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ABSTRACT 36 

 37 

Multiaxial stresses are usually present in engineering structures and are often associated to 38 

multiaxial fatigue failures. However, multiaxial fatigue is an open topic, full of questions and 39 

different points of view. Therefore, an experimental campaign of uniaxial and multiaxial fatigue 40 

tests under proportional loading was conducted aiming at evaluating the multiaxial fatigue 41 

behaviour of S355 structural steel in the high-cycle fatigue regime. Five different multiaxial 42 

models were used and evaluated, namely the Sines, Findley, McDiarmid, Dang Van and Susmel-43 

MWCM. Each of them was applied to experimental data and the mean fatigue curves obtained 44 

from it were evaluated and compared. The coefficients present in each model definition were 45 

studied and determined through different methods. The Dang Van’s multiscale approach and 46 

Susmel model showed great accuracy in the description of the fatigue behaviour of the S355 47 

steel, providing the best correlation of the uniaxial and multiaxial experimental data. 48 

 49 

KEYWORDS: Multiaxial Fatigue; High-Cycle Regime; Proportional Loading; Damage 50 

Parameters; Structural Steels.  51 
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NOMENCLATURE 65 

𝜏𝑎,𝑜𝑐𝑡  - octahedral shear stress 𝜏𝑎∗ , 𝜎𝑛,𝑚∗  and 𝜎𝑛,𝑎∗  - shear stress amplitude, the normal 

mean stress and the normal stress amplitude to the 

critical plane for an endurance limit with a stress ratio 

larges than -1 

s- Sines’ model damage parameter 𝜌𝑒𝑓𝑓  - effective value of the critical plane stress ratio 𝑘𝑠 – Sines’ constant 𝜏𝑎,𝑟𝑒𝑓  - fatigue endurance limit 𝜎ℎ,𝑚𝑒𝑎𝑛  - hydrostatic mean stress 𝑘𝜏- negative inverse slope 𝜎1,𝑚𝑒𝑎𝑛 , 𝜎2,𝑚𝑒𝑎𝑛 , 𝜎3,𝑚𝑒𝑎𝑛 – principal hydrostatic mean 

stresses 

𝑁𝑓,𝑒 - estimated number of cycles to failure 

𝜎1,𝑎, 𝜎2,𝑎 , 𝜎3,𝑎  − principal stress amplitudes 𝑎, 𝑏, 𝛼 and 𝛽 – Susmel’s material constants 𝜎𝑎,𝑅=−1 - uniaxial tensile/bending fatigue stress limit 

amplitude for R=-1 

𝜎𝑛,𝑎- normal stress amplitude to the critical plane 𝜎𝑎,𝑅=0  - uniaxial tensile/bending fatigue stress limit 

amplitude for R=0 

𝜌𝑙𝑖𝑚  − limit value imposed to 𝜌𝑒𝑓𝑓  𝜏𝜃𝑎  − maximum shear stress amplitude on a 𝜃 plane 𝑘0 - negative inverse slope for 𝜌𝑒𝑓𝑓 = 0 𝜎𝜃,𝑚𝑎𝑥  − maximum normal stress on a 𝜃 plane 𝑘 - negative inverse slope for 𝜌𝑒𝑓𝑓 = 1 𝑘𝑓  − Findley’s constant 𝜏𝑎,0 - fatigue endurance limit for 𝜌𝑒𝑓𝑓 = 0 

f- Findley’s model damage parameter 𝜎𝑎,12  - fatigue endurance limit for 𝜌𝑒𝑓𝑓 = −1 𝜏𝑎,𝑅=−1 – uniaxial torsional fatigue stress limit 

amplitude for R=-1 

𝑚 − mean stress sensitivity index 𝜎𝑎,𝑅=0.5  - uniaxial tensile/bending fatigue stress limit 

amplitude for R=-0.5 

 E - young modulus 

 𝜎𝑢  − ultimate tensile strength 𝑓𝑦  − yield strength  

 𝑡𝐴,𝐵 – McDiarmid’s material constant for case A or 

case B 

𝑓𝑢  −  tensile strength  𝜏�̅�𝑒𝑠𝑜,𝑚𝑎𝑥,𝑑(𝑡)  − maximum mesoscopic deviatoric 

shear stress tensor 

𝜎𝑎-  normal stress amplitude 

𝑘𝑑 – Dang Van’s constant R- stress ratio 𝜎𝑚𝑒𝑠𝑜,ℎ(𝑡) - mesoscopic hydrostatic stress tensor 𝑅2 - coefficient of determination 𝑑 – Dang Van’s damage parameter B and 𝜏𝑓′  − constants from Basquin’s law 𝜎𝑚𝑒𝑠𝑜,1,𝑑(𝑡), 𝜎𝑚𝑒𝑠𝑜,3,𝑑(𝑡) – maximum and minimum 

principal mesoscopic deviatoric tensors 

𝜎𝜃, 𝜎𝑥, 𝜏𝑥𝑦 and 𝜏𝜃 - shear and normal stress components 𝜏𝑎,𝑚𝑎𝑥  −maximum shear stress amplitude 𝜇 - mean 𝜎ℎ,𝑚𝑎𝑥  − maximum hydrostatic stress 𝜎 - standard deviation 𝜏𝑎 - shear stress amplitude  �̅� -mean of module of error index 𝑁𝑓  −  𝑛umber of cycles until failure f - probability density function 𝜎𝑛,𝑚 - normal mean stress to the critical plane n - number of specimens 

 66 
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1. INTRODUCTION 67 

 68 

Fatigue is a critical degradation process affecting engineering structures and it is believed to 69 

be responsible for half of the failures [1]. The American Society for Testing and Materials 70 

(ASTM) defines fatigue as “The process of progressive localized permanent structural change 71 

occurring in a material subjected to conditions that produce fluctuating stresses and strain at 72 

some point or points and that may culminate in cracks or complete fracture after a sufficient 73 

number of fluctuations” [2]. It was first identified at the end of the nineteenth century and 74 

started to gain attention with studies conducted by Wöhler, Basquin and others. Since these 75 

pioneer observations, different approaches and models have been proposed [3]. 76 

Throughout fatigue history, it is observed a major development of uniaxial fatigue models, 77 

but a cyclic loading is even more critical when causes a complex multiaxial stress state [4]. 78 

Besides, multiaxiality is frequently observed in many engineering applications, such as wind 79 

turbines, offshore structures and bridges, due not only to complex loadings but also to notches 80 

and geometries that originate a multiaxial stress state in the presence of a uniaxial loading [1].  81 

A multiaxial fatigue loading can be described as proportional or non-proportional. During a 82 

proportional loading, the principal stress directions do not change as consequence of in-phase 83 

loads, while a non-proportional loading originates principal stress directions which change 84 

over time, because of the out-of-phase loads. This loading characteristic results in different 85 

fatigue behaviours, and, consequently, requests specific approaches and models [1], [5]. 86 

One of the first multiaxial fatigue models was elaborated by Gough and Pollard in the 1930s 87 

and defines different failure conditions for brittle and ductile materials [6]. Along with this 88 

model, they performed a large number of biaxial fatigue tests with bending and torsional loads, 89 

which supported and inspired the formulation of others such as Findley’s [7] and Sines’ 90 

models [8], [9] in the 1950s. These models introduced new approaches based on the influence 91 
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of different variables and concepts, such as mean stresses, stress amplitudes and critical 92 

planes, which subsequently also conduct to other models such as the one presented by Matake 93 

[10], [11]. However, these approaches were based on stresses and did not include strain values, 94 

since they were mainly focused on the region of a large number of cycles until failure [12]. 95 

The classical models developed for monotonic loadings, such as von Mises, Maximum 96 

Principal stress or Tresca were also adapted and used to assess a multiaxial fatigue stress states 97 

[5]. 98 

In 1973, Brown and Miller proposed a model that included the effect of shear and normal 99 

strains and a critical plane where shear is maximum [13], [14]. Moreover, damage models 100 

based on energy and strains appeared and became widely used, such as the Smith Watson and 101 

Topper’s (SWT) [15] or the Fatemi-Socie’s models [16]. 102 

The assessment of non-proportional loadings has always been a concern of fatigue research 103 

and, consequently, some models, such as McDiarmid and Lee, were formulated in order to 104 

include the effect of this kind of loads [17], [18]. 105 

Lately, new modern models have arisen such as Dang Van’s multi-scale approach, which 106 

proposes a model based on the interaction between macroscopic and mesoscopic scales [19]. 107 

This model is mainly used to evaluate multiaxial fatigue stress states in rolling contact stresses 108 

and, during the last years, it has been applied to assess fatigue damage in offshore and other 109 

engineering structures [20]–[23].  110 

Furthermore, Papadopoulos and Carpinteri-Spagnoli developed modern models with more 111 

complex approaches for hard metals. Papadopoulos’ model was developed for non-112 

proportional bending and torsion and includes details about material’s crystalline structure. 113 

Since its formulation is defined by integrals, this model implies long computational times. On 114 

the other hand, the Carpinteri-Spagnoli’s model defines a critical plane based on the material 115 
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fatigue properties and the average of principal stress directions calculated through weight 116 

functions [1], [24]–[26].  117 

In the last decades, numerous experimental works and publications have been proposed and 118 

developed about multiaxial fatigue in steel, such as the models developed by Susmel [27] and 119 

Liu-Mahadevan [1], [12], [28]. 120 

Summarizing, multiaxial models can be generally divided into three major groups: stress, 121 

strain and energy-based models. The last ones mentioned are also called strain-energy models 122 

and, sometimes, are included in the strain-based approaches [5]. The strain-based models are 123 

usually applied to Low-Cycle Fatigue (LCF) regime, while stress approaches are adopted to 124 

High-Cycle Fatigue (HCF) regime [5], [29], [30]. The low-cycle fatigue regime is 125 

characterized by high loads and a short fatigue life, which is usually less than 104cycles. In 126 

this regime, material suffers a plastic deformation since the first cycle. On the other hand, 127 

during high-cycle regime, an elastic deformation state is observed as well as longer life, 128 

usually between 104 and 107 cycles. In the last years, other fatigue regimes have been a matter 129 

of study, such as very-high cycle fatigue or ultra-low cycle fatigue [5]. 130 

Hence, this work aims at evaluating and comparing the ability of different multiaxial fatigue 131 

models to assess and portray the fatigue behaviour of S355 steel in the high-cycle fatigue 132 

regime. Firstly, some stress-based models were selected. Afterwards, an experimental 133 

campaign was defined and carried out. The experimental data is then used to assess the quality 134 

of the selected multiaxial fatigue models. Finally, the most suitable multiaxial fatigue models 135 

to evaluate the fatigue damage observed in S355 steel are selected. Since the focus of this 136 

paper is the proportional loading of constant amplitude, material mechanisms associated with 137 

more complex loadings, such as non-proportional or variable amplitude, will not be mentioned 138 

or studied. 139 

 140 
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 141 

 142 

 143 

 144 

2. OVERVIEW OF MULTIAXIAL FATIGUE MODELS  145 

 146 

Since this work aims at evaluating the fatigue behaviour of the S355 structural steel in the 147 

high- cycle fatigue regime, experimental results were analysed and assessed through the 148 

application of stress-based models. These models can be sorted by empirical, equivalent stress 149 

and critical plane models [5]. The empirical models were the first ones to be developed and 150 

are related to experimental fatigue data. The equivalent stress models are based on static yield 151 

criteria and turn a multiaxial fatigue stress state into an equivalent uniaxial stress state [4]. 152 

Finally, the critical plane models rely on the definition of a critical plane, where the probability 153 

of crack initiation is higher [31]. 154 

Thus, five multiaxial fatigue models – Sines, Findley, McDiarmid, Dang Van, and Susmel – 155 

were considered and applied to the experimental data obtained within the scope of this work. 156 

In the following subsections, these models are presented and discussed. 157 

 158 

2.1. Stress-Based Multiaxial Fatigue Models 159 

2.1.1. Sines criterion 160 

 161 

Sines [8], [9] proposed an equivalent stress model sensitive to mean stress effect. However, it 162 

cannot be applied to non-proportional loading. Hence, this model states that failure occurs 163 

when Eq. (1) is verified: 164 𝜏𝑎,𝑜𝑐𝑡 + 𝑘𝑠(3 𝜎ℎ,𝑚𝑒𝑎𝑛) = 𝑠, (1) 

where, 𝑠 is a material constant proportional to the fatigue limit, 𝑘𝑠 is also a material constant, 165 σh,mean is the hydrostatic mean stress determined by Eq. (2): 166 
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𝜎ℎ,𝑚𝑒𝑎𝑛 = 𝜎1,𝑚𝑒𝑎𝑛+𝜎2,𝑚𝑒𝑎𝑛+𝜎3,𝑚𝑒𝑎𝑛3  , (2)

and τa,oct is the octahedral shear stress defined as: 167 𝜏𝑎,𝑜𝑐𝑡 =  13 √(𝜎1,𝑎 − 𝜎2,𝑎)2 + (𝜎2,𝑎 − 𝜎3,𝑎)2 + (𝜎1,𝑎 − 𝜎3,𝑎)2  , (3) 

where, σ1,a, σ2,a and σ3,a are the principal stress amplitudes. 168 

The material constant ks can be estimated through Eq. (4): 169 

𝑘𝑠 = √23   (𝜎𝑎,𝑅=−1−𝜎𝑎,𝑅=0𝜎𝑎,𝑅=0   ) , 
(4) 

where, 𝜎𝑎,𝑅=−1 is the uniaxial tensile fatigue stress limit amplitude for R=-1, and 𝜎𝑎,𝑅=0 is the 170 

uniaxial tensile fatigue stress limit amplitude for R=0. However, this constant will be 171 

discussed in Section 5. 172 

 173 

2.1.2. Findley criterion 174 

 175 

Findley [7] proposed the first critical plane approach. This criterion assumes shear stress as 176 

the primary mechanism of fatigue damage and responsible for nucleation and initiation, while 177 

the normal stress is the secondary mechanism since only affects the capability of a material to 178 

withstand cyclic loading. This model considers the effect of mean stress. 179 

The critical plane is defined as the plane where a certain damage parameter achieves the 180 

maximum value. The damage parameter is defined by the left side of Eq. (5) and the failure 181 

occurs when this equation is verified: 182 (𝜏𝜃𝑎 + 𝑘𝑓𝜎𝜃,𝑚𝑎𝑥)𝑚𝑎𝑥 = 𝑓, (5) 

where, 𝜏𝜃𝑎 is the maximum shear stress amplitude on a 𝜃 plane, 𝜎𝜃,𝑚𝑎𝑥 is the maximum 183 

normal stress on a 𝜃 plane and 𝑘𝑓 is a material constant that manages the influence of normal 184 

stress on fatigue life. 185 

The value of 𝑘𝑓 can be estimated by Eqs. (6) to (8) [32]: 186 
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𝜎𝑎,𝑅=−1𝜏𝑎,𝑅=−1 = 21+ 𝑘𝑓√1+𝑘𝑓2
, 

(6) 

𝜎𝑎,𝑅=0𝜎𝑎,𝑅=−1 = 𝑘𝑓+√1+𝑘𝑓22𝑘𝑓+√1+(2𝑘𝑓)2 , (7) 

𝜎𝑎,𝑅=0.5𝜎𝑎,𝑅=−1 = 𝑘𝑓+√1+𝑘𝑓24𝑘𝑓+√1+(4𝑘𝑓)2 , (8) 

where, 𝜏𝑎,𝑅=−1 is the shear stress fatigue limit amplitude for R=-1, and 𝜎𝑎,𝑅=0.5 is the normal 187 

stress fatigue limit for R=-0.5. As happens with Sines model constant, 𝑘𝑓 determination and 188 

value are controversial and will be discussed in the following sections. 189 

 190 

2.1.3. McDiarmid criterion 191 

 192 

McDiarmid [17], [33] presented a critical plane approach that can be applied to non-193 

proportional loading and includes the mean stress effect. According to this model, the critical 194 

plane is the one where shear stress amplitude achieves the maximum value. This model 195 

distinguishes two different cases: a case A characterized by crack growth along the surface 196 

and a case B where the crack grows inwards from the surface. 197 

Hence, fatigue failure criterion is achieved when (Eq. (9)): 198 𝜏𝜃,𝑎𝑡𝐴,𝐵 + 𝜎𝜃,𝑚𝑎𝑥2𝜎𝑢 = 1, 
(9) 

where, 𝜎𝑢  is the ultimate tensile strength, and 𝑡𝐴,𝐵 is a material constant which value is 𝑡𝐴 or 199 𝑡𝐵 for case A or case B that are the values of the reversed shear stresses for each of the different 200 

cases of crack growth. 201 

 202 

 203 

 204 

 205 



 

 

 

10 

 206 

 207 

2.1.4. Dang Van’s multi-scale approach 208 

 209 

Dang Van [19] developed a model based on macroscopic and mesoscopic scale concepts, 210 

assuming that before crack initiation, an elastic shakedown occurs. This material phenomenon 211 

is related to high-cycle fatigue since it is a stabilized elastic response, which only happens 212 

when yield strength is not achieved.  213 

Besides, accordingly to this model cracks initiate in transgranular slip bands due to local shear 214 

stress and are influenced by hydrostatic pressure. 215 

Hence, failure occurs when the following condition is verified (Eq. (10)): 216 𝑚𝑎𝑥 (𝜏�̅�𝑒𝑠𝑜,𝑚𝑎𝑥,𝑑(𝑡) + 𝑘𝑑𝜎𝑚𝑒𝑠𝑜,ℎ(𝑡)) = 𝑑, (10) 

where, 𝜎𝑚𝑒𝑠𝑜,ℎ(𝑡) is the mesoscopic hydrostatic stress tensor, 𝑘𝑑 and 𝑑 are material constants, 217 

and 𝜏�̅�𝑒𝑠𝑜,𝑚𝑎𝑥,𝑑(𝑡) is given by (Eq. (11)): 218 

𝜏�̅�𝑒𝑠𝑜,𝑚𝑎𝑥,𝑑(𝑡) = 𝜎𝑚𝑒𝑠𝑜,1,𝑑(𝑡) − 𝜎𝑚𝑒𝑠𝑜,3,𝑑(𝑡)2 , (11) 

where, 𝜎𝑚𝑒𝑠𝑜,1,𝑑(𝑡) and 𝜎𝑚𝑒𝑠𝑜,3,𝑑(𝑡) are the maximum and minimum principal mesoscopic 219 

deviatoric tensors. 220 

Some years later, Dang Van and Maitournam [21] proposed a simplified version of this model 221 

for engineering approaches, which is given by Eq. (12): 222 𝜏𝑎,𝑚𝑎𝑥 + 𝑘𝑑𝜎ℎ,𝑚𝑎𝑥 = 𝑑, (12) 

where, 𝜏𝑎,𝑚𝑎𝑥 is the maximum shear stress amplitude, and 𝜎ℎ,𝑚𝑎𝑥 is the maximum hydrostatic 223 

stress. The value of 𝜏𝑎,𝑚𝑎𝑥 is not affected by mean stress, while 𝜎ℎ,𝑚𝑎𝑥 includes the effect of 224 

it. The material constant 𝑘𝑑 , which will be discussed throughout this work, is usually estimated 225 
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through Eq. (13) or is considered equal to the slope of a linear regression applied to axial 226 

fatigue limits for R=0 or R=-1 plotted in a graph 𝜏𝑎,𝑚𝑎𝑥  versus 𝜎ℎ,𝑚𝑎𝑥. 227 

𝑘𝑑 = 3 (𝜏𝑎,𝑅=−1𝜎𝑎,𝑅=−1 − 12) , 
(13) 

 228 

2.1.5. Modified Wöhler Curve Method 229 

 230 

Since 2002, Susmel has been developing and proposing a critical plane approach which 231 

consists on a Modified Wöhler Curve Method (MWCM) [34], [35]. This model is based on 232 

the assumption that, under constant loading, the fatigue damage and the probability of crack 233 

initiation achieve their maximum value on the material plane that experiences the maximum 234 

shear stress amplitude, which is called "the critical plane"[34]–[40].  235 

Therefore, the damage evaluation of this model can be summarized by a modified Wöhler 236 

diagram, which plots the shear stress  amplitude on the critical plane (𝜏𝑎) versus the number 237 

of cycles until failure (𝑁𝑓)(Fig.1). The design curves of this diagram are characterised by two 238 

variables: the negative inverse slope (𝑘𝜏(𝜌𝑒𝑓𝑓)), and the fatigue endurance limit (𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓)) 239 

at a certain defined number of cycles to failure (𝑁𝑟𝑒𝑓). Both variables mentioned above are 240 

characterised by a third variable: the effective value of the critical plane stress ratio (𝜌𝑒𝑓𝑓), 241 

which is given by Eq. (14): 242 𝜌𝑒𝑓𝑓 = 𝑚 ∙ 𝜎𝑛,𝑚 + 𝜎𝑛,𝑎𝜏𝑎 , (14) 

where 𝜏𝑎 is the shear stress amplitude,  𝜎𝑛,𝑚 is the normal mean stress, 𝜎𝑛,𝑎 is the normal 243 

stress amplitude, to the critical plane, and 𝑚 is the mean stress sensitivity index and a material 244 

property, which varies between 0 and 1 [39]. The index 𝑚 can be determined through Eq. 245 

(15): 246 𝑚 = 𝜏𝑎∗𝜎𝑛,𝑚∗ (2 𝜏𝑎,𝑅=−1 − 𝜏𝑎∗2𝜏𝑎,𝑅=−1 − 𝜎𝑎,𝑅=−1 − 𝜎𝑛,𝑎∗𝜏𝑎∗ ), (15) 

where 𝜏𝑎∗ , 𝜎𝑛,𝑚∗  and 𝜎𝑛,𝑎∗  are the shear stress amplitude, the normal mean stress and the normal 247 

stress amplitude to the critical plane for an endurance limit with a stress ratio larges than -1, 248 

while 𝜏𝑎,𝑅=−1 and 𝜎𝑎,𝑅=−1  are the fully reversed fatigue limits for a uniaxial and a torsional 249 

loading case [40]. Thus, in order to determine this material property, three different endurance 250 
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limits are required and when they are not known, it is assumed that the material under study 251 

is fully sensitive to normal mean stress and 𝑚 is assumed to be equal to 1 [40]. 252 

  253 

Figure 1. Modified Wöhler diagram, 𝑘𝜏𝑣𝑠 𝜌𝑒𝑓𝑓  and 𝜏𝐴,𝑅𝑒𝑓𝑣𝑠 𝜌𝑒𝑓𝑓 curves [36] 254 

As can be seen in Fig. 1, there is a singular design curve for each loading scenario associated 255 

with the corresponding 𝜌𝑒𝑓𝑓 value which, as mention above, originates also different pairs of 256 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓) and 𝑘𝜏(𝜌𝑒𝑓𝑓) values, that define each curve. These curves are defined by Eq. (16), 257 

which gives the estimated number of cycles to failure (𝑁𝑓,𝑒): 258 

𝑁𝑓,𝑒 = 𝑁𝑟𝑒𝑓 ∙ [𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓)𝜏𝑎 ]𝑘𝜏(𝜌𝑒𝑓𝑓) , 
(16) 

As can be seen in equation above as well as in Eq. (14), the ratio 𝜌𝑒𝑓𝑓 has a significant role in 259 

fatigue life estimation and portrays the non-zero mean stresses, the degree of multiaxiality and 260 

the non-proportionality of the loading history. Furthermore, it is important to mention that 261 𝜌𝑒𝑓𝑓is always equal to unity under fully-reversed uniaxial fatigue loading and equal to zero 262 

under fully-reversed torsional fatigue loading, which is helpful to calibrate the model [36]. 263 

Finally, the 𝑘𝜏(𝜌𝑒𝑓𝑓) and 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓) can be determined through Eqs. (17) and (18):  264 𝑘𝜏(𝜌𝑒𝑓𝑓) = 𝛼 ∙ 𝜌𝑒𝑓𝑓 + 𝛽, (17) 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓) = 𝑎 ∙ 𝜌𝑒𝑓𝑓 + 𝑏, (18) 

where 𝑎, 𝑏, 𝛼 and 𝛽 are material fatigue constants. By calibrating the above equations through 265 

the fully reversed uniaxial (𝜌𝑒𝑓𝑓 = 1; 𝑘𝜏(𝜌𝑒𝑓𝑓 = 1) = 𝑘; 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓 = 1) = 𝜎𝑎.12 ) and 266 
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torsional (𝜌𝑒𝑓𝑓 = 0; 𝑘𝜏(𝜌𝑒𝑓𝑓 = 0) = 𝑘0; 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓 = 0) = 𝜏𝑎,0) fatigue curves, Eqs. (17) 267 

and (18) can be rewritten as: 268 𝑘𝜏(𝜌𝑒𝑓𝑓) = (𝑘 − 𝑘0)𝜌𝑒𝑓𝑓 + 𝑘0, for 𝜌𝑒𝑓𝑓 ≤ 𝜌𝑙𝑖𝑚 (19) 𝑘𝜏(𝜌𝑒𝑓𝑓) = (𝑘 − 𝑘0)𝜌𝑙𝑖𝑚 + 𝑘0, for 𝜌𝑒𝑓𝑓 > 𝜌𝑙𝑖𝑚 (20) 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓) = (𝜎𝑎,12 − 𝜏𝑎,0) 𝜌𝑒𝑓𝑓 + 𝜏𝑎,0 = 𝑐𝑜𝑛𝑠𝑡.  for  𝜌𝑒𝑓𝑓 ≤ 𝜌𝑙𝑖𝑚 (21) 𝜏𝑎,𝑟𝑒𝑓(𝜌𝑒𝑓𝑓) = (𝜎𝑎,12 − 𝜏𝑎,0) 𝜌𝑙𝑖𝑚 + 𝜏𝑎,0 = 𝑐𝑜𝑛𝑠𝑡.  for  𝜌𝑒𝑓𝑓 > 𝜌𝑙𝑖𝑚 (22) 

where 𝜌𝑙𝑖𝑚 is a limit value imposed to 𝜌𝑒𝑓𝑓, since this model becomes too conservative for 269 

high values of 𝜌𝑒𝑓𝑓.and can be calculated through Eq. (23) [35]: 270 𝜌𝑙𝑖𝑚 = 𝜏𝑎2𝜏𝑎,0−𝜎𝑎  
(23) 

 271 

3. Experimental Programme 272 

 273 

An experimental campaign was defined and carried out with the objective of obtaining mean 274 

fatigue curves and analysing each multiaxial fatigue model. Therefore, uniaxial and biaxial 275 

fatigue tests were performed using smooth hourglass specimens made of S355 structural steel, 276 

with a minimum cross section of 44.18 mm2 (Fig. 2 (a)). The mechanical properties and 277 

chemical composition of the tested S355 steel are listed in Tables 1 and 2, respectively. The 278 

hardness was measured and determined through a sample which was cut from a specimen, 279 

while the other mechanical properties were collected from [41], [42]. The microstructure was 280 

also analysed, and a ferrite-pearlite microstructure is observed, as portrayed in Figure 2 (b).  281 

 282 

Table 1. Mechanical Properties of S355 steel [42][41] 283 

Young Modulus (E) 

GPa 
Yield Strength (𝒇𝒚) 

MPa 

Tensile Strength (𝒇𝒖) 

MPa 

Hardness  

HV10 

211.60 367 579 151.28 

 284 

Table 2. Chemical composition of S355 steel [42] 285 

C 

% 

Cu 

% 

Mn 

% 

N 

% 

P 

% 

S 

% 

Si 

% 

0.16 0.2 1.28 0.009 0.03 0.02 0.3 

 286 
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(a) 

 
(b) 

Figure 2. (a) Hourglass specimen (in mm) [42]; (b) Microstructure of S355 steel (Magn. 400×) [42]. 287 

Hence, nineteen uniaxial and eighteen biaxial fatigue tests were conducted for different stress 288 

ratios: R=0.01 and R=-1. During axial tests, a cyclic axial force was applied to the specimen, 289 

while in the biaxial tests both cyclic torsional torque and a cyclic axial force were applied in-290 

phase. In sixteen biaxial tests, the shear stress caused by the torque was half of the normal 291 

stress originated by the force, while in the rest of the tests they were equal, in order to evaluate 292 

the effect of shear stress in fatigue life. The loads were applied according a frequency of 10 293 

Hz following sinusoidal functions of constant amplitude over time. 294 

Both types of test were carried out in force control, using a MTS 810 testing system, which 295 

can apply a maximum axial force of 100kN, for axial tests, and a MTS 809 Axial/torsional test 296 

system, which is characterized by a maximum axial capacity of 50 kN and a maximum 297 

torsional capacity of 0.5 kN.m, for biaxial tests (refer to Figs. 3 (a) and (b)).  298 

 299 



 

 

 

15 

 
(a) 

 
(b) 

Figure 3. Testing system machines: (a) MTS 810 testing system [42]; (b) MTS 809 Axial/torsional 300 

test system [42]. 301 

For each test, the number of cycles until failure and the level of loading applied were recorded. 302 

For each loading level, only two experimental tests were carried out due to the limited material 303 

available. It was assumed run-out and the test interrupted when 5000000 cycles were achieved 304 

without the specimen failure [42]. 305 

 306 

4. EXPERIMENTAL RESULTS 307 

 308 

The results obtained for each fatigue test are listed in Table 3, which includes the loading 309 

mode, the stress R-ratio, normal and shear stress amplitudes and the number of cycles until 310 

specimen failure. These results show the effect of stress ratio or in other words the effect of a 311 

mean stress, in fatigue life as well as how much a biaxial stress state can be more severe than 312 

a simple uniaxial one. Furthermore, in the last biaxial tests, where the shear stress was 313 

increased, it is visible the impact of this kind of stress on fatigue life. 314 
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Besides, the specimens’ fracture surfaces were observed and analysed with an optical 315 

microscope aiming at identifying some differences between loading conditions. Thus, Figs. 4 316 

to 8 depict the fracture behaviour and respective surfaces for each kind of loading. The crack 317 

initiation origin is marked with an ‘O’ when is easily identified and is constrained to a single 318 

region, which is the case of specimens tested under axial loading (Figs. 4 and 5) and 319 

proportional loading with stress ratio close to 0 (Fig. 5). On the other hand, as can be seen in 320 

Figs. 7 and 8, specimens under fully reversed proportional loading, there are multiple crack 321 

initiation origins, probably due to the shear stress effect. 322 

In Fig. 4 (a), the fatigue and overload zones are easily distinguished, since it is noticeable the 323 

increase of roughness between them. Furthermore, a ratchet is marked with the letter ‘R’, 324 

while in Fig. 5 (a) river marks are observed, which dictates the direction of crack propagation 325 

and are identified with a letter ‘M’.  326 

Another relevant aspect is the difference observed between the fracture surface of Figs. 7 (a) 327 

and 8(b), which highlights the impact of the shear stress caused by the torsional loading. 328 

Moreover, the influence of stress R-ratio is observed in the fractures: only the specimens 329 

which were tested under R=0.01 show an elongation and in the others, the fracture remains 330 

closed after test (Figs. 4(b), 5(b), 6(b), 7(b) and 8 (b)). 331 

 332 

 
(a) 

 
(b) 

Figure 4. Specimen tested under σa = 207 MPa (with R = 0.01): (a) fracture surface; (b) fracture [42]. 333 

 334 
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Table 3. Results of uniaxial and biaxial fatigue tests [42]. 335 

 336 

 337 

 338 

Loading 

Condition 

Stress 

R-Ratio 

Normal stress 

amplitude, 𝝈𝒂 [𝑴𝑷𝒂] Shear stress 

amplitude, 𝝉𝒂[𝑴𝑷𝒂] 𝝈𝒂 𝝉𝒂⁄  

[-] 

Number of cycles to 

Failure, 

Nf 

Axial 0.01 168 - ∞ 5000000 (∞) 
Axial 0.01 182 - ∞ 5000000 (∞) 
Axial 0.01 188 - ∞ 5000000 (∞) 
Axial 0.01 190 - ∞ 5000000 (∞) 
Axial 0.01 193 - ∞ 5000000 (∞) 
Axial 0.01 196 - ∞ 324373 

Axial 0.01 196 - ∞ 281589 

Axial 0.01 202 - ∞ 621182 

Axial 0.01 202 - ∞ 131064 

Axial 0.01 207 - ∞ 247161 

Axial 0.01 207 - ∞ 315639 

Axial 0.01 216 - ∞ 122047 

Axial 0.01 216 - ∞ 76082 

Axial -1 232 - ∞ 5000000 (∞) 
Axial -1 232 - ∞ 2147377 

Axial -1 249 - ∞ 561786 

Axial -1 249 - ∞ 406826 

Axial -1 272 - ∞ 157983 

Axial -1 272 - ∞ 98626 

Axial+Torsional 0.01 151 75 2 5000000 (∞) 
Axial+Torsional 0.01 160 79 2 5000000 (∞) 
Axial+Torsional 0.01 165 82 2 5000000 (∞) 
Axial+Torsional 0.01 168 84 2 332151 

Axial+Torsional 0.01 168 84 2 256955 

Axial+Torsional 0.01 174 87 2 313815 

Axial+Torsional 0.01 174 87 2 656534 

Axial+Torsional 0.01 174 87 2 181536 

Axial+Torsional -1 164 82 2 5000000 (∞) 
Axial+Torsional -1 181 90 2 5000000 (∞) 
Axial+Torsional -1 194 99 2 2546156 

Axial+Torsional -1 194 99 2 2040566 

Axial+Torsional -1 204 104 2 133962 

Axial+Torsional -1 204 104 2 835602 

Axial+Torsional -1 204 104 2 390101 

Axial+Torsional -1 204 104 2 383422 

Axial+Torsional -1 164 164 1 88165 

Axial+Torsional -1 164 164 1 44152 
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(a) 

 
(b) 

Figure 5. Specimen tested under σa = 272 MPa (with R = −1): (a) fracture surface; (b) fracture [42]. 339 

 340 

 
(a) 

 
(b) 

Figure 6. Specimen tested under σa = 168 MPa and τa = 84 MPa (with R = 0.01): (a) fracture surface; (b) 341 

fracture [42]. 342 

 
(a) 

 
(b) 

Figure 7. Specimen tested under σa = 204MPa and τa = 104 MPa (with R = −1): (a) fracture surface; (b) 343 

fracture [42]. 344 

 345 
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(a) 

 
(b) 

Figure 8. Specimen tested under σa = 164MPa and τa = 164MPa (with R = −1): (a) fracture surface; (b) 346 

fracture [42]. 347 

 348 

5. APPLICATION AND DISCUSSION 349 

5.1. Uniaxial fatigue data 350 

 351 

The uniaxial fatigue data obtained through the experimental campaign was plotted in a 352 

logarithmic scale and a power regression was applied according to Basquin law, in order to 353 

obtain the S-N curves. The mean fatigue curves obtained can be seen in Fig. 9 and these curves 354 

are defined by Eqs. (24) and (25), for R=0.01 (Eq. 18) and R=-1 (Eq. 19), respectively: 355 

{𝜎𝑎 = 274.49 𝑁𝑓−0.024𝑅2 = 0.507 , 
(24) 

{𝜎𝑎 = 456.46 𝑁𝑓−0.045𝑅2 = 0.929 , 
(25) 

where 𝑅2 is the coefficient of determination. 356 

 357 

 358 
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 359 
Figure 9. Mean S-N curves for axial loading under R=0.01 and R=-1 [42] 360 

 361 

5.2. Biaxial fatigue data  362 

 363 

The biaxial fatigue data is characterized by normal and shear stresses and, as a consequence, 364 

cannot be represented through a simple Basquin law. Thus, the multiaxial fatigue damage 365 

parameters described in the preview section aim to summarize the contribute of normal and 366 

shear stress in a single variable and then plot it as function of the number of cycles, in order 367 

to obtain suitable fatigue curves for S355 steel. Usually, a suitable multiaxial fatigue damage 368 

criterion collapses all experimental data around a design curve with a small scatter. 369 

Hence, several multiaxial fatigue models, Sines, Findley, McDiarmid, Dang-Van and Susmel-370 

MWCM, are considered and applied. For each model, multiaxial parameters were estimated, 371 

power regressions were performed as well as their coefficients of determination (R2) were 372 

calculated, except for the Susmel Model which follows a different methodology from the other 373 

fatigue models.  374 
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After the determination of multiaxial fatigue design curves for each model, they were 375 

compared and evaluated, in order to select the models more and less suitable to describe 376 

fatigue life of S355 steel in the region under study. 377 

5.2.1. Sines 378 

 379 

In order to estimate the fatigue life of a certain loading condition, Sines model was combined 380 

with Basquin law into the following equation (Eq. (26)): 381 

where, B and 𝜏𝑓′  are constants obtained through the regression analysis.  382 

The material constant 𝑘𝑠 can be estimated through Eq. (4), which was developed by algebraic 383 

manipulation and has the great advantage of requiring only two fatigue limits, which can be 384 

easily determined or found in the literature. However, these fatigue limits are considerable 385 

unstable. Therefore, this model was applied by assuming two different values of 𝑘𝑠. 386 

Firstly, the 𝑘𝑠 was calculated through Eq. (4), proposed by Sines [8], [9], and axial stress 387 

fatigue limits obtained in this experimental campaign (𝜎𝑎,𝑅=−1= 232MPa and 𝜎𝑎,𝑅=0= 388 

193MPa), which results in a 𝑘𝑠 equal to 0.095. Thus, for this value is obtained Eq. (27) and 389 

Fig. 10: 390 

{𝑠 = 195.38 𝑁𝑓−0.036𝑅2 = 0.349 , (27) 

 391 

𝜏𝑎,𝑜𝑐𝑡 + 𝑘𝑠(3 𝜎ℎ,𝑚𝑒𝑎𝑛) = 𝜏𝑓′ (2𝑁𝑓)𝐵, (26) 
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 392 
Figure 10. Sines damage parameter as function of fatigue life for 𝑘𝑠 = 0.095 [42] 393 

The second value of 𝑘𝑠 is a result of a methodology proposed by the authors of this work and 394 

which includes all fatigue limits from the fatigue tests under uniaxial and multiaxial loading 395 

conditions for all stress ratios (R) under consideration. In this sense, a linear regression 396 

analysis to obtain the 𝑘𝑠 parameter, with the purpose of achieving a better fit, is suggested and 397 

given by: 398 𝜏𝑎,𝑜𝑐𝑡,𝑖 = (−3𝑘𝑠) ∙ 𝜎ℎ,𝑚𝑒𝑎𝑛,𝑖 + 𝜏𝑎,𝑜𝑐𝑡,0, (28)

where, 𝜏𝑎,𝑜𝑐𝑡,𝑖 is related to a random sample and considered a dependent variable, 𝜎ℎ,𝑚𝑒𝑎𝑛,𝑖 is 399 

the independent variable of 𝜏𝑎,𝑜𝑐𝑡,𝑖, and 𝜏𝑎,𝑜𝑐𝑡,0 is the interception with vertical axis (the value 400 

of 𝜏𝑎,𝑜𝑐𝑡 when 𝜎ℎ,𝑚𝑒𝑎𝑛 = 0). In this analysis, a two-parameter log-normal distribution 401 

describes the 𝜏𝑎,𝑜𝑐𝑡,𝑖, and the maximum likelihood estimators of 𝜏𝑎,𝑜𝑐𝑡,0 and (3𝑘𝑠) are, 402 

respectively, given by: 403 𝜏𝑎,𝑜𝑐𝑡,0 = 𝜏�̅�,𝑜𝑐𝑡 + (3𝑘𝑠) ∙ 𝜎ℎ,𝑚𝑒𝑎𝑛, (29) 

(−3𝑘𝑠) = ∑ (𝜎ℎ,𝑚𝑒𝑎𝑛,𝑖 − 𝜎ℎ,𝑚𝑒𝑎𝑛)(𝜏𝑎,𝑜𝑐𝑡,𝑖 − 𝜏�̅�,𝑜𝑐𝑡)𝑛𝑖=1 ∑ (𝜎ℎ,𝑚𝑒𝑎𝑛,𝑖 − 𝜎ℎ,𝑚𝑒𝑎𝑛)2𝑛𝑖=1 , (30) 
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where, 𝜎ℎ,𝑚𝑒𝑎𝑛 and 𝜏�̅�,𝑜𝑐𝑡 are the average values of the experimental fatigue limits of 𝜎ℎ,𝑚𝑒𝑎𝑛,𝑖 404 

and 𝜏𝑎,𝑜𝑐𝑡,𝑖 for several stress ratios (R) of uni- and multi-axial loading conditions, respectively, 405 

and 𝑛 is the number of samples corresponding to the several stress ratios (R) and loading 406 

conditions studied and considered. 407 

This methodology was applied based on the fatigue limits obtained in this experimental work 408 

and in ref. [43] for pure torsion, pure bending, and torsion combined with bending. All 409 

experimental fatigue limits are presented in Table 4. The function obtained based on the 410 

proposed approach is portrayed in Fig. 11 and its slope equals 0.365 corresponds to 3𝑘𝑠, which 411 

means that, accordingly to this method, 𝑘𝑠 = 0.122.  412 

 413 

Table 4. Experimental fatigue limits in σh,mean and 𝜏𝑎oct [42] [43] 414 
Loading R 

 
𝝈𝒉,𝒎𝒆𝒂𝒏 

MPa 

𝝉𝒂𝒐𝒄𝒕 
MPa 

Axial 0.01 66 91 

Axial -1 0 109 

Axial+Torsional 0.01 56 103 

Axial+Torsional -1 0 113 

Torsional -1 0 144 

Torsional -0.5 0 105 

Torsional 0 0 102 

Bending 0 68 96 

Bending -0.5 23 96 

Bending -1 0 119 

Bending+Torsional 0 35 99 

Bending+Torsional -0.5 12 106 

Bending+Torsional -1 0 139 
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 415 

416 
Figure 11. Graph of octahedral shear amplitude as function of hydrostatic mean stress [42] 417 

 418 

 419 

The power regression equation and graph obtained with this 𝑘𝑠 are the following ones (Eq. 420 

(31): 421 {𝑠 = 205.67 𝑁𝑓−0.039𝑅2 = 0.451 , (31) 

 422 

 423 
Figure 12. Sines damage parameter as function of fatigue life for 𝑘𝑠 = 0.122 [42] 424 
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Summarizing, Fig. 12 shows a lower scatter of experimental points than Fig. 10, so this last 425 

method provided a better value for 𝑘𝑠, and, consequently, a better estimation of a fatigue curve 426 

for the S355 steel. 427 

 428 

5.2.2. Findley 429 

Findley’s model was combined with Basquin law according to Eq. (32): 430 

The critical plane of this model changes with the value of kf and shear stress (𝜏𝜃𝑎) and normal 431 

stress (𝜎𝜃,𝑚𝑎𝑥) must be determined in this plane, which makes the application of it more 432 

complex and difficult. Hence, these stress components were calculated for each plane (with 433 

an increment of 0.5 degrees), the respective damage parameter determined with them and, 434 

then, the maximum value and the plane where it occurs selected. The shear and normal stress 435 

were calculated using Eqs. (33) and (34) from Mohr’s circle principle: 436 

 𝜎𝜃 = 𝜎𝑥+𝜎𝑦2 + 𝜎𝑥−𝜎𝑦2 cos(2𝜃) + 𝜏𝑥𝑦𝑠𝑒𝑛(2𝜃) (33

𝜏𝜃 = 𝜎𝑥 − 𝜎𝑦2 𝑐𝑜𝑠(2𝜃) − 𝜏𝑥𝑦𝑐𝑜𝑠(2𝜃) (34

where 𝜃 is the angle between 𝜎𝜃 and 𝜎𝑥, and 𝜎𝜃, 𝜎𝑥, 𝜏𝑥𝑦 and 𝜏𝜃, the shear and normal stress 437 

components defined in Fig. 13. 438 

 439 

(𝜏𝜃𝑎 + 𝑘𝑓𝜎𝜃,𝑚𝑎𝑥)𝑚𝑎𝑥 = 𝜏𝑓′ (2𝑁𝑓)𝐵, (32) 
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 440 
Figure 13: Definition of stress components presents on a specimen during fatigue tests [42] 441 

 442 

Furthermore, in Eq. (32), there is an unknown constant, 𝑘𝑓, which was firstly determined 443 

through Eqs. (6), (7) and (8) defined in Section 2 and fatigue limits obtained in this work and 444 

in [43]. The values of 𝑘𝑓 obtained are summarized in Table 5. 445 

Table 5. Values of 𝑘𝑓  considering different fatigue limits and equations [42][43] 446 
Equations Fatigue limits 

(MPa) 
𝒌𝒇 𝜎𝑎,𝑅=−1𝜏𝑎,𝑅=−1 = 21+ 𝑘𝑓√1+𝑘𝑓2

. σa,R=−1 = 253 (bending) τa,R=−1 = 176 (torsional) 

0.425 

𝜎𝑎,𝑅=0𝜎𝑎,𝑅=−1 = 𝑘𝑓+√1+𝑘𝑓22𝑘𝑓+√1+(2𝑘𝑓)2. 

σa,R=−1 = 253  (bending) σa,R=0 = 204  (bending) 

0.228 

𝜎𝑎,𝑅=0𝜎𝑎,𝑅=−1 = 𝑘𝑓+√1+𝑘𝑓22𝑘𝑓+√1+(2𝑘𝑓)2. 

σa,R=−1 = 232  (axial) σa,R=0 = 193  (axial) 

0.192 

 447 

Then, mean fatigue curves equations and graphics were obtained for each value of 𝑘𝑓: 448 

 𝑘𝑓 = 0.425 (Fig. 14) 449 {𝑓 = 365.42 𝑁𝑓−0.042𝑅2 = 0.359 , (35) 

 450 

 𝑘𝑓 = 0.228 (Fig. 15) 451 {𝑓 = 267.79 𝑁𝑓−0.037𝑅2 = 0.378 , (36) 

 452 

 453 

 𝑘𝑓 = 0.192 (Fig. 16) 454 



 

 

 

27 

{𝑓 = 251.65𝑁𝑓−0.036𝑅2 = 0.296 , (37) 

 455 

 456 

 457 

 458 
Figure 2. Findley damage parameter as function of fatigue life for 𝑘𝑓 = 0.425 [42] 459 

 460 

 461 
Figure 15. Findley damage parameter as function of fatigue life for 𝑘𝑓 = 0.228 [42] 462 

 463 

 464 

 465 
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 466 
Figure 16. Findley damage parameter as function of fatigue life for kf = 0.192 [42] 467 

 468 

Thus, in Figs. 14 to 16 can be seen how the value of 𝑘𝑓 influences the performance of the 469 

Findley’s model, since the scatter changes considerably between the different values of 𝑘𝑓. 470 

Furthermore, the constant values obtained for each fatigue limit and equation are completely 471 

different as well as the mean fatigue curves.  472 

Therefore, with the aim of clarifying this matter and finding a 𝑘𝑓 value, which could achieve 473 

a lower scatter of experimental data, a new approach was developed and applied. This new 474 

methodology, aiming to estimate the enhanced Findley parameter, tries to include the mutual 475 

dependency observed between 𝑘𝑓 and critical plane, and to find an enhanced value of 𝑘𝑓 based 476 

on the previous ones calculated. 477 

Since the critical plane is constant for the same kind of loading and value of 𝑘𝑓, for each 478 

constant value and type of loading, a point, which coordinates are listed in Table 6, was plotted 479 

in Fig. 17. Subsequently, a parallelogram was defined with the experimental points. The 480 

middle point, where the diagonals of this polygon intersect each other, define the enhanced 481 

value of 𝑘𝑓, which in the case of S355 steel is 0.304 [42]. 482 
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 483 

 484 
Figure 17. Scheme of the new proposed approach [42] 485 

 486 

 487 

 488 

 489 

Table 6. Critical plane for each loading, stress ratio and 𝑘𝑓  [42][43] 490 
Loading R 𝟐𝜽 

o 

𝒌𝒇 

Axial 0.01 291 

295 

311 

0.192 

0.228 

0.425 

Axial -1 281 

283 

293 

0.192 

0.228 

0.425 

Axial+Torsional  

(σ=2τ) 
0.1 336 

340 

356 

0.192 

0.228 

0.425 

Axial+Torsional  

(σ=2τ) 
-1 326 

328 

338 

0.192 

0.228 

0.425 

Axial+Torsional  

(σ=τ) 
-1 345 

347 

357 

0.192 

0.228 

0.425 

Torsional  0 381 

385 

401 

0.192 

0.228 

0.425 

Torsional -0.5 375 

377 

390 

0.192 

0.228 

0.425 

Torsional -1 371 0.192 
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373 

383 

0.228 

0.425 

Bending 0 291 

295 

311 

0.192 

0.228 

0.425 

Bending -0.5 285 

287 

300 

0.192 

0.228 

0.425 

Bending -1 281 

283 

293 

0.192 

0.228 

0.425 

Bending+Torsional 0 355 

358 

374 

0.192 

0.228 

0.425 

Bending+Torsional -0.5 348 

351 

353 

0.192 

0.228 

0.425 

Bending+Torsional -1 345 

347 

357 

0.192 

0.228 

0.425 

 

Finally, the fatigue curve for this value of 𝑘𝑓 was obtained and plotted in Fig. 18: 491 

 492 {𝑓 = 303.78 𝑁𝑓−0.039𝑅2 = 0.466 , (38) 

 493 
Figure 18. Findley damage parameter as function of fatigue life for 𝑘𝑓 = 0.304 [42] 494 

 495 

Although the complexity of this methodology, it resulted in the lowest scatter among the 496 

experimental fatigue data and seems to provide a suitable fatigue curve to describe S355 steel 497 

fatigue behaviour. 498 
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 499 

5.2.3. McDiarmid 500 

The McDiarmid’s model has the advantage of defining a critical plane as the one where shear 501 

stress amplitude achieves the greatest value, which is less complex in terms of application 502 

than the previous model. Furthermore, as can be seen in Eq. (39) formulated from the 503 

combination with Basquin law, there is no unknown constant: 504 𝜏𝜃,𝑎 + 𝜎𝜃,𝑚𝑎𝑥2𝜎𝑢 𝑡𝐴,𝐵 = 𝜏𝑓′ (2𝑁𝑓)𝐵, 
(39) 

where, 𝑡𝐴,𝐵 is the fully reversed torsional fatigue limit (176 MPa), so, as consequence, 
𝑡𝐴,𝐵2 𝜎𝑢 is 505 

0.152.  506 

At this point, the fatigue curve equation and graph can be defined for this model (Eq. (40)): 507 

 508 

{𝑚 = 225.61 𝑁𝑓−0.033𝑅2 = 0.173 , 
(40) 

However, as it is depicted in Fig. 19, McDiarmid provides a small correlation of the 509 

experimental fatigue data and should not be used to describe S355 steel fatigue behaviour. 510 

 511 
Figure 19. McDiarmid damage parameter as function of fatigue life [42] 512 

 513 
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5.2.4. Dang Van 514 

The Dang Van’s multiscale approach was also combined with Basquin law, in order to 515 

estimate a fatigue curve for the S355 steel: 516 𝜏𝑎,𝑚𝑎𝑥 + 𝑘𝑑𝜎ℎ,𝑚𝑎𝑥 = 𝜏𝑓′ (2𝑁𝑓)𝐵 , (41) 

where, 𝑘𝑑 is a constant which was determined through three different methods, in order to 517 

determine which of them provides the best fatigue curve for S355 steel. 518 

Initially, the experimental axial fatigue limits determined in the experimental campaign were 519 

plotted, as can be seen in Fig. 20, and considered that 𝑘𝑑 is equal to the slope of the linear 520 

regression applied to these points. Thus, accordingly to this method proposed in [20], 521 𝑘𝑑=0.367. 522 

 523 
Figure 20. Axial fatigue limits for R=0 and R=-1 (see Table 7) plotted and respective linear regression [42] 524 

The fatigue curve equation (Eq. 42) and graph (Fig. 21) achieved to 𝑘𝑑=0.367 were the 525 

following ones: 526 

 527 {𝑑 = 253.93 𝑁𝑓−0.035𝑅2 = 0.319 , (42) 
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 528 

 529 
Figure 21. Dang Van damage parameter as function of fatigue life for 𝑘𝑑 = 0.367 [42] 530 

Afterwards, the same approach proposed by the authors in Section 5.1.1 can be followed to 531 

estimate the Dang Van parameter, 𝑘𝑑, where all fatigue limits available from the fatigue tests 532 

under uniaxial and multiaxial loading conditions for all stress ratios (R) under consideration 533 

are used. Thus, a linear regression analysis based on the two-parameter log-normal 534 

distribution can again be conducted to obtain the 𝑘𝑑 parameter [44]: 535 𝜏𝑎,𝑚𝑎𝑥,𝑖 = (𝑘𝑑) ∙ 𝜎ℎ,𝑚𝑎𝑥,𝑖 − 𝜏𝑎,𝑚𝑎𝑥,0, (43) 

 536 𝜏𝑎,𝑚𝑎𝑥,0 = 𝜏�̅�,𝑚𝑎𝑥 + (𝑘𝑑) ∙ 𝜎ℎ,𝑚𝑎𝑥, (44) 

 537 

−𝑘𝑑 = ∑ (𝜎ℎ,𝑚𝑎𝑥,𝑖 − 𝜎ℎ,𝑚𝑎𝑥)(𝜏𝑎,𝑚𝑎𝑥,𝑖 − 𝜏�̅�,𝑚𝑎𝑥)𝑛𝑖=1 ∑ (𝜎ℎ,𝑚𝑎𝑥,𝑖 − 𝜎ℎ,𝑚𝑎𝑥)2𝑛𝑖=1 , (45) 

 

where, 𝜏𝑎,𝑚𝑎𝑥,𝑖 is the value of a random sample and considered a dependent variable; 𝜎ℎ,𝑚𝑎𝑥,𝑖 538 

is the independent; 𝜏𝑎,𝑚𝑎𝑥,0 is the interception with the vertical axis (value of 𝜏𝑎,𝑚𝑎𝑥 when 539 𝜎ℎ,𝑚𝑎𝑥 = 0); 𝜎ℎ,𝑚𝑒𝑎𝑛 and 𝜏�̅�,𝑜𝑐𝑡 are the average values of the experimental fatigue limits of 540 𝜎ℎ,𝑚𝑎𝑥,𝑖 and 𝜏𝑎,𝑚𝑎𝑥,𝑖 for several stress ratios (R) of uni- and multi-axial loading conditions, 541 
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respectively; and 𝑛 is the number of samples corresponding to the several stress ratios-R and 542 

loading conditions studied and considered. 543 

Thus, the fatigue limits in 𝜎ℎ,𝑚𝑎𝑥 and 𝜏𝑎,𝑚𝑎𝑥 were plotted again (Fig. 22), based on the fatigue 544 

limits for all loading conditions (axial, axial+torsional, torsional, bending, bending+torsional), 545 

which are presented in Table 7. In this way, an estimation of the Dang Van parameter is 546 

presented. 547 

Table 7. Experimental fatigue limits in 𝜎ℎ,𝑚𝑎𝑥 and 𝜏𝑎,𝑚𝑎𝑥 [42] [43] 548 

Loading R 

 
𝝈𝒉,𝒎𝒂𝒙 

MPa 

𝝉𝒂,𝒎𝒂𝒙 

MPa 

Axial 0.01 130 97 

Axial -1 77 116 

Axial+Torsional 0.01 111 117 

Axial+Torsional -1 60 128 

Torsional -1 0 126 

Torsional -0.5 0 129 

Torsional 0 0 176 

Bending 0 136 102 

Bending -0.5 91 102 

Bending -1 84 127 

Bending+Torsional 0 70 118 

Bending+Torsional -0.5 50 126 

Bending+Torsional -1 49 165 

 549 

 550 

 551 
Figure 22. Fatigue limits of Table 7 plotted and respective linear regression [42] 552 

As can be seen in Fig. 23, the slope of this linear regression is equal to 0.341. So, the mean 553 

fatigue curves were recalculated and replotted, but for 𝑘𝑑=0.341 (Eq. (46)): 554 
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{𝑑 = 248.69 𝑁𝑓−0.035𝑅2 = 0.288 , (46) 

 555 

 556 
Figure 23. Dang Van damage parameter as function of fatigue life for 𝑘𝑑 = 0.341 [42] 557 

Lastly, the value of 𝑘𝑑 was calculated through the application of Eq. (13) proposed by Dang 558 

Van and Maitournam [21]. Subsequently, the mean fatigue curves using Dang Van’s model 559 

were calculated with 𝑘𝑑=0.587 (Fig. 24 and Eq. (47)): 560 

{𝑑 = 297.41 𝑁𝑓−0.037𝑅2 = 0.570 , (47) 

 561 
 562 

 563 
Figure 24. Dang Van damage parameter as function of fatigue life for 𝑘𝑑 = 0.587 [42] 564 
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This value of 𝑘𝑑 provides the best mean fatigue curve obtained through the application of the 565 

Dang Van’s model when the coefficients of determination of the different used approaches 566 

are compared.  567 

 568 

5.2.5. Susmel-MWCM 569 

On the other hand, Susmel’s model implies a different methodology of application to estimate 570 

fatigue life. First of all, instead of obtaining a single curve for all kinds of loading, this model 571 

establishes a design curve for each loading scenario. Thus, the design curves are defined 572 

through Eq. (48), which is the result of algebraic manipulation of Eq. (16): 573 𝜏𝑎 = 𝜏𝑎,𝑟𝑒𝑓𝑓(𝜌𝑒𝑓𝑓) ( 𝑁𝑓𝑁𝑟𝑒𝑓)− 1𝑘𝜏(𝜌𝑒𝑓𝑓)
, 

(48) 

By looking at the above equation, it is concluded that there are four variables which must be 574 

determined: 𝝉𝒂,𝒓𝒆𝒇𝒇, 𝒌𝝉, 𝝆𝒆𝒇𝒇 and 𝑵𝒓𝒆𝒇. Following the procedure present on Susmel’s work, 575 𝑵𝒓𝒆𝒇 was taken equal to 𝟐 ∙ 𝟏𝟎𝟔 cycles [40]. 576 

Then, the index m was calculated based on Eq. (15) and on the endurance limits of Table 8, 577 

which resulted in m=0.31. After that, by applying this value of m to Eq. (14), the different 578 

values of 𝝆𝒆𝒇𝒇 for each loading condition were calculated and are listed in Table 9. Regarding 579 𝝆𝒆𝒇𝒇, it is also important to determine the limit value (𝝆𝒍𝒊𝒎), which was calculated through 580 

Eq. (23) as equal to 1.36. 581 

 582 

Table 8. Fatigue limits (at 2 ∙ 106 cycles) required to calculate m and 𝜌𝑙𝑖𝑚 [42], [43] 583 

Loading Condition Stress parameter 

Uniaxial, R=0.01 

𝝉𝒂∗ (𝑴𝑷𝒂) 95 𝝈𝒏,𝒎∗ (𝑴𝑷𝒂) 97 𝝈𝒏,𝒂∗ (𝑴𝑷𝒂) 95 

Uniaxial, R=-1 𝝈𝒂(𝑴𝑷𝒂) 232 

Torsional, R=-1 𝝉𝒂(𝑴𝑷𝒂) 183 

 584 

The next step was to calibrate this model i.e., in other words, to determine constants 𝑎, , and 585 𝛽 in Eqs. (17) and (18) through the values for 𝝉𝒂,𝒓𝒆𝒇 and 𝒌𝝉 for the fully reversed uniaxial and 586 

torsional loading cases as well as the already known values for 𝝆𝒆𝒇𝒇, which are always 0 and 587 

1 for these particular loading conditions, not being influenced by the value of m [34], [38]. 588 
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Therefore, the experimental points for these loading conditions were plotted on a modified 589 

Wöhler diagram, which plots 𝝉𝒂versus 𝑵𝒇, then simple non-linear regressions were applied 590 

and subsequently 𝝉𝒂,𝒓𝒆𝒇 and 𝒌𝝉 were calculated. Finally, constants 𝑎, , and 𝛽 were determined 591 

and the linear functions which define the values of 𝝉𝒂,𝒓𝒆𝒇 and 𝒌𝝉 for each value of r 𝝆𝒆𝒇𝒇 are 592 

defined by Eqs. (49) and (50): 593 𝑘𝜏 = 7.8𝜌𝑒𝑓𝑓 + 10.4, (49) 𝜏𝑎,𝑟𝑒𝑓 = −67𝜌𝑒𝑓𝑓 + 183, (50) 

Subsequently, the different values of 𝝉𝒂,𝒓𝒆𝒇𝒇 and 𝒌𝝉 could be determined (Table 9) as well as 594 

the design curves for each loading condition. 595 

 596 

Table 9. Values of 𝜌𝑒𝑓𝑓, 𝜏𝑎,𝑟𝑒𝑓𝑓  and 𝑘𝜏 for each loading condition: (*e): are the experimental values used to calibrate this model and 597 
(*t):are the theoretical values calculated through Equations (49) and (50) 598 

Loading Condition 𝝆𝒆𝒇𝒇 𝝉𝒂,𝒓𝒆𝒇𝒇(𝝆𝒆𝒇𝒇) 𝒌𝝉(𝝆𝒆𝒇𝒇) 

Uniaxial, R=0.01 1.32 95 (*t) 20.7 (*t) 

Uniaxial, R=-1 1 116 (*e) 18.2 (*e) 

Proportional, R=0.01 0.93 121 (*t) 17.7 (*t) 

Proportional, R=-1 0.70 136 (*t) 15.9 (*t) 

Torsional, R=-1 0 183 (*e) 10.4 (*e) 

 599 

Thus, the design curves equations for uniaxial loading with R=0.01 and R=-1 are, respectively, 600 

the following ones (Eqs. (51) and (52): 601 𝜏𝑎 = 95 ( 𝑁𝑓2∙106)−0.048
, 

(51) 

 602 𝜏𝑎 = 116 ( 𝑁𝑓2∙106)−0.055
, 

(52) 

 603 

Regarding the proportional loadings, Eqs. (53) and (54) were determined for R=0.01 and R=-604 

1: 605 𝜏𝑎 = 121 ( 𝑁𝑓2∙106)−0.057
, 

(53) 

 606 𝜏𝑎 = 136 ( 𝑁𝑓2∙106)−0.063
, 

(54) 

 607 

Finally, all the fatigue design curves calculated and the corresponding experimental data 608 

were plotted in a single modified Wöhler diagram and can be seen in Fig. 25. 609 
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 610 

Figure 25. Fatigue design curves determined using Susmel Model for different loading conditions 611 

As can be seen in the design curves of Fig. 25, the model under study seems to be suitable for 612 

S355 steel fatigue life estimation. The experimental points of fatigue tests are scattered around 613 

each design curve with a lower dispersion. However, for the case of proportional loading with 614 

stress ratio around zero, the model does not show such a great accordance with the 615 

experimental data. Therefore, through the fatigue data available, it is concluded that Susmel’s 616 

model can be used to estimate multiaxial fatigue life of S355 steel. 617 

 618 

5.2.6. Comparison and discussion 619 

In this section, a comparison between different models including the approaches used to 620 

estimate their k parameters is presented. Therefore, in order to evaluate and compare the 621 

experimental models under study, three different parameters where considered and calculated: 622 

the coefficient of determination (R2), the error index and the mean of the absolute values of 623 

the error index (�̅�). 624 
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The coefficient of determination (R2) measures the fit quality of design curves obtained for 625 

each model to the experimental points. This variable was calculated through a Microsoft Excel 626 

inherent function [45]. 627 

Regarding the second variable mentioned, the error index, it portrays the deviation between 628 

the estimated fatigue damage and the experimental fatigue damage observed at a certain 629 

number of cycles [46], [47]. This variable was calculated through Eq. (55): 630 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛𝑑𝑒𝑥𝑖 (%) = 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 ∙ 100%, 𝑖 =𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, 

(55) 

Furthermore, it was assumed that error index calculated for each model can be defined as a 631 

random variable Xj, which follows a normal distribution with a f probability density function 632 

defined by Eq. (56): 633 

𝑓(𝑥) = 1𝜎√2𝜋 𝑒−12 (𝑥−𝜇𝜎 )2[𝑋𝑗 → 𝑁(𝜇, 𝜎2)], 𝑗 = 𝑠𝑖𝑛𝑒𝑠, 𝑓𝑖𝑛𝑑𝑙𝑒𝑦, 𝑚𝑐𝑑𝑖𝑎𝑟𝑚𝑖𝑑, 𝑑𝑎𝑛𝑔𝑣𝑎𝑛, 𝑠𝑢𝑠𝑚𝑒𝑙, (56) 

where 𝜇 is the mean and 𝜎 is the standard deviation which characterize the normal distribution 634 

[45]. 635 

Lastly, the mean of module of error index (�̅�) was also calculated for each model with the aim 636 

of depict the relative error that is associated to fatigue life estimation proposed for each design 637 

curve calculated. This parameter is defined by Eq. (57): 638 �̅� = ∑ |𝑒𝑟𝑟𝑜𝑟 𝑖𝑛𝑑𝑒𝑥𝑖|𝑛𝑖=1 𝑛 , (57) 

where n is the number of specimens. 639 

The three different parameters were calculated for each model’s approach and are listed in 640 

Table 10. Besides, the error index values obtained for all specimens were plotted in a 641 

frequency histogram as well as the respective normal distributions for each model (Fig. 26). 642 

It is important to highlight that those graphs have two vertical axes of different scales: the left 643 



 

 

 

40 

axis represents the histogram frequency and the right axis is related to the f probability density 644 

function which is also portrayed in the graph. 645 

 646 

 647 

Table 10. Summary table of models studied. 648 

Models k parameter R2 Error index (%) �̅� (%) 

µ σ 

Sines 
Sines [8], [9] 0.095 0.349 -0.20 6.78 5.2 

Proposed approach (Fig. 11 and Eqs. (28) to (30)) 0.122 0.451 0.64 5.85 4.4 

Findley 

Eq. (6) according to ref. [32] 0.425 0.359 0.00 7.58 6.4 

Eq. (7) according to ref. [32] 0.228 0.378 0.35 6.50 5.1 

Eq. (8) according to ref. [32] 0.192 0.296 0.68 7.57 6.0 

Proposed approach (Fig. 17) 0.304 0.466 -0.09 5.65 4.5 

McDiarmid McDiarmid [17], [33] 0.152 0.173 0.39 9.90 7.8 

Dang Van 

Lieshout et al. [18] 0.367 0.319 0.15 6.99 5.5 

Proposed approach (Fig. 23 and Eqs. (43) to (45)) 0.341 0.288 0.62 7.49 5.8 

Dang Van and Maitournam [21] 0.587 0.570 -0.31 4.35 3.4 

Susmel Susmel [27], [34]–[36], [38], [40] - - -3.25 4.45 4.0 

 649 

According to R2 and �̅�, the best approach is the one proposed by Dang Van considering a k 650 

parameter equal to 0.587 as proposed by Dang Van and Maitournam [21]. Nevertheless, the 651 

Susmel’s model also shows a mean of absolute errors reasonable low and close to the value 652 

obtained through Dang Van’s model. However, it is important to highlight that Susmel’s 653 

model requires more parameters and information to define the design curves than the other 654 

models. 655 

Moreover, the proposed approaches to Sines’ and Findley’s models also provide an estimation 656 

of fatigue behaviour and damage of great accuracy and low error index, which absolute mean 657 

is above 5%. 658 

On the other hand, McDiarmid’s model seems to conduct to high values of absolute and not 659 

absolute errors index mean as well as a low capacity of adjustment of mean curve as it is 660 

portrayed in the value of R2. 661 

The observations and conclusions described above are enhanced by the frequency histograms 662 

of Fig. 26, where can be observed not only the error index values but also their distribution 663 
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and dispersion. As expected, both Dang Van’s model (with kd =0.587) and Susmel’s model 664 

show low error index values, mainly located around zero and with a low dispersion. 665 

Additionally, it is, once again, clear the inability of McDiarmid’s model to describe fatigue 666 

behaviour of S355 steel since it achieves error index values close do 30%. 667 

 668 

 

Figure 26. Frequency histograms and density functions of the normal distribution of the error index plotted for each model.  669 

 670 
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In sum, regarding the results presented by the application of the Sines’ model, the most 671 

appropriate approach for estimating the k parameter was the approach proposed in this paper, 672 

which takes into account all available fatigue limits coming from different loading conditions, 673 

according to Table 4 and Fig. 11. The same happens when analysing the results of the 674 

approaches used to calculate the k parameter of the Findley’s model: the approach proposed 675 

in this research work, according to Table 6 and Fig. 17, leads to the best criterion for obtaining 676 

the Findley mean fatigue curve. Moreover, in this investigation, the McDiarmid’s model 677 

proved to be the most inadequate for analysing experimental fatigue results of the S355 steel 678 

under axial and multiaxial loading conditions. Last of all, the Dang Van’s model for 𝑘𝑑 =679 0.587 and the Susmel’s model appear to be the most suitable to describe S355 steel fatigue 680 

behaviour in high cycle region, but the last one requires more parameters and effort to define 681 

it. 682 

In Fig. 27 (a) and (b), the experimental number of cycles obtained in each fatigue test is 683 

compared with the Dang Van’s and Susmel’s number of cycles calculated for each 684 

experimental test through the mean fatigue curves estimated. As expected, almost all points 685 

are placed between lines of multiplicity five and a great number of them are between lines of 686 

multiplicity two. 687 

 688 
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(a) 

 
(b) 

Figure 27. Calculated number of cycles versus experimental number of cycles until failure graph for: (a) Dang Van’s 689 
model (kd=0.587) and (b) Susmel’s model [42] 690 

 691 

6. CONCLUSIONS 692 

Throughout this work, axial and proportional (axial and torsional) fatigue tests were 693 

performed in S355 steel under stress ratio equal to 0 and -1 for the high-cycle region. The 694 

experimental data obtained were analysed and studied aiming at evaluating five different 695 

multiaxial fatigue models which were also explained and discussed. Therefore, axial S-N 696 

curves for two different stress ratios were determined (R=-1 and R=0) as well as calculated 697 

mean fatigue curves for axial and proportional experimental fatigue data, considering different 698 

models and constants. 699 

Subsequently, it was concluded that the McDiarmid’s model should not be considered to 700 

evaluate fatigue behaviour of S355 steel, while the models proposed by Findley and Sines, 701 

considering the proposed k parameters, are acceptable choices to assess it. However, Dang 702 

Van’s and Susmel’s models provided the best mean fatigue curves to represent S355 steel in 703 

terms of high cycle fatigue in case of a proportional loading. 704 

In the future research work, a probabilistic analysis should be conducted, and a probabilistic 705 

design curve obtained to complete this study. 706 
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