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SUMMARY

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors,

mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-

tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with

b-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth.

The anti-tumor effect of b-glucan-induced trained immunity was associated with transcriptomic and epige-

netic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process

required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutro-

phils from b-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-depen-

dent manner. Moreover, the anti-tumor effect of b-glucan-induced trained granulopoiesis was transmissible

by bonemarrow transplantation to recipient naivemice. Our findings identify a novel and therapeutically rele-

vant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.

INTRODUCTION

Infiltration of solid tumors by immune cells is a hallmark of cancer

and plays a critical role in disease progression (Hanahan and

Weinberg, 2011). The tumor microenvironment might reprogram

tumor-infiltrating immune cells, which thereby acquire pro-tumor

functions that facilitate tumor growth (Coussens et al., 2013).

Cancer-induced alterations inmyelopoiesis drive increased gen-

eration of myeloid cells, including monocytes-macrophages and

neutrophils, which accumulate at the tumor and often shift to-

ward a specific tumor-promoting phenotype (Gabrilovich et al.,

2012; Rice et al., 2018). However, the landscape of tumor-infil-

trating myeloid cells is complex and dynamic (Zilionis et al.,

2019) and probably specific to the tumor type and innate immune
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cells might also exert anti-tumor activities (Devlin et al., 2020;

Galdiero et al., 2018; Granot et al., 2011; Murray, 2018; Oberg

et al., 2019; Ponzetta et al., 2019; Powell and Huttenlocher,

2016). Neutrophils that infiltrate solid tumors, known as tumor-

associated neutrophils (TANs), can acquire a phenotype that dis-

plays cytotoxic and anti-tumorigenic properties (broadly desig-

nated TAN1) or a phenotype associated with tumor progression

(TAN2) (Fridlender et al., 2009; Powell and Huttenlocher, 2016).

TAN1 and TAN2 can be distinguished by distinct cytokine and

chemokine production patterns and other specificmolecular sig-

natures, such as related to phagocytosis (Shaul et al., 2016).

Type I interferons (IFNs) promote TAN1 (Andzinski et al., 2016),

whereas transforming growth factor-b (TGF-b) is linked to

TAN2 differentiation (Fridlender et al., 2009). Together, altered

granulopoiesis and neutrophil function in the context of cancer

(Patel et al., 2018; Powell and Huttenlocher, 2016) are important

players shaping tumor immunity and cancer progression.

Fungal-derived polysaccharide b-glucan or the Bacillus Calm-

ette-Gu _erin vaccine (BCG) promote a sustained enhanced

response of myeloid cells to secondary infectious or inflamma-

tory challenges; this process has been coined ‘‘trained innate

immunity’’ or ‘‘innate immunememory’’ and is mediated via tran-

scriptomic, epigenetic, and metabolic reprogramming (Bekker-

ing et al., 2018; Chavakis et al., 2019; Netea et al., 2016; Netea

and van der Meer, 2017; Penkov et al., 2019; Saeed et al.,

2014). In this context, we and others recently established that

the long-term effects of trained immunity are explained by mod-

ulation of progenitors of myeloid cells in the bone marrow (BM)

(Christ et al., 2018; Kaufmann et al., 2018; Mitroulis et al.,

2018). Agents that were recently identified as trained immunity

agonists have been also known to exert anti-tumor activities.

For instance, BCG is used in the treatment of bladder cancer

(Hersh et al., 1977), whereas b-glucan is linked to tumor immuno-

therapy efficacy (Alexander et al., 2018; Cheung et al., 2002; Li

et al., 2010; Masuda et al., 2015; Xu et al., 2016). However, the

processes underlying the action of trained immunity agonists in

cancer are not understood at mechanistic depth. More impor-

tantly, whether the potential tumor-modulating effects of agents,

like b-glucan, involve induction of innate immune memory has

not been hitherto addressed. Here, we show that innate immune

training of granulopoiesis results in potent anti-tumor activity.

Specifically, trained immunity induced by pre-treatment of

mice with b-glucan resulted in diminished tumor growth. The

observed anti-tumor effects of b-glucan-induced trained immu-

nity were associated with transcriptomic and epigenetic rewiring

of granulopoietic progenitors, resulting in neutrophil reprogram-

ming toward an anti-tumor phenotype. Therefore, trained immu-

nity enhances host immunity to cancer by anti-tumor rewiring of

granulopoiesis.

RESULTS

Trained Innate Immunity Suppresses Tumor Growth

Independently of Adaptive Immunity

To examine the role of trained immunity on tumor development,

we injected wild-type (WT) mice intraperitoneally (i.p.) with a sin-

gle dose of b-glucan (Mitroulis et al., 2018); 7 days thereafter,

mice were subcutaneously inoculated with B16-F10 melanoma

cells and tumor growth was monitored (Figure 1A). Training

with b-glucan resulted in significantly diminished tumor growth,

as assessed by measuring tumor volume and weight 14 days af-

ter tumor challenge, as compared with that of control mice that

were pre-treated with vehicle control (PBS) (Figure 1B). The tu-

mor-suppressive effect of b-glucan-induced trained immunity

was verified by using another ectopic tumor model, the Lewis

lung carcinoma (LLC) model (Figure 1C).

Given that several immune cell types canmodulate tumor pro-

gression (Gabrilovich et al., 2012), we next examined whether

b-glucan-induced trained immunity affects the intra-tumoral im-

mune cell composition. Flow-cytometric analysis of the tumor-

infiltrating cells revealed that the frequencies of myeloid cells,

neutrophils, monocytes, and macrophages (Figure 1D), and of

CD4+ T cells and CD8+ T cells (Figure S1A) were comparable be-

tween mice pre-treated with b-glucan or PBS control.

Cells of adaptive immunity are central players in tumor immu-

nity (Chen and Mellman, 2017; Fritz and Lenardo, 2019). To

determine whether adaptive immunity is involved in the anti-tu-

mor effect induced by b-glucan, Rag1�/� mice that lack B and

T cells were treated with b-glucan prior to the secondary tumor

challenge (Figure 1A). Pre-treatment with b-glucan decreased

both B16-F10 and LLC tumor burden also in Rag1�/� mice (Fig-

ures 1E and 1F), thus showing that the anti-tumor effect of

b-glucan-induced trained immunity does not require adaptive

immunity. Along the same line, amounts of IFN-g in cytotoxic

CD8+ T cells obtained from tumors and draining lymph nodes

were comparable between WT mice pre-treated with b-glucan

and control (Figures S1B and S1C).

Training with b-glucan Promotes an Anti-tumor

Phenotype in Neutrophils

Because analysis of intratumoral innate immune cell populations

displayed no quantitative changes by b-glucan pre-treatment,

we focused onpotential qualitative alterations and thus performed

RNA sequencing in TANs (CD45+CD11c�CD11b+Ly6g+Ly6c�)

and tumor-associated monocytes (CD45+CD11c�CD11b+

Ly6g�Ly6c+) sorted from B16-F10 melanoma tumors of mice

thatwere pre-treatedwith b-glucan or PBS. Although nomajor dif-

ferenceswere observedbetween the transcriptome ofmonocytes

from b-glucan-trained and control mice (Figure S2A), TANs from

b-glucan-trained mice displayed an altered transcriptomic profile

as compared with that of the cells from control-treated mice (Fig-

ure 2A). In addition, gene set enrichment analysis (GSEA) using a

gene set implicated in the TAN1 phenotype (Shaul et al., 2016), re-

vealed a significant positive correlation of TANs from b-glucan-

trainedmice with the TAN1 anti-tumor signature (Figure 2B; Table

S1). The phagocytic function of innate immune cells is linked to

their anti-tumor activity (Feng et al., 2019), and genes related to

phagocytosis in neutrophils are upregulated in the TAN1

compared with the TAN2 phenotype (Shaul et al., 2016). Consis-

tently, gene expression linked to the process of phagocytosis

was enhanced in TANs from b-glucan-trained mice (Figure S2B).

Antigen presentation pathways are also associated with the

TAN1 phenotype (Shaul et al., 2016). Consistently, differentially

regulated expression of genes linked to the process of antigen

presentation was also observed in TANs from trained mice (Fig-

ure S2C). These data lend further support to the trained-
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immunity-induced anti-tumor phenotype of TANs. Ingenuity

pathway analysis (IPA) demonstrated that canonical pathways

involved in eukaryotic initiation factor 2 (EIF2) as well as in eEIF4

and p70S6K signaling were enriched in TANs from b-glucan-

trained mice (Figure 2C). Whereas the p70S6K signaling pathway

has been linked to granulocytic differentiation and neutrophil func-

tions, such as chemotaxis (Gomez-Cambronero et al., 2004; Go-

mez-Cambronero et al., 2003), the EIF2 signaling pathway has

been associated with reactive oxygen species (ROS)-induced

stress (Liu et al., 2008; Zeeshan et al., 2016; Zhang and Kaufman,

Figure 1. Induction of Trained Immunity Inhibits Tumor Growth

(A) Experimental scheme.

(B) C57BL/6 WT mice received a single i.p. injection of b-glucan or PBS and 7 days thereafter, mice were subcutaneously inoculated with B16-F10 melanoma

cells. Shown on the left, tumor volume was monitored for another 14 days after tumor inoculation. Shown on the right, tumor weight at the end of the experiment

(n = 6 mice in the PBS group; n = 7 mice in the b-glucan group).

(C) C57BL/6WTmice received a single i.p. injection of b-glucan or PBS and 7 days thereafter, mice were inoculated with LLC cells. Tumor volume is shown (n = 7

mice in the PBS group; n = 5 mice in the b-glucan group).

(D) C57BL/6WTmice received b-glucan or PBS and 7 days thereafter, mice were inoculated with B16-F10 melanoma cells. Flow-cytometric analysis for immune

cells that are infiltrated in the B16-F10 melanoma tumors was performed at the end of the experiment. Frequencies of myeloid cells (CD45+CD11b+), neutrophils

(CD45+CD11b+Ly6g+Ly6c�), monocytes (CD45+CD11b+Ly6g�Ly6c+), and macrophages (CD45+CD11b+F4/80+) within leukocytes (CD45+) are shown (n = 6

mice per group).

(E)Rag1�/�mice received a single i.p. injection of b-glucan or PBS and 7 days thereafter, mice were inoculated with B16-F10melanoma cells. Shown on the left is

tumor volume; on the right is tumor weight at the end of the experiment (n = 8 mice in the PBS group; n = 5 mice in the b-glucan group).

(F) Rag1�/� mice received b-glucan or PBS and 7 days thereafter, mice were inoculated with LLC cells. Tumor volume is shown (n = 16 mice in the PBS group;

n = 12 mice in the b-glucan group).

Data are presented as mean ± SEM; n.s., non-significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S1.
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Figure 2. Trained Immunity Shapes the Transcriptional Profile of TANs and Neutrophils from b-Glucan-Trained Mice Suppress Tumor

Growth via ROS Production

(A–E) WT mice were treated with b-glucan or PBS and after 7 days were inoculated with B16-F10 melanoma cells. TANs (CD45+CD11c�CD11b+Ly6c�Ly6g+)

were sorted and RNA sequencing analysis was performed (n = 5 mice in the PBS group; n = 4 mice in the b-glucan group) 14 days after the tumor injection. In (A),

(C) and (E), false discovery rate (FDR) % 0.05.

(A) Differential gene expression in TANs frommice pre-treated with b-glucan compared with TANs from PBS-treated mice. Volcano plot showing the distribution

of the adjusted p values (�log10(padj)) and fold changes (log2 fold change).

(B) GSEA for genes related to a gene set previously implicated in the TAN1 phenotype (Shaul et al., 2016) was used to analyze the transcriptomic effect induced in

TANs by b-glucan administration in mice. Abbreviation is as follows: NES, normalized enrichment score.

(C) Top 10 enriched canonical pathways identified by IPA in TANs from b-glucan-treated mice compared to PBS-treated mice.

(D and E ) Shown in (D) is a GSEA for genes related to ROS pathway, and in (E) is a heatmap of genes involved in ROSmetabolic process in TANs from b-glucan-

treated mice as compared with TANs from PBS-treated mice.

(F) WT mice were treated with b-glucan or PBS and after 7 days were inoculated with B16-F10 melanoma cells. Staining for ROS in TANs (CD45+CD11b+Ly6g+)

was performed by flow cytometry 14 days after the tumor cell injection. Relative mean fluorescence intensity (MFI) is shown. MFI of ROS was measured and

expressed in relation to the PBS group, set as 1. Data are presented as mean ± SEM (n = 15 per group).

(G) Splenic neutrophils were isolated frommice 7 days after injection with b-glucan or PBS. Neutrophils were co-culturedwith luciferase expressing B16-F10 cells

for 24 h. Tumor cell survival was assessed by measuring luminescence (n = 5 per group).

(H) Experimental scheme.

(legend continued on next page)
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2008). Given that neutrophil ROS are linked to the anti-tumor ef-

fects of neutrophils (Granot et al., 2011; Yan et al., 2014), we

focused next on the ROS pathway in TANs from b-glucan-trained

mice compared with that in TANs from control-treated mice.

GSEA using the Molecular Signatures Database (MSigDB) Hall-

mark gene set collection (Liberzon et al., 2015) displayed a posi-

tive correlation with the ROS pathway in TANs from b-glucan-

trained mice, as compared with that in TANs from control mice

(Figure 2D; Table S2). Moreover, we found increased expression

amounts of several genes associatedwith theROSmetabolic pro-

cess in TANs from b-glucan-trainedmice (Figure 2E). Accordingly,

TANs from b-glucan-treatedmice displayed increased ROS levels

14 days after tumor inoculation in relation to TANs from mice

treated with PBS, whereas no alterations in ROS levels were

observed in tumor-associated macrophages (Figures 2F

and S2D).

To investigate mechanisms by which neutrophils could exert

anti-tumor effects upon induction of trained immunity, we iso-

lated neutrophils from spleens of mice 7 days after injection of

b-glucan or PBS control and assessed their anti-tumor function

in ex vivo assays. Splenic neutrophils from the b-glucan-trained

mice (hereafter designated ‘‘trained’’ neutrophils) or neutrophils

from control-treated mice (‘‘non-trained’’ neutrophils) were co-

cultured with B16-F10 melanoma cells expressing a luciferase

reporter. Compared with non-trained neutrophils, trained neu-

trophils displayed enhanced tumor cytotoxicity (Figure 2G). In

contrast, no differences were seen in the survival of tumor cells

exposed to BM-derived macrophages from b-glucan- or con-

trol-treated mice (data not shown). Moreover, the cytotoxic ef-

fect of trained neutrophils against tumor cells ex vivo was pre-

vented in the presence of the ROS scavenger N-Acetyl

Cysteine (NAC) (Figure S2E), thereby further supporting the

involvement of ROS in the anti-tumor activity of trained neutro-

phils. To provide conclusive in vivo evidence that trained neutro-

phils exert anti-tumor activity in a ROS-dependent manner, we

performed adoptive transfer experiments. To this end, splenic

neutrophils were isolated from mice 7 days after pre-treatment

with b-glucan or PBS and then were co-injected with B16-F10

melanoma cells into untreated WT mice. Moreover, to interro-

gate the functional contribution of ROS production to the anti-

tumor activity of trained neutrophils, we performed adoptive

transfer experiments with neutrophils obtained from mice

with impaired nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase activity and ROS production resulting from

deficiency of neutrophil cytosolic factor 1 (NCF1) protein (Aa-

choui et al., 2013; Baptista et al., 2016; Huang et al., 2000;Maltez

et al., 2015), hereafter designated NCF1-deficient mice. We iso-

lated neutrophils from NCF1-deficient or WTmice that were pre-

treatedwith either b-glucan or PBS control and transferred them,

together with B16-F10 melanoma cells, into untreated WT mice

(Figure 2H). Tumor growth was significantly suppressed in mice

that received neutrophils from the b-glucan-trained WT mice

compared with mice that received neutrophils from control-

treated mice (Figure 2I). Additionally, neutrophils from

b-glucan-treated NCF1-deficient mice did not show enhanced

tumor-suppressive activity in recipient WT mice compared with

the activity of neutrophils from PBS-treated NCF1-deficient

mice (Figure 2I). Adoptive transfer of monocytes from

b-glucan-trained or control mice resulted in comparable tumor

growth in the respective recipient mice (Figure S2F). These

data firmly establish that the anti-tumor activity of trained immu-

nity can be attributed, at least in part, to trained neutrophils and

that intact NADPH oxidase-dependent ROS production is an

essential feature of the anti-tumor activity of trained neutrophils.

Long-Term Neutrophil-Mediated Anti-tumor Effects of

Trained Immunity

A defining property of trained innate immunity is induction of

long-term alterations in innate immune cells (Netea et al.,

2020). We therefore next examined whether the anti-tumor effect

of trained immunity could be sustained long-term. To this end,

inoculation of tumors into WT mice trained with a single injection

of b-glucan 28 days earlier resulted in significant inhibition of

tumor growth, as compared with that in control-treated non-

trained mice (Figure 3A).

Given that trained innate immunity mediates long-term effects

on myeloid cells via modulation of their progenitors in the BM

(Christ et al., 2018; Kaufmann et al., 2018; Mitroulis et al.,

2018), we interrogated whether the anti-tumor effects of trained

immunity are mediated by sustained adaptations in BM hemato-

poietic progenitors. To address whether the anti-tumor actions

of trained immunity are transmissible by BM transplantation to

recipient non-trained mice, donor mice were treated with

b-glucan or PBS, and 7 days later their BM cells were trans-

planted to non-trained irradiated recipient mice. After establish-

ment of hematopoiesis in recipient mice, tumors were implanted

(Figure 3B). Tumor burden was significantly decreased in mice

that had received BM cells from b-glucan-trained donor mice,

as compared with that of mice that received BM cells from con-

trol-treated mice (Figure 3C). Therefore, the tumor-suppressive

properties of b-glucan-induced trained immunity can be trans-

ferred by BM transplantation to recipient non-trained mice.

Multiple gene expression markers associated with the anti-tu-

mor TAN1 phenotype were significantly upregulated in TANs iso-

lated from the tumors of recipient mice transplanted with BM

cells from b-glucan-trained mice, as compared with those of

TANs of mice that received BM from control-treated donors (Fig-

ure 3D). The ‘‘trained TAN1-like signature’’ shown in Figure 3D

was selected according to the study by Shaul et al. (2016), and

is defined in STAR Methods under ‘‘RNA isolation and real time

PCR.’’ An upregulation in the expression of the vast majority of

the genes comprising the ‘‘trained TAN1-like signature’’ was pre-

sent in TANs from mice that received BM cells from b-glucan-

trained mice as compared with TANs of mice transplanted with

(I) As indicated in (H), WT or NCF1-deficient mice were injected with b-glucan or PBS, and after 7 days splenic neutrophils were isolated and were adoptively

transferred together with B16-F10 cells into WT recipients. Tumor volume is shown. Data are presented as mean ± SEM (n = 7 mice in the PBSWT group; n = 12

mice in the b-glucan WT group; n = 11 mice in the PBS NCF1-deficient group; n = 14 mice in the b-glucan NCF1-deficient group).

*p < 0.05, ****p < 0.0001.

See also Figure S2.
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BM cells from control-treated donors (Figure 3D). We also iden-

tified the human orthologs of the mouse ‘‘trained TAN1-like

signature’’ from Mouse Genome Informatics (http://www.

informatics.jax.org/) and used the Gene Expression Profiling

Interactive Analysis (GEPIA-2), which dichotomizes patients in

datasets from The Cancer Genome Atlas (TCGA) on the basis

of median expression of a gene signature (Tang et al., 2019).

High expression of the human ortholog ‘‘trained TAN1-like signa-

ture’’ was found to be a good prognostic factor for survival in

certain cancers, for instance, in human skin cutaneous mela-

noma (hazard ratio 0.61, p(HR) = 0.00032), but not in other can-

cers (data not shown). It should be noted that themouse ‘‘trained

TAN1-like signature’’ derives from RNA-sequencing analysis of

the sorted neutrophils from B16-F10 tumor-bearing mice,

whereas the analysis performed with GEPIA-2 on The Cancer

Genome Atlas (TCGA) datasets assesses this signature in

RNA-sequencing data from total tumors and thus does not

necessarily represent expression of these genes in TANs,

limiting the applicability of such analysis.

To gain additional insight into whether the anti-tumor effects of

b-glucan-induced trained immunity are mediated through adap-

tations in BM progenitors rather than direct effects on neutro-

phils themselves, we performed adoptive transfer of splenic neu-

trophils from mice that were treated for only one day with

b-glucan or vehicle control. Comparable tumor growth was

observed between the two recipient groups (Figure S3),

probably because the limited training time did not allow the

emergence of trained neutrophils in donor mice. Together, these

findings are consistent with the conclusion that the anti-tumor ef-

fects of b-glucan are initiated by training of BM progenitors and,

therefore, require sufficient time to mount.

Innate Immune Training of Neutrophils toward an Anti-

tumor Phenotype Is Associatedwith Transcriptomic and

Epigenetic Rewiring of Granulopoiesis

Because our findings so far suggested that the anti-tumor effects

of b-glucan involve training of granulopoiesis in the BM, we next

focused on the BM precursors of neutrophils, granulocyte-

monocyte progenitors (GMPs). To this end, GMPs (Lin�c-Kit+S-

ca1�CD16/32+CD34+) from control-treated tumor-bearing mice

and GMPs from b-glucan-trained tumor-bearing mice were

sorted 14 days after tumor inoculation and subjected to RNA

sequencing, which revealed that pre-treatment with b-glucan

(7 days prior to tumor injection) led to significant differences in

gene expression (Figure 4A). IPA displayed a partial overlap be-

tween the pathways enriched in GMPs from tumor-bearing and

b-glucan-trained mice (Figures 4B and 4C) and the enriched

pathways observed in TANs from b-glucan-trained mice (Fig-

ure 2D). For instance, oxidative phosphorylation, regulation of

eEIF4 and p70S6K signaling and the EIF2 signaling pathways

were among the top commonly enriched pathways between

GMPs and TANs from tumor-bearing mice pre-treated with

b-glucan (Figures 4B and 4C). Moreover, upstream regulator

analysis using IPA revealed common upstream regulators

Figure 3. Long-Term Anti-tumor Effects of Trained Granulopoiesis

(A) WT mice were treated with b-glucan or PBS, and after 28 days were subcutaneously inoculated with B16-F10 melanoma cells. Tumor volume was monitored

for another 14 days after tumor inoculation (n = 5 mice in the PBS group; n = 6 mice in the b-glucan group).

(B–D) As indicated in the experimental scheme (B), WT CD45.1+ mice were injected with b-glucan or PBS, and after 7 days BM cells were isolated and were

transplanted into CD45.2+ mice. Six weeks after transplantation, recipient mice were inoculated with tumors. In (C), (left) tumor volume and (right) the weight of

B16-F10 melanoma tumors at the end of the experiment are shown (n = 6 mice per group). Shown in (D), 14 days after the tumor injection in recipient mice, TANs

(CD45+CD11c�CD11b+Ly6c�Ly6g+) were sorted and relative mRNA expression of the ‘‘trained TAN1-like signature’’ was performed. Relative mRNA expression

was normalized against 18S rRNA andwas set as 1 in TANs from recipients that were transplanted with cells from PBS-treated donor mice (n = 4mice per group).

Data are presented as mean ± SEM; n.s.. non-significant; *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figure S3.
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Figure 4. Transcriptomic Alterations in GMP Due to Trained Immunity

(A–C) WT mice were treated with b-glucan or PBS and after 7 days were inoculated with B16-F10 melanoma cells. BM GMPs (Lin�c-Kit+Sca1�CD16/32+CD34+)

were sorted 14 days after tumor cell injection and RNA sequencing analysis was performed (n = 4 mice in the PBS group and n = 3 mice in the b-glucan group).

(A) Differential gene expression in GMPs from tumor-bearing mice pre-treated with b-glucan as compared with GMPs from PBS-treated mice. Volcano plot

showing the distribution of the adjusted p values (�log10(padj)) and fold changes (log2 fold change). FDR % 0.05.

(B) Top 10 enriched canonical pathways identified by IPA in GMPs from b-glucan-treated mice, compared with GMPs from PBS-treated mice. FDR % 0.05.

(C) Circos plot showing the commonly enriched pathways (within the top 10 enriched canonical pathways) between TANs and GMPs from tumor-bearing mice.

Abbreviations are as follows: EIF2, EIF2 signaling; OP, oxidative phosphorylation; MD, mitochondrial dysfunction; eIF4, regulation of eIF4 and p70S6K signaling;

mTOR, mTOR signaling; LXR, LXR/RXR activation; UPR, unfolded protein response; GRR, glutathione redox reactions I; ROS, production of nitric oxide and

reactive oxygen species in macrophages; AHR, aryl hydrocarbon receptor signaling; APP, antigen presentation pathway; CME, clathrin-mediated endocytosis

signaling; BCD, B cell development; EPA, extrinsic prothrombin activation pathway; FXR, FXR/RXR activation; CS, coagulation system.

(D–H)WTmice were treated with b-glucan or PBS and after 7 days BMGMPwere sorted for RNA sequencing analysis (n = 5mice in the PBS group and n = 4mice

in the b-glucan group). In (D)–(F), FDR % 0.05.

(D) Differential gene expression inGMPs frommice pre-treatedwith b-glucan comparedwith GMPs fromPBS-treatedmice. Volcano plot showing the distribution

of the adjusted p values (�log10(padj)) and fold changes (log2 fold change).

(E) Top 10 enriched canonical pathways identified by IPA in GMPs from b-glucan-treated mice as compared with GMPs from PBS-treated mice.

(F and G) In (F) is a heatmap of genes involved in the cell response to type I IFN, and in (G) is a GSEA for genes related to IFN-a response in GMPs from b-glucan-

treated mice as compared with GMPs from PBS-treated mice.

(H) GSEA for genes related to the IL6-Jak-Stat3 signaling pathway in GMPs from b-glucan-treated mice as compared with GMPs from PBS-treated mice.

See also Figure S4.
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in the transcriptomic profile of TANs and BM GMPs from tumor-

bearingmice after induction of b-glucan-mediated trained immu-

nity (Figure S4A). These findings suggest that granulopoiesis

progenitors are targets of trained immunity that leads to the in-

duction of neutrophils with enhanced anti-tumor activity.

To evaluate potential mechanisms underlying the innate im-

mune training of granulopoiesis toward anti-tumor activity, we

determined the transcriptomic profile of BM GMPs 7 days after

b-glucan administration to mice in the absence of tumors (Fig-

ure 4D). GSEA in GMPs from trained mice revealed a GMPs

transcriptome consistent with preferential differentiation to

neutrophils compared with that of other myeloid cell types (Ta-

ble S3). IPA demonstrated that inflammatory pathways with

foremost IFN signaling pathway were enriched in upregulated

genes of GMPs upon induction of b-glucan-mediated trained

immunity (Figure 4E). Type I IFN responses have been previ-

ously associated with induction of the TAN1 anti-tumor pheno-

type (Andzinski et al., 2016; Pylaeva et al., 2016); we therefore

focused on this pathway. Indeed, GMPs from b-glucan-trained

mice showed increased expression amounts of genes involved

in the cell response to type I IFN (Figure 4F). Along the same

line, GSEA demonstrated a positive correlation with the IFN-a

response and with the JAK-STAT signaling pathway (Nan

et al., 2017) in GMPs from b-glucan-trained mice, as compared

with GMPs of control-treated mice (Figures 4G and 4H; Table

S4). To interrogate the cellular source of IFN-a in the BM, we

analyzed CD169+ macrophages, plasmacytoid dendritic cells

(pDCs), and classical DCs. IFN-a protein amounts were

increased in pDCs and CD169+ macrophages (Figures S4B

and S4C), but not in classical DCs (data not shown) upon in-

duction of b-glucan-mediated trained immunity, as compared

with IFN-a levels in cells from control-treated mice. Collec-

tively, these findings support the notion that type I IFN signaling

might be a key regulator of innate immune training of

granulopoiesis.

To determine whether epigenetic rewiring is involved in trained

granulopoiesis, we performed single-cell assay for transposase-

accessible chromatin with high-throughput sequencing (scA-

TACseq) to determine chromatin accessibility in splenic

neutrophils and BM GMPs from mice that were trained by pre-

treatment with b-glucan, or treated with PBS control 7 days

earlier. Two-dimensional Uniform Manifold Approximation and

Projection (UMAP) of 3,702, 4,433, 2,256, and 2,992 cells in

the PBS-GMP, b-glucan-GMP, PBS-neutrophil and b-glucan-

neutrophil groups, respectively, on the basis of genome-wide

tilematrices using500bpbins andLouvain clustering, partitioned

GMPs and neutrophils into 8 clusters (C1–C8): C2–C4 comprised

GMPs, C6–C8 comprised neutrophils, and C1 and C5 included

both neutrophils andGMPs (Figures 5A–5C). C5 andC8were en-

riched upon induction of b-glucan-mediated trained immunity

(Figure 5C). Gene ontology (GO) enrichment results of cluster-

specific marker genes based on gene activity scores revealed

that theC5 andC8 subpopulationswere characterized by enrich-

ment of several pathways related to granulocyte activation

(Figure 5D). Differential accessibility analysis, based on

MACS2-defined peak regions for GMPs and neutrophils from

b-glucan-treated mice compared with the respective cells from

control-treated mice, revealed differentially accessible regions

(DARs) in GMPs and neutrophils upon induction of trained immu-

nity (Figure 5E). The top 10 significantly enriched GO terms in

GMPsandneutrophils, identifiedon thebasis of genes annotated

to regionsmore accessible due to b-glucan-induced training, not

only revealed terms such as ‘‘regulation of myeloid cell differen-

tiation,’’ but also cell metabolism-related terms (Figure 5E),

consistent with the findings of the RNA sequencing results from

TANs (Figure 2C) and with the previously described involvement

of immunometabolic pathways in the induction of trained immu-

nity (Arts et al., 2016; Ieronymaki et al., 2019).

Cells clustering to C5, enriched by trained immunity,

comprised both GMPs and neutrophils, suggesting that this

cluster represents a transition cluster associated with trained

granulopoiesis. A cellular trajectory spanning from GMPs over

C5 to neutrophils revealed corresponding changes in the acces-

sibility of key genes of the respective cellular stages in granulo-

poiesis, as recently identified by Evrard et al. (2018) (Figure S5A).

C5 comprises cells at the transition of GMPs to neutrophils, as

indicated by analysis of GMP-specific transcription factors

such as Irf8 and Gata2 and of neutrophil-specific genes such

asSpi1 (PU.1) and Il1b (Figure S5A). C5 revealed enhanced chro-

matin accessibility of secondary granule genesNgp (neutrophilic

granule protein), encoding NGP protein, which was previously

identified to exert anti-metastastic activity in Gr1+CD11b+ cells

(Boutté et al., 2011), Camp (cathelicidin anti-microbial peptide)

and Ltf (lactoferrin) (Figures 5F and S5B). C5 is therefore

Figure 5. Epigenetic Rewiring of Trained Granulopoiesis

Splenic neutrophils and BM GMPs were sorted from mice that were treated with b-glucan or with PBS 7 days earlier and scATACseq was performed.

(A and B) Two-dimensional UMAP representation of 13,383 cells, on the basis of genome-wide tile matrices of 500 bp bins colored, according to (A) sample origin

and (B) results of Louvain clustering.

(C) Heatmap visualization of the distribution of cells from the four different samples (GMPs and neutrophils from PBS-treated or b-glucan-treated mice) within

each of the identified clusters, normalized for the number of cells per sample in the dataset.

(D) GO enrichment results of cluster-specific marker genes determined on the basis of gene activity scores (Bonferroni-corrected p value cut-off = 0.1).

(E) Volcano plots displaying differential accessibility analysis results based onMACS2-defined peak regions for GMP and neutrophils from b-glucan-treatedmice

as compared with the respective cells from PBS-treated mice (FDR% 0.01 and abs(Log2FC)R 1). Top 10 significantly enriched GO terms sorted by GeneRatio

identified on the basis of genes annotated to regions more accessible due to b-glucan treatment are shown on the side (Bonferroni-corrected p value cut-

off = 0.1).

(F) Heatmap visualization of gene activity scores of cluster-specific marker genes (FDR % 0.01, log2FC R 1). Selected genes are indicated.

(G) Visualization of transcription factor (TF) binding motif enrichment analysis results for the b-glucan specifically accessible regions in GMPs by using the homer

TF motif database.

(H) Genome browser track showing a DAR in proximity to the Ifna1 gene locus and the IRF1 binding motifs within this region.

See also Figure S5.
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reminiscent of differentiating neutrophils, as recently identified

(Xie et al., 2020).

The neutrophil cluster C8 displayed enhanced chromatin

accessibility in the genes of the ROS-producing factors Ncf1

and Ncf2 (Figure 5F), consistent with the role of Ncf1 and ROS

production in mediating the anti-tumor effect of trained neutro-

phils (Figure 2I). Focusing on C8 cluster marker genes revealed

a pro-inflammatory signature (enhanced chromatin accessibility

in regions, such as Il1b, Csf3r, C5ar1, and Cxcr1) as well as a

type I IFN signaling-related signature (enhanced accessibility

of Ifnar1, Irf1, Ifitm1, Ifitm2, and Ifitm3) (Figures 5F and S5C).

Transcription factor motif enrichment analysis for the open re-

gions mediated by b-glucan-induced trained immunity revealed

IRF1 motifs among the top enriched motifs in the DARs of the

GMPs (Figure 5G). A genome browser track showing a DAR in

proximity to the Ifna1 gene locus and the IRF1 binding motifs

within this region in trained and non-trained GMPs is shown in

Figure 5H. Together, transcriptomic and single-cell epigenomic

analysis revealed that b-glucan-induced training is associated

with enhanced IFN-related signaling in granulopoiesis.

Type I IFN Signaling Mediates the Anti-tumor Activity of

Trained Neutrophils

Our findings so far suggested the involvement of type I IFN in

inducing trained granulopoiesis. To investigate whether type I

IFN signaling contributes to the anti-tumor neutrophil phenotype

that is elicited upon induction of trained innate immunity, we iso-

lated neutrophils from Ifnar1 deficient (Ifnar1�/�) mice (i.e., mice

lacking type I IFN receptor function) that were pre-treated with

either b-glucan or PBS control and transferred them, together

with B16-F10 melanoma cells, into untreated WT mice. The tu-

mor-suppressive effect of trained neutrophils was abolished

when neutrophils from Ifnar1�/� mice were transferred (Fig-

ure 6A), suggesting that cell-intrinsic responsiveness to type I

IFN signaling is critical for trained granulopoiesis in the context

of cancer.

Additionally, WT mice were treated with a neutralizing anti-

body against the receptor for IFNa/b, (IFNa/bR) or with isotype

control one day before and on the same day of b-glucan or

PBS administration. Seven days after the second injection,

splenic neutrophils were isolated and adoptively transferred,

together with B16-F10 melanoma cells, into WT mice. Although

neutrophils from b-glucan-trained mice that received isotype

control antibody mediated enhanced inhibition of tumor growth

in recipient mice, as compared with neutrophils from non-trained

mice that received isotype control antibody, the anti-tumor effect

of trained neutrophils was abrogated by anti-IFNa/bR treatment.

Specifically, upon IFNa/bR blockade, compared with non-

trained neutrophils, trained neutrophils did not show enhanced

tumor-suppressive activity in recipient mice (Figure 6B). Consis-

tently, the enhanced capacity of trained neutrophils from mice

treated with b-glucan to kill tumor cells, as compared with that

of non-trained neutrophils, was abrogated by inhibition of

IFNa/bR signaling (Figure 6C).

To explore the anti-tumor potential of trained granulopoiesis in

a therapeutic setting, we systemically administered trained neu-

trophils after tumor inoculation. Neutrophils from donormice that

were trained by pre-treatment with b-glucan or control-treated

mice were transferred retro-orbitally into tumor-bearing recipient

mice 5 days after tumor inoculation. Systemic administration of

trained neutrophils resulted in inhibition of tumor growth

compared with that in mice that received non-trained neutrophils

(Figure 6D), thus establishing the therapeutic potential of trained

immunity.

DISCUSSION

The recognition of the important role of tumor immunity in cancer

has led to the introduction of immunotherapeutic strategies (Frid-

man et al., 2017; Weiden et al., 2018). Cells of the myeloid lineage

are amajor component of the tumor immune cell infiltrate (Balkwill

et al., 2005; Broz et al., 2014; Gabrilovich et al., 2012); yet, current

immunotherapies target exclusively the adaptive arm of immunity

(Fridman et al., 2017). The tumor and itsmicroenvironment usually

alter the phenotype of myeloid cells toward a phenotype that pro-

motes tumor growth (Gabrilovich et al., 2012). Although the

default scenario is that cancer hijacks innate immunity and gran-

ulopoiesis to promote tumor growth, innate immune cells do have

the potential to exert anti-tumor activities (Galdiero et al., 2018;

Murray, 2018; Ponzetta et al., 2019; Powell and Huttenlocher,

2016). Therefore, immunotherapies aiming at reversing the pro-

tumor phenotype or promoting the anti-tumor phenotype in innate

immune cells, represent an attractive anti-tumor approach that

could act synergistically to current immunotherapies targeting

adaptive immunity. We demonstrate that b-glucan-induced

trained immunity might represent a novel approach to cancer

immunotherapy by modulating granulopoiesis toward anti-tumor

activity. The anti-tumor effects of trained immunity were transmis-

sible to recipient naive mice not only via adoptive transfer of

trained neutrophils, but also via transplantation of BM cells from

trained mice to non-trained recipients. Thus, the anti-tumor ef-

fects of trained granulopoiesis are initiated by alterations of

long-lived BM progenitors, in line with recent studies that trained

immunity is initiated in BM progenitor cells (Christ et al., 2018;

Kaufmann et al., 2018; Mitroulis et al., 2018).

To date, cells of the monocytic lineage (monocytes/macro-

phages) were assumed as the main targets of trained immunity

(Kleinnijenhuis et al., 2012; Netea et al., 2016; Netea and van

der Meer, 2017; Saeed et al., 2014). Here, we demonstrate

that, at least in the context of anti-tumor immunity, neutrophils,

and granulopoietic progenitors are major cellular effectors of

b-glucan-induced trained immunity. Indeed, the anti-tumor ef-

fect of b-glucan-induced trained immunity was mediated by

qualitative changes in neutrophils, rather than in cells of the

monocytic lineage. Moreover, the GMP transcriptome upon

b-glucan-induced trained immunity was consistent with skewed

differentiation to neutrophils comparedwith that of othermyeloid

cell types. We also showed previously that hematopoietic stem

cell transplantation from b-glucan-trained mice to naive recipi-

ents gives rise to increased frequency of neutrophils in the circu-

lation of the latter (Mitroulis et al., 2018). Our findings together

with a recent study showing that changes in hematopoietic pro-

genitors and in granulocytes are integral to BCG-induced trained

immunity in humans (Cirovic et al., 2020) point to the emerging

and hitherto underappreciated role of neutrophils as effectors

of trained immunity.
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The trained-immunity-mediated induction of a tumor-suppres-

sive phenotype in neutrophils was associated with training of

granulopoiesis mediated by type I IFN signaling. This is in line

with previous studies showing that type I IFNs play a central

role in granulopoiesis and promote an anti-tumor phenotype in

neutrophils (Andzinski et al., 2016). Mice lacking IFN-b displayed

defective maturation of BM hematopoietic progenitors and

reduced blood neutrophil counts, accompanied bymore aggres-

sive tumor growth (Deonarain et al., 2003). Our scATACseq anal-

ysis provided additional evidence for trained immunity-induced

epigenetic rewiring of granulopoiesis toward an anti-tumor

phenotype and corroborated the experimentally demonstrated

IFN- and ROS-related mechanisms therein. It should be noted

that our findings only show a correlation between these two ma-

jor mechanisms (type I IFN signaling and ROS production)

involved in the anti-tumor effects of trained granulopoiesis;

however, we cannot exclude a causal link, given that type I IFN

priming was previously shown to enhance ROS production in

neutrophils (Wright et al., 2008). Furthermore, the neutrophil het-

erogeneity observed by our single-cell analysis is in agreement

with the existence of different neutrophil subsets, as recently

identified; additionally, the existence of a distinct neutrophil sub-

set exhibiting a type I IFN signature was recently shown (Xie

et al., 2020; Zilionis et al., 2019).

Neutrophil ROS might exert either pro-tumorigenic (immuno-

suppressive) or anti-tumorigenic (tumor-killing) effects of neu-

trophils (Granot et al., 2011; Rice et al., 2018; Yan et al.,

2014). Our present findings suggest an important role of ROS

production in neutrophils in the anti-tumor effect of trained im-

munity, given that NCF1 deficiency abrogated the anti-tumor

effect of b-glucan-trained neutrophils. Thus, ROS can account,

at least in part, for the anti-tumor activity of trained neutrophils,

although we cannot exclude that ROS might additionally

contribute to the initial training of granulopoiesis. Moreover, it

is conceivable that, besides a potential direct anti-tumor effect,

adoptively transferred trained neutrophils might exert further in-

direct actions on other immune or stromal cells within the tumor

microenvironment. Although the anti-tumor effect of b-glucan-

induced training could be exerted in the absence of adaptive

immunity, it is conceivable that trained immunity might also

potentiate the crosstalk between neutrophils and adaptive im-

mune cells in anti-tumor immunity in WT mice. In keeping

with this notion, we found that the pathway of antigen presen-

tation was upregulated in TANs from trained mice. Moreover, a

recent paper demonstrated that neutrophils mediate a novel

IFN-g-dependent anti-tumor pathway, which is associated

with a subset of CD4�CD8� unconventional ab T cells (Pon-

zetta et al., 2019).

We observed inhibition of tumor growth by systemic transfer of

trained neutrophils into already tumor-bearing mice. As granulo-

cyte transfusion is currently considered as a therapy in humans

with neutropenia (Estcourt et al., 2016), it is conceivable that

Figure 6. Type I IFN Signaling Promotes the Anti-tumor Activity of Trained Granulopoiesis

(A) WT or Ifnar1�/�mice were injected with b-glucan or PBS, and after 7 days splenic neutrophils were isolated and adoptively transferred together with B16-F10

cells into WT recipients. Tumor volume was determined (n = 9–13 mice per group).

(B andC)WTmice were injectedwith amonoclonal antibody against the receptor for IFNa/b (anti-IFNa/bR) or isotype control one day before and on the same day

that b-glucan or PBSwas administered. Seven days after the second injection, splenic neutrophils were isolated and were (B) adoptively transferred together with

B16-F10 cells into WT recipients, or (C) were co-cultured with luciferase-expressing B16-F10 cells at 100/1 neutrophil/tumor cell ratio for 24 h. In (B), (left) tumor

volume and (right) tumor weight at the end of the experiment are shown (n = 7–12 mice per group). In (C), survival of tumor cells was assessed by measuring

luminescence. Luminescence is expressed in relation to the PBS + isotype control group, set as 1 (n = 10 per group).

(D) WT mice were injected with b-glucan or PBS, and after 7 days splenic neutrophils were isolated and systemically administered to mice that were inoculated

with B16-F10 tumors 5 days earlier. Tumor volume is shown (n = 10 mice per group).

Data are presented as mean ± SEM. n.s., non-significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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cancer patients could receive as an adjuvant immunotherapy

granulocytes from normal donors after induction of trained im-

munity in the latter. This scenario should be addressed in a future

clinical study. In this regard, neutrophils from some healthy do-

nors (but not from cancer patients) naturally have potent can-

cer-killing activity against different human cancer cell lines

(Yan et al., 2014), although the trained state of these neutrophils

was not addressed. Future studies should also address the pos-

sibility that therapeutically administered b-glucan or trained

granulocytes can be used synergistically with checkpoint inhib-

itors in cancer therapy, as performed in a current clinical trial

(Uhlik et al., 2020).

Although agonists of trained immunity, such as BCG and

b-glucan, have been used against cancer in preclinical studies

and in selected patient groups (Hersh et al., 1977; Liu et al.,

2009; Xiang et al., 2012; Zhang et al., 2018), the underlying

mechanismswere incompletely understood. Intriguingly, neutro-

phils have been implicated as mediators of the anti-tumor effect

of BCG in a murine model of bladder cancer (Suttmann et al.,

2006). Our study is the first to link the anti-tumor actions of

b-glucan to trained immunity. We show here that the innate im-

mune training and rewiring of granulopoiesis underlies the anti-

tumor effect of b-glucan and perhaps other agonists of trained

immunity. Our findings clearly suggest that harnessing trained

granulopoiesis represents a promising avenue for neutralizing

the hijacking of innate immunity by cancer. Therefore, innate im-

mune training merits further investigation as an adjuvant tumor

immunotherapy.

LIMITATIONS OF THE STUDY

Our study shows that b-glucan-induced trained immunity in-

hibits tumor growth and suggests that type I IFN signaling is

involved in trained granulopoiesis and in mediating the rewir-

ing of neutrophils toward an anti-tumor phenotype. Neutro-

phil-derived ROS were integral to the anti-tumor effects of

b-glucan-induced trained immunity. However, our study also

has limitations. At this point, we cannot exclude that ROS

might also contribute to the initial training of granulopoiesis,

besides promoting the tumor-killing activity of trained neutro-

phils (i.e., ROS might constitute both an outcome of trained

granulopoiesis and a reinforcing stimulus for its maintenance).

In addition, it is currently uncertain whether type I IFN

signaling and ROS are causally linked in mediating the anti-tu-

mor activity of trained granulopoiesis and, specifically,

whether type I IFN signaling is involved in ROS upregulation

in trained neutrophils; this interesting possibility requires addi-

tional mechanistic investigation in future studies. Our transla-

tional findings, derived from injectable tumor models, clearly

suggest that trained granulopoiesis might bear potential as

an adjuvant tumor immunotherapy. Addressing the role of

trained innate immunity in autochthonous cancer models

could provide complementary fundamental and applied in-

sights pertinent to the role of trained immunity in carcinogen-

esis and therefore merits future investigation. In conclusion,

future studies in pre-clinical models might further expand our

current mechanistic and translational understanding of the

anti-tumor potential of trained immunity.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Cell Lines

Lewis lung carcinoma (LLC1) ATCC Cat#CRL-1642; RRID: CVCL_4358

B16-F10 ATCC Cat#CRL-6475; RRID: CVCL_0159

B16-F10-Luc Creative Biogene Cat#CSC-RR0234

Antibodies

Rat anti-mouse CD11b Biolegend Cat#101216; RRID: AB_312799

Rat anti-mouse Sca1 (Ly6-A/E) Biolegend Cat#122514; RRID: AB_756199

Mouse Lineage Antibody Cocktail BD Biosciences Cat#558074; RRID: AB_1645213

Biotin Mouse Lineage Panel BD Biosciences Cat#559971; RRID: AB_10053179

Rat anti-mouse cKit (CD117) BD Biosciences Cat#553355; RRID: AB_394806

Rat anti-mouse CD16/CD32 Biolegend Cat#101332; RRID: AB_2650889

Rat anti-mouse CD34 Thermo Fisher Scientific Cat#11-0341-82; RRID: AB_465021

Rat anti-mouse CD45 Biolegend Cat#103132; RRID: AB_893340

Rat anti-mouse CD4 Biolegend Cat#116006; RRID: 313691

Rat anti-mouse CD8 Biolegend Cat#100722; RRID: AB_312761

Rat anti-mouse Ly6g Biolegend Cat#127624; RRID: AB_10640819

Biotin anti-mouse Ly6g Biolegend Cat# 127604; RRID: AB_1186108

Rat anti-mouse anti-Ly6c Biolegend Cat#128032; RRID: AB_2562178

Biotin anti-mouse Ly6c Biolegend Cat#128004; RRID: AB_1236553

Rat anti-mouse F4/80 Biolegend Cat#123109 and 123116; RRID: AB_893498

and 893481

Rat anti-mouse Gr-1 Biolegend Cat#108445; RRID: AB_2562903

Rat anti-mouse CD115 Biolegend Cat#135523; RRID: AB_2566459

Rat anti-mouse CD169 Biolegend Cat#142417; RRID: AB_2565640

Rat anti-mouse B220 Biolegend Cat#103207; RRID: AB_312992

Armenian hamster anti-mouse CD11c Biolegend Cat#117310; RRID: AB_313779

Rat anti-mouse CD317 Biolegend Cat#127023; RRID: AB_2687109

Rat anti-mouse CD90.2 Biolegend Cat#105319; RRID: AB_493724

Rat anti-mouse CD19 Biolegend Cat#115527; RRID: AB_493734

Mouse anti-mouse NK1.1 Biolegend Cat#108729; RRID: AB_2074426

Rat anti-mouse anti-IFNa R&D Systems Cat#22100-3; RRID: AB_884210

Rat anti-mouse IFNg Biolegend Cat#505808; RRID: AB_315402

Ultra-LEAF Purified anti-mouse IFNAR-1 Antibody Biolegend Cat#127321; RRID: AB_11150409

Ultra-LEAF� Purified Mouse IgG1, k Isotype Ctrl

Antibody

Biolegend Cat#400166; RRID:AB_11146992

Chemicals, Enzymes, and Buffers

Beta-glucan peptide (BGP) Invivogen Cat#tlrl-bgp

PMA Sigma Cat#P1585

Ionomycin Sigma Cat#I0634

Brefeldin A Biolegend Cat#420601

Deoxyribonuclease I from bovine pancreas Sigma-Aldrich Cat#D5025

Collagenase D Roche Cat#11088866001

10X RBC Lysis Buffer eBioscience Cat#00-4300-54

Puromycin Invivogen Cat#ant-pr1-1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

N-Acetyl-L-cysteine Sigma Cat#A7250

Nonidet P40 Substrate Sigma Cat#74385

Nuclei Buffer 10x Genomics Cat#2000153

Dynabeads MyOne SILANE 10x Genomics Cat#2000048

SPRIselect Beckman Coulter Cat#B23318

Critical Commercial Assays

CellROX� Green Flow Cytometry Assay Kit Thermo Fisher Cat#C10492

Foxp3/Transcription Factor Buffer Set eBioscience Cat#00-5523-00

Intracellular Fixation & Permeabilization Buffer eBioscience Cat#88-8824-00

iScript cDNA Synthesis Kit BioRad Cat#1708891

High-Capacity RNA-to-cDNA Kit Applied Biosystems Cat#4387406

SsoFast EvaGreen Supermix BioRad Cat#1725202

Fast SYBR Green Master Mix Applied Biosystems Cat#4385612

Anti-Biotin MicroBeads Miltenyi Biotec Cat#130-090-485

RNeasy Plus Micro Kit QIAGEN Cat#74034

MycoAlertTM Mycoplasma Detection Kit Lonza Cat#LT07-318

SMARTer Ultra Low Input RNA for Illumina Sequencing Takara Bio Cat#634828

NEBNext Ultra DNA Library Prep Kit for Illumina New England Biolabs Cat#E7370L

Luciferase assay system Promega Cat#E1500

Chromium Next GEM Chip H Single Cell Kit v1.1 10x Genomics Cat#1000162

Chromium Next GEM Single Cell ATAC

Library & Gel Bead Kit v1.1

10x Genomics Cat#1000176

NGS High Sensitivity Fragment Analysis Kit Agilent Cat#DNF-474

NextSeq 500/550 High Output Kit v2.5;150 Cycles Illumina Cat#20024907

Deposited Data

RNA sequencing data This paper GEO: GSE139450, GSE139451, GSE139452,

and GSE139456

Single cell ATAC sequencing data This paper GEO: GSE152353

Experimental models: Organisms/Strains

Mouse: C57BL/6 Janvier Labs C57BL/6JRj

Mouse: C57BL/6 The Jackson Laboratory Stock#000664

Mouse: C57BL/6-CD45.1 B6.SJL-Ptprca Pepcb/BoyJ The Jackson Laboratory Stock#002014

Mouse: B6(Cg)-Ncf1m1J/J The Jackson Laboratory Stock#004742

Mouse: B6.129S7-Rag1tm1Mom/J The Jackson Laboratory Stock#002216

Mouse: B6(Cg)-Ifnar1tm1.2Ees/J The Jackson Laboratory Stock#028288

Oligonucleotides

qPCR primers This paper See Table S5

Software, Algorithms and Protocols

GraphPad Prism 6 Graphpad Software N/A

Ingenuity Pathway Analysis QIAGEN https://www.qiagenbioinformatics.com/

products/ingenuity-pathway-analysis/

GSEA software Broad Institute http://software.broadinstitute.org/gsea/index.jsp

Morpheus Broad Institute https://software.broadinstitute.org/morpheus/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

GSNAP Wu and Nacu, 2010 http://research-pub.gene.com/gmap/

Ensembl gene annotation version 81 EMBL-EBI https://www.ebi.ac.uk/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Trianta-

fyllos Chavakis (Triantafyllos.Chavakis@uniklinikum-dresden.de).

Materials Availability

This study did not generate any unique reagents.

Data and Code Availability

Data are available upon request to the Lead Contact. Sequencing data are available at the Gene Expression Omnibus database

(http://www.ncbi.nlm.nih.gov/geo/) under the accession numbers GSE139450, GSE139451, GSE139452, GSE139456 and

GSE152353.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

The Lewis lung carcinoma cell line (LLC1) and the melanoma cell line B16-F10 were purchased from the ATCC. The B16-F10

melanoma cell line that expresses the luciferase reporter (B16-F10-Luc) was obtained from Creative Biogene.

Mice

C57BL/6 mice were purchased from Jackson Laboratories and Janvier Laboratories. Ncf1m1j/m1j mice (Stock# 004742) with defi-

ciency in NCF1 due to a mutation in the Ncf1 gene (Aachoui et al., 2013; Baptista et al., 2016; Huang et al., 2000; Maltez et al.,

2015) referred to as NCF1-deficient mice hereafter, Ifnar1�/� mice (Stock# 028288) and respective WT C57BL/6 mice, B6/SJL

(CD45.1) mice (Stock# 002014) and Rag1�/� mice (Stock# 002216) were from Jackson Laboratories. Mice were housed under spe-

cific pathogen-free conditions on a standard 12/12 h light/dark cycle and were used at the age of 9-11 weeks. Food and water were

provided ad libitum. Animal experiments were approved by the Landesdirektion Sachsen, Dresden Germany, the Institutional Animal

Care and Use Committee (IACUC) of the University of Pennsylvania and the Institutional Committee of Protocol Evaluation of the

Biomedical Research Foundation of the Academy of Athens in conjunction with the related veterinary authority of the Region of Attika,

Greece.

METHOD DETAILS

Mouse experiments

Induction of solid tumors was performed as previously described (Alissafi et al., 2018). Briefly, mice were injected subcutaneously

(s.c.) with 33 105B16-F10melanoma or LLC1 cells into the right flank. To examine the role of trained innate immunity in tumor devel-

opment, micewere pre-treated with a single dose of 1mg of b-glucan from Trametes versicolor (Invivogen) in PBS or with PBS vehicle

alone (control) i.p., followed by tumor cell injection 7 or 28 days later. Volume of palpable tumors was monitored and was calculated

using the equation (length x width2) / 2. Tumor weight and flow cytometry analysis were performed at the end of the experiment

(14 days after tumor inoculation). For adoptive transfer experiments, mice were injected s.c. with 3 3 105 B16-F10 cells together

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ensembl Gene IDs using Ensembl Biomart

(Release 96)

EMBL-EBI https://www.ebi.ac.uk/

featureCounts Liao et al., 2014 http://bioinf.wehi.edu.au/featureCounts/

FlowJo version 10 Tree Star https://www.flowjo.com/solutions/flowjo

NovoExpress� software ACEA Biosciences https://www.aceabio.com

Cell Ranger ATAC version 1.2.0 10x Genomics https://support.10xgenomics.com/single-cell-atac/

software/overview/welcome

R package ChIPseeker v1.22.1 Bioconductor https://bioconductor.org/packages/release/bioc/

html/ChIPseeker.html

R package clusterProfiler v3.14.3 Bioconductor https://bioconductor.org/packages/release/bioc/

html/clusterProfiler.html

Chromium Single Cell ATAC Reagent Kits protocol 10xGenomics Cat#CG000168
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with 106 magnetically isolated splenic neutrophils or monocytes from donor mice (Alissafi et al., 2018; Shaul et al., 2016; Sierra et al.,

2017); donor mice received b-glucan or PBS i.p. 1 or 7 days before neutrophil isolation or 7 days before monocyte isolation. Inhibition

of type I IFN signaling was performed by i.p. injection of mice with a neutralizing anti-mouse antibody against the receptor for IFNa/b

(cloneMAR1-5A3, Biolegend) or an isotype control (cloneMOPC-21, Biolegend) one day before and on the same day (500 mg / dose)

of treatment of mice with b-glucan or PBS. Seven days after the latter injection, neutrophils were isolated and used in adoptive trans-

fer experiments, as described above. In another experiment, mice were injected s.c. with 33 105 B16-F10 cells and 5 days later they

received retro-orbitally 106 magnetically isolated splenic neutrophils from donor mice that had received b-glucan or PBS i.p. 7 days

before neutrophil isolation. To generate BM chimeras, a total of 2 3 106 CD45+ BM cells from B6/SJL (CD45.1) mice that were pre-

treated with a single i.p. injection of control vehicle (PBS) or b-glucan 7 days earlier, were transplanted into lethally irradiated (9 Gy)

WT mice (CD45.2). Six weeks after transplantation, recipient mice were inoculated with B16-F10 melanoma cells and mice were fol-

lowed for 14 days after tumor inoculation. Micewere excluded from experiments if pre-established exclusion criteria were fulfilled, for

instance, tumor ulceration as an animal protocol-defined endpoint or, in cases that no tumor growth was observed (Chen et al., 2019;

Michod et al., 2009; Voltarelli et al., 2017).

To isolate neutrophils for adoptive transfer and co-culture experiments, splenocytes were incubated with a biotin anti-mouse Ly6g

antibody (clone 1A8; Biolegend) followed by anti-biotin microbeads (Miltenyi Biotec). Neutrophils were then positively selected on a

magnetic field according to the manufacturer’s instructions (MACS separation columns, Miltenyi Biotec). To isolate splenic mono-

cytes, neutrophils were removed from splenocyte preparation by negative selection for Ly6g+ cells and then positive selection for

Ly6c+ (clone HK1.4; Biolegend) cells was performed. Purity of the magnetically isolated populations was >90%.

Flow cytometry and sorting

Cell analysis was performed by FACS Canto II (BD, Heidelberg, Germany) and cell sorting was performed using a FACS Aria cell

sorter (BD, Heidelberg, Germany) (Chung et al., 2017; Kourtzelis et al., 2019; Mitroulis et al., 2017). Cell purity was above 95%. Single

cell suspensions from tumors were prepared after incubation of the dissected tissue for 45 min at 37�C in RPMI culture medium

containing 0.25mg/mLDNase I (Sigma-Aldrich) and 1mg/mL collagenase D (Roche). Mouse spleens and lymph nodes were homog-

enized and splenic single cell suspensions from spleen were prepared after erythrocyte lysis with red blood cell lysis buffer

(eBioscience). For cell surface phenotype analysis, a lineage cocktail (Lin: anti-CD3e (clone 145-2C11), anti-CD11b (clone M1/70),

anti-Gr-1 (anti-Ly6g/Ly6c; clone RB6-8C5), anti-B220 (clone RA3-6B2) and anti-TER119 (clone TER-119)), anti-Sca1 (clone E13-

161.7), anti-cKit (clone 2B8), anti-CD16/CD32 (clone 93), anti-CD34 (clone RAM34), anti-CD45 (clone 30-F11), anti-CD4 (clone

RM4-4), anti-CD8 (clone 53-6.7) anti-CD11b (clone M1/70), anti-Ly6g (clone 1A8), anti-Ly6c (clone HK1.4), anti-F4/80 (clone

BM8), anti-Gr-1 (anti-Ly6g/Ly6c; clone RB6-8C5), anti-CD115 (clone AFS98), anti-CD169 (clone 3D6.112), anti-B220 (clone RA3-

6B2), anti-CD11c (clone N418), anti-CD317 (BST2, PCDA-1; clone 927), anti-CD90.2 (clone 30-H12), anti-CD19 (clone 6D5), anti-

NK1.1 (clone PK136), anti-IFNa (clone RMMA-1) and anti-IFNg (clone XMG1.2) were used. Data analysis was performed using

FlowJo (Tree Star) software or NovoExpress software (ACEA Biosciences).

Enrichment of Lin� cells was performed prior to sorting of GMP from BM by magnetic negative selection using MidiMACS Sepa-

rator (Miltenyi Biotec). To this end, cells were incubated with a biotin mouse lineage panel (Biotin-Conjugated Mouse Lineage Panel,

BD PharMingen) and subsequently with anti-Biotin MicroBeads (Miltenyi Biotec). GMP were sorted as Lin�c-Kit+Sca1�CD16/

32+CD34+ cells and splenic neutrophils were sorted as CD11b+Ly6c�Ly6g+ cells.

To detect the presence of IFNg in lymphocytes, single cell suspensions from tumors and lymph nodes were stained for cell surface

markers, fixed and permeabilized using fixation / permeabilization buffer (Foxp3/Transcription Factor Buffer Set; eBioscience) and

then stained with the respective antibodies. Cells were incubated with 50 ng/mL phorbol-12-myristate-13-acetate (Sigma), 1 mg/mL

ionomycin (Sigma) and 5 mg/mL brefeldin A (Biolegend) for 3 h at 37�C prior to the addition of antibodies.

To detect the levels of IFNa in BM dendritic cells and macrophages, BM single-cell suspensions were stained for cell surface

markers, fixed and permeabilized with eBioscience Intracellular Fixation & Permeabilization Buffer and stained for IFNa. Staining

for pDCs (CD45+NK1.1�CD90.2�CD19�CD11c+CD11b�B220+BST2+) and CD169+ macrophages (CD45+Gr-1�CD115intF4/

80+SSClowCD169+) was performed, as described (Chow et al., 2011; Macal et al., 2016). To determine intracellular levels of reactive

oxygen species (ROS), single cell suspensions from tumors were stained with antibodies against surface markers and then were

stained with Cell Rox Green flow cytometry assay kit (Thermo Fisher).

Cytotoxicity assay

Splenic neutrophils (isolated as described under ‘Mouse experiments’) were co-culturedwith B16-F10melanoma cells that express a

luciferase reporter in culture medium containing 1 mg/mL puromycin for 24 h. Cells were then washed and lysed, and luminenscence

was measured using a luciferase reporter assay system (Promega) on a Synergy HT multi-mode microplate reader (Biotek Instru-

ments) according to the manufacturer’s instructions. To block reactive oxygen species, co-culture experiments were performed

in the presence of 5mM N-acetyl-cysteine (Sigma).

RNA isolation and real time PCR

RNA isolation was performed using RNeasy Plus Micro Kit (QIAGEN) or TRIzol, according to manufacturer’s instructions. Comple-

mentary DNA was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad) or High-Capacity RNA-to-cDNA Kit (Applied
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Biosystems). qPCRwas performed by using the SsoFast EvaGreen Supermix (BioRad) or Fast SYBRGreenMaster Mix (Applied Bio-

systems) and gene-specific primers for the ‘trained TAN1-like signature’ (Table S5) in a CFX384 Real time PCR detection system

(BioRad). 18S was used as an internal control for normalization (Kourtzelis et al., 2019). Data were analyzed using the comparative

(DDCt) method. The ‘trained TAN1-like signature’ was defined as follows: Based on the RNaseq analysis, we identified genes that

were significantly upregulated in TAN from b-glucan–trained as compared to the control-treated mice. The ‘trained TAN1-like signa-

ture’ represented the top 20 genes from the intersection of the upregulated genes in TANs from trained mice and the previously

described TAN1-like gene dataset (Shaul et al., 2016).

RNA sequencing

RNA isolation was performed as previously described (Mitroulis et al., 2018). Briefly, isolated RNA was subjected to the amplification

workflow of the SMARTer Ultra HV v2 kit (Takara Bio). Amplified cDNA was successively converted into short read sequencing li-

braries using the NEBnext Ultra DNA library preparation chemistry (New England Biolabs). Libraries were equimolarly pooled and

sequenced on an Illumina HiSeq 2500, resulting in 27.9 – 59.9 million single end reads per library.

Single-cell ATAC sequencing

Nuclei isolation for single-cell ATAC sequencing was performed according to the protocol of 10x Genomics. Briefly, cells were sorted

into V bottom plate, centrifuged at 300 rcf for 5min at 4�C. Chilled Lysis buffer (2.5mM Tris-HCl (pH 7.4), 2.5mMNaCl, 0.9mMMgCl2,

Tween-20 0.025%, Nonidet P40 Substrate (Sigma) 0.025%, Digitonin 0.0025%, BSA 0.25%, nuclease free water) was added to the

pellet and cells were incubated on ice for 2 min. Cells were washed once with Wash buffer (2.5mM Tris-HCl (pH 7.4), 2.5mM NaCl,

0.9mMMgCl2, Tween-20 0.025%) and concentrated by centrifugation at 500 rcf for 5min at 4�C; after removing the supernatant, 7 ml

1x Nuclei Buffer (10x Genomics) was added. 1 ml of the nuclei suspension was taken for evaluation (nuclei quality control and deter-

mining nuclei concentration). Nuclei suspension was then used according to the Chromium Single Cell ATAC Reagent Kits protocol

(10xGenomics). 5 ml of the nuclei suspensionwasmixedwith the tagmentationmix and incubated for one h at 37�C. After finishing the

tagmentation, the still intact nuclei were mixed with a barcoding mix and loaded into a 10x chip H (10x Genomics, Chromium Next

GEM Chip H Single Cell Kit v1.1; Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1) together with barcoded beads

and partitioning oil and encapsulated using the Chromium controller. The gel emulsion was transferred into a PCR tube to perform 12

cycles of amplification in a thermocycler. The gel emulsion containing barcoded DNA was broken, purified (10x Genomics, Dyna-

beads MyOne SILANE) and subjected to a final index PCR for 11 cycles. After size selection (0.4x/1.2x volume of beads) (Beckman

Coulter SPRIselect), the library was examined on a fragment analyzer (Agilent, NGS High Sensitivity Fragment Analysis Kit) for its

quality and quantity and sequenced on an Illumina NextSeq 500 (Illumina NextSeq 500/550 High Output Kit v2.5;150 Cycles) in 72

PE mode (R1 72, R2 72, I1 8, I2 16) at an average depth of 5400 fragments/cell. More information on the library prep can be found

at the site https://www.10xgenomics.com/resources/support-documentation/.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA sequencing analysis

Analysis was performed as previously described (Mitroulis et al., 2018). Briefly, FastQC (http://www.bioinformatics.babraham.ac.uk/)

was used to perform a basic quality control on the resulting reads. As an additional control, library diversity was assessed by redun-

dancy investigation in the reads. Alignment of the reads to the mouse reference (mm10) was done with GSNAP (Wu and Nacu, 2010)

and Ensembl gene annotation version 81 was used to detect splice sites. The uniquely aligned reads were counted with feature-

Counts (Liao et al., 2014) and the same Ensembl annotation. Normalization of the raw read counts based on the library size and

testing for differential expression between conditions was performed with the DESeq2 R package (Love et al., 2014). Genes, which

have an adjusted p value (padj) < 0.05 and counts > 50 were considered as differentially expressed. Pathway and upstream regulator

analysis of gene lists containing significantly differentially expressed genes (padj < 0.05, log2FC < -0.3 and > 0.3) was done with In-

genuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity). Top canonical pathways derived from IPA are

shown. Morpheus software (Broad Institute) was used to generate heatmaps. ggplot2_v1.0.1 (Wickham, 2009) and GOplot (Walter

et al., 2015) were used to generate volcano plots and circos plot, respectively. To perform gene set enrichment analysis (GSEA), gene

sets were ranked by taking the -log10 transform of the p value and signed as positive or negative based on the direction of fold

change. GSEA pre-ranked analysis (1000 permutations, minimum term size of 15, maximum term size of 500) was then performed

using the GSEA software (Broad Institute) (Musso et al., 2015). Annotated gene sets from Molecular Signatures Database (MSigDB)

were used as input. Shown in heatmaps (Figures 2E, S2B, S2C, and 4F) are selected genes that were significantly regulated in our

datasets, as assessed by our RNA sequencing analyses, and also included in the GO terms ‘ROS metabolic process’, ‘phagocy-

tosis’, ‘MHC protein complex’ and ‘Cell response to type I IFN’. Significantly regulated genes that were present in both ‘ROS meta-

bolic process’ and ‘phagocytosis’ GO terms or in both ‘ROSmetabolic process’ and ‘MHC protein complex’ GO terms are presented

only in the heatmap of Figure 2E as ‘ROS metabolic process’.

For TAN1 pathway overrepresentation analysis, data was extracted from GSE101584 (Shaul et al., 2016). In particular, Shaul et al.

show in Table S4 of their paper genes with a greater than 10-fold change in expression between TAN1 and TAN2. The gene symbols

listed by the study were first mapped to ILMNmicroarray probe IDs using the array design file GPL6885 that was provided as part of

ll
OPEN ACCESS

e5 Cell 183, 771–785.e1–e6, October 29, 2020

Article

https://www.10xgenomics.com/resources/support-documentation/
http://www.bioinformatics.babraham.ac.uk/
http://www.qiagen.com/ingenuity


the GEO dataset GSE101584. These ILMN probe IDs were then mapped to Ensembl Gene IDs using Ensembl Biomart (Release 96)

with ambiguously and non-mapping probes excluded, leading to retaining 92 Ensembl Gene IDs from the original gene set of Table

S4 from Shaul et al. that were downregulated in TAN2 compared to TAN1. These 92 genes implicated as playing a role in the func-

tionality of TAN1 were used as a gene set for GSEA. The GSEA analysis was performed as described above using the ranked-list of

differentially expressed genes.

Single cell ATAC sequencing analysis

For data pre-processing Cell Ranger ATAC version 1.2.0 (https://support.10xgenomics.com/single-cell-atac/software/overview/

welcome) was used to process raw sequencing data. ‘cellranger-atac count’ pipeline was used to align reads and generate sin-

gle-cell accessibility counts for the cells. Reference genome file refdata-cellranger-atac-mm10-1.2.0 corresponding to mm10

was downloaded from the 10X Genomics website (https://support.10xgenomics.com/single-cell-atac/software/downloads/). This

file was used as reference genome file for alignment and generating single-cell accessibility counts. Downstream analysis of the scA-

TACseq data was performed using the R package ArchR v0.9.3 (Granja et al., 2020), following the developers’ default recommen-

dations, unless otherwise indicated. Arrow files were generated by reading in accessible read fragments produced by the ‘cell-

ranger-atac count’ pipeline for each sample. After quality control to remove the contribution of low-quality cells and doublet

removal, a tile matrix was created using 500-bp bins. A layered dimensionality reduction approach using Latent Semantic Indexing

(LSI) and Singular Value Decomposition (SVD) on the previously created genome-wide tile matrix followed by Uniform Manifold

Approximation and Projection (UMAP) was performed to visualize the data structure in the two-dimensional space. Subsequently,

single-cell accessibility profiles were clustered using the Louvain clustering approach as implemented in the R package Seurat (Stu-

art et al., 2019). Gene activity scores were calculated based on the local accessibility of gene regions, which includes the promoter

and gene body, and cluster-specific marker genes were identified based on these using the following cut-offs: FDR% 0.01 & Log2FC

R 1 and presented in a heatmap.We used the R package clusterProfiler v3.14.3 to determine GeneOntology (GO) terms enriched for

the cluster-specific gene sets (Yu et al., 2012). Based on the gene activity scores, we further constructed a cellular trajectory span-

ning fromGMP over cluster C5 to neutrophils using the addTrajectory function implemented inArchR. Subsequently, open chromatin

peaks were called based on pseudo-bulk replicates of the GMP and neutrophils of control (PBS)- or b-glucan-treated mice (desig-

nated PBS-GMP, b-glucan-GMP, PBS-neutrophil and b-glucan-neutrophil groups) using MACS2 and differentially accessible re-

gions (DAR) were called between cells from b-glucan-treated and control-treated mice using a pairwise binomial test after binariza-

tion of the peak matrix (FDR% 0.01 & abs(Log2FC)R 1). Peak regions were annotated using the R package ChIPseeker v1.22.1 (Yu

et al., 2015) and GO terms enriched for the genes annotated to the treatment-specific DAR of GMP and neutrophils were identified

using the R package clusterProfiler v3.14.3. Additionally, we analyzed the set of treatment-specific DAR in GMP for enrichment of

transcription factor binding motifs using the peakAnnoEnrichment function implemented in ArchR. The script written for the analysis

of the scATAC-seq data can be found at https://github.com/schultzelab/Kalafati_2020.

Statistical analysis

Results are presented as mean ± SEM. Data were analyzed by two-tailed Student’s t test or Mann-Whitney U-test as appropriate.

Multiple-group comparisons were performed using one-way or two-way ANOVA followed by Tukey’s or Sidak’s multiple comparison

tests. Statistical analyses were performed with GraphPad Prism software (GraphPad Inc., La Jolla, CA), unless otherwise stated in

STAR METHODS, and statistical significance was set at p < 0.05.
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Supplemental Figures

Figure S1. The Effect of Trained Immunity on Immune Cell Composition in the Tumors and IFNg Levels in CD8+Cells of Tumor-BearingMice,

Related to Figure 1

WT mice received a single intraperitoneal injection with b-glucan or control PBS, and 7 days later received subcutaneous injection of B16-F10 melanoma cells;

mice were sacrificed 14 days after tumor inoculation.

(A) Frequencies of CD4+ T cells (CD45+CD4+CD8�) and CD8+ T cells (CD45+CD4�CD8+) within leukocytes (CD45+) in the tumor.

(B and C) Expression of interferon gamma (IFNg) in CD8+ T cells from tumor tissue (B) and draining lymph nodes (C) was assessed by flow cytometry. Data are

shown as relative Mean fluorescence intensity (MFI); the MFI of IFNg in CD8+ T cells from PBS-treated mice was set as 1 in each case.

Data are presented as mean ± SEM (A and C: n = 4 mice / group; B: n = 5 mice in the PBS group and n = 4 mice in the b-glucan group). n.s., non-significant.
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Figure S2. The Effect of Trained Immunity on the Transcriptomic Profile of Tumor-Associated Monocytes and TAN, Related to Figure 2

(A) WT mice were treated with b-glucan or PBS, and 7 days later received B16-F10 melanoma cells. Mice were sacrificed 14 days after tumor inoculation and

monocytes (CD45+CD11c�CD11b+Ly6g�Ly6c+) were sorted from the tumor tissue for RNA sequencing analysis. Differential gene expression in monocytes.

Volcano plot showing the distribution of the adjusted p values (�log10(padj)) and fold changes (log2 fold change). FDR% 0.05 (n = 5mice in the PBS group and n =

4 mice in the b-glucan group).

(B and C) WT mice were treated with b-glucan or PBS, and 7 days later received B16-F10 melanoma cells. Mice were sacrificed 14 days after tumor inoculation

and TAN (CD45+CD11c�CD11b+Ly6c�Ly6g+) were sorted from the tumor tissue for RNA sequencing analysis. FDR % 0.05. (B) Heatmap of genes involved in

phagocytosis in TAN from b-glucan-treated mice as compared to PBS-treated mice (n = 5 mice in the PBS group and n = 4 mice in the b-glucan group). (C)

Heatmap of genes involved inMHC-protein complex in TAN from b-glucan-treatedmice as compared to PBS-treatedmice (n = 5mice in the PBS group and n = 4

mice in the b-glucan group).

(D) WT mice were treated with b-glucan or PBS, and 7 days later received B16-F10 melanoma cells. Mice were sacrificed 14 days after tumor inoculation and

staining for ROS in tumor-associated macrophages (CD45+CD11b+Ly6g�F4/80+) was performed using flow cytometry. Median fluorescence intensity (MFI) is

shown (n = 6 mice / group).

(E) Splenic neutrophils were isolated frommice 7 days after injection with b-glucan or PBS. Neutrophils were co-cultured with luciferase expressing B16-F10 cells

at 100:1 neutrophil/tumor cell ratio for 24 h. N-Acetyl-Cysteine (NAC; 5mM) was used to scavenge ROS. Tumor cell survival was assessed by measuring

luminescence. Luminescence is expressed relative to the PBS-control group, set as 1 (n = 5 cell isolations per group).

(F) WT mice were injected with b-glucan or PBS and after 7 days splenic monocytes were isolated and were adoptively transferred together with B16-F10 cells

into WT mice. Tumor volume (left) and weight of the tumor tissue at the end of the experiment (right) are shown (n = 5 mice in the PBS group; n = 6 mice in the

b-glucan group).

Data are presented as mean ± SEM n.s.: non-significant; *p < 0.05.
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Figure S3. Adoptive Transfer of Neutrophils after Short-Term b-Glucan-Treatment in Mice, Related to Figure 3

WTmicewere injectedwith b-glucan or PBS and after 1 day splenic neutrophils were isolated andwere adoptively transferred together with B16-F10 cells intoWT

mice. Tumor volume (left) and weight of the tumor tissue at the end of the experiment (right) is shown (n = 7 mice in the PBS group; n = 6 mice in the

b-glucan group).

Data are presented as mean ± SEM. n.s., non-significant.
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Figure S4. The Effect of Trained Immunity on the Transcriptomic Profile of TAN and BM GMP and on IFNa Levels in BM pDCs and CD169+

Macrophages, Related to Figure 4

(A) WTmice were treated with b-glucan or PBS and after 7 days were inoculated with B16-F10 melanoma tumors. 14 days after the tumor injection, TAN and BM

GMP were sorted and RNA sequencing analysis was performed (RNA sequencing analysis of TANs is shown in Figure 2). Upstream regulator analysis in

transcriptomic data using IPA was performed. Common upstream regulators in the transcriptomic profile of TAN and BM GMPs from tumor-bearing mice are

listed (TAN: n = 5 mice in the PBS group and n = 4 mice in the b-glucan group; GMP: n = 4 mice in the PBS group and n = 3 mice in the b-glucan group).

(B) Intracellular staining for IFNa in pDCs from the BM of mice 7 days after b-glucan or PBS treatment was performed. Median fluorescence intensity (MFI)

(n = 7 mice / group).

(C) Intracellular staining for IFNa in CD169+ macrophages from the BM of mice 7 days after b-glucan or PBS treatment was performed. Median fluorescence

intensity (MFI) (n = 7 mice / group).

**p < 0.01; ***p < 0.001.
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Figure S5. scATACseq Analysis, Related to Figure 5

(A) Two-dimensional UMAP representation of 13383 cells, based on genome-wide tile matrices of 500 bp bins, colored by pseudo-time values, as determined by

trajectory analysis (left). The arrow indicates the approximated differentiation path. Gene activity scores of selected key genes of granulopoiesis (‘GMP-genes’:

(legend continued on next page)
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Irf8, Gata2, Cebpa; ‘pre-neutrophils / immature neutrophils-genes’: Gfi1, Runx1, Ltf; ‘mature neutrophils-genes’: Spi1, Klf2, Il1b, as previously defined (Evrard

et al., 2018) are visualized as a function of the pseudo-time as dot plots (right).

(B) Violin plots showing gene activity scores of Ngp, Ltf, Camp, and Ifitm6 across the identified clusters.

(C) Violin plots showing gene activity scores of Il1b, C5ar1, Ifnar1, and Ifitm2 across the identified clusters.
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