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Abstract  

Objectives: This research aims to explore how often the National Institute for Health and Care 

Excellence (NICE) uses immature overall survival (OS) data to inform reimbursement decisions 

on cancer treatments, and the implications of this for resource allocation decisions.  

Methods: NICE cancer technology appraisals (TAs) published between 2015 and 2017 were 

reviewed to determine the prevalence of using immature survival data. A case study was used to 

demonstrate the potential impact of basing decisions on immature data. The economic model 

submitted by the company was reconstructed and was populated first using survival data 

available at the time of the appraisal, and then using data from an updated data-cut published 

after the appraisal concluded. The incremental cost-effectiveness ratios (ICER) obtained using 

the different data-cuts were compared. Probabilistic sensitivity analysis (PSA) was undertaken 

and expected value of perfect information (EVPI) estimated.  

Results: 41% of NICE cancer TAs used immature data to inform reimbursement decisions. In 

the case study, NICE gave a positive recommendation for a limited patient subgroup, with ICERs 

too high in the complete patient population. ICERs were dramatically lower when the final data-

cut was used, irrespective of the parametric model used to model survival. PSA and EVPI may 

not have fully characterised uncertainty as they did not account for structural uncertainty. 

Conclusion: Analyses of cancer treatments using immature survival data may result in incorrect 

estimates of survival benefit and cost-effectiveness, potentially leading to inappropriate funding 

decisions. This research highlights the importance of revisiting past decisions when updated 

data-cuts become available.  
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Highlights 

 Decisions on whether or not to reimburse new healthcare interventions are often made before 

clinical trial data are complete. For cancer treatments, extrapolation techniques are commonly 

used to estimate survival benefits beyond trial follow-up. However, extrapolation is associated 

with uncertainty, with different models or assumptions potentially leading to different results.  

 The National Institute for Health and Care Excellence often base their decisions for cancer 

treatments on immature survival data. Data maturity can have a dramatic impact on cost-

effectiveness conclusions, especially in cases where the shape of survival curves change 

significantly after the interim data-cut. Traditional probabilistic sensitivity analysis (PSA) 

only captures parameter uncertainty, and thus is unable to accurately characterise the 

uncertainty associated with data immaturity. This may result in inappropriate value of 

information estimates.  

 It is critical for HTA authorities to revisit their decisions when important new data becomes 

available even when probabilistic sensitivity analyses suggest that the initial decision could be 

made with a high level of confidence, if there is an expectation that the PSA did not 

incorporate all types of uncertainty. Further research on methods for incorporating uncertainty 

around data immaturity into PSA is of vital importance. 
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Introduction 

    Economic evaluation is an important part of Health Technology Assessment (HTA). Costs 

incurred and units of health gained are compared between interventions, allowing decision-

makers to allocate finite resources1. The incremental cost-effectiveness ratio (ICER) represents 

the marginal cost per unit of health gained, and provides information on whether an intervention 

is ‘cost-effective’ with reference to a pre-specified threshold. In England, the National Institute 

for Health and Care Excellence (NICE) normally recommends a new intervention if its ICER is 

below £20,000 to £30,000 per quality-adjusted life year (QALY) gained. For treatments that 

meet end of life (EOL) criteria, QALY gains can be weighted by a factor of up to 1.7, implying a 

threshold of approximately £50,000 per QALY gained2,3. 

    When treatments affect survival outcomes, economic evaluations need to adopt lifetime 

horizons3-6. Many regulatory bodies (such as the Food and Drug Administration (FDA) and 

European Medicines Agency (EMA)) have introduced accelerated or conditional approval 

schemes for licensing life-saving therapies7-9 based on interim analysis or surrogate outcomes. 

To ensure timely patient access, HTA authorities aim to make decisions soon after drugs are 

licensed. Therefore, HTA decisions for cancer treatments often need to be based on clinical trials 

with incomplete, or “immature”, survival data. For this reason, statistical models are used to 

extrapolate beyond the clinical trial follow-up. However, extrapolation introduces uncertainty 

and is challenging as different approaches can lead to different results10,11. Therefore, when 

substantial amounts of extrapolation are required, the reliability of cost-effectiveness conclusions 

is questionable. 
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    Extrapolation methods represent a key focus in HTA submissions, due to their impact on cost-

effectiveness results12-17. Discussions often centre on the plausibility of extrapolated portions of 

survival curves. However, a previous review shows that very few submissions to NICE 

thoroughly assess this18. Many researchers advocate the use of external information to guide 

extrapolation10,18-20. However, external data is likely only to be available for control treatments, 

which may not help guide estimates of long-term survival for new interventions18, particularly 

for first-in-class therapies. Hence, funding decisions may be informed by unreliable cost-

effectiveness analyses. This is important for HTA agencies around the world.  

     

    The objective of this research is to understand how often NICE makes decisions for cancer 

treatments using immature survival data. NICE is used as an example because their decisions are 

influential and are referenced internationally21.  Dickson et al. 2018 found that an increasing 

number of NICE appraisals were based on trials with a single-arm, small sample size or limited 

follow-up, resulting in increased uncertainty which was often not appropriately parameterised in 

economic models, or sufficiently explored in scenario analyses22. We build upon this, and also 

present a case study of a first-in-class therapy to investigate the potential implications of using 

immature survival data for decision-making.      

    First we present our review of NICE cancer technology appraisals (TAs) with respect to 

survival data immaturity. Next, our case study is reported. Finally, we offer discussion, taking 

into account our review and  case study.  

 

Review of NICE Cancer Technology Appraisals  
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    This review aimed to assess how often NICE bases reimbursement decisions on survival data 

considered to be immature, how Evidence Review Groups (ERGs) and Appraisal Committees 

(ACs) define survival data maturity, and how data maturity affects NICE’s decisions. 

 

Review Approach 

    The review was conducted in July 2018. NICE single technology appraisals (STAs) published 

between January 2015 and December 2017 for cancer treatments were reviewed23. Information 

on the TA, clinical trial characteristics and data maturity was extracted from the company 

submissions (CS), ERG reports and final guidance documents. The level of survival data 

maturity was categorised as ‘mature’, ‘immature’, ‘partial information’ and ‘not mentioned’ 

based on statements made by ERGs and/or ACs. This permitted an understanding of what 

ERGs/ACs considered to represent ‘mature’ data. Statements were identified by searching for the 

terms ‘mature’, ‘immature’, ‘maturity’ and ‘immaturity’ in the ERG reports and final guidance. 

TAs identified as providing ‘partial information’ on data maturity were those involving 2 or 

more clinical trials, not all of which were commented on by the ERG or AC with respect to 

survival data maturity. ‘Not mentioned’ TAs were those where ERGs and ACs made no 

statement around survival data maturity.  

 

 

Findings 

    Forty-nine cancer STAs were reviewed (Table S.1, supplementary material).  

    Definition of survival data maturity by ERGs or ACs. Statements on data maturity were 

primarily driven by the proportion of deaths in the pivotal trials24-28. In STAs that provided 
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information on the proportion of deaths, the majority of ‘mature’ and ‘immature’ cases had 

proportions of deaths over 70% and under 50% respectively (Figure 1). Uncertainty in the trend 

of survival curves was also considered. For instance, in TA450 the pivotal trial was referred to as 

‘immature’ even though 62% of patients had died, seemingly because overall survival (OS) 

curves plateaued and converged in the long-term when data were sparse due to few patients 

remaining at risk29.  

    Prevalence of using immature survival data in NICE decisions. 41% (n=20) of reviewed STAs 

were considered by ERGs/ACs to involve immature survival data; 20% (n=10) were considered 

mature; 2% (n=1) had partial information and in 37% (n=18) data maturity was not commented 

on (Table S.1, supplementary material). Hence, NICE frequently based recommendations for 

cancer treatments on data considered by ERGs/ACs to be immature. 

    Characteristics of ‘mature’ and ‘immature’ STAs. Clinical trials considered to provide 

immature data were more likely to be single-arm and early phase trials (i.e. phase I or II), or 

those presenting interim analyses. 75% (n=15) of ‘immature’ STAs versus 10% (n=1) ‘mature’ 

STA used interim trial results. 25% (n=5) ‘immature’ STAs versus 10% (n=1) ‘mature’ STA 

involved a single-arm trial design. 40% (n=8) of ‘immature’ STAs versus 10% (n=1) ‘mature’ 

STA employed early-phase trials (Table S.2, supplementary material). This implies that many 

‘immature’ TAs may suffer from uncertainty associated not only with survival data but also 

small sample size and a need for making indirect comparisons30.  

    Recommendations made by NICE. When preferred ICERs fell on the borderline or out of the 

range normally considered cost-effective, ‘mature’ STAs were more likely to be given negative 

recommendations while ‘immature’ STAs were recommended within the Cancer Drugs Fund 

(CDF)28,31,32 (Table S.3, supplementary materials). 50% of ‘mature’ STAs (n=5) received 
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negative recommendations; while 35% of ‘immature’ STAs (n = 7) resulted in CDF 

recommendations and none resulted in negative decisions. The positive decisions for ‘immature’ 

STAs (65%, n = 13) were sometimes ‘restricted’. For example, in TA38133, the recommendation 

was positive for a sub-group, due to the ICER being too high in the broader population.  

 

Case Study  

    TA38133 was selected as the case study to investigate the potential implications of making 

funding decisions based on immature survival data. Survival data was considered to be immature 

by the ERG/AC, a data-cut with relatively complete survival data was published after the NICE 

appraisal, and data available was sufficient to allow the economic model used in the STA to be 

replicated. TA381 assessed olaparib for  relapsed, platinum-sensitive, BReast CAncer mutation-

positive (BRCAm) ovarian, fallopian tube and peritoneal cancer after response to platinum-based 

chemotherapy. The Phase II pivotal trial (Study 19), a double-blind, randomised and placebo-

controlled trial, enrolled patients who had the BRCA mutation and previously had two or more 

lines of chemotherapy (2L+ BRCAm)34. The company submitted a semi-Markov economic 

model, and the ERG built a partitioned survival model (PartSM) to validate the company’s 

results. It was concluded that treatment in the 2L+BRCAm group was not cost-effective, but a 

positive recommendation was made for a smaller subgroup (third-line patients – 3L+ BRCAm), 

based upon the PartSM model.  

    Our case study focuses on the 2L+ BRCAm population. A November 2012 data-cut from 

Study 19, with 3-year follow-up, was used in TA381. Subsequently two more data-cuts were 

published, with median follow-up of approximately 6 and 6.5 years35,36. The data available for 
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the three main clinical endpoints in the various data-cuts are summarised in Table 1. The 

‘original data-cut’ refers to the 2012 data-cut. The ‘latest data-cut’ refers to the data-cut with the 

most mature data for each endpoint, which differs for different endpoints. 

 

Methods     

     First, pseudo individual patient data (IPD) were reconstructed for the original data-cut, 

parametric survival models were fitted and a preferred model selected. Second, the economic 

model used in TA381 was recreated. Third, the same process was performed for the latest data-

cut. Finally, cost-effectiveness results were compared between different data-cuts. 

    Survival Modelling. Pseudo IPD were reconstructed from published KM curves using the 

algorithm developed by Guyot et al.37. Survival model selection was based on NICE Decision 

Support Unit Technical Support Document (TSD) 1410,18 – reflecting the approach used in 

TA381. All standard parametric distributions were fitted38. When these did not provide a good fit, 

flexible spline-based models were employed39. Model fit to the observed data was assessed by 

visual inspection, empirical hazards, Akaike’s Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). To avoid making restrictive assumptions about the treatment effect 

survival curves were fit to each treatment arm independently, in line with the ERG’s approach in 

TA38140. The extrapolated portion of the survival curves was assessed using external 

information including national cancer mortality statistics and comments made by the company 

and/or the ERG during TA38141,42.  

    At the time of the original data-cut for Study 19,  23% of placebo group patients had received 

subsequent poly (adenosine diphosphate ribose) polymerase (PARP) inhibitors after disease 

progression or discontinuation of treatment43. In TA381, the company adjusted for this by 
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excluding trial sites where at least 1 patient had switched to PARP inhibitors, improving the 

hazard ratio (HR) for olaparib43. Adjustment analyses were not reported for the latest data-cut. 

Without IPD, treatment switching present in the latest data-cut could not be adjusted for so, for 

consistency, switching was not adjusted for in any of our analyses. Also, in TA381, survival 

models were fitted including prognostic baseline covariates. Without IPD, baseline covariates 

could not be included in our analyses. 

    Construction of Economic Model. The PartSM44 model used in TA381 was replicated, 

including three main health states - progression-free, progressed disease and death (Figure S.12, 

supplementary material).  In TA381 time to first subsequent therapy (TFST) was used as a proxy 

for progression-free survival (PFS), because PFS data had not been updated since June 2010. 

Model settings and input parameters followed those reported in TA38145 – including a 15-year 

(lifetime) time horizon, a one-month cycle length and half-cycle correction. Model inputs are 

summarised in Table S.10 (supplementary material). The cost of olaparib was based on the list 

price as this information was redacted from the CS. A patient access scheme agreed during the 

TA was incorporated, whereby the company pays for olaparib for patients who remain on 

treatment after 15 months. A 3.5% discount rate for costs and QALYs was used, and the analysis 

was undertaken from the National Health Service (NHS) and Personal Social Service (PSS) 

perspective, according to the NICE reference case3. The reconstruction of the model was 

validated by comparing results to those reported in TA381 (see supplementary material).  

    Model Analyses. A threshold of £30,000 per QALY gained was used to examine whether 

NICE’s decision may have differed based upon the latest data-cut. An implied EOL threshold of 

£50,000 was also used to assess the potential decision had EOL criteria been deemed to have 

been met2. Scenario analyses were performed to assess the impact of the choice of survival 
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models on the results. Parameter uncertainty was characterised using probabilistic sensitivity 

analysis (PSA). Distributions assigned to parameters followed those reported in the CS (Table 

S.10, supplementary material). Parameters of survival models were sampled from multivariate 

normal distributions using Cholesky decomposition4. 5,000 Monte Carlo simulations were run 

for PSA and results were illustrated using a cost-effectiveness plane (CEP), cost-effectiveness 

acceptability curves (CEAC) and frontiers (CEAF). Expected value of perfect information (EVPI) 

was derived using the Sheffield Accelerated Value of Information (SAVI) tool46,47, withthe 

decision relevance horizon set to 5 years and the annual incidence of the target population 

estimated to be 450 patients, according to the CS45
. 

    Software. KM curves were digitized using WebPlotDigitizer48. Survival analysis was 

performed in R49 using the flexsurv package50. The economic model was constructed using 

Microsoft Excel. 

 

Results 

    Survival Modelling and Replication of Economic Model. The reconstructed IPD appeared to 

be a good representation of the trial data (Table S.5, supplementary material). A flexible spline 

model was used to model TFST and OS for the latest data-cut due to two turning points in the 

observed hazard functions. Model selection details are described in Table S.6 (supplementary 

material). The economic model used in TA381 was accurately replicated with costs, QALYs and 

ICERs very similar to those reported in TA381 for the equivalent analysis (Table S.8, 

supplementary material).   

    Comparison of extrapolated and actual OS curves. Figure 2 compares the OS curves projected 

using the immature data and the actual longer-term curves. There is a substantial discrepancy 
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between these curves for olaparib. The curves projected for the two treatment arms based on the 

original data-cut converged, while the subsequently observed KM curves remained clearly 

separated. Therefore, the curves projected based upon the immature survival data underestimated 

the longer-term survival benefit associated with olaparib, according to the subsequently observed 

longer-term data.   

    Cost-Effectiveness Modelling with The Original and Latest Data-cut. The analysis based on 

the later data-cut yielded similar costs to those estimated using the original data-cut, but 

estimated QALY gains increased significantly – from 0.36 to 0.80 QALYs. As a result, the ICER 

reduced dramatically from £101,467 to £45,787 (Table 2). The CEAC indicated a much higher 

probability of olaparib being cost-effective based on the latest data-cut (13% and 56% at 

thresholds of £30,000 and £50,000 per QALY gained respectively, Vs 2% and 18% based on the 

original data-cut) (Figure S.13, supplementary material). However, the incremental cost, QALY 

and net monetary benefit estimates associated with the analysis of the latest data-cut lie within 

the 95% credible intervals produced by the analysis of the original data-cut (Table 2). 

    At a threshold of £30,000 per QALY gained, the population EVPI was £152,141 and 

£2,201,146 for the original and latest data-cut respectively. The maximum EVPI across all 

thresholds was higher based upon the original data-cut, but was reached only at very high cost-

effectiveness thresholds (around £100,000 per QALY) (see supplementary material). Based upon 

the latest data-cut, the maximum EVPI decreased – reflecting reduced uncertainty due to the 

additional data collected – but was reached at cost-effectiveness thresholds close to those used by 

NICE. Thus, at a threshold of £30,000 per QALY gained, the EVPI associated with the latest 

data-cut was actually higher than that associated with the original data-cut. 
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    Scenario analyses for the original data-cut revealed that the ICER was sensitive to the choice 

of parametric model for OS – ranging between £61,684 and £280,487 per QALY gained 

depending on the model used. The ICER was much less sensitive to the choice of OS model for 

the latest data-cut – ranging from £33,004 to £43,195 per QALY gained (Table 3).   

 

Discussion  

    Our study reveals that NICE decisions for cancer therapies often have to be made based on 

immature survival data, which can have important implications for cost-effectiveness estimates. 

41% of cancer STAs relied on immature survival data between 2015 and 2017. Our case study 

demonstrated that relying on immature survival data as the basis for model fitting may result in 

seriously inaccurate estimates of survival benefits. In our example, using more complete data 

halved the ICER compared to using the original immature data-cut. The original NICE 

recommendation was consistent with the evidence available at the time of the appraisal – but the 

recommendation may have been different if mature data had been available at the time of the 

decision. 

    The dramatic change in ICERs observed in our case study are due to a change in shape of the 

OS curve for olaparib after the original data-cut. KM curves for the two treatment arms 

converged shortly before the original data-cut but separated again afterward. Parametric models 

fit to the original data-cut were unable to predict this change. The sensitivity of the ICER at the 

original data-cut was tested using many different survival models for extrapolation, resulting in 

vastly diverging ICERs, but none were as low as that produced using longer-term data. Notably, 

scenario analyses using different survival models resulted in a much narrower range of ICERs 

when models were fitted to the later data-cut. This suggests that decision-makers should be 
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cautious about using immature data, provides rationale for re-visiting recommendations when 

more evidence becomes available, and suggests that there may be benefits associated with 

delaying reimbursement decisions until more mature survival data are available.  

    However, there are opportunity costs to delaying reimbursement decisions. Adopting a therapy 

that is not cost-effective is costly, but waiting for more complete data may result in QALY losses 

in the interim period if a treatment is later found to be cost-effective. This trade-off is of 

particular concern for life-threatening diseases, where there is a strong desire for rapid access to 

treatments. The CDF may be argued to strike a balance, allowing early patient access while 

collecting more evidence to reduce uncertainty51. In our case study, the survival benefit 

associated with olaparib appeared to be underestimated using immature data. In other cases, the 

reverse may be true. Of the 65% of STAs that resulted in positive recommendations based upon 

immature survival data, we do not know which interventions truly resulted in the survival 

benefits predicted during their Appraisal.  

    Our review shows that cancer drugs were never rejected when survival data were immature – 

35% were placed in the CDF and 65% received full or restricted positive recommendations, 

while 50% of STAs involving mature data resulted in rejections. Drugs placed in the CDF are 

usually scheduled for re-assessment 2 years after the initial recommendation. For other drugs, 

NICE usually schedules re-assessment after 3 years. However, re-assessments for non-CDF 

drugs do not always involve a re-analysis of cost-effectiveness. The criteria that trigger a full re-

assessment of a NICE appraisal are not entirely clear52. Our findings suggest that re-assessments 

of cost-effectiveness can be important even when sensitivity analyses suggest that initial 

decisions can be made with high levels of confidence. However, our analysis represents a single 

case-study – it is unclear whether re-assessment would result in such markedly different cost-



 14 

effectiveness estimates in other cases. Further case studies would be of value, as would research 

into methods for identifying cases in which re-analysis is likely to be most important.  

         In our case study, PSA results using the original data-cut suggested little decision 

uncertainty, with only 2% probability of olaparib being cost-effective and a low EVPI estimate. 

Due to the additional survival benefit shown at the latest data-cut, the probability of olaparib 

being cost-effective increased, resulting in an increased EVPI at a cost-effectiveness threshold of 

£30,000 per QALY gained. Given that cost-effectiveness estimates substantially changed, the 

original, low EVPI estimate may appear misleading. Traditional PSA only characterises 

parameter uncertainty, and therefore our original EVPI estimate did not incorporate structural 

uncertainty, or any additional uncertainty associated with immature survival data – therefore 

results may have appeared more certain than they actually were. In our case study, the 

incremental QALY benefit associated with olaparib according to the analysis of the latest data-

cut lies within the credible interval produced by the analysis of the original data-cut, meaning 

that we cannot conclude definitively that parameter uncertainty inadequately characterised the 

uncertainty around the effectiveness of olaparib. However, it is reasonable to suggest that 

uncertainty may be more appropriately characterized and EVPI estimates may more accurately 

reflect the value of further research if all sources of uncertainty could be parameterised into PSA..  

    Our findings reflect those of Dickson et al. 2018, who found that NICE appraisals were often 

based on trials with limited follow-up, and that uncertainty was not appropriately parametrised in 

economic models22. Novel methods for parameterising uncertainty around survival extrapolation 

have been proposed20,53-55. Model averaging may be useful for incorporating uncertainty around 

the selection of survival models – although if no models provide good projections of future 

survival, averaging may not help. Mahon proposed the use of model averaging and a ‘temporal 
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uncertainty’ parameter to quantify uncertainty around survival data in PSA54. These methods are 

not yet in common practice and require validation. Further research on methods that could 

incorporate uncertainty around survival data immaturity into CEA is of great importance. 

     Bayesian analyses may be helpful when reasonable expectations about long-term survival can 

be formed at the time of early data-cuts. External data and expert elicitation could be employed, 

using a Bayesian framework. For example, Guyot and colleagues used Bayesian multi-parameter 

evidence synthesis to incorporate external information into a survival model and reported 

improved extrapolation performance20.If, at the time of the original Study 19 data-cut, there had 

been reason to expect a longer-term survival advantage associated with olaparib, this could have 

been parameterised into the model, which may have altered results. However, to the best of our 

knowledge, such information was not available at the time of the original data-cut.  

    In trials with small sample sizes, KM curves may have unexpected kinks due to chance – 

especially when numbers at risk become small. In our case study, it is important to consider 

whether the convergence of the olaparib and control group KM curves observed in the original 

data-cut or the subsequent divergence of these curves in the later data-cut was due to chance, or 

indeed whether there is a clinical and biologically plausible argument for why the curves may 

converge and then subsequently diverge. An ongoing phase III trial of olaparib in the same 

patient population56 may provide useful information on this. Bagust et al. discuss why 

extrapolations based on short-term and long-term data may be different57 suggesting that early 

censoring might be the cause. For the final analysis of a clinical trial patients are contacted to 

confirm their vital status, whereas this may not be required prior to an interim analysis. This can 

lead to early censoring and a lack of long-term information in interim datasets. 
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    We are not aware of previous studies in the oncology field that have published updated cost-

effectiveness results following the publication of updated data-cuts from clinical trials.  Davies 

and colleagues provide an example outside oncology, comparing alternative hip replacement 

prosthesis58. The analysis resulted in contrasting cost-effectiveness conclusions when based upon 

16 years of follow-up data compared to 8 years, again showing that analyses based on early data-

cuts may be misleading.  

    A limitation of our review of NICE appraisals is that classifications of data maturity were 

based purely on statements made by the ERGs/ACs. These statements may be arbitrary, and in 

some cases maturity may have been referred to using terms not captured by our review. However, 

the review provides useful information on how data maturity has been considered by ERGs and 

appraisal committees, which was our aim. In addition, our review only included cancer TAs 

published between January 2015 and December 2017. It is unclear whether trends in the use of 

immature survival data have changed over time, and it is possible that the use of immature 

survival data in NICE appraisals has changed since 2018 - though we believe this is unlikely. 

    A key limitation of our case study is that the new Study 19 data-cut – and therefore our 

updated cost-effectiveness analysis – was not adjusted for treatment switching. Adjustment 

would be expected to further reduce the ICER, exacerbating the differences between the analyses 

based on the original and latest data-cuts. A further limitation is that we only investigated one 

case study and thus the generalisability of our findings is uncertain. Increased data maturity may 

not always drastically change cost-effectiveness results. However, knowing that this can be the 

case – based on the case study presented here – suggests that immature data should be used with 

extreme caution. Finally, full uncertainty was not parameterised in our PSA, due to our use of 



 17 

traditional PSA methods, only including parameter uncertainty. This is likely to have contributed 

to EVPI under-estimates.  

 

Conclusion  

    NICE often needs to use immature survival data to make recommendations for cancer 

treatments. Analyses based on interim and longer-term survival data can result in very different 

cost-effectiveness estimates, as demonstrated by our case study. Uncertainty associated with 

analyses based on early data-cuts may not be appropriately characterised by PSA, resulting in 

under-estimates of the value of further research, because traditional PSA only captures parameter 

uncertainty. We advocate routine review of past decisions when updated data-cuts become 

available. Further research on methods for incorporating uncertainty associated with survival 

data immaturity into cost-effectiveness analysis is warranted. 
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TABLES 

Table 1 Data availability and maturity for three main endpoints and three data-cuts, for 2L+ 

BRCAm population35,36,45. 

Time to event 

outcome 

Nov 2012 Sept 2015 May 2016 

Median follow-up 3 years 6 years 6.5 years 

OS V (52%) V (70%) V (73%) 

TFST (a proxy for 

PFS) 

V (74%) V (82%) X 

TTD V (87%) X X 

OS indicates overall survival; PFS, progression-free survival; TFST, time to first subsequent 

therapy or death; TTD, time to treatment discontinuation or death; V, data avilable; X, data not 

available. 

Note: The availability was based on the availability of Kaplan-Meier curves which can be 

digitised to reconstruct IPD; figures in parentheses indicate the proportion of studied patients 

having events at the end of follow-up. 
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Table 2 Cost-effectiveness analysis results 

 Original data-cut Latest data-cut 

Deterministic results 

Incremental costs (£) 36,706 36,972 

Incremental QALYs 0.37 0.80 

ICER (per QALY) (£) 99,570 46,339 

Probabilistic results 

Incremental costs (£)  

(95% credible interval) 

36,588 (32,569, 40,525) 36,848 (32,861, 40,588) 

Incremental QALYs  

(95% credible interval) 

0.36 (-0.44, 1.14) 0.80 (0.05, 1.63) 

ICER (per QALY) (£) 101,467 45,787 

Incremental NMB*  

(95% credible interval) 

-25,770 

(-49,204, -2,224) 

-12,705 

(-35,444, 11,386) 

Overall EVPI*  

Individual EVPI (per person) (£) 68 978 

Population EVPI (over five years) (£) 152,141 2,201,146 

ICER indicates incremental cost-effectiveness ratio; QALY, quality-adjusted life year; NMB, net 

monetary benefit. 

* EVPI and NMB were estimated at the threshold of £30,000 per QALY gained 
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Table 3 Scenario analysis 

ICER (per QALY) (£) Original data-cut Latest data-cut 

Deterministic base-case 99,570 46,339 

OS (TFST and TTD: best-fitting models*) 

Exponential 61,684 39,137 

Weibull 127,006 41,837 

Gompertz 148,952 40,320 

Log-normal - 40,410 

Log-logistic 110,194 43,195 

Generalised gamma 280,487 36,535 

Default spline (normal, m=3) - 33,004 

ICER indicates incremental cost-effectiveness ratio; OS, overall survival; QALY, quality-

adjusted life year; TFST, time to first subsequent therapy or death; TTD, time to treatment 

discontinuation or death.  

*The best-fitting models for the original data-cut were log-normal, log-normal and log-logistic 

for OS, TFST and TTD respectively; best-fitting models for the latest data-cut were user-

specified spline, user-specified spline and log-logistic for OS, TFST, TTD respectively. 
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FIGURES 

 

 

Figure 1 Proportion of death in STAs. (A) Mature STAs. (B) Immature STAs. NR indicates that 

the proportion of death was not reported; STA, single technology appraisal.  

* The proportion/number of death was only reported for primary data-cut in this TA; however, 

the company has submitted data with newer data-cuts for which the company did not report 

proportion/number of death. Thus, here we summarized based on primary data-cut for this 

specific TA. 
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Figure 2 Comparison of predicted and actual long-term OS curves. Actual indicates actual long-

term Kaplan-Meier curve; Projected, predicted curves using short-term data.  

 


