamental for understanding of plant responses to global change, and notably the plant functional 

traits we predict in this study are relevant to plant species responses to a changing environment (Both 

et al., 2019, Nunes et al., 2019, Soudzilovskaia et al., 2013, Aguirre‐Gutiérrez et al., 2019). We have 

demonstrated how accurate pixel level (10×10m) predictions of tropical forest functional trait 

distributions across the tropics can be generated by making use of extensive in-situ collected plant 
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functional traits, geo-located canopy structure, vegetation censuses and high spectral and spatial 

resolution remote sensing data from the Sentinel-2 satellites.  

4.1 Tropical forest trait distributions 

Plant functional traits are the characteristics that aid species to thrive in their environment or adapt 

to new conditions. Given such adaptations to specific environments it might be expected that trait 

variation would be higher in regions that encompass more varied environmental conditions (Enquist 

et al., 2015). Environmental adaptation is exemplified by the strong variation in values for most traits 

in Peru and Malaysia. In Peru the data represent a climatic and altitudinal gradient ranging from the 

lowland Amazon in the Tambopata National Park at an elevation of 200-225 masl to plots in Acjanaco 

at above 3000 masl. In Malaysia the vegetation plots are distributed across a land-use gradient ranging 

from undisturbed to heavily logged forests (Both et al., 2019). Environmental adaptation may be also 

shown by the observed differences in trait distributions between different regions across the tropics 

(e.g. Australia and Gabon; see also Fig. 2). The pixel-based community trait values in the Peruvian 

transect often extend across much of the range in trait values observed in other locations (Fig. 2). We 

detected an overall significant difference among locations in terms of morphological, chemical and 

photosynthetic traits (Table S4). This wide variation in traits suggests the presence of local biotic and 

abiotic controls of trait distributions and plant species adaptations that may differ even among tropical 

regions. For instance, it is widely known that African tropical forests are in general less species diverse 

than their Asian and South American counterparts but that they have some of the highest biomass 

carbon storage capacity per unit area (Sullivan et al., 2017). Tropical forests in West Africa are in 

general drier in comparison to Amazonian tropical forests (Parmentier et al., 2007) and some African 

regions such as Gabon have experienced increases in temperature and decreases in precipitation over 

the last 30 years (Bush et al., 2020). Thus, such changes in climatic conditions as those observed in 

West African tropical forest may also underlie variations in species composition and the locally 

observed functional trait pool as shown in this study. It is also worth noting that two caveats of the 
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community-weighted mean trait approach may account for part of the unexplained trait variation. 

First, it makes the assumption of a unique functional optimum in a given environment, while multiple 

optimal strategies – potentially corresponding to contrasting trait values – could coexist (Laughlin et 

al., 2018). Secondly, it does not account for the dynamic nature of communities, so that a community 

weighted mean at a given time point might not encompass the optimum at equilibrium (Laughlin et 

al., 2018).   

Morphological and structural traits such as leaf area, fresh and dry mass, leaf thickness, SLA 

and LWC, resemble trade-offs between energy acquisition, consumption and survival and form a main 

part of the global spectrum of plant functioning (Díaz et al., 2016). Besides investigating the 

predictability of such plant structural traits, we further analysed the potential for predicting leaf 

chemistry (C, K, Mg, Ca, N, P) and photosynthesis related traits (Amax and Asat). Mapping chemical and 

photosynthetic traits at a pantropical scale has the potential for increasing our understanding of how 

photosynthetic capacity shifts across tropical regions and on possible impacts of a changing 

environment on tropical forests productivity (but see Guan et al., 2015, Mueller et al., 2014).  

4.2 Sentinel-2 remote sensing for mapping community level trait distributions across the tropics 

Recently, there has been a great effort toward mapping plant functional trait distributions; however, 

given economic and data availability constraints such efforts have mostly concentrated at the local 

(Schneider et al., 2017) to regional scales (Asner et al., 2015, Asner et al., 2016) and employed 

hyperspectral imagery. However, high resolution hyperspectral imagery is not widely available (e.g. 

Clark, 2017, Szabó et al., 2019). Wallis et al. (2019) used Landsat-8 imagery which has coarser spatial 

(30m pixel), spectral and temporal resolution than Sentinel-2 imagery to map four traits over small 

(20×20m) vegetation plots at small spatial extent. Such spatial mismatch between site level trait 

sampling and pixel spatial resolution may in some situations, as the authors discuss, affect overall 

model predictions. Another study restricted to European forests (Ma et al. 2019) shows how Sentinel-

2 imagery could be used to map functional trait diversity in the comparatively lower tree diversity 
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forests of Europe. However, the tropics present a different set of challenges, such as the high species 

richness, low accessibility and comparatively lower availability of trait data, plus the lower coverage of 

remote sensing data because of persistent high cloud cover. These challenges have hampered 

developments in mapping plant functional trait distributions across most tropical areas. 

In their pioneering work with hyperspectral imagery and simulated multispectral Sentinel-2 

data over Ghana, Laurin et al. (2016) demonstrated that Sentinel-2 imagery could be used to 

discriminate tropical forest types and map plant functional types. The authors argued that the full band 

set and vegetation indices derived from the Sentinel-2 would be advantageous for accurately mapping 

plant functional guilds in the tropics. By using functional trait collected in situ data across tropical 

forests and modelling at high spatial resolution (pixel level) we show that most of our global trait 

distribution models present a high predictive power for most traits analysed, with prediction accuracy 

on the testing datasets being highest for predicting leaf chemical and photosynthetic capacity traits. 

Some of the leaf chemistry we modelled can be directly related to the reflectance obtained from the 

Sentinel-2 remote sensor in the visible, infrared and red-edge regions which capture the leaf 

biogeochemistry (Ustin & Gamon, 2010). Our models show how Sentinel-2 imagery, and especially the 

canopy texture metrics derived from it, can be especially useful for mapping traits related to leaf 

chemistry (Fig.  2 and Fig. S2). Moreover, our high predictive accuracy for photosynthetic capacity (Amax, 

Asat) is consistent with studies carried out in other vegetation types (e.g. agroecosystems; Serbin et al., 

2015) where a strong association was shown between photosynthesis related traits and the red-edge 

spectral region. Sentinel-2 has 3 bands over the red-edge spectral region (bands 5, 6, 7) and two over 

the near infrared (bands 8 and 8a) with different bandwidths, which as shown by Shiklomanov et al. 

(2016) can be advantageous for detecting foliar nutrients such as leaf N (Schlemmer et al., 2013), as 

small differences in wavelength position in different bands may impact their capacity to retrieve 

canopy trait characteristics. Moreover, the strong relationship between photosynthetic capacity and 

spectral reflectance can be partly captured from the leaf N signal, as leaf N concentrations are strongly 

associated with photosynthetic capacity (Reich, 2012; Vincent, 2001). This reflectance signal is often 
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best obtained in wavebands centred between 440 and 570 nm (Ferwerda et al., 2005). This is of 

relevance for informing policies  for monitoring biodiversity and ecosystem change as we show we can 

accurately predict relevant functional traits distributions in highly biodiverse areas such as the tropics. 

Our approach thus facilitates tracking possible shifts in trait distributions and composition across large 

spatial extents as a response to environmental changes using the Sentinel-2 satellites. 

In this study we leverage evidence on covariation among traits to estimate and predict values 

of traits that have no clear physical effects on spectral reflectance. There is ample evidence of the 

existence of covariation among plant traits, as for instance between leaf N concentration, specific leaf 

area and leaf longevity (Walker et al., 2017). Such covariation among traits may in principle also 

represent covariation in the spectral reflectance patterns across vegetation types (Ma et al. 2019), 

especially if such individuals vary in leaf structural tissue that drive energy scattering and reflectance 

(Ollinger, 2011). Such covariation between traits can be helpful for mapping functional trait diversity 

across large spatial extents that include diverse vegetation types (Townsend et al., 2003, Both et al., 

2019).  

We show that often the spectral reflectance, pixel textural parameters as Entropy and 

Correlation, climate and soil, are highly relevant for modelling plant trait distributions across the 

tropics with high prediction accuracy. However, the canopy texture parameters (Entropy and 

Correlation) are some of the most important for attaining high trait prediction accuracies across plant 

functional traits (see also Sarker & Nichol, 2011, Wallis et al., 2019) and differences in spectral, climatic 

and soil conditions between different regions are key components for improving model predictions 

across broad spatial extents. The role of texture parameters for modelling biomass and functional traits 

has also been recognised by other studies focusing not only on mapping functional traits along 

elevation gradients but also for estimating standing biomass (Wallis et al. 2019). Moreover, soil 

properties can be informative when modelling trait distributions across regions in the tropics as they 

partly drive the plant functional and species compositional turnover (e.g. Asner et al., 2016, Prada et 
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al., 2017). In our study different vegetation plots appeared to be on soils with different parent 

materials resulting in varying cation exchange capacity, pH and soil texture, and thus including 

differences between sites contributes to increasing the prediction accuracy of trait distributions. 

Although in the past it was thought not to be possible to map individual plant species or 

functional traits (see Price, 1994, Ustin & Gamon, 2010), the advent of remotely sensed data with high 

spectral, spatial and temporal resolution has made it possible to extract information on the chemical 

and structural composition of forest canopies even in highly biodiverse tropical forests. This has been 

demonstrated with the use of hyperspectral sensors (Asner et al., 2015, Asner et al., 2017, Jetz et al., 

2016) which often collect hundreds of spectral bands at very high spatial and spectral resolutions but 

at relatively small spatial extents and often without temporal replication. More research is needed to 

disentangle to what extent hyperspectral data offers more information to that offered by the Sentinel-

2 sensors for an increased mapping accuracy of functional traits of tropical forests. As shown by Laurin 

et al. (2016), results obtained with simulated Sentinel-2 data are highly comparable to those obtained 

from hyperspectral imagery for mapping forest types, dominant tree species and functional guilds. 

Being able to monitor functional traits at high spatial and temporal resolution with multispectral data 

ranging from the visible to the shortwave infrared across the tropics and with freely available data 

opens new opportunities for understanding the effects of environmental changes on biodiversity at a 

local scale. This is because functional traits play a major role in determining ecosystem productivity 

and functioning, e.g. carbon capture (Díaz et al., 2019, Carmona et al., 2016). Moreover, spatially 

explicit models of functional traits shift across the tropics can help decipher how ecosystem 

functioning varies even among tropical areas, providing a cost-effective pathway to identifying regions 

of high conservation value and hence aid in the creation of locally adequate biodiversity conservation 

policies.  

5. Conclusions 
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Tropical forest ecosystems are witnessing a fast transformation as a result of changing environmental 

conditions and direct human impacts (Lewis et al., 2015, Taubert et al., 2018, Aguirre‐Gutiérrez et al., 

2019). However, we cannot adequately understand or simulate tropical ecosystem responses to 

environmental changes based solely on current ecosystem model approaches as these are unable to 

capture the high diversity of plant ecosystem functions in the species-rich tropics. Neglect of functional 

biodiversity can oversimplify the simulated response of an ecosystem to an environmental 

disturbance. Here we show the high variation in functional traits that exists among tropical regions, 

which hints at the different capabilities of such forests to respond to a changing environment. We 

demonstrate the opportunities for measuring the distribution of key functional traits across tropical 

forest ecosystems at the pixel level using the Sentinel-2 satellites, which if done across time could 

reveal areas where functional shifts have occurred and likely where biodiversity 

conservation/amelioration measures are needed. Although the Sentinel-2 satellites show high promise 

for this endeavour, our approach is limited by the short time interval since they were launched (i.e. 

2015) and the lower spectral resolution of Sentinel-2 imagery in comparison to that derived from 

hyperspectral sensors. Methods and data products are needed to track changes in functional 

composition in forest ecosystems across time and space. We demonstrate a new approach to develop 

a rapid monitoring tool for capturing the effects of a changing environment across the tropics. This 

new tool has the potential to contribute to a more robust and evidence-based policy-making for 

conservation of tropical forest ecosystems. 
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