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Abstract. The existence of martingale solutions for stochastic porous media equations driven by nonlinear multiplicative space–time
white noise is established in spatial dimension one. The Stroock–Varopoulos inequality is identified as a key tool in the derivation of
the corresponding estimates.

Résumé. L’existence d’une solution martingale pour l’équation stochastique des milieux poreux, dirigée par un bruit non-linéaire
multiplicatif en espace et en temps, est établie dans le cas spatial unidimensionnel. L’inégalité de Stroock–Varopoulos est identifiée
comme un outil clé dans l’obtention des estimées correspondantes.
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1. Introduction

Let T be a positive real number and let I = (0,1). We consider the equation

∂tu = ∂2
x

(

u[m]) + σ(x,u)ξ, in Q := (0, T ) × I,

u = u(0) on {0} × I,
(1.1)

with homogeneous Dirichlet boundary conditions, where ξ is noise which is white in both space and time, and u[m] :=
|u|m−1u, m ∈ (1,∞).

While stochastic porous media equations attracted significant attention, all available results concerning multiplicative
noise pose strong spatial colouring conditions on the noise. Indeed, the monotone operator approach, for which we refer
the reader to the monographs [2,27], requires noise with Cameron–Martin space L2([0, T ],H), where H = H 3/2+ε .
Here and throughout the introduction, one may choose arbitrarily small but positive ε > 0. Another notable restriction
of the monotone operator approach is that when the mapping u �→ σ(x,u) is given by a pointwise composition, only
affine linear diffusion coefficients are covered. In the case of nonlinear diffusion coefficients, the existence of martingale
solutions was shown in [20], again restricting to spatially colored noise with H = H 1/2+ε . Recent development of an L1-
based theory, see for example [4,9,12,13,18,19] and references therein, has lead to the (probabilistically) strong existence
and uniqueness for a large class of nonlinear diffusions σ with spatially colored noise. The most lenient conditions are
from [9], which corresponds to σ ∈ C1/2+ε and H = H 1/2+1/(m∨2)+ε . Needless to say, all of these results are quite far
from the space–time white noise case H = L2.

Equation (1.1) can also be seen as an example of a singular SPDE. The theory of these equations have seen major
advances recently thanks to the theories of [21,22]. Quasilinear singular SPDEs, first studied by [30], have recently
been also solved with space–time white noise via these theories [1,15,16]. However, the degeneracy of the leading order
operator prevents any of these works to apply for the study of (1.1). The additional (Itô-) structure of the equation,
however, allows for stochastic analytic tools.
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In the main result of this work, Theorem 2.5 below, we establish the probabilistically weak existence of solutions for
a class of diffusion nonlinearities. The scope of Theorem 2.5 is quite large: any continuous σ satisfying a mild growth
condition fits in the framework. This in particular covers the case σ(r) =

√
r which is known to be relevant in scaling

limits of interacting branching particle systems (see Section 1.1 below).
In order to prove the existence of solutions, we obtain estimates for solutions of viscous approximations of (1.1) with

finitely many modes of noise, the well-posedness of which is guaranteed by [10, Theorem 3.1]. These estimates should
be in spaces of positive regularity in order to guarantee compactness in some Lp space (in space time). At the same time
the regularity exponent should be relatively small in order to avoid blow ups appearing due to the irregularity of the noise.
We identify the Stroock–Varopoulos inequality as a key ingredient in obtaining such estimates that are compatible with
the non-linear nature of (1.1). It is remarkable that this inequality, which originates in the analysis of non-local porous
media equations, proves to be vital to the local but irregular setting of (1.1).

In such generality, no strong uniqueness is expected to hold for (1.1), since it is not even true in the semilinear case
m = 1, see [29]. It is, however, reasonable to expect strong uniqueness when σ is, say, Lipschitz continuous, which
remains an open question. In this article we show that strong existence and uniqueness hold when, roughly speaking,
σ(x,u) behaves like u[(m+1)/2] around the origin (see Proposition 2.8 below).

The rest of the article is structured as follows. In Section 1.1 we give an example on how a heuristic scaling of a simple
system of interacting particles gives rise to an SPDE of the form (1.1). In Section 2 we state the main results. The proof
of Theorem 2.5 is divided into a priori estimates for some approximating equations in Section 3 and the passage to the
limit in Section 4. The proof of Proposition 2.8 is given in Section 5.

1.1. A heuristic derivation

In R, let us consider particles (Xi
t )t≥0 (of negligible mass), for i ∈ It , interacting through a potential V . Here, It is an

index set depending on time with |I0| ∼ N , The system undergoes critical branching: each particle, with rate one, dies and
leaves behind offspring with the expected number of offspring being one. During their lifetime the particles Xi

t evolve
under the dynamics

dXi
t =

∑

j∈It

∂xV
(

Xi
t − X

j
t

)

dt,

where V : R → R is a compactly supported, smooth, non-negative function integrating to one. After introducing the
rescaling Y

i,N
t = N−2/3Xi

Nt , one has that

dY
i,N
t =

1

N

∑

j∈Ĩt

∂xVN−2/3

(

Y
i,N
t − Y

j,N
t

)

,

where Ĩt = INt , Vα(·) := α−1V (α−1·) for α > 0, and the particles Y i
t branch with rate N . The ultimate goal is to let

N → ∞. Since N2/3 ≪ N we make the following simplification: we consider the system with the same branching
mechanism but dynamics given by

dY
i,N,ε
t =

1

N

∑

j∈Ĩt

∂xVε

(

Y
i,N,ε
t − Y

j,N,ε
t

)

.

Let us denote by μ
N,ε
t the empirical measure of the above system at time t , that is,

μ
N,ε
t =

1

N

∑

i∈Ĩt

δ
Y

i,N,ε
t

.

It follows from [28, Theorem 1] that for N ↑ ∞, (μ
N,ε
t )t∈[0,T ] converges – in an appropriate sense – to a non-negative

measure valued stochastic process (με
t )t∈[0,T ] which satisfies

∂tμ
ε = ∂x

(

με
(

∂xVε ∗ με
))

+ c
√

μεξ,

where c is a constant depending on the variance of the branching mechanism and ξ is space time white noise. The
interpretation of the term c

√
μεξ is in a weak sense, namely, for every test function φ, the process

ηt (φ) := με
t (φ) − με

0(φ) +
∫ t

0
με

s

((

∂xVε ∗ με
s

)

∂xφ
)

ds,
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is a martingale with quadratic variation given by

〈

η(φ)
〉

t
= c2

∫ t

0
με

s

(

φ2)ds.

Informally, since Vε tends to δ0, passing to the limit ε → 0 in the above equation leads to

∂tμ =
1

2
∂2
x

(

μ2) + c
√

μξ.

In the deterministic case, that is if c = 0, the limit ε → 0 has been rigorously justified in [26].

1.2. Notation

Due to the low regularity we always work with weak (in the terminology of e.g. [6], ‘weak dual’) solutions in the PDE
sense, and consider both strong and weak solutions in the probabilistic sense. For the former, fix the probability space
(
,F,P) on which the space–time white noise ξ is given. Recall that this means a collection of jointly Gaussian centred
random variables ξ(ϕ), ϕ ∈ L2(Q), with covariance E(ξ(ϕ)ξ(ϕ̄)) = (ϕ, ϕ̄)L2(Q). For the remainder of the article we set

ek(x) =
√

2 sin(πkx) for k ∈ N = {1,2, . . .}. We have that (ek)k∈N is an orthonormal basis of L2(I ). For each k ∈ N,
set (wk

t )t∈[0,T ] to be a continuous modification of the collection of random variables (ξ(1[0,t]ek))t∈[0,T ]. It is well-known
that such modifications exist, as is the fact that w1,w2, . . . is a sequence of independent Wiener processes. We denote by
F = (Ft )t∈[0,T ] the right continuous completion of the filtration generated by them.

Function spaces in the spatial variable x ∈ I are denoted by the lower index x. For notational simplicity we do not
make the x-dependency of σ(x,u) explicit when convenient. The set (ek)k∈N consists of the eigenvectors of the (−
)

with Dirichlet boundary condition on ∂I , with corresponding eigenvalues λk = (πk)2. For γ ≥ 0 we introduce the space

H
γ
x =

{

v ∈ L2
x :

∑

k∈N
λ

γ

k

∣

∣

(

v, ek
)

L2
x

∣

∣

2
< ∞

}

,

endowed with the norm

‖v‖2
H

γ
x

:=
∑

k∈N
λ

γ

k

∣

∣

(

v, ek
)

L2
x

∣

∣

2
.

Here and in the sequel if H is a Hilbert space, (·, ·)H stands for the inner product in H . We define H
−γ
x to be the dual of

H
γ
x in the Gelfand triple H

γ
x ⊂ L2

x ≡ (L2
x)

∗ ⊂ (H
γ
x )∗. Extending (·, ·)L2

x
to the H

γ
x − H

−γ
x duality denoted by 〈·, ·〉, the

norm of an element v∗ ∈ H
−γ
x is given by

∥

∥v∗∥
∥

2
H

−γ
x

=
∑

k∈N
λ

−γ

k

∣

∣

〈

v∗, ek
〉∣

∣

2
. (1.2)

It is easy to see that L2
x is dense in H

−γ
x , and therefore so is C∞

c (I ). It is also easy to verify that for γ > 0 the embedding
L2

x ⊂ H
−γ
x is compact. For β ∈R we define

(−
)β/2φ :=
∑

k∈N
λ

β/2
k

(

φ, ek
)

L2
x
ek, for φ ∈ C∞

c (I ).

In the sequel we drop the lower index from (·, ·) and we always mean

(f, g) =
∫

I

f (x)g(x) dx. (1.3)

Note that this expression is meaningful whenever f ∈ L
p
x , g ∈ L

p/(p−1)
x , p ∈ [1,∞]. Whenever the scalar product is taken

in another Hilbert space H , this is reflected in the notation (·, ·)H .
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For any γ ∈R the operator (−
)β/2 extends to an isometry

(−
)β/2 : H γ
x → H

γ−β
x .

It follows that for γ1 > γ2 the embedding H
γ1
x ⊂ H

γ2
x is compact. For all γ ∈ R, H

γ
x is a Hilbert space. Using the inner

product of H−1
x to identify it with its own dual, one can consider the Gelfand triple Lm+1

x ⊂ H−1
x ≡ (H−1

x )∗ ⊂ (Lm+1
x )∗.

The operator u �→ 
u[m] maps Lm+1
x to (Lm+1

x )∗ and the action of 
u[m] on an element φ ∈ Lm+1
x is given by

(Lm+1
x )∗

〈


u[m], φ
〉

Lm+1
x

= −
(

u[m], φ
)

.

For more details we refer to [32, Ex. 4.1.11].
Function spaces in the temporal variable t , whenever given on the whole time horizon [0, T ], are denoted by the lower

index t . For instance, L2
t H

γ
x stands for L2([0, T ],H γ

x ). Occasionally the time horizon will be different, in these cases
we specify the domains. In the temporal and spatial variable we will also consider the Sobolev–Slobodeckij spaces W γ,p

(see e.g. [34, Section 4.2]) and the usual Hölder spaces Cγ (see e.g. [34, Section 4.5]). Their relevant properties are stated
in Proposition 1.1 below. By Ẇ

γ,p
x we denote the closure of C∞

c (I ) in W
γ,p
x . Finally, spaces of functions on 
 (which

will always be Lp spaces) are denoted by the lower index ω. When Lp spaces are considered on Q or 
 × Q, we write
L

p
t,x or L

p
ω,t,x .

Proposition 1.1.

(i) [34, Rmk 4.4.2/2]. Let p ∈ (1,∞), γ ∈ (0,1). Then an equivalent norm in W
γ,p
x is given by

(

‖v‖p

L
p
x

+
∫

I×I

|v(x) − v(y)|p

|x − y|1+γp
dx dy

)1/p

; (1.4)

(ii) [34, Thm 4.3.2/1]. Let p ∈ (1,∞), γ ∈ (−∞,1/p]. Then Ẇ
γ,p
x = W

γ,p
x ;

(iii) [6, Eq 2.11]. Let γ ∈ (0,1) \ {1/2}. Then Ẇ
γ,2
x = H

γ
x ;

(iv) [34, Thm 4.8.2]. Let p ∈ (1,∞), γ ∈ [0,∞) such that γ − 1/p /∈ Z. Then the dual of Ẇ
γ,p
x , viewed as a subset of

distributions, is W
−γ,p′
x , where 1/p + 1/p′ = 1;

(v) [34, Thm 4.3.1/1], [34, Eq 2.4.1/(8)]. Let −∞ < γ0 < γ1 < ∞, 1 < p0,p1 < ∞, θ ∈ (0,1), and define

γ = (1 − θ)γ0 + θγ1, p =
(

(1 − θ)p−1
0 + θp−1

1

)−1
.

Suppose γ0, γ1, γ /∈ N. Then one has

‖v‖W
γ,p
x

≤ ‖v‖1−θ

W
γ0,p0
x

‖v‖θ

W
γ1,p1
x

. (1.5)

Remark 1.2. Interpolation between H
γ
x spaces is straightforward from the definition.

2. Formulation and main results

Definition 2.1. Suppose that u(0) is an F0-measurable H−1
x -valued random variable. A strong solution of (1.1) is an H−1

x -
valued continuous F-adapted process u, that furthermore belongs to Lm+1

t,x almost surely and such that for all φ ∈ Lm+1
x

almost surely the equality

(

u(t),φ
)

H−1
x

=
(

u(0), φ
)

H−1
x

−
∫ t

0

(

u[m](s),φ
)

ds +
∑

k∈N

∫ t

0

(

σ
(

u(s)
)

ek, φ
)

H−1
x

dwk
s

holds for all t ∈ [0, T ].

Remark 2.2. Notice that in the second term at the right-hand side of the above equality, it is not the H−1
x -inner product

but rather the usual duality between L
(m+1)/m
x and Lm

x given by (1.3).

Definition 2.3. Suppose that u(0) is an F0-measurable H−1
x -valued random variable. A weak solution of (1.1) is a collec-

tion {(
̄, F̄, P̄), F̄, (w̄k)k∈N, ū}, such that (
̄, F̄, P̄) is a probability space, F̄ = (F̄t )t∈[0,T ] is a complete filtration of F̄ ,
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(w̄k)k∈N is a sequence of independent F̄-Wiener processes, and ū is an H−1
x -valued continuous F̄-adapted process, that

furthermore belongs to Lm+1
t,x almost surely and such that for all φ ∈ Lm+1

x almost surely the equality

(

ū(t), φ
)

H−1
x

=
(

ū(0),φ
)

H−1
x

−
∫ t

0

(

ū[m](s),φ
)

ds +
∑

k∈N

∫ t

0

(

σ
(

ū(s)
)

ek, φ
)

H−1
x

dwk
s

holds for all t ∈ [0, T ], and ū(0)
d= u(0).

For the definition to be meaningful, some assumption of σ has to be imposed. It is a consequence of Lemma 3.4 below
that if σ is of polynomial growth with order at most (m + 1)/2, then for all t ∈ [0, T ] the series of stochastic integrals
converge in probability.

Remark 2.4 (On the notion of solution). Let u be a solution in the sense of Definition 2.1. On the subset of 
 × [0, T ]
where u(t) belongs to Lm+1

x , we see by virtue of the definition of the inner product in H−1
x (induced by (1.2))

(

u(t),φ
)

H−1
x

=
∑

k∈N
λ−1

k

(

u(t), ek
)(

φ, ek
)

=
(

u(t), (−
)−1φ
)

,

and similarly

(

σ
(

u(s)
)

ek, φ
)

H−1
x

=
(

σ
(

u(s)
)

ek, (−
)−1φ
)

,

provided, say, that σ has polynomial growth with order at most (m + 1)/2. This, combined with the fact that
(−
)−1(−
)ψ = ψ whenever ψ ∈ H

γ
x , for any γ ∈ R, implies that if we choose φ = −
ψ with ψ ∈ C∞

c (I ) in Defini-
tion 2.1, we get

(

u(t),ψ
)

=
(

u(s),ψ
)

+
∫ t

s

(

u[m](s),
ψ
)

ds +
∑

k∈N

∫ t

s

(

σ
(

u(s)
)

ek,ψ
)

dwk
s

for almost all ω ∈ 
 and almost all (s, t) ∈ [0, T ]2 with s < t . Therefore, u is a distributional solution of (1.1). Moreover,
the Dirichlet boundary condition is encoded in the formulation in the following weak sense: for all s < t , almost surely

(−
)−1
(

u(t) − u(s) −
∑

k∈N

∫ t

s

σ
(

u(r)
)

ek dwk
r

)

=
∫ t

s

u[m](r) dr.

Notice that the left hand side of the above equality is an element of H 1
x (in particular it vanishes on ∂I ) and therefore so

is the right hand side.

The assumption on the diffusion coefficient is formulated via the following notation. For δ ≥ 0, let S(δ,m) be the set
of continuous functions σ : I ×R→R such that there exists a K ≥ 0 such that for all x ∈ I , r ∈R,

∣

∣σ(x, r)
∣

∣ ≤ K + δ|r|(m+1)/2. (2.1)

Our first main result reads as follows.

Theorem 2.5. For any γ ∈ (−1,−1/2) there exists a δ0 = δ0(γ,m) > 0 such that the following holds. Let σ ∈ S(δ,m)

with δ ≤ δ0 and let u(0) ∈ Lm+1
ω H

γ
x be F0-measurable. Then, there exists a weak solution {(
̄, F̄, P̄), F̄, (w̄k)k∈N, ū} of

equation (1.1). Moreover, ū satisfies the following bounds:

(i) (Energy estimates.) For all p ∈ [0,m + 1] there exists a constant N = N(γ,p,m,K,T ) such that

Ē‖ū‖p

L∞
t H

γ
x

+ Ē
∥

∥ū[ m+1
2 ]∥

∥

p

L2
t H

1+γ
x

+ Ē‖ū‖p(m+1)/2

Lm+1
t W

γ ′,m+1
x

≤ N
(

E
∥

∥u(0)
∥

∥

p

H γ + 1
)

, (2.2)

where γ ′ = 2(1+γ )
m+1 .
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(ii) (Coming down from infinity.) There exists a constant N = N(m,T ) (in particular, independent of the initial condi-

tion) such that for all t ∈ [0, T ]

Ē
∥

∥ū(t)
∥

∥

2
H

γ
x

≤ Nt−2/(m−1). (2.3)

(iii) (Temporal regularity.) For all ε > 0 there exists an ε′ > 0 and a constant N = N(γ,m,K,T ) such that

Ē‖ū‖
m+1
m

Cε′
t H

γ−ε
x

≤ N
(

E
∥

∥u(0)
∥

∥

m+1
H γ + 1

)

.

Remark 2.6. In light of the smallness assumptions on δ above, it is worth noting that if σ is continuous and has polyno-
mial growth with exponent m′ < (m + 1)/2, then σ ∈ S(δ,m) for all δ > 0.

Remark 2.7. The reader may notice that the estimates (2.2) are stronger than what the standard theory [25] yields for
nondegenerate quasilinear space–time white noise driven equations

∂tu = ∂2
x

(

A(u)
)

+ σ(x,u)ξ. (2.4)

Indeed, if A′ takes values in [λ,λ−1] for some λ > 0 and σ is sufficiently smooth and small, then [25] provides well-
posedness in the Gelfand triple L2

x ⊂ H−1
x ≡ (H−1

x )∗ ⊂ (L2
x)

∗, and therefore gives bounds in CtH
−1
x ∩ L2

t,x . We leave it
as an exercise to the reader to check that our argument carries through for (2.4) and one can obtain the estimates (2.2)
with m = 1, thus gaining (almost) 1/2 regularity compared to [25].

In Proposition 2.8 below we show that the monotone operator approach of [25,31] can be applied to a small but
nontrivial class of nonlinear diffusion coefficients to obtain (probabilistically) strong well-posedness. Let us point out a
key difference to [2]: Therein, assumptions on the drift operator to be coercive/monotone and the diffusion operator to be
bounded/Lipschitz are considered separately. In contrast, by virtue of the elementary estimate from Lemma 3.4 below, we
use joint coercivity/monotonicity conditions for the drift and diffusion, in the spirit of the so-called stochastic parabolicity
(see, e.g. [25,31]). Apart from the additive noise case, which directly follows from the monotone operator theory, the class

of diffusion coefficients considered here contains some interesting cases – for example, σ(r) = λr [ m+1
2 ] with sufficiently

small λ – but the conditions on σ are certainly restrictive. The exponent (m + 1)/2 guarantees that the noise shuts down
sufficiently fast when the solution approaches zero, the region where the regularizing effect of the second order operator
fades. For δ̄ ≥ 0, we set S̄(δ̄,m) to be set of continuous functions σ : I ×R→ R such that for all x ∈ I , r, r̄ ∈ R,

∣

∣σ(x, r) − σ(x, r̄)
∣

∣ ≤ δ̄
∣

∣r [ m+1
2 ] − r̄ [ m+1

2 ]∣
∣. (2.5)

Under the additional assumption that σ also belongs to S̄(δ̄,m), we have the next theorem.

Proposition 2.8. Let σ ∈ S(δ,m)∩ S̄(δ̄,m) with δ < 6 and δ̄ ≤ 24 m

(m+1)2 , and let u(0) ∈ L2
ωH−1

x be F0-measurable. Then

there exists a unique strong solution to (1.1).

Remark 2.9. In continuation of Remark 2.6, σ ∈ S̄(δ̄,m) requires higher exponents: if σ(r) = r [m′] around r = 0, then
one needs m′ ≥ (m + 1)/2. For example, this excludes the linear multiplicative case σ(u) = u.

3. A priori estimates

In this section we derive a priori estimates for approximations of (1.1). Take some ν ∈ (0,1], n ∈ N, and consider the
equation

dv = ∂2
x

(

νv + v[m])dt +
n

∑

k=1

σ(x, v)ek dwk
t (3.1)

on Q with homogeneous Dirichlet boundary conditions and with initial condition v0 = v(0).

Assumption 3.1. The initial condition v(0) belongs to the space Lm+1
ω,x , is F0-measurable, and σ is Lipschitz continuous.
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Definition 3.2. An L2-solution of equation (3.1) is an F-adapted, continuous L2
x -valued process v, such that almost

surely v, v[m] ∈ L2
t H

1
x and such that for all φ ∈ H 1

x we have with probability one

(

v(t),φ
)

=
(

v(0), φ
)

−
∫ t

0

(

∂x

(

νv(s) + v[m](s)
)

, ∂xφ
)

ds +
n

∑

k=1

∫ t

0

(

σ
(

v(s)
)

ek, φ
)

dwk
s .

for all t ∈ [0, T ].

By [10, Theorem 3.1, Remark 5.6], under Assumption 3.1, equation (3.1) admits an L2-solution v. Moreover, on the
basis of Itô’s formula for the function u �→ ‖u‖2

L2
x
, one can easily derive (see in the Appendix) that for p ∈ [0,m + 1]

E‖v‖p

CtL2
x
+E‖v‖p

L2
t H

1
x

+E
∥

∥v[ m+1
2 ]∥

∥

p

L2
t H

1
x

< ∞. (3.2)

The main result of this section is the following.

Lemma 3.3. For any γ ∈ [−1,−1/2) there exists a δ0 = δ0(γ,m) such that the following holds. Let σ and v(0) satisfy

Assumption 3.1 and σ ∈ S(δ,m) with δ ≤ δ0. Then, for all p ∈ [0,m + 1] the solution v of (3.1) satisfies the bound

E‖v‖p

L∞
t H

γ
x

+E
∥

∥v[ m+1
2 ]∥

∥

p

L2
t H

1+γ
x

≤ N
(

E
∥

∥v(0)
∥

∥

p

H
γ
x

+ 1
)

, (3.3)

with some N = N(γ,p,m,K,T ). Moreover, with the notation γ ′ = 2(1+γ )
m+1 , one also has the bound

E‖v‖p(m+1)/2

Lm+1
t W

γ ′,m+1
x

≤ N
(

E
∥

∥v(0)
∥

∥

p

H
γ
x

+ 1
)

. (3.4)

First we collect some auxiliary statements. The following lemma is part of [24, Lem 8.4] with R in place of I and
(1 − 
) in place of (−
). In our setting the proof is particularly short, so we include it for the sake of completeness.

Lemma 3.4. For all γ̃ < −1/2 there exists a constant N = N(γ̃ ) such that for all u ∈ L2
x one has

∑

k∈N

∥

∥uek
∥

∥

2
H

γ̃
x

≤ N‖u‖2
L2

x
. (3.5)

Moreover, one has N(−1) = 1/3.

Proof. By the definition of the norm in H
γ̃
x and Parseval’s identity we get

∑

k∈N

∥

∥uek
∥

∥

2
H

γ̃
x

=
∑

k∈N

∑

l∈N
λ

γ̃

l

∣

∣

(

uek, el
)∣

∣

2 =
∑

l∈N
λ

γ̃

l

∥

∥uel
∥

∥

2
L2

x
≤ N‖u‖2

L2
x
,

where we have used that for all l ∈N, ‖el‖L∞
x

=
√

2 and λl = (πl)2. �

Next is a bound to deduce the regularity of a function from the regularity of its monotone power.

Lemma 3.5. Let u be such that u[m̃] ∈ H
γ̃
x with γ̃ ∈ [0,1/2) and m̃ ∈ (1,∞). Then u ∈ W

γ̃ /m̃,2m̃
x and there exists a

constant N = N(m̃) such that the following bound holds

‖u‖2m̃

W
γ̃ /m̃,2m̃
x

≤ N
∥

∥u[m̃]∥
∥

2
H

γ̃
x
. (3.6)

Proof. The γ̃ = 0 case is trivial. Recall the elementary inequality |a − b|2m̃ ≤ 22m̃|a[m̃] − b[m̃]|2. Indeed, this can be
seen by noticing that the function φ(r) = r [m̃] is odd, increasing, and has increasing derivative on [0,∞). Therefore for
0 ≤ a ≤ b, one has φ(b) − φ(a) =

∫ b

a
φ′(r) dr ≥

∫ b−a

0 φ′(r) dr = φ(b − a), while for a ≤ 0 ≤ b one has φ(b − a) ≤
2m̃ max(φ(b),φ(−a)) ≤ 2m̃(φ(b) − φ(a)). Therefore, in the case γ̃ ∈ (0,1/2), using the equivalent norm (1.4), to write

‖u‖2m̃

W
γ̃ /m̃,2m̃
x

≤ N‖u‖2m̃

L2m̃
x

+ N

∫

I×I

|u(x) − u(y)|2m̃

|x − y|1+2m̃(γ̃ /m̃)
dy dx
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≤ N
∥

∥u[m̃]∥
∥

2
L2

x
+ N

∫

I×I

|u(x)[m̃] − u(y)[m̃]|2

|x − y|1+2γ̃
dy dx

≤ N
∥

∥u[m̃]∥
∥

2
W

γ̃ ,2
x

≤ N
∥

∥u[m̃]∥
∥

2
H

γ̃
x
. �

The next tool is the Stroock–Varopoulos lemma. It appears and is proved in various forms in the literature, so for
the convenience of the reader we give the proof in the appendix, following the standard proof strategy (see e.g. [11,
Section 5]) based on the Cafarelli–Silvestre extension [8]. An alternative, more elementary strategy can be found in e.g.
[5, App B2].

Lemma 3.6 (Stroock–Varopoulos). Let β ∈ (0,1/2) and let f,g ∈ C1(R) satisfy f ′ = (g′)2. Then, for any u ∈ H 1
x such

that f (u), g(u) ∈ H 1
x , we have

∫

I

f (u)(−
)βudx ≥
∫

I

∣

∣(−
)β/2g(u)
∣

∣

2
(x) dx. (3.7)

The particular form that we use below is

∫

I

u[m](−
)βudx ≥
4m

(m + 1)2

∫

I

∣

∣(−
)β/2u[ m+1
2 ]∣

∣

2
(x) dx, (3.8)

the more general form (3.7) can be useful for general nonlinear leading operators, for example in the context of Re-
mark 2.7. We can now prove the a priori bounds (3.3)–(3.4).

Proof of Lemma 3.3. We test the equation with el and apply Itô’s formula for the square to obtain

∣

∣

(

v(s), el
)∣

∣

2 =
∣

∣

(

v(0), el
)∣

∣

2 −
∫ s

0
2λl

(

νv(r) + v[m](r), el
)(

v(r), el
)

dr

+
n

∑

k=1

∫ s

0

∣

∣

(

σ
(

v(r)
)

ek, el
)∣

∣

2
dr

+
n

∑

k=1

2
∫ s

0

(

σ
(

v(r)
)

ek, el
)(

v(r), el
)

dwk
r .

We multiply the above equality with λ
γ

l and we sum over l to obtain

∥

∥v(s)
∥

∥

2
H

γ
x

=
∥

∥v(0)
∥

∥

2
H

γ
x

− 2ν

∫ s

0

(

v(r), (−
)1+γ v(r)
)

dr

− 2
∫ s

0

(

v[m](s), (−
)1+γ v(r)
)

dr +
∫ s

0

n
∑

k=1

∥

∥σ
(

v(r)
)

ek
∥

∥

2
H

γ
x

dr

+
n

∑

k=1

2
∫ s

0

(

(−
)γ /2v(r), (−
)γ /2(σ
(

v(r)
)

ek
))

dwk
r . (3.9)

Denote the last term by Ms . The first integral on the right-hand side is nonnegative so we simply bound it by 0. For the
second one we apply (3.8) (with β = γ ) and for the third we use Lemma 3.4 (with γ̃ = γ ). We therefore get

∥

∥v(s)
∥

∥

2
H

γ
x

≤
∥

∥v(0)
∥

∥

2
H

γ
x

−
8m

(m + 1)2

∥

∥v[ m+1
2 ]∥

∥

2
L2([0,s];H 1+γ

x )
+ N̄(γ )

∥

∥σ(v)
∥

∥

2
L2([0,s];L2

x )
+ Ms

≤
∥

∥v(0)
∥

∥

2
H

γ
x

−
8m

(m + 1)2

∥

∥v[ m+1
2 ]∥

∥

2
L2([0,s];H 1+γ

x )

+ N̄(γ )δ‖v‖m+1
Lm+1([0,s];Lm+1

x )
+ N + Ms .
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Notice that 8m

(m+1)2 > 2
m

. Assuming δ is small enough so that N̄(γ )δ ≤ 1
m

, we obtain

∥

∥v(s)
∥

∥

2
H

γ
x

+
1

m

∥

∥v[ m+1
2 ]∥

∥

2
L2([0,s];H 1+γ

x )
≤

∥

∥v(0)
∥

∥

2
H

γ
x

+ N + Ms . (3.10)

The quadratic variation process 〈M〉s of the local martingale Ms is given by

〈M〉s = 4
∫ s

0

n
∑

k=1

(

(−
)γ /2v(r), (−
)γ /2(σ
(

v(r)
)

ek
))2

dr

≤ 4
∫ s

0

∥

∥v(r)
∥

∥

2
H

γ
x

∑

k∈N

∥

∥σ
(

v(r)
)

ek
∥

∥

2
H

γ
x

dr

≤ 4N̄(γ )

∫ s

0

∥

∥v(r)
∥

∥

2
H

γ
x

∥

∥σ
(

v(r)
)∥

∥

2
L2

x
dr,

where we used Lemma 3.4 as before. Using the bound (2.1) to bound ‖σ(v(r))‖2
L2

x
, we obtain the bound

〈M〉s ≤ 4N̄(γ )δ‖v‖2
L∞([0,s];H γ

x )
‖v‖m+1

Lm+1([0,s];Lm+1
x )

+ N‖v‖2
L2([0,s];H γ

x )
(3.11)

In particular, by (3.2), Ms is a martingale. Denote Xs = ‖v‖L∞([0,s],H γ
x ) and Ys = ‖v[ m+1

2 ]‖
L2([0,s];H 1+γ

x )
. By (3.10), (3.11)

and the Burkholder–Gundy–Davis and Jensen inequalities, we have for any stopping time τ ≤ T ,

EXm+1
s∧τ +

1

m(m+1)/2
EYm+1

s∧τ ≤ NE
∥

∥v(0)
∥

∥

m+1
H

γ
x

+ N + N

∫ s

0
EXm+1

r∧τ dr

+ Ñ(γ,m)δ(m+1)/4
E

(

X
(m+1)/2
s∧τ

1

m(m+1)/4
Y

(m+1)/2
s∧τ

)

.

By (3.2), we have that EXm+1
s∧τ + EYm+1

s∧τ < ∞. Therefore, assuming δ is small enough so that Ñ(p,m)δ(m+1)/4 ≤ 1, we
can apply Young’s inequality for the last term and absorb it in the left-hand side. We get

EXm+1
s∧τ +EYm+1

s∧τ ≤ NE
∥

∥v(0)
∥

∥

m+1
H

γ
x

+ N + N

∫ s

0
EXm+1

r∧τ dr.

Applying Gronwall’s inequality for the function s �→ EXm+1
s∧τ +EYm+1

s∧τ , yields

EXm+1
τ +EYm+1

τ ≤ NE
∥

∥v(0)
∥

∥

m+1
H

γ
x

+ N. (3.12)

By choosing τ = T we have (3.3) for p = m + 1.
The case p < m+1 then follows by Lenglart’s inequality (see, e.g., [33, Prop IV.4.7 and Ex IV.4.31/1]). To avoid clash

of notation, we use boldface for the objects in [33], and then chose Xt = Xm+1
t∧T + Ym+1

t∧T , At = N(‖v(0)‖m+1
H

γ
x

+ 1), and

k = p/(m + 1). The bound (3.12) then yields EXτ ≤ EAτ , and in fact one can easily obtain E1BXτ ≤ E1BAτ for any
F0-measurable event B by following the exact same argument. Therefore, E(Xτ |F0) ≤ E(Aτ |F0), which is precisely the
condition of Lenglart’s inequality, and the conclusion is EXk

T ≤ NEAk
T , which is (3.3) in disguise.

Finally, the bound (3.4) follows by applying Lemma 3.5 with γ̃ = 1 + γ , m̃ = (m + 1)/2. �

Corollary 3.7. Take γ ∈ (−1,−1/2). Let σ and v(0) satisfy Assumption 3.1 and σ ∈ S(δ,m) with δ ≤ δ0. Then, there

exists a c = c(γ,m) > 1 such that

‖v‖
L

c(m+1)
ω,t,x

≤ N
(∥

∥v(0)
∥

∥

Lm+1
ω H

γ
x

+ 1
)

(3.13)

with some N = N(γ,p,m,K,T ).

Proof. Recall the notation γ ′ = 2(1+γ )
m+1 from Lemma 3.3. By the standard interpolation properties of Lp spaces and (1.5)

‖v‖
L

(m+1)2
2 −ε1(θ)

ω L
m+1+ε2(θ)
t W

γ ′−ε3(θ),m+1−ε4(θ)
x

≤ N‖v‖1−θ

Lm+1
ω L∞

t W
γ,2
x

‖v‖θ

L

(m+1)2
2

ω Lm+1
t W

γ ′,m+1
x
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= N‖v‖1−θ

Lm+1
ω L∞

t H
γ
x

‖v‖θ

L

(m+1)2
2

ω Lm+1
t W

γ ′,m+1
x

,

where in the last step we used Proposition 1.1(iii) and (iv). Here θ ∈ (0,1) and εi(θ) > 0 such that εi(θ) → 0 as θ → 1.
Since γ > −1 implies γ ′ > 0, we can choose θ sufficiently close to 1 such that

(m + 1)2

2
− ε1(θ) > m + 1, γ ′ − ε3(θ) −

1

m + 1 − ε4(θ)
> −

1

m + 1
.

By Sobolev’s embedding we then see that for some c > 1,

‖v‖
L

c(m+1)
ω,t,x

≤ N‖v‖
L

(m+1)2
2 −ε1(θ)

ω L
m+1+ε2(θ)
t W

γ ′−ε3(θ),m+1−ε4(θ)
x

.

On the other hand, (3.3)–(3.4) yields

‖v‖1−θ

Lm+1
ω L∞

t H
γ
x

‖v‖θ

L

(m+1)2
2

ω Lm+1
t W

γ ′,m+1
x

≤ N
(∥

∥v(0)
∥

∥

Lm+1
ω H

γ
x

+ 1
)(1−θ)+θ 2

m+1 ,

and putting the above bounds together we readily get (3.13). �

3.1. Time regularity

The following is a simple variant of [14, Lem 2.1]. While in [14] only the q ′ = q case is stated, the form below is
easily obtained via Lenglart’s inequality similarly to the end of the proof of Lemma 3.3, with the choice Xr = ‖t �→
∑

k∈N
∫ t

0 f k(s) dwk
s ‖

q

Wα,q ([0,r∧T ],H), Ar = ‖f ‖q

Lq ([0,r∧T ],ℓ2(H))
.

Lemma 3.8. Let H be a separable Hilbert space, q ≥ 2, and f = (f k)∞k=1 be a progressively measurable ℓ2(H)-valued

process such that f ∈ Lq(
×[0, T ], ℓ2(H)). Then, for all α < 1/2 and q ′ ∈ [0, q] there exists N = N(α,q, q ′) such that

E‖t �→
∑

k∈N

∫ t

0
f k(s) dwk

s ‖
q ′

Wα,q ([0,T ],H)
≤ NE‖f ‖q ′

Lq ([0,T ],ℓ2(H))
.

Corollary 3.9. Take γ ∈ (−1,1/2). Let σ and v(0) satisfy Assumption 3.1 and σ ∈ S(δ,m) with δ ≤ δ0. Let, furthermore,
α < 1/2, β > 5/2, and define the space

X = W 1, m+1
m

(

[0, T ];H−β
x

)

+ Wα,2c
(

[0, T ];H−1
x

)

, (3.14)

where c is as in Corollary 3.7. Then, the solution v of (3.1) satisfies the bound

E‖v‖
m+1
m

X
≤ N

(

E
∥

∥v(0)
∥

∥

m+1
H

γ
x

+ 1
)

(3.15)

with some N = N(α,β,m,K,T ).

Proof. We apply Lemma 3.8 with f k(s) = σ(v(s))ek1k≤n, H = H−1
x , q = 2c, and q ′ = 2, to get that

E‖s �→
n

∑

k=1

∫ s

0
σ
(

v(r)
)

ek dwk
r ‖2

W
α,2c
t H−1

x

≤ NE

(

∫ T

0

(

n
∑

k=1

∥

∥σ
(

v(s)
)

ek
∥

∥

2
H−1

x

)c

ds

)1/c

≤ N
(

E
∥

∥v[ m+1
2 ]∥

∥

2
L2c

t L2
x
+ 1

)

= N
(

E‖v‖m+1
L

c(m+1)
t Lm+1

x

+ 1
)

, (3.16)
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where we have used Lemma 3.4 and the growth of σ in the last inequality. On the other hand, one easily sees that

E‖s �→
∫ s

0



(

νv(r) + v[m](r)
)

dr‖
m+1
m

W
1, m+1

m
t H

−β
x

≤ NE

∫ T

0

∥

∥

(

νv(r) + v[m](r)
)∥

∥

m+1
m

H
−β
x

dt

≤ NE

∫ T

0

(

∑

k∈N
λ

2−β
k

(

νv(r) + v[m](r), ek
)2

)
m+1
2m

dt

≤ N
(

E
∥

∥v[ m+1
2 ]∥

∥

2
L2

t,x
+ 1

)

(

∑

k∈N
k4−2β

)
m+1
2m

. (3.17)

Since β > 5/2, the last sum is finite. By (3.13), the right-hand-side of both (3.16) and (3.17) are bounded as in (3.15),
hence the proof is finished. �

4. Limiting procedure

Proof of Theorem 2.5. Let σn : I × R → R be bounded smooth functions with bounded derivatives such that σn → σ

uniformly on compacts as n → ∞ and for all x ∈ I , r ∈R

sup
n

∣

∣σn(x, r)
∣

∣ ≤ K + δ|r|(m+1)/2, (4.1)

and let u
(0)
n be F0-measurable random variables with E‖u(0)

n ‖m+1
Lm+1

x

< ∞ and

lim
n→∞

E
∥

∥u(0)
n − u(0)

∥

∥

m+1
H

γ
x

= 0. (4.2)

Let un be an L2-solution of

dun = ∂2
x

(

n−1un + u[m]
n

)

dt +
n

∑

k=1

σn(x,un)e
k dwk,

un(0) = u(0)
n .

(4.3)

Take α ∈ (1/(2c),1/2), where c is as in Corollary 3.7, β ∈ (5/2,3), and set X as in (3.14). Let us set

Y = Lm+1
t W

γ ′,m+1
x ∩ W

α, m+1
m

t H−β
x ,

where γ ′ = 2(1 + γ )/(m + 1), as in Lemma 3.3. By [14, Thms 2.1–2.2] we have the compact embeddings

Y ⋐ Lm+1
t,x , X ⋐ CtH

−3
x . (4.4)

Therefore,

Y ∩X ⋐ Lm+1
t,x ∩ CtH

−3
x =:Z.

Notice that X ⊂ W
α, m+1

m
t H

−β
x . Therefore, by (3.4) and (3.15) we have the estimate

E‖un‖
m+1
m

X∩Y ≤ N
(

E
∥

∥u(0)
n

∥

∥

m+1
H

γ
x

+ 1
)

≤ N
(

E
∥

∥u(0)
∥

∥

m+1
H

γ
x

+ 1
)

, (4.5)

which in turn implies that the laws of (un)n∈N on Z are tight. Let us set

w(t) =
∑

k∈N

1
√

2k
wk(t)ek,
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where (ek)k∈N is the standard orthonormal basis of ℓ2. By Prokhorov’s theorem, there exists a (non-relabelled) subse-
quence (un)n such that the laws of (un,w) on Z × C([0, T ];ℓ2) are weakly convergent. By Skorohod’s representa-
tion theorem, there exist Z × C([0, T ];ℓ2)-valued random variables (ū, w̄), (ūn, w̄n), for n ∈ N, on a probability space
(
̄, F̄, P̄), such that in Z × C([0, T ];ℓ2), P̄-almost surely

(ūn, w̄n) → (ū, w̄), (4.6)

as n → ∞, and for each n ∈ N, as random variables in Z × C([0, T ];ℓ2)

(ūn, w̄n)
d= (un,w). (4.7)

Moreover, upon passing to a subsequence, we may assume that

ūn → ū for almost all (ω̄, t, x). (4.8)

Let (F̄t )t∈[0,T ] be the augmented filtration of Gt := σ(ū(s), w̄(s); s ≤ t), and let w̄k(t) :=
√

2k(w̄(t), ek)ℓ2 . It is easy to
see that w̄k , k ∈ N, are independent, standard, real-valued F̄t -Wiener processes (see for example the argument in [10,
Proof of Prop. 5.5]).

We now show that ū is a weak solution. Notice that by virtue of the a priori estimates (3.3)–(3.4) and (4.7) we have

Ē‖ūn‖2
L∞

t H
γ
x

+ Ē
∥

∥ū
[ m+1

2 ]
n

∥

∥

2
L2

t H
1+γ
x

+ Ē‖ūn‖m+1

Lm+1
t W

γ ′,m+1
x

≤ N
(

E
∥

∥u(0)
∥

∥

2
H

γ
x

+ 1
)

, (4.9)

which, by the lower semicontinuity of the norms, gives

Ē‖ū‖2
L∞

t H
γ
x

+ Ē
∥

∥ū[ m+1
2 ]∥

∥

2
L2

t H
1+γ
x

+ Ē‖ū‖m+1

Lm+1
t W

γ ′,m+1
x

≤ N
(

E
∥

∥u(0)
∥

∥

2
H

γ
x

+ 1
)

. (4.10)

Let us set

M(ū, t) := ū(t) − ū(0) −
∫ t

0



(

ū[m](s)
)

ds,

and for v ∈ {un, ūn},

Mn(v, t) := v(t) − v(0) −
∫ t

0



(

n−1v̄(s) + v̄[m](s)
)

ds.

Fix an arbitrary l ∈ N. We will show that for any φ ∈ H−3
x , the processes

M1(ū, t) :=
(

M(ū, t), φ
)

H−3
x

,

M2(ū, t) :=
(

M(ū, t), φ
)2
H−3

x
−

∫ t

0

∑

k∈N

∣

∣

(

σ
(

ū(s)
)

ek, φ
)

H−3
x

∣

∣

2
ds, (4.11)

M̄3(ū, t) := w̄l(t)
(

M(ū, t), φ
)

H−3
x

−
∫ t

0

(

σ
(

ū(s)
)

el, φ
)

H−3
x

ds

are continuous F̄t -martingales. We first show that they are continuous Gt -martingales. Assume for now that φ ∈ C∞
c (I ).

For, i = 1,2,3 and v ∈ {un, ūn}, let us also define the processes M i
n(v, t) similarly to M i(ū, t), but with ū,M(ū, t), σ (ū)

replaced by v,Mn(v, t), σn(v), and the corresponding summation in (4.11) going only up to n. Let us fix s < t and let V

be a bounded, continuous function on C([0, s];H−3
x ) × C([0, s];ℓ2). We have that

(

Mn(un, t), φ
)

H−3
x

=
n

∑

k=1

∫ t

0

(

σn

(

un(s)
)

ek, φ
)

H−3
x

dwk
s .

It follows that M i
n(un, t) are continuous Ft -martingales. Hence, for i = 1,2,3,

EV (un|[0,s],w|[0,s])
(

M i
n(un, t) − M i

n(un, s)
)

= 0,
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which combined with (4.7) gives

ĒV (ūn|[0,s], w̄n|[0,s])
(

M i
n(ūn, t) − M i

n(ūn, s)
)

= 0. (4.12)

Next, notice that P̄-almost surely

∫ T

0

∣

∣

(



(

n−1ūn(t) + ū[m]
n (t) − ū[m](t)

)

, φ
)

H−3
x

∣

∣dt

=
∫ T

0

∣

∣

∣

∣

∑

k∈N
λ1−3

k

(

n−1ūn(t) + ū[m]
n (t) − ū[m](t), ek

)(

φ, ek
)

∣

∣

∣

∣

dt

≤ N‖φ‖L∞
x

(

n−1‖ūn‖L1
t,x

+
∥

∥ū[m]
n − ū[m]∥

∥

L1
t,x

)

→ 0, (4.13)

where the convergence follows from (4.8) and the bounds (4.9). Hence, by (4.13) and (4.6) we see that for each t ∈ [0, T ],
P̄-almost surely

(

Mn(ūn, t), φ
)

H−3
x

→
(

M(ū, t), φ
)

H−3
x

. (4.14)

In addition, it is easy to see that

Ē

∫ T

0

∣

∣

∣

∣

∣

n
∑

k=1

(

σn

(

ūn(t)
)

ek, φ
)2
H−3

x
−

∑

k∈N

(

σ
(

ū(t)
)

ek, φ
)2
H−3

x

∣

∣

∣

∣

∣

dt

≤ N‖φ‖2
H−3

x
Ē

∫ T

0

∞
∑

k=n+1

∥

∥σ
(

ū(t)
)

ek
∥

∥

2
H−3

x
dt

+ N‖φ‖2
H−3

x
Ē

∫ T

0

∥

∥σ
(

ū(t)
)

− σn

(

ūn(t)
)∥

∥

L2
x

∥

∥σ
(

ū(t)
)

+ σn

(

ūn(t)
)∥

∥

L2
x
dt, (4.15)

where we have used also Lemma 3.4. The first term of the right hand side converges to zero as n → ∞ by virtue of
Lemma 3.4, (2.1) and (4.10). For the second term we have

∣

∣

∣

∣

Ē

∫ T

0

∥

∥σ
(

ū(t)
)

− σn

(

ūn(t)
)∥

∥

L2
x

∥

∥σ
(

ū(t)
)

+ σn

(

ūn(t)
)∥

∥

L2
x
dt

∣

∣

∣

∣

2

≤ N Ē
∥

∥σ(ū) − σn(ūn)
∥

∥

2
L2

t,x

(

Ē‖ū‖m+1
Lm+1

t,x

+ Ē‖ūn‖m+1
Lm+1

t,x

+ 1
)

≤ N Ē
∥

∥σ(ū) − σn(ūn)
∥

∥

2
L2

t,x

(

E
∥

∥u(0)
∥

∥

2
H

γ
x

+ 1
)

,

where we have used (2.1), (4.1) and the bounds (4.9)–(4.10). By (4.8), the uniform convergence on compacts of σn to σ

and the continuity of σ we have that |σn(ūn) − σ(ū)|2 → 0 for almost every (ω̄, t, x). Moreover, by (2.1) and (4.1), we
have

∣

∣σn(ūn) − σ(ū)
∣

∣

2 ≤ N
(

1 + |ūn|m+1 + |ū|m+1).

Hence, to conclude that the right hand side of (4.15) converges to zero, it suffices to check that |ūn|m+1 are uniformly
integrable in (ω̄, t, x). This follows immediately from (3.13) and (4.7). Using (4.14) we can conclude that M2

n(ūn, t) →
M2(ū, t) in probability. Similarly one shows that M3

n(ūn, t) → M3(ū, t). Therefore, for each t ∈ [0, T ] we have that
M i

n(ūn, t) → M i(ū, t) in probability. Moreover, with c > 1 from Corollary 3.7, we have

sup
n∈N

Ē
∣

∣

(

M(ūn, t), φ
)

H−3
x

∣

∣

2c = sup
n∈N

E

∣

∣

∣

∣

∣

n
∑

k=1

∫ t

0

(

σ
(

un(s)
)

ek, φ
)

H−3
x

dwk
s

∣

∣

∣

∣

∣

2c

≤ N‖φ‖2c

H−3
x

sup
n∈N

(

1 + ‖un‖c(m+1)

L
c(m+1)
ω,t,x

)

< ∞
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and

sup
n∈N

Ē

∣

∣

∣

∣

∣

∫ t

0

n
∑

k=1

(

σ
(

ūn(s)
)

ek, φ
)2
H−3

x
ds

∣

∣

∣

∣

∣

c

≤ N‖φ‖2c

H−3
x

sup
n∈N

(

1 + ‖ūn‖c(m+1)

L
c(m+1)
ω̄,t,x

)

< ∞,

from which one deduces that for each i = 1,2,3 and t ∈ [0, T ], M i
n(ūn, t) are uniformly integrable in ω̄. Hence, we can

pass to the limit in (4.12) to obtain, for i = 1,2,3,

ĒV (ū|[0,s], w̄|[0,s])
(

M i(ū, t) − M i(ū, s)
)

= 0. (4.16)

In addition, using the continuity of M i(ū, t) in φ, uniform integrability, and the fact that C∞
c (I ) is dense in H−3

x , it follows
that (4.16) holds also for all φ ∈ H−3

x . Hence, for all φ ∈ H−3
x (I ), i = 1,2,3, one can see that M̄ i(ū, t) are continuous

Gt -martingales having finite c-moments. In particular, by Doob’s maximal inequality, they are uniformly integrable (in t ),
which combined with continuity (in t ) implies that they are also F̄t -martingales. By [23, Prop. A.1] we obtain that almost
surely, for all φ ∈ H−3

x , t ∈ [0, T ]

(

ū(t), φ
)

H−3
x

=
(

ū(0),φ
)

H−3
x

+
∫ t

0

(



(

ū[m](s)
)

, φ
)

H−3
x

ds

+
∑

k∈N

∫ t

0

(

σ
(

ū(s)
)

ek, φ
)

H−3
x

dw̄k
s . (4.17)

Notice that by (4.2), (4.7) and (4.6), it follows that ū(0)
d= u(0) and consequently ū(0) ∈ Lm+1(
̄;H γ

x ). Also, from (4.10)
it follows that ū ∈ Lm+1(
̄T ;Lm+1

x ). Choosing φ = (−
)2ψ in (4.17) for ψ ∈ C∞
c (I ), we obtain that for almost all

(ω̄, t)

(

ū(t),ψ
)

H−1
x

=
(

ū(0),ψ
)

H−1
x

−
∫ t

0

(

ū[m](s),ψ
)

L2
x
ds

+
∑

k∈N

∫ t

0

(

σ
(

ū(s)
)

ek,ψ
)

H−1
x

dw̄k
s .

By [25, Thm. 3.2] we have that ū is an F̄-adapted, continuous H−1
x -valued process. This shows that {(
̄, F̄, P̄), F̄,

(w̄k)k∈N, ū} is a weak solution.
Concerning the claimed bounds:
(i) Estimate (2.2) is obtained in (4.10).
(ii) For (2.3) we have the following. Notice that due to (3.9), the quantity E‖ūn(t)‖2

H
γ
x

is differentiable in t , and

similarly to the argumentation for (3.10), one sees that it satisfies

∂tE
∥

∥un(t)
∥

∥

2
H

γ
x

≤ −
1

m
E

∥

∥u
[ m+1

2 ]
n (t)

∥

∥

2
H

1+γ
x

+ N,

where N depends on γ,m,K and T . By the inequalities

E
∥

∥u
[ m+1

2 ]
n (t)

∥

∥

2
H

1+γ
x

≥ E
∥

∥u
[ m+1

2 ]
n (t)

∥

∥

2
L2

x
≥

(

E
∥

∥un(t)
∥

∥

2
L2

x

)(m+1)/2 ≥
(

E
∥

∥un(t)
∥

∥

2
H

γ
x

)(m+1)/2
,

it follows that g(t) := E‖un(t)‖2
H

γ
x

satisfies for almost all t

∂tg(t) +
1

m

∣

∣g(t)
∣

∣

(m+1)/2 ≤ N.

This implies that (see, e.g., [17, Lemma 5.1]) with a constant N , depending only on γ,m,K and T , we have for all
t ∈ [0, T ]

E
∥

∥un(t)
∥

∥

2
H

γ
x

≤ Nt−2/(m−1)

Inequality (2.3) follows from the above, again by (4.7) and lower semicontinuity of the norms.
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(iii) As before, it suffices to check the bound for un. Since X embeds continuously into C
ε0
t H−3

x for some ε0 > 0,
for ε ≥ γ + 3 the statement follows from (4.5), with ε′ = ε0. Otherwise let θ ∈ (0,1) be the number defined by γ − ε =
(1 − θ)γ − 3θ . Then by interpolation (see Remark 1.2)

∥

∥un(t) − un(s)
∥

∥

H
γ−ε
x

≤
∥

∥un(t) − un(s)
∥

∥

1−θ

H
γ
x

∥

∥un(t) − un(s)
∥

∥

θ

H−3
x

≤ ‖un‖1−θ

L∞
t H

γ
x
|t − s|θε0‖un‖θ

C
ε0
t H−3

x
.

The statement therefore follows once again from (4.5) with ε′ = θε0, and (4.9), (4.7). �

5. Strong well-posedness in H
−1

Proof of Proposition 2.8. In the following we denote c0 = 1/3, which is N(−1) from Lemma 3.4, so we have δ < 2
c0

and δ̄ ≤ 8m

c0(m+1)2 . We verify the assumptions of [25]. Consider the Gelfand triple Lm+1
x ⊂ H−1

x ≡ (H−1
x )∗ ⊂ (Lm+1

x )∗.

The inner product in H−1
x as well as the duality between Lm+1

x and (Lm+1
x )∗ is denoted by 〈·, ·〉, so that the two possible

interpretations of 〈f,g〉 with f ∈ Lm+1
x and g ∈ H−1

x agree. The operator A : u �→ 
u[m] maps Lm+1
x to (Lm+1

x )∗ and
B = (Bk)k∈N : u �→ (σ (·, u)ek)k∈N maps Lm+1

x to ℓ2(H−1
x ). We now recall and verify the assumptions from [25] in a

somewhat more restrictive form than therein, which will suffice for our purposes. It is assumed that there exist μ > 0,
M ∈ R, such that for all v, v1, v2 ∈ Lm+1

x the properties (A1)–(A5) below hold:

(A1) Semicontinuity of A: the function 〈v,A(v1 + λv2)〉 is continuous in λ ∈R.

This is a standard fact for the porous medium operator, see [32, Ex. 4.1.11].
(A2) Monotonicity of (A,B):

2〈v1 − v2,Av1 − Av2〉 +
∑

k∈N

∥

∥Bkv1 − Bkv2
∥

∥

2
H−1

x
≤ 0.

First we use Lemma 3.4 to write
∑

k∈N

∥

∥Bkv1 − Bkv2
∥

∥

2
H−1

x
=

∑

k∈N

∥

∥

(

σ(v1) − σ(v2)
)

ek
∥

∥

2
H−1

x
≤ c0

∥

∥σ(v1) − σ(v2)
∥

∥

2
L2

x
. (5.1)

Next, observe the elementary inequality: for f,g : R→R satisfying f ′ = (g′)2

(a − b)
(

f (a) − f (b)
)

= (a − b)2 1

a − b

∫ a

b

f ′(c) dc = (a − b)2 1

a − b

∫ a

b

(

g′(c)
)2

dc

≥ (a − b)2
(

1

(a − b)

∫ a

b

g′(c) dc

)2

=
∣

∣g(a) − g(b)
∣

∣

2

for a > b, and by symmetry, for all a, b ∈ R. This in particular implies

(a − b)
(

a[m] − b[m]) ≥
4m

(m + 1)2

∣

∣a[ m+1
2 ] − b[ m+1

2 ]∣
∣

2
, a, b ∈R. (5.2)

By (5.1), (2.5), and (5.2) we therefore have

2〈v1 − v2,Av1 − Av2〉 +
∑

k∈N

∥

∥Bkv1 − Bkv2
∥

∥

2
H−1

x

≤
∫

I

−2(v1 − v2)
(

v
[m]
1 − v

[m]
2

)

+ c0
∣

∣σ(v1) − σ(v2)
∣

∣

2
dx

≤
∫

I

−2(v1 − v2)
(

v
[m]
1 − v

[m]
2

)

+ c0δ̄
∣

∣v
[ m+1

2 ]
1 − v

[ m+1
2 ]

2

∣

∣

2
dx

≤ 0,

where in the last step we used δ̄ ≤ 8m

c0(m+1)2 .
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(A3) Coercivity of (A,B):

2〈v,Av〉 +
∑

k∈N

∥

∥Bkv
∥

∥

2
H−1

x
≤ −μ‖v‖m+1

Lm+1
x

+ M.

Using Lemma 3.4 similarly as above, we can write

2〈v,Av〉 +
∑

k∈N

∥

∥Bkv
∥

∥

2
H−1

x
≤

∫

I

(

−2|v|m+1 + c0
∣

∣σ(v)
∣

∣

2)
dx

≤ (−2 + c0δ)‖v‖m+1
Lm+1

x

+ 2c0K.

We can therefore set μ = 2 − c0δ, which is positive by assumption.
(A4) Boundedness of the growth of A:

‖Av‖
(Lm+1

x )∗ ≤ M‖v‖m

Lm+1
x

.

This is also standard, see [32, Ex. 4.1.11].
(A5) E‖u(0)‖2

H−1
x

< ∞. This holds by assumption.

Invoking [25, Thms 2.1–2.2], the proof is complete. �

Appendix

Proof of (3.2) . Let R > 0 and set

τ :=
{

t > 0 :
∥

∥v(t)
∥

∥

L2
x
> R

}

∧ T .

By Itô’s formula for the function v �→ ‖v‖2
L2

x
, we have

∥

∥v(t ∧ τ)
∥

∥

2
L2

x
=

∥

∥v(0)
∥

∥

2
L2

x
+

n
∑

k=1

∫ t∧τ

0
2
(

v(s), σ
(

v(s)
)

ek
)

dwk
s

−
∫ t∧τ

0
2ν

∥

∥∂xv(s)
∥

∥

2
L2

x
+ 2

∥

∥∂xv
[ m+1

2 ](s)
∥

∥

2
L2

x
−

n
∑

k=1

∥

∥σ
(

v(s)
)

ek
∥

∥

2
L2

x
ds.

Upon rearranging, raising to the power (m + 1)/2, and using the linear growth of σ , we get

∥

∥v(t ∧ τ)
∥

∥

m+1
L2

x
+ ‖1[0,t∧τ ]∂xv‖m+1

L2
t,x

+
∥

∥1[0,t∧τ ]∂xv
[ m+1

2 ]∥
∥

m+1
L2

x
≤ N

∥

∥v(0)
∥

∥

m+1
L2

x

+ N

∫ t∧τ

0

(

1 +
∥

∥v(s)
∥

∥

m+1
L2

x

)

ds +
n

∑

k=1

∣

∣

∣

∣

∫ t∧τ

0
2
(

v(s), σ
(

v(s)
)

ek
)

dwk
s

∣

∣

∣

∣

m+1
2

,

where N depends only on ν,m,n,T and the Lipschitz constant of σ . Taking suprema in time up to t ′, expectations, and
using the Burkholder–Gundy–Davis inequality and the linear growth of σ , we get

E sup
t≤t ′

∥

∥v(t ∧ τ)
∥

∥

m+1
L2

x
+E‖1[0,t ′∧τ ]∂xv‖m+1

L2
t,x

+
∥

∥1[0,t ′∧τ ]∂xv
[ m+1

2 ]∥
∥

m+1
L2

x

≤ NE
∥

∥v(0)
∥

∥

m+1
L2

x
+ NE

∫ t ′∧τ

0

(

1 +
∥

∥v(s)
∥

∥

m+1
L2

x

)

ds < ∞.

Gronwall’s lemma gives

E sup
t≤T

∥

∥v(t ∧ τ)
∥

∥

m+1
L2

x
+E‖1[0,τ ]∂xv‖m+1

L2
t,x

+
∥

∥1[0,τ ]∂xv
[ m+1

2 ]∥
∥

m+1
L2

x

≤ NE
∥

∥v(0)
∥

∥

m+1
L2

x
≤ NE

∥

∥v(0)
∥

∥

m+1
Lm+1

x
.
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Since N does not depend on R, by virtue of Fatou’s lemma we can replace τ by T , which shows (3.2) for p = m + 1.
Consequently, (3.2) also holds with any p < m + 1. �

Proof of Lemma 3.6. We assume that f ′ = (g′)2 is bounded, the assumptions of the lemma guarantee that the general
case follows from a standard approximation argument. Denote by X

2β

0 the completion of C∞
c (I ×[0,∞)) under the norm

‖φ‖2
X

2β
0

:= Cβ

∫ ∞

0

∫

I

y1−2β
∣

∣∇φ(x, y)
∣

∣

2
dx dy,

where Cβ > 0 is a normalizing constant such that (ii) below holds. For ψ ∈ H
β
x we denote by E(ψ) ∈ X

2β

0 the unique
solution of

⎧

⎪

⎨

⎪

⎩

−∇ · (y1−2β∇w) = 0 in I × (0,∞),

w = 0 on ∂I × (0,∞),

w = ψ on I × {0}.

The following facts are well known (see, [3,7]):

(i) The map E : H β
x → X

2β

0 is an isometry and for all φ ∈ X
2β

0 we have

‖Trφ‖
H

β
x

≤ ‖φ‖
X

2β
0

,

where Tr is the closure of the operator Tr0 defined on C∞
c (I × [0,∞)) by (Tr0 φ)(x) = φ(x,0).

(ii) For u ∈ H
β
x we have

Cβ

∫ ∞

0

∫

I

y1−2β∇E(u)∇φ dx dy =
∫

I

(−
)β/2u(−
)β/2 Trφ dx,

for all φ ∈ X
2β

0 .

Let u be as in the statement of Lemma 3.6. Since f (u) = Trf (E(u)), we get by applying (ii) with φ = f (E(u))

∫

I

f (u)(−
)βudx =
∫

I

(

(−
)β/2 Trf
(

E(u)
))(

(−
)β/2u
)

dx

= Cβ

∫ ∞

0

∫

I

y1−2β∇f
(

E(u)
)

∇E(u)dx dy

= Cβ

∫ ∞

0

∫

I

y1−2βf ′(E(u)
)∣

∣∇E(u)
∣

∣

2
dx dy. (A.1)

Using f ′ = (g′)2 and (i) we get

Cβ

∫ ∞

0

∫

I

y1−2βf ′(E(u)
)∣

∣∇E(u)
∣

∣

2
dx dy = Cβ

∫ ∞

0

∫

I

y1−2β
∣

∣∇g
(

E(u)
)∣

∣

2
dx dy

≥
∥

∥Trg
(

E(u)
)∥

∥

2
H

β
x
. (A.2)

By (A.1), (A.2), and the equality Trg(E(u)) = g(u), we get the claim. �
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