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ABSTRACT: Behavior of sediment gravity flows can be influenced by seafloor topography associated with salt
structures; this can modify the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced
deep-water successions are poorly imaged in seismic reflection data, and exhumed systems are rare, hence the detailed
sedimentology and stratigraphic architecture of these systems remains poorly understood.

The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque–Cantabrian Basin, Spain, were active
during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian–Albian, and are
flanked by deep-water carbonate (Aptian–earliest Albian Urgonian Group) and siliciclastic (middle Albian–
Cenomanian Black Flysch Group) successions. The study compares the depositional systems in two salt-influenced
minibasins, confined (Sollube basin) and partially confined (Jata basin) by actively growing salt diapirs, comparable to
salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, with progressive
rotation of bedding, beds that pinch out towards topography, soft-sediment deformation, variable paleocurrents, and
intercalated debrites indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens and thickens
upwards in response to regional axial progradation, which is modulated by laterally derived debrites from halokinetic
slopes. The variation in type and number of debrites in the Sollube and Jata basins indicates that the basins had
different tectonostratigraphic histories despite their proximity. In the Sollube basin, the routing systems were confined
between the two salt structures, eventually depositing amalgamated sandstones in the basin axis. Different facies and
architectures are observed in the Jata basin due to partial confinement.

Exposed minibasins are individualized, and facies vary both spatially and temporally in agreement with
observations from subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are
shown to be important modifiers of depositional systems, resulting in facies variability, remobilization of deposits, and
channelization of flows. The findings are directly applicable to the exploration and development of subsurface energy
reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic
imaging is challenging.

INTRODUCTION

The sedimentology and stratigraphic architecture of deep-water systems

deposited in unconfined basins (e.g., Johnson et al. 2001; Baas 2004;

Hodgson 2009; Prélat et al. 2009; Hodgson et al. 2011; Spychala et al.

2017), or in basins with static or relatively static topography (e.g., Kneller

et al. 1991; Haughton 1994; McCaffrey and Kneller 2001; Sinclair and

Tomasso 2002; Amy et al. 2004; Soutter et al. 2019), are reasonably well

established compared to those in basins influenced by active topography

(e.g., Hodgson and Haughton 2004; Cullen et al. 2019).

Seafloor topography is generated by a variety of geological processes,

including relief above mass-transport deposits (MTDs) (e.g., Ortiz-Karpf et

al. 2015, 2016; Soutter et al. 2018; Cumberpatch et al. 2021), syndeposi-

tional tectonic deformation (e.g., Hodgson and Haughton 2004; Kane et al.

2010) and salt diapirism (Fig. 1; e.g., Hodgson et al. 1992; Kane et al.

2012; Prather et al. 2012; Oluboyo et al. 2014). Salt-tectonic deformation

influences over 120 basins globally (Hudec and Jackson 2007), including

some of the world’s largest petroleum-producing provinces (e.g., Booth et

al. 2003; Oluboyo et al. 2014; Charles and Ryzhikov 2015; Rodriguez et

al. 2018, in press; Grant et al. 2019, 2020a, 2020b; Pichel et al. 2020).

Subsurface studies have shown that salt structures deforming the

seafloor can exert substantial control on the location, pathway, and

architecture of lobe, channel-fill, levee, and mass-transport deposits (Fig.

1; e.g., Mayall et al. 2006, 2010; Jones et al. 2012; Wu et al. 2020; Howlett

et al., in press). Turbidity currents that were ponded, diverted, deflected,

and confined by salt structures (Fig. 1) are well documented in the eastern
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Mediterranean (e.g., Clark and Cartwright 2009, 2011), offshore Angola

(e.g., Gee and Gawthorpe 2006, 2007), the Gulf of Mexico (e.g., Booth et

al. 2003) offshore Brazil (e.g., Rodriguez et al. 2018, in press), the North

Sea (e.g., Mannie et al. 2014), and the Precaspian Basin (e.g., Pichel and

Jackson 2020). Successions of genetically related growth strata influenced

by near-surface diapiric or extrusive salt form unconformity-bounded

packages of thinned and folded strata termed halokinetic sequences, which

become composite when stacked (Giles and Rowan 2012; Rowan and

Giles 2021). The geometry and stacking of composite sequences are

dependent on the interplay between sediment accumulation rate and diapir

rise rate. Giles and Rowan (2012) recognize two end-member stacking

patterns; tapered (stacked wedge) or tabular (stacked hook).

Typically, salt-influenced successions are poorly imaged in seismic

reflection data due to ray path distortion at the salt–sediment interface,

steep stratigraphic dips, and deformation associated with salt rise (Davison

et al. 2000; Jones and Davison 2014). Due to these complications, our

understanding of subsurface salt-influenced systems benefits from their

calibration to outcrop analogues (Lerche and Petersen 1995). Exposed

examples are rare, largely due to dissolution of associated halites (Jackson

and Hudec 2017). Exhumed systems typically contain shallow-marine

(e.g., Laudon 1975; Giles and Lawton 2002; Giles and Rowan 2012) or

nonmarine (e.g., Banham and Mountney 2013a, 2013b, 2014; Ribes et al.

2015) strata. The Bakio diapir in the Basque–Cantabrian Basin (BCB),

northern Spain, provides a rare exhumed example of deep-water strata

deposited in a syn-halokinetic setting (Figs. 2, 3; Lotze 1953; Robles et al.

1988; Rowan et al. 2012; Ferrer et al. 2014). The overburden displays well-

exposed, unconformity-bounded sedimentary wedges that thin towards and

upturn against the diapir, supporting the interpretation of syn-halokinetic

growth strata (Poprawski et al. 2014, 2016).

Previous studies in the area have focused on carbonate halokinetic

sequences in the middle Albian overburden (Poprawski et al. 2014, 2016),

hence the salt-influenced deep-water succession remains poorly under-

stood. This study aims to use large-scale outcrops exposed along the

Bakio–Guernica coastline to study the bed-scale flow-topography

interactions, deep-water facies distribution, and depositional architecture

in salt-controlled minibasins. The objectives of this study are to: 1)

reappraise the stratigraphy of the study area using specific deep-water sub-

environments, 2) document lateral and vertical changes in deep-water

facies and architecture with variable amounts of salt-induced confinement,

3) document the evolution of coeval deep-water axial and debrite-rich

lateral depositional systems, and 4) distinguish criteria for the recognition

of halokinetically influenced deep-water systems.

GEOLOGICAL SETTING

Evolution of the Basque–Cantabrian Basin (BCB)

The BCB is a peri-cratonic rift basin in northern Spain, inverted during

the Campanian–Eocene western Pyrenean Orogeny (Fig. 2; Gómez et al.

2002; Ferrer et al. 2008). The basin is located between the Iberian and

FIG. 1.—Sketch summarizing the structural controls, with respect to gravity-driven processes, on depositional systems from the shelf to basin floor. Note the complex and

sinuous paths taken by slope channels around salt structures (Modified from Mayall et al. 2010).
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Eurasian plates and is associated with hyper-extensive rifting and mantle

exhumation during the opening of the North Atlantic and the Bay of Biscay

(Van der Voo 1969; Brunet 1994; Jammes et al. 2009; DeFelipe et al. 2017;

Teixell et al. 2018). The stratigraphy of the BCB is mainly of Mesozoic to

Cenozoic age, sourced from a punctuated rift system that existed from

Permian–Triassic to Late Cretaceous times (Cámara 2017).

The Mesozoic evolution of the BCB began with the development of a

rift system in the Permian–Triassic. During the Carnian–Norian, a thick

sequence of mudstones, sabkha evaporites and carbonates accumulated

(Keuper Group: Geluk et al. 2018). The Jurassic to Early Cretaceous was

characterized by limited subsidence and shallow-water deposition (Martı́n-

Chivelet et al. 2002; Garcı́a-Mondéjar et al. 2004). Extensional thin-

skinned tectonics, controlled by basement faulting, in the Early Cretaceous

initiated reactive diapirism across the basin (Bodego and Agirrezabala

2013; Agirrezabala and Dinarés-Turell 2013; Teixell et al. 2018). As rifting

continued, the Lower Cretaceous succession preferentially accumulated

over downthrown blocks, forming a differential load that triggered a

transition into passive diapirism (Agirrezabala and Garcı́a-Mondéjar 1989;

Agirrezabala and López-Horgue 2017). During the Barremian–Albian the

flanking minibasins were filled with c. 500 m of mixed carbonates and

siliciclastics (Garcı́a-Mondéjar 1990, 1996). Aptian–middle Albian

shallow-water carbonate platforms of Urgonian limestone (Garcı́a-

Mondéjar et al. 2004) formed on the footwalls of tilted normal-fault

blocks; these limestones pass abruptly into deeper-water marlstones and

mudstones deposited in hanging-wall depocenters (Rosales and Pérez-

Garcı́a 2010). From the late Albian to the early Cenomanian, subsidence

combined with early Albian global sea-level rise (Vail et al. 1977; Haq et

al. 1987; Robles et al. 1988; Haq 2014) was concurrent with the

development of siliciclastic turbidites and redeposited carbonates of the

Black Flysch Group (BFG), which are the focus of this study.

As rifting waned, passive diapirs continued to grow at the paleo-seafloor

due to minibasin subsidence (Zamora et al. 2017). During the Late

Cretaceous to the early Paleogene, subsidence continued and calci-

turbidites were deposited (Mathey 1987; Pujalte et al. 1994). Lower

Paleocene to Eocene stratigraphy records a gradual transition from mainly

calcareous to siliciclastic deposition, with an increase in deposition of

siliciclastic turbidites. This change is associated with erosion of the

emerging Pyrenean mountain belt (Crimes 1973; Pujalte et al. 1998).

FIG. 2.—Simplified geological map, stratigraphy, and cross-section of the Basque–Cantabrian Basin (BCB), highlighting numerous present-day surface exposures of NE–

SW-oriented diapirs (including the Bakio diapir, the focus of this study), commonly flanked by Cretaceous strata. The inset map shows the location of the BCB in northern

Spain. Line A–A0 locates cross section and line B–B0 locates Figure 4. Black box locates Figure 3. Stratigraphy indicates mega sequences that can be used to group basin fill

(after Ábalos 2016). Cross section is modified from Poprawski et al. (2016).
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Pyrenean NE–SW-oriented compression in Eocene to Oligocene times

reactivated Mesozoic–Cenozoic normal faults (Ábalos 2016) and squeezed

pre-existing diapirs (Pujalte et al. 1998).

The Bakio and Guernica Salt Bodies

The Bakio diapir is a NE–SW-trending (c. 1 km by 4 km) salt wall of

Keuper Group evaporites. Partial exposure of the salt wall occurs at Bakio

beach; in other locations the evaporites are easily eroded, typically marked

by topographic depressions and/or coastal embayments (e.g., Fig. 3A; the

Guernica structure, located c. 9 km to the east). At Bakio beach, the

Keuper Group consists of red clays, gypsum, and carbonate, with Triassic-

age tholeiitic ophitic inclusions (see Robles et al. 1988; Poprawski et al.

2014). From the middle Albian, the Bakio diapir grew rapidly and

reactively in response to regional hyper-extension (Teixell et al. 2018). The

diapir then grew passively during the late Albian due to sediment loading,

at around 500 m Myr–1 (Poprawski et al. 2014).

The Guernica structure is poorly understood due to limited exposure,

and hence is referred to as a ‘‘salt structure’’ rather than a salt diapir like

Bakio. The Guernica structure has previously been interpreted as a salt-

cored anticline (Poprawski and Basile 2018). Vintage onshore seismic

reflection data suggest that the basal salt layer is present at depth

connecting the Bakio and the Guernica structures (Fig. 4; Robles et al.

1988; Poprawski and Basile 2018). The structures were close to the

seafloor during the middle Albian creating highs that were capped by

isolated carbonate platforms and influenced the deposition of the BFG

(Vicente Bravo and Robles 1991a, 1991b; Pujalte et al. 1986; Cámara

2017; Roca et al. 2020). Slope apron facies, deposited at the platform edge,

and subsequent stratigraphy formed tapered halokinetic sequences against

the west of the Bakio diapir (Fig. 4; Garcı́a-Mondéjar and Robador 1987;

Soto et al. 2017; Roca et al. 2020).

Bakio Stratigraphy

Studies of magnetic anisotropy in the Bakio–Guernica area demonstrate

a minimal Pyrenean compressional overprint to the stratigraphy (Soto et al.

2017), as the tholeiitic ophitic inclusions in the diapir acted as buttresses

forming shadow areas protected from the compression. Hence the area is

used to study syn-halokinetic deposition without a regional tectonic-

deformation overprint.

The Aptian–middle Albian Urgonian stratigraphy (middle Albian

Sequence 2: H. dentatus Zone of Agirrezabala and López-Horgue 2017)

FIG. 3.—A) Geological map located in Figure 2 and B) stratigraphic column for the study area. A) Compiled from Espejo and Pastor (1973), Espejo (1973), Garrote-Ruiz et

al. (1991, 1992, 1993a, 1993b), Pujalte et al. (1986), Garcı́a-Mondéjar and Robador (1987), Robles et al. (1988, 1989), Vicente Bravo and Robles (1991a,1991b), Poprawski

et al. (2014, 2016), Ábalos (2016), and fieldwork observations. Lateral facies changes in carbonates around the salt outcrops at Guernica are modified from Garcı́a-Mondéjar

and Robador (1987). The Guernica structure has been weathered away and forms a present-day estuary. Orange lines show locations of stratigraphic logs shown in succeeding

figures, dashed lines indicate missing section, and numbers refer to subsequent figures where logs are presented. B) Abbreviations for stratigraphic units are shown in ( ) and

formation names of Poprawski et al. (2014, 2016), where they differ from those used in this study, are shown in [ ]. Numbers adjacent to the stratigraphy refer to regional

sequences of Agirrezabala and López-Horgue (2017), based on biostratigraphy. Line of section is shown for Figure 4; for full extent see Figure 2.
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comprises the Gaztelugatxe, Bakio Marls, and Bakio Breccias formations

(Fig. 3B). The Gaztelugatxe Formation (GZF) is a massive-brecciated

limestone, interpreted as a karstified platform carbonate (Garcı́a-Mondéjar

and Robador 1987; Robles et al. 1988). The Bakio Marls Formation (BMF)

(minimum 60 m thick: Poprawski et al. 2016) comprises thin-bedded calci-

debrites deposited in a low-energy mud-dominated environment intermit-

tently punctuated by catastrophic debris flows sourced from local,

carbonate-capped highs (Garcı́a-Mondéjar and Robador 1987; Poprawski

et al. 2014). The Bakio Breccias Formation (BBF) is up to 550 m thick and

unconformably overlies the BMF (Figs. 3B, 4, Table 1). The BBF is

primarily composed of poorly sorted, carbonate breccia beds tens of meters

thick (Table 1; Garcı́a-Mondéjar and Robador 1987; Poprawski et al. 2014,

2016) that are interpreted as earliest middle Albian mass failures from

carbonate platforms developed on top of salt structures (Poprawski et al.

2014). The abrupt change from carbonate-dominated to siliciclastic-

dominated stratigraphy is associated with a middle Albian hiatus (López-

Horgue et al. 2009).

The Urgonian section is overlain by the upper Albian–early Cenomanian

BFG, which has been subdivided into a lower and upper unit (Fig. 3B).

The Lower Black Flysch Group (LBF) corresponds to the upper Albian

Sequence 3 (D. cristatum–M. inflatum zones; Agirrezabala and López-

Horgue 2017), including the Sollube, Punta de Bakio, and Jata units

(Poprawski et al. 2014). This group consists of thin-bedded siliciclastic

turbidites, marls, and debrites, and is interpreted to represent a submarine

fan system (Robles et al. 1988; Vincente Bravo and Robles 1991, 1995;

Poprawski et al. 2014; Roca et al. 2020). The Upper Black Flysch Group

(UBF) corresponds to the upper Albian–Cenomanian Sequence 4 (M.

fallax zone; Agirrezabala and López-Horgue 2017), and the Cabo

Matxitxako unit of Poprawski et al. (2014), which consists of thick-

bedded, coarse-grained, siliciclastic turbidites deposited in a submarine fan

system (Robles et al. 1988, 1989). Provenance studies indicate that BFG

sediment was sourced from the northerly Landes Massif, a c. 100 km 3 40

km granitic basement block, presently located c. 10 km offshore in the Bay

of Biscay (Fig. 2; Garcı́a-Mondéjar 1996; Puelles et al. 2014).

METHODS AND DATA

The dataset comprises 28 sedimentary logs (totaling 821 m of

stratigraphy) collected along the Bakio–Guernica coastline. The logs

were collected at a 1:25 scale, with 1:10 scale used locally to capture

additional detail. Halokinesis during BFG deposition (Garcı́a-Mondéjar

1996; Poprawski et al. 2014, 2016; Roca et al. 2020) generated

syndepositional basin-floor relief and led to the development of multiple

discrete depocenters (Vicente Bravo and Robles 1991a, 1991b, 1995;

Agirrezabala 1996). As such, correlating stratal surfaces in and between

depocenters is difficult and un-crewed-aerial-vehicle (UAV) photography

was used to aid stratigraphic correlations (Hodgetts 2013). Paleocurrent,

bedding, and structural data were collected to determine the influence of

syndepositional basin-floor relief and to quality-control the pre-existing

geological map of Poprawski et al. (2014, 2016). Paleocurrent readings

were taken where sedimentary structures were clear enough to permit

unambiguous data collection. Sparse biostratigraphic data (Agirrezabala

and López-Horgue 2017) hinders correlation across the structures; hence

we refer to the Lower (LBF) and Upper (UBF) Black Flysch group only,

to avoid further subdivisions based on geographic location (e.g., Robles

et al. 1988; Vincente-Bravo and Robles 1991a, 1991b, 1995; Poprawski

et al. 2014).

Basin Subdivision

To aid comparison, the study area has been divided into two

depocenters: the Jata and Sollube basins (Figs. 3, 4). These are analogous

to subsurface minibasins, defined as relatively small (5–30 km)

synkinematic depocenters subsiding into thick salt (Hudec and Jackson

2007; Jackson and Hudec 2017). The Jata basin is confined to the east by

the Bakio diapir. The Sollube basin is confined on both its western and

eastern sides by the Bakio and Guernica structures, respectively (Fig. 3),

and hence is more confined than the Jata basin.

LITHOFACIES

This study focuses primarily on the facies variability in the siliciclastic

BFG. A description and discussion of the carbonate facies of the BMF and

BBF is provided in Poprawski et al. (2016). Here, the carbonate facies are

tabulated for reference in Table 1 (and Supplemental Fig. 1) and their

depositional process interpreted. The BFG lithofacies presented in Table 2

and in Figure 5 represent ‘‘event beds’’ and are classified based on outcrop

observations. ‘‘Mud’’ is used here as a general term, for mixtures of clay,

silt, and organic fragments. Where individual facies are heterogeneous,

multiple photographs are shown to illustrate this lithological and

sedimentological variability (Fig. 5).

FIG. 4.—Schematic structural–stratigraphic cross section through the Bakio and Guernica diapirs. Full extent is located using B–B 0 in Figure 2, partial extent is also shown

in Figure 3. The section combines Poprawski and Basile (2018), Robles et al. (1988), field observations, and publicly available vintage onshore seismic lines from IGME.

Facies are indicated where known or inferred from the literature but are left blank where they cannot be inferred. Two times vertical exaggeration for clarity.
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INTERPRETATION OF DEPOSITIONAL ELEMENTS

Facies associations (Table 3, Fig. 6) and architectures (Table 4, Fig. 7)

are integrated to support interpretation of depositional environment. Facies

associations are interpreted based on dominant lithofacies (Table 2, Fig. 5)

and use lobe (Prélat et al. 2009; Spychala et al. 2017) and channel–levee

(Kane and Hodgson 2011; Hubbard et al. 2014) nomenclature that best fit

field observations. Facies associations and geometries are described

separately, because architecture alone is not diagnostic of the depositional

sub-environment, and multiple facies associations can form a similar

architecture.

STRATIGRAPHIC EVOLUTION

Extensive exposures permit detailed lithostratigraphic analysis (Figs. 3,

8, 9, 10), allowing investigation of the role of salt-induced relief on

depositional patterns (Figs. 11, 12, 13). The following sections describe the

exposures from oldest to youngest, first focusing on the flanks of the

Sollube and Jata basins (Gaztelugatxe Island and Bakio West Bay,

respectively) and then the axis of the Sollube basin (Cabo Matxitxako).

Gaztelugatxe Island

The cliff sections to the south of Gaztelugatxe Island (located in Fig. 3)

provide a semi-continuous section through 120 meters of the BFG, 2 km

northeast of the exposed Bakio diapir, and c. 9 km northwest of the

Guernica structure. The stratigraphy is subdivided into five lithostrati-

graphic units (GX1–5).

Description.—GX1 is 8 m thick and consists of bioturbated mudstones,

calci-debrites, calci-turbidites, thin-bedded turbidites, and mud-rich

debrites. It shows an overall coarsening- and thickening-upwards from

centimeter- to meter-scale interbeds of each facies. GX2 is 10 m thick and

dominated by carbonate–clastic debrites, with angular clasts of the

Gaztelugatxe Limestone, up to 1 m in diameter. GX2 pinches out

downslope, forming a triangular geometry (Table 4, Fig. 7E). GX3, has a

minimum thickness of 42 m, onlaps GX2 and is recognized as the first

purely siliciclastic succession; comprising thin- to medium- bedded

turbidites, debrites, hybrid beds, and bioturbated mudstones. GX4 has a

minimum thickness of 9 m, and its base is marked by a meter-thick slump,

TABLE 1.—Table of carbonate facies detailing the major observations of the six facies which constitute the early Albian Bakio Marls and early middle

Albian Bakio Breccias formations. For further discussion see Poprawski et al. (2014, 2016). Supporting facies photographs are provided in

supplementary material.

Facies Name Description Interpretation

Thin-bedded calcareous

sandstone

0.01–0.1-m-thick beds of bioclastic (corals and shell fragments)

very fine-fine grained sandstones.

Commonly normally graded with flat tops and flat bases. Weak

planar, ripple, and convolute lamination.

Low-density calci-turbidites:

Thin-bedded structured sandstones deposited from dilute turbidity

currents.

Medium-bedded calcareous

sandstone

0.1–0.3-m-thick very fine to medium- grained normally graded

sandstones, with flat bases and flat tops.

Planar, ripple, and convolute lamination observed.

Mud clasts and intense dewatering also present.

Medium to high-density turbidites:

Presence of tractional structures suggests deposition from a dilute

turbidity current.

High mud-clast percentage could suggest imminent flow

transformation (Barker et al. 2008).

Limestone breccia 10þ-m-thick beds of matrix- or clast- supported limestone

breccia, with erosional bases and undulating tops.

Poorly sorted beds consisting of subangular to angular limestone

megaclasts, which can be normally, inversely or non-graded.

Megaclasts commonly contain entire rudists and fragmented

corals.

Mass-transport deposit:

Poorly sorted clasts suggest deposition from ‘‘flow freezing’’ of a

flow with yield strength (Iverson et al. 2010).

Limestone clasts are similar in composition to the Gaztelugatxe

Limestone, suggesting that it is their source (Poprawski et al.

2014; 2016).

Fossiliferous poorly sorted

carbonate mudstone

0.03–0.2-m-thick poorly sorted, non-graded carbonate mudstone

with fossil fragments.

Beds are laterally discontinuous, with undulose, gradational bases

and tops.

Cm- to dm-size bioclasts of urchins, brachiopods, bryozoans,

bivalves, corals, crinoid stems, and rarer mollusk shell

fragments.

Debris flow:

Fragmented bioclasts, poor sorting, and undulose contacts suggest

deposition from a laminar flow (Nardin et al. 1979).

Fossils are fragmented, indicating reworking, but are not lithified,

indicating direct reworking from an active platform or reef.

Remobilized carbonates 5þ-m-thick packages consisting of a combination of the above

facies that have been slightly remobilized but maintain bedding

planes.

Contacts are erosional, scalloped, or smooth, and underlying

mudstone units often appear sheared. Convolute lamination and

soft-sediment deformation are present.

Slide deposits:

The remobilization but maintenance of individual bedding planes

and sheared basal contacts indicates that these are slide

deposits.

Lack of internal deformation suggest these deposits have been

remobilized post lithification, conceivably due to halokinetic

movements (Ferrer et al. 2014; Poprawski et al. 2016).

Clast-rich poorly sorted

carbonate mudstone

0.1–1þ m thick poorly sorted beds with angular limestone clasts

in a mud-silt matrix.

Clasts can be cm to m scale, generally 1–12 cm, and are rich in

mollusk fragments.

Rare lithics and organics are observed.

Undulose tops reflect clast topography and, bases are flat, weakly-

erosional or undulose.

Weak normal grading and rarer reverse grading are observed.

Carbonate-clast-rich debrites:

Poor-sorting and large clast size indicates en-masse deposition

from a laminar flow (Nardin et al. 1979; Iverson 1997; Sohn

2000) Weak normal grading suggests that some turbulence was

influencing the flow.

Clast angularity suggests proximity to source area. Lack of

unconsolidated fossil debris suggests that lithification has

occurred before reworking into the flow.
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TABLE 2.—Table of siliciclastic facies detailing the ten facies that comprise the Black Flysch Group.

Facies Name Description Interpretation

Granular-

cobbly

sandstones

0.1–1.5þ-m thick beds of granular-cobble sandstones (Fig. 5A, B), with subangular

(Fig. 5B) to well-rounded, moderately sorted clasts. Weak cross-stratification (Fig.

5A), pebble imbrication, amalgamation, mud clasts and erosional surfaces (Fig. 5A,

B) are observed. Dish structuration is pervasive (Fig. 5A).

High-density turbidites:

The coarse grain size, thick beds, and amalgamation surfaces

suggest deposition from a highly concentrated turbulent

flow, indicating that these beds are turbidites. Weak

stratification indicates traction-carpet deposition (Lowe

1982), suggesting high-density turbidites.

Thick-bedded

sandstones

0.5–1þ-m-thick beds of very-fine-to coarse-grained normally graded sandstones,

which lack primary depositional structures and are commonly dewatered (Fig. 5C).

Bases can be sharp, erosional, stepped, or amalgamated, commonly along a

mudstone amalgamation surface with a subtle grain-size break (Fig. 5C), and tops

are often flat. Plane-parallel lamination, mud clasts, and soft-sediment deformation

are occasionally observed.

High-density turbidites:

The general massive structuration of these deposits suggests

that they represent rapid aggradation beneath a highly

concentrated flow (Lowe 1982).

Medium-

bedded

sandstones

0.1–0.5-m-thick beds of very fine-medium grained, normally graded sandstones. Beds

are rich in tractional structures, particularly plane parallel laminations (Fig. 5D).

Ripple laminations is observed in bed tops, and beds are more frequently

structureless towards bases. Bed bases are flat with tool marks or loaded, and tops

are flat or convolute and often rich in mud clasts (Fig. 5D). Occasionally

amalgamated.

Medium-density turbidites:

Based on their tractional structures and normal grading, beds

of this lithofacies are interpreted as deposition from a dilute

turbidity current. These beds are interpreted as medium-

density turbidites due to their bed thickness and common

lack of structures in the lower part of the bed.

Thin-bedded

sandstones

0.01–0.1-m-thick beds of very fine-fine, normally graded sandstones. Rich in

tractional structures, particularly plane- parallel lamination (Fig. 5E, F). Banding on

a sub-cm scale (Fig. 5E, F) and convolute lamination are common. Bases are flat

(Fig. 5F), undulose, loaded (Fig. 5E, F), or weakly erosional and tops are flat to

undulose and rich in mud clasts. Starved, climbing, and opposing paleoflow ripples

are observed (Fig. 5E).

Low-density turbidites:

Tractional structures and normal grading indicate deposition

from a dilute turbidity current and are therefore interpreted

as low-density turbidites. Common banding may reflect

some periodic suppression of turbulence associated with

flow deceleration or increased concentration (Lowe and Guy

2000; Barker et al. 2008). Ripples with opposing paleoflow

suggests topographic interference.

Siltstone and

very thin-

bedded

sandstones

Packages of 0.1 m composed of individual fine siltstone to fine sandstone events less

than 0.01 m. Beds form discontinuous drapes within mudstone (Fig. 5G), with flat

bases and flat tops. Parallel and ripple lamination and diagenetic phosphate nodules

are observed (Fig. 5G).

Low-density turbidites:

Fine grain size and thin bed thickness suggest that this unit

represents deposition from dilute turbidity currents

(Boulesteix et al. 2019), representing lower-energy

conditions than thin-bedded sandstones.

Mudstone 0.01–5-m-thick mudstone to fine siltstone beds of carbonate or siliciclastic mudstone

(Fig. 5H). Weakly planar-laminated, friable packages (Fig. 5H) with drapes and

discontinuous lenses of siltstone (Fig. 5H). Nereites bioturbation and diagenetic

spherical cm-scale phosphate nodules present.

Background sedimentation:

Fine grain size indicates low-energy conditions, representative

of background sedimentation via suspension fallout.

Discontinuous siltstones suggest that lamination may be

present below the scale visible in outcrop, representing

deposition from a dilute turbidity current (Boulesteix et al.

2019).

Poorly-sorted

mudstone

0.1–1þ-m-thick siltstone to fine-sandstone rich mudstones (Fig. 5I). Poorly sorted,

matrix-supported, clast-rich deposit with starry-night texture. Granules, organic

fragments, mud clasts and rare shelly fragments present, often with subtle

alignment. Bases are flat or undulose, tops flat or loaded (Fig. 5I).

Mud-rich debrites:

The poorly sorted matrix and clast-rich nature indicates en-

masse deposition from a laminar flow (Nardin et al. 1979).

Poorly-sorted

muddy

sandstone

0.1–1þ-m-thick, mud-rich poorly sorted matrix-supported, fine to medium grained

sandstones with starry-night texture (Fig. 5J). Organized mudstone clasts and

sporadic granules to pebbles are observed. Flat-undulose tops and flat-graded base

are common (Fig. 5J). Rare normal grading and grain-size segregation and

infrequent sheared layers present.

Sand-rich debrites:

En-masse deposition from a laminar flow (Nardin et al. 1979;

Iverson 1997; Sohn 2000). Weak normal-grading suggests

that some turbulence was influencing the flow and therefore

deposition from a transitional flow regime is interpreted

(Baas et al. 2009, 2013; Sumner et al. 2013).

Chaotic clast-

rich matrix

supported

deposit

0.5–3-m-thick, poorly sorted deposit with a poorly sorted matrix of mudstone to fine

sandstone. Clasts include: cm- to m-scale sandstone balls (Fig. 5K), showing

internal lamination and soft-sediment deformation, dm–m scale sandstone and

heterolithic subangular rafts, deformed siderite nodules, limestone clasts, gastropod

and sponge fragments, mud clasts, and phosphate nodules. Beds are flat-topped,

and bases are weakly loaded (Fig. 5K).

Mega-debrites:

The poorly sorted matrix and large clast size are suggestive of

‘‘flow freezing’’ indicating deposition in a debris-flow

regime (Iverson et al. 2010). These deposits are interpreted

as mega-debrites due to their large clast size (rafts),

suggesting they are derived from localized mass failure.

Bipartite or

tripartite

beds

0.1–1.5-m-thick beds that contain multiple parts (Fig. 5L, M). Typically consisting of

a lower fine-medium sandstone (division 1) overlain by a poorly sorted, muddy

siltstone–sandstone (division 2) with a flat to slightly undulose base (Fig. 5L, M).

Division 3 is sometimes present, consisting of cleaner siltstone or fine-grained

sandstone loaded into division 2 (Fig. 5L). Division 1 can contain planar

lamination and weak cross-stratification (Fig. 5L) but is often massive with

sporadic-slightly organized mud clasts (Fig. 5M). Division 2 is organic-rich, highly

deformed, and can contain sporadic granules or pebbles (Fig. 5L, M). Starry-night

texture is observed in this division. Division 3 is more frequently planar laminated

than division 1 but can be highly chaotic (Fig. 5L).

Hybrid beds:

Tractional structures in division 1 and 3 suggest that these

deposits formed under turbulent flows. Starry-night texture,

poor sorting, and mud content suggest that division 2 was

deposited under a transitional-laminar flow regime

(Haughton et al. 2009).

Flow transformation from turbulent to laminar can occur

through flow decelerations (Barker et al. 2008; Patacci et al.

2014) or by an increase in concentration of fines during

flow run-out (Kane et al. 2017).
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FIG. 5.—Siliciclastic facies photographs. Yellow arrow indicates way up. Peach outline highlights scale, either lens cap (52 mm), or indicated. A) Granular-cobbly laterally

extensive thick sandstone beds. B) Granular-cobbly sandstone with medium-thickness beds exhibiting lateral facies variations. C) Stacked, amalgamated thick-bedded

sandstones. D) Medium-bedded sandstones interspersed with mudstones and poorly sorted mudstones and sandstones. E) Thin-bedded sandstone showing ripples, planar

lamination, and loading. F) Succession of stacked thin-bedded sandstones. G) Siltstone and very-thin-bedded sandstones; phosphate nodules are common in this facies. H)

Mudstone with occasional, rare drapes of siltstone. I) Poorly sorted mudstone, foundered into by a thick-bedded sandstone. J) Poorly sorted muddy sandstone, containing

sporadic granules and raft blocks. K) Chaotic clast-rich matrix-supported deposit encased between units of thin-to-medium-bedded sandstones. L) Tripartite bed consisting of

lower medium-bedded sandstone with weak cross-lamination, middle poorly sorted mudstone and upper poorly sorted sandstone. M) Bipartite bed consisting of lower thick-

bedded sandstone which becomes mud-clast rich upwards overlain by a poorly sorted mudstone above.
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FIG. 5.—Continued.

Z.A. CUMBERPATCH ET AL.42 J S R

Downloaded from http://pubs.geoscienceworld.org/sepm/jsedres/article-pdf/91/1/34/5248431/i1527-1404-91-1-34.pdf
by guest
on 15 March 2021



overlain by interbeds (centimeter to decimeter scale) of turbidites, debrites,

slumps, slides, hybrid beds, and mudstones.

GX5 is identified on the western side of Cabo Matxitxako (Fig. 8),

having a minimum thickness of 30 m. There is approximately 400 meters

of missing stratigraphy between GX4 and 5 (Robles et al. 1988), but GX5

is projected to lie stratigraphically above GX4. GX5 comprises

predominantly amalgamated medium- to high-density turbidites showing

evidence of soft-sediment deformation.

TABLE 3.—Table of facies association detailing the assemblages that constitute the Black Flysch Group.

Facies

Association

Name Description Interpretation

Architecture

(Table 4; Fig. 7)

Lobe axis Dominantly thick-bedded sandstones (Fig. 6, 7C) with

subordinate medium-bedded (Fig. 5D), thin-bedded

(Fig. 5E, F), and granular-cobbly sandstones (Fig. 6).

Beds are often massive and amalgamated (Fig. 6) with

pervasive dewatering, frequent mud clasts, and subtle

normal grading (Fig. 5C). Thin-bedded granular-cobbly

sandstones can underlie thick-bedded sandstones or

form isolated lenticular geometries (Fig. 5B).

Thick-bedded nature suggests deposition from high concentration

turbidity currents with relatively high rates of aggradation

preventing the development of tractional sedimentary structures

(Kneller and Bramney 1995; Talling et al. 2012). Common

amalgamation and entrainment of mudstones clasts in thick-

bedded sandstones indicate that the parent flows were highly

energetic and capable of eroding, entraining, and bypassing

sediment during the passage of flow (Lowe 1982; Mutti 1992;

Stevenson et al. 2015). Similar deposits elsewhere have been

interpreted as lobe-axis deposition (Walker 1978; Prélat et al.

2009; Kane et al. 2017). Thin-bedded granular-cobbly

sandstones are associated with overlying and adjacent

amalgamated thick-bedded sandstones and are thought to

represent a mostly bypassing equivalent of the depositional

thick-bedded sandstones within the lobe axes (Kane et al.

2009).

Pinching out

upslope (Fig.

7C) or convex

up (Fig. 6)

Lobe off-axis Composed principally of normally graded structured to

structureless medium-bedded sandstones (Fig. 5D) with

less common thin-bedded (Fig. 5F) and thick-bedded

sandstones (Fig. 5C). Ripples at the tops of beds

commonly show paleoflow directions opposite to those

that are measured from flutes and grooves on bed bases.

Mudstones, poorly sorted mudstones, sand-rich

mudstones, and rarer chaotic clast-rich matrix-supported

deposits are periodically or randomly interspersed in

this facies association (Fig. 6).

A medium-density turbidite interpretation is given for these units

based on the preservation of both structured and structureless

sandstones. Similar preservation of both deposit types has been

interpreted as off-axis lobe environments, deposited by

decelerating turbidity currents (Prélat et al. 2009; Spychala et

al. 2017; Soutter et al. 2019). Opposing paleocurrent directions

in event beds is characteristic of topographically influenced

flows (Kneller et al. 1991; Bakke et al. 2013). Periodic

deposition of mudstones suggests episodic system shutdown.

Poorly sorted mudstones, sand-rich mudstones, and chaotic

clast-rich matrix supported deposit occurrence indicate periodic

laminar flows which could indicate nearby active topography

(Kneller et al. 1991; Mayall et al. 2010).

Pinching out

upslope (Fig.

7C) or convex

up (Fig. 6)

Proximal

fringe

Consists principally of thin-bedded sandstones (Fig. 5E, F)

and bipartite or tripartite event beds (Fig. 5L, M).

Siltstone and very-thin-bedded sandstones and medium-

bedded-sandstones (Fig. 6) are infrequently observed.

Poorly sorted mudstones, sand-rich mudstones, and rarer

chaotic clast-rich matrix-supported deposits are

periodically or randomly interspersed in the otherwise

organized thin-bedded sandstones and bipartite or

tripartite beds (Fig. 6).

Thin-bedded, structured sandstones are interpreted to be deposited

from low-concentration turbidity currents (Mutti 1992; Jobe et

al. 2012; Talling et al. 2012). Bipartite and tripartite event beds

are interpreted as hybrid beds (Haughton et al. 2009). The

transformation of flows in hybrid beds observed here document

a change in flow process from high-medium-concentration

turbulent to laminar or transitional, to low-concentration

turbulent (Remacha et al. 2005; Baas et al. 2011). Thin-bedded

sandstones and hybrid beds underlie lobe and lobe-axis facies

associations and are therefore interpreted to be deposited

adjacent to such deposits. Abundant hybrid beds and thin beds

indicate lobe-fringe deposition elsewhere (Hodgson 2009;

Jackson and Johnson 2009; Kane et al. 2017; Soutter et al.

2019), specifically in the proximal fringe (Sypchala et al.

2017). In tectonically confined settings, flow types are highly

variable and the frontal and lateral fringe can be difficult to

decipher because flow transformation is influenced by

topography so hybrid beds can be common in the lateral and

frontal fringe (Barker et al. 2008; Soutter et al. 2019) termed

‘‘proximal fringe.’’

Tabular (Fig. 7A)

or pinching out

up slope

(Fig.7C).

Distal fringe Dominated by siltstone and very-thin-bedded sandstones

(Fig. 5G) and mudstones (Fig. 5H) with secondary thin-

bedded sandstones, bipartite and tripartite beds, and

thin-bedded poorly sorted mudstones (Fig. 6).

Mudstones separating individual events are often

slightly deformed or sheared and show drapes of

discontinuous siltstone (Fig. 6).

The fine grain size, thin-bedded character, and low stratigraphic

position of these beds is consistent with lobe-fringe deposition.

The relative lack of hybrid beds in this facies association

support a distal-lobe-fringe interpretation (Hodgson 2009;

Jackson et al. 2009; Kane et al. 2017; Soutter et al. 2019),

specifically in the proximal fringe (Sypchala et al. 2017).

Tabular (Fig. 7A)
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Interpretation.—The presence of siliciclastic and calci-turbidite

deposits and debrites in GX1 (Fig. 8) suggests a transition from the upper

BBF to the LBF (Fig. 12C: Poprawski et al. 2014, 2016). The carbonate

deposits could have been remobilized from previous BBF deposits or

remnant carbonate highs (Poprawski et al. 2014, 2016). GX2 represents a

period of increased mass failure, which is interpreted to be halokinetically

driven due to the lentil-shape and diapir-centric distribution of these

limestone breccias (Table 4: Fig. 7E; e.g., McBride et al. 1974; Hunnicutt

1998; Giles and Lawton 2002). The thin-bedded nature and presence of

hybrid beds in GX3 suggests early BFG deposition in a proximal lobe-

fringe environment (Spychala et al. 2017; Soutter et al. 2019). Thin-bedded

debrites are interpreted to be delivered axially, based on their association

with thin-bedded turbidites that show regional paleocurrents. Thick-

bedded, chaotic, clast-rich units are interpreted to be halokinetically driven

based on variable slump-axis paleocurrent readings (Poprawski et al.

2014).

At the base of GX4, a meter-scale debrite overlies 30 m of missing

section (Fig. 8), which given the low-lying geomorphology is likely mud-

rich. The overlying turbidites and debrites suggest deposition in a lobe off-

axis setting (Prélat et al. 2009; Spychala et al. 2017) where the seafloor

was, at least periodically, unstable (Fig. 12E). Meter-thick beds that stack

into 30-meter-thick packages suggest that GX5 represents deposition in the

TABLE 3.—Continued.

Facies

Association

Name Description Interpretation

Architecture

(Table 4; Fig. 7)

Channel–lobe

transition

zone

Consists of granular-cobbly sandstones (Fig. 5A) and

intensely dewatered thick-bedded sandstones up to 5 m

thick (Fig. 5C). Erosional bases, mega-flutes, stepped

amalgamation surfaces, and mud-clast abundance are

common (Fig. 6). Granular-cobbly sandstone lenses

infilling lensoid, spoon-shaped depressions are observed

(Fig. 6). Weakly stratified cross-lamination of gravels in

sandstone matrix and pebble imbrication is also

observed (Fig. 5A, 8). Low-wavelength hummock-like

structures are observed (Fig. 6) (Vincente Bravo and

Robles 1991).

Erosionally based geobodies infilled with coarser clasts indicate

active erosion and deposition. Common amalgamation and

entrainment of mudstones clasts in thick-bedded sandstones

indicate that the parent flows were highly energetic and capable

of eroding, entraining, and bypassing sediment during the

passage of flow (Lowe 1982; Mutti 1992; Stevenson et al.

2015), while weak cross-stratification, slight grading, and

pebble imbrication are more typical of depositional conditions

(Mutti and Normark 1987). This juxtaposition of depositional

and erosional elements has been observed elsewhere in

channel–lobe transition zones (Mutti and Normark 1987; Wynn

et al. 2002; Pemberton et al. 2016; Brooks et al. 2018). The

presence of cross-stratified gravels supports the facies

association proposed by previous work (Vincente Bravo and

Robles 1991a; 1991b; 1995).

Tabular

amalgamated

beds (Fig. 7G)

Channel-axis Thick-bedded sandstones (Fig. 5C), granular-cobbly

sandstones (Fig. 5A), poorly sorted muddy sandstones

(Fig. 5I), and chaotic clast-rich matrix-supported

deposits (Fig. 5K). Thick-bedded sandstones typically

gradationally overlie granular-cobbly sandstones, which

are commonly grooved on the base, showing normal

grading (Fig. 6). These successions are erosional into

the underlying poorly sorted muddy sandstones or

chaotic clast-rich matrix supported deposits, which

exhibit some deformation and shearing (Fig. 6).

Sandstone beds either erode into each other, are

amalgamated, or less commonly are separated by thin

beds of mudstone (Fig. 6). Low-angle cross-

stratification is observed (Fig. 5A). The sandy

mudstones and chaotic units contain subangular to

angular poorly sorted clasts of up to boulder size. The

composition of these clasts includes limestone

fragments, organics, siliciclastic fragments, slumped and

reworked thin-bedded heterolithics, clasts of granite,

deformed and reworked siderite, mud clasts, and fossil

fragments (Fig. 6).

Common amalgamation, erosion, and entrainment of clasts in the

sandstones indicate that the parent flows were highly energetic

and capable of eroding, entraining, and bypassing sediment

(Mutti 1992; Stevenson et al. 2015; Soutter et al. 2019). The

coarse grain size and basal location of granular-cobbly

sandstones suggests that these beds were deposited as a coarse-

grained lag in a bypass-dominated regime (Hubbard et al.

2014). Erosionally based lenticular sandstones and their grading

from cobbly–fine sandstone is consistent with deposition in a

submarine channel described elsewhere (Hubbard et al. 2008;

Romans et al. 2011; McArthur et al. 2020). Weak low-angle

lamination in sandstone beds could indicate lateral accretion

(Kane et al. 2010; Jobe et al. 2016). Poorly sorted muddy

sandstones and chaotic units could represent channel collapse

and margin failure (Flint and Hodgson 2005; Pringle et al.

2010; Jobe et al. 2017). The wide variation in clast

composition, more diverse than that observed in any other

facies association, indicates broader catchment area for these

debris flows, which may indicate an extrabasinal provenance

(Stevenson et al. 2015).

Concave upward

(Figs. 6, 7B)

Channel-

margin

Thin-bedded sandstones (Fig. 5E, F) and poorly sorted

mudstones with secondary medium-bedded sandstones

and chaotic clast-rich matrix-supported deposits (Fig. 6).

Thin- and medium-bedded sandstones are planar and

ripple laminated (Fig. 5E). Poorly sorted mudstones and

chaotic clast-rich matrix-supported deposits include

angular to rounded clasts of limestone, siliciclastic

fragments, and mud clasts. Medium-bedded sandstones

erode into the tops of chaotic clast-rich matrix-

supported deposits, and thin-bedded sandstones show

loaded, flat and weakly erosional bases. This facies

association appears beneath the channel-axis facies

associations (Fig. 6).

The supercritical bedforms and thin-bedded nature of these

deposits is similar to those described as channel-margin facies

by others (Kane and Hogdson 2011; Hodgson et al. 2011;

Hubbard et al. 2014; Jobe et al. 2017; McArthur et al. 2020).

The location of this facies association beneath channel-axis

deposits suggests that they were deposited adjacent to them,

and this indicates they represent channel-margin facies

association.

Tabular (Figs. 6,

7A)
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axis of a lobe complex (Fig. 12F: Prélat et al. 2009; Soutter et al. 2019).

The absence of debrites or slumps in GX5 (Fig. 8) suggests minimal

halokinetic influence, either due to diapir inactivity or sediment

accumulation, due to uplift and erosion from the Landes Massif

(Agirrezabala 1996), outpacing the rate of seafloor deformation. The

presence of amalgamated, laterally extensive medium- and high-density

turbidites in GX5 supports deposition in a channel–lobe transition zone

(Vincente Bravo and Robles 1991a, 1991b, 1995) or lobe-axis setting.

Bakio West Bay

The coastal cliff section at Bakio West Bay (Fig. 9) exposes c. 150 m of

the BFG above its basal contact with the BBF (Robles et al. 1988), c. 1 km

west of the Bakio diapir. This section is divided lithostratigraphically into

three units (BW1–3), and is further divided by halokinetically driven

unconformities into sub-units (Fig. 9; Poprawski et al. 2014).

Description.—BW1 is 6-meter-thick, consists of calciturbidites and

siliciclastic turbidites, debrites, and mudstones, and is overlain by BW2

across an angular unconformity (U2; Fig. 9A; Poprawski et al. 2014). BW2

is principally siliciclastic, comprising predominantly turbidites, with minor

debrites and mudstones. A 10-meter-thick package of fine sand- to pebble-

grade turbidites with lenticular geometries and scoured-amalgamated bases

is observed to overlie a 2-meter-thick debrite (Fig. 9A). BW3 consists of

interbedded meter-scale siliciclastic turbidites and debrites (Fig. 9B).

Unconformities 5 and 6 are intra-BW3, and thus BW3 is subdivided into

three sub-units (BW3a, b, and c).

At the bases of BW3a, BW3b, and BW3c, 1–12-meter-thick debrites

with variable thickness across the exposure overlie the angular unconfor-

mity (Fig. 9). Grain size varies from medium sand to boulders and clasts

vary from rounded to angular. A more diverse range of clast rock types

than elsewhere in the study area are observed, including limestone,

sandstone, mudstone, organics, heterolithics, siderite, mafic material,

granite, and siderite (Table 3). An undulose contact exists between the

debrites and the 2–4-meter-thick amalgamated turbidites which overlie

them (Fig. 9). These medium sand- to pebble-grade turbidites are lenticular

in geometry, can be divided into meter-scale fining-upwards successions,

and contain inclined stratification (Fig. 9).

Interpretation.—The angular unconformities are interpreted to be

related to salt-diapir movements, and are interpreted as part of a tapered

halokinetic sequence (Giles and Rowan 2012; Poprawski et al. 2014). Unit

FIG. 6.—Type examples of the seven documented facies associations in this study (Table 3). Peach highlights scale, either lens cap (52 mm), or indicated. Black arrow

points to the north, and yellow shows the way up. A) Thick-bedded sandstones of the lobe axis. B) Interbedded sandstones and mudstones of the lobe off-axis. C) Thin-bedded

sandstones interbedded with mudstones of the proximal fringe. D) Mudstones and very thin-bedded sandstones and siltstones of the distal fringe. E) Thick-bedded granular

sandstones of the channel–lobe transition zone. F) Sandstones and poorly sorted mudstones of the channel axis. G) Thin-bedded sandstones interbedded with mudstones of

the channel margin.
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TABLE 4.—Table describing geometrical configurations observed in the Black Flysch Group.

Architecture

Name Description Interpretation

Facies Association

(Table 3; Fig. 6)

Tabular bedded A package of stacked beds which show a continuous thickness

laterally for 10s to 100s m, occasionally with some subtle

thickness changes (Fig. 7A). Postdepositional faulting and

tectonic and halokinetic tilt prevent these geometries from

being traced on a 100s m-km-scale. Common in thin-

bedded (Fig. 7A) and medium-bedded sandstones (Fig. 5D).

Tabular geometries are observed . 500 m away from

diapiric influence.

This continuous, stacked geometry suggests constant

depositional energy. Tabular architectures appear to be

uninfluenced by topography, and are similar to

unconfined settings (Prélat et al. 2009). Low-density

turbidites are less affected by topography than more

cohesive flow (Al-Ja’aidi 2000; Bakke et al. 2013) and

therefore can run up topography for greater distances,

without becoming ponded.

Distal fringe (Fig. 6),

proximal fringe (Fig.

7A), channel margin

(Fig. 6).

Concave upward

(erosionally

based)

Curvilinear geobodies with variable thickness that are concave

upward, consisting of a centroid and two margins, toward

which the centroid thins, sometimes by up to 80%. (Fig.

7B). Erosionally based granular sandstones are present in

the centroid of the geobody, often overlain by high-density

turbidites, which become thinner-bedded towards the

margins. The thickness of these geobodies is typically

decimeter to meter scale, and thickness to width ratios can

range between 1:10 and 1:50. The geobodies commonly

erode and amalgamate with each other, and stack above the

previous deposit.

Each geobody represents at least one event; the coarse-

grained basal lag could represent a bypass event before

the high-density turbulent flow which filled the

geometry. These multipart geobodies, which are

attributed to deep-water channels based on their

geometries, stack on top of and erode into each other,

suggesting increasing confinement (Mayall et al. 2010).

Channel axis (Figs. 6,

7B)

Pinching out

upslope

Elements that change in thickness, but only in one direction

(Fig. 7C). Commonly these geometries are amalgamated,

with individual events displaying a convex-up geometry.

Thinning rate is approximately 10cm/m in Figure 7C.

Thinning of deposits indicates flow deceleration related to

topography, which ultimately lowers flow concentration

(Baas et al. 2011; Teles et al. 2016). The eventual

pinch-out of the sandstone is due to the inability of the

flow to run up the entirety of the topography.

Proximal fringe (Figs.

6, 7C), lobe off-axis,

lobe axis (Fig. 7C).

Convex up Packages are generally continuous in thicknesses on the scale

of the outcrop, with beds thinning slightly to either side

(Fig. 7E). The centroid is typically decimeters to meters

thick. The upper surface of each deposit is commonly

undulose with an overall, often subtle, convex-upward

geometry (Fig. 7E). High-density turbidites dominate these

architectures and are commonly stacked or amalgamated.

The upwards curvature and slight thinning of this

geometry lead to their interpretation as lobate

geometries (Prélat et al. 2009; Hodgson 2009; Sypchala

et al. 2017). Shifting of the centroid of the lobe axis

indicates that compensational stacking is influencing

these deposits similar to that observed in unconfined

settings (Prélat et al. 2009; Spychala et al. 2017).

Lobe off-axis (Fig. 6),

Lobe axis (Figs. 5C,

6).

Pinching out

downslope

Packages are triangular in geometry and pinch out gradually.

These architectures are very common at Gaztelugatxe Island

(Fig. 3), where they consist of limestone breccia (Table 1)

and have thinning rates of 6.7–10 cm/m downslope (Fig.

7E). Towards the top of Gaztelugatxe Island (closer to the

contact with Gaztelugatxe Limestone) these architectures are

amalgamated, whilst farther away from the limestone they

are interspersed within tabular architectures. Successive

thin-bedded, tabular deposits appear to onlap onto the

topography formed by these downslope-thinning geobodies

(Fig. 7E).

These deposits are interpreted as talus deposits, common

around diapiric highs (Giles and Lawton 2002; Giles

and Rowan 2012) and on fault scarps (Poprawski et al.

2014, 2016). The similarity in facies and geometry to

‘‘carbonate lentils’’ described elsewhere (McBride et al.

1974; Hunnicutt 1998; Kernen et al. 2012, 2018) and

the likely close to the offshore Bakio diapir (Poprawski

et al. 2016) suggest that these geometries are

halokinetically driven. The source of this talus is

interpreted to be the Gaztelugatxe Limestone due to its

proximity and geometrical relationships. Onlap of

successive deposits suggest that diapiric collapse was

coeval with deep-marine deposition.

Limestone breccia

(Table 1).

Undulose Packages have an undulose, heterogeneous geometry (Fig.

7F). Individual beds vary in thickness and facies, and

include thin beds, chaotic mud-rich debrites, and limestone

breccias (Fig. 7F), but overall architecture maintains a

broadly consistent thickness. The base of these architectures

can be composed of limestone breccias (Fig. 7F, Table 1).

These remobilized units represent slump deposits. Ranging

paleoflow directions, and both carbonate and siliciclastic

inclusions, suggest they are derived from the diapir roof

and flanks (Poprawski et al. 2014). The undulose

geometries could overlie carbonate ‘‘lentils’’ or may

reflect the reworking of ‘‘lentils’’ in these deposits (Fig.

7F).

Mass-failure deposits;

limestone breccia

(Table 1), chaotic

debrites (Fig. 5J, K),

remobilized

proximal-distal

fringe (Fig. 7F).

Tabular

amalgamated

beds

Packages appear tabular and consist of beds which remain

relatively consistent in thickness, with minor deviations

related to previous topography (Fig. 7G). This architecture

is principally composed of the channel–lobe transition zone

facies association (Fig. 6). Concave depressions, which are

spoon-shaped and meter scale in width, can be seen on bed

tops and bed bases and are associated with undulations at

bed scale (Fig. 7G). Overall the geometry is slightly

concave up, with the center of each deposit thinning

slightly on either side at the scale of the outcrop (Fig. 7G).

The dominance of channel–lobe-transition zone facies

associations leads to an interpretation of a stacked,

scoured, broad channel–lobe transition zone where

erosional and depositional processes were active

(Vicente Bravo and Robles 1991; Robles et al. 1995;

Brooks et al. 2018). Spoon-shaped depressions are

representative of megaflutes and scours (Robles et al.

1995). These cause a variable depositional topography

which influenced subsequent flows, resulting in slight

compensational stacking.

Channel–lobe transition

zone (Figs. 5A, 6)

Z.A. CUMBERPATCH ET AL.46 J S R

Downloaded from http://pubs.geoscienceworld.org/sepm/jsedres/article-pdf/91/1/34/5248431/i1527-1404-91-1-34.pdf
by guest
on 15 March 2021



FIG. 7.—Photographs showcasing the variety of geometries observed in the study area. North is indicated. Peach highlights scale. A) Tabular bedded. B) Concave upward;

white lines highlight individual architectural elements. C) Pinching out upslope; black lines highlight pinch-out geometry, black box locates zoom in which was used for

reconstruction of the slope angle. D) Convex upwards; white lines highlight each element. E) Pinching out downslope; white lines outline triangular geometries, and white

arrows indicate onlap (also in Fig. 5C). F) Undulose. G) Tabular amalgamated beds; white lines outline individual beds.
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FIG. 8.—Sedimentological log through the Black Flysch Group at Gaztelugatxe Island. Location is on Figure 3. Transects of individual logs are separated by missing

sections as highlighted, and are therefore not continuous. Similar sedimentary facies on either side of the fault suggest that GX3 continues on both sides of the structure, and

therefore the impact of the structure is minor. Key for all the logs and pie charts shown. Thicknesses are in meters. GX# relate to stratigraphic units discussed in the text. Pie

chart shows debrite data divided by predominant clast type and debrite type (Table 2), and relative proportions of all debrites at this section, and average thickness of each type

is shown.
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BW1 marks the transition from BBF to BFG, and is interpreted as

representing deposition at the base of slope of the carbonate platform,

which was growing on the Bakio diapir (Fig. 12D: Poprawski et al. 2014).

Coarse-grained sandstones with lenticular geometries, scoured bases, and

normal grading, such as those observed in BW2, indicate deposition in a

channelized or scoured setting (Figs. 6F, 9, 12E; e.g., Hubbard et al. 2014;

Hofstra et al. 2015). The debrites capping unconformities could be

halokinetically-derived or related to channel-margin collapse induced by

diapir movement (Rodriguez et al. in press). The wide range of clast rock

types in these debrites suggests that they are dissimilar to other

FIG. 9.—Variability of facies and architectures within large-scale depositional elements at Bakio West Bay, located in Figure 3. A, B) Stratigraphic logs, which are located

in Part D and blown up for clarity. Thickness is in meters. Key is in Figure 8. BW# refers to stratigraphic unit discussed in the text. Dashed lines between logs highlight

correlation. C) Pie chart showing debrite data divided by predominant clast type and debrite type (Table 2), and relative proportions of all debrites at this section, and average

thickness of each type is shown. D) Uninterpreted and E) Interpreted large-scale architectures and facies details at Bakio West Bay. Unconformities are from Poprawski et al.

(2014), and are highlighted in red where they divide packages of stratigraphy. U4 of Poprawski et al. (2014) is not laterally extensive and appears to represent an isolated,

erosionally based depositional element (Fig. 9E). Based on these observations and the presence of channel-axis facies associations we suggest that U4 represents the base of a

channel cut and not a halokinetic angular unconformity (sensu Giles and Rowan 2012). Black box in photograph locates the channel-axis facies association (Fig. 5F). F)

Clasts of Gaztelugatxe Limestone which form out-runner blocks forming sea-floor topography.
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halokinetically derived debrites and could indicate a different set of mass

flows sourced up-dip of the depositional system (Fig. 9C; e.g., Doughty-

Jones et al. 2019; Wu et al. 2020).

The deepest point of each lenticular geometry in BW3 appears to step

eastward towards the Bakio diapir (Figs. 6F, 7A); this could indicate

lateral-accretion deposits from a meandering submarine channel (e.g.,

Peakall et al. 2007; Kane et al. 2010; Janocko et al. 2013). The concave-

upward geometry of the turbidites and the undulose contact with the

debrite below (Figs. 6F, 7B, 9) could represent channel fills or scour fills

influenced by previous debrite topography (e.g., Cronin et al. 1998;

Jackson and Johnson 2009; Kneller et al. 2016). The thick beds, concave-

upward geometry, erosional bases, and coarse grain size suggests that these

deposits are channel fills rather than scour fills (Hubbard et al. 2008;

Romans et al. 2011; McArthur et al. 2020).

The repeated facies change between pebbly chaotic debrites and

channelized turbidites is interpreted to represent periods of rapid diapir

FIG. 10.—Sedimentary log through Cabo Matxitxako Beach. Location in Figure 3. Missing sections are indicated; thickness is in meters. Key for all logs is provided in

Figure 8. CM# indicate stratigraphic units discussed in the text. Roughly 500 m of missing section separates South and North Cabo Matxitxako. The pie chart shows debrite

data divided by predominant clast type and debrite type (Table 2), and relative proportions of all debrites at this section, and average thickness of each type is shown.
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growth, evidenced by debrites overlying halokinetic unconformities (Giles

and Rowan 2012). This is suggested to have been followed by periods of

relative diapir quiescence, which permitted submarine channels to infill

debrite topography and migrate around the diapir due to reduced seafloor

topography (Kane et al. 2012).

Cabo Matxitxako

Cabo Matxitxako provides an extensive section (c. 600 m) through the

BFG. In this locality, we subdivide the group into eight lithostratigraphic

units (CM1–8; Fig. 10). There is c. 500 m of missing section between Cabo

FIG. 11.—Evidence for topography and paleoflow direction. Black arrow shows orientation and peach indicates scale, and lens cap is 52 mm. A) Rose diagram for 284

paleocurrent indicators (ripples, sole marks, cross-stratification) from the Black Flysch Group. Readings have been corrected for tectonic tilt yellow arrow indicates dominant

paleoflow direction some radial spread is due to ripple reflection. Gray arrows indicate regional (to the south) and local (to the west) paleoflow directions, discussed in the text.

B) Evidence for opposing-direction ripples suggesting ripple reflection. C) Triassic-age Keuper Group outcrop of clays, carbonate, and gypsum at Bakio Beach, thought to be

part of the Bakio diapir. D) Composite halokinetic sequence associated with the western flank of the Bakio diapir; HS, halokinetic sequence. E) Pinch-out and onlap of

lowermost Black Flysch Group thin-bedded turbidites onto a Gaztelugatxe Limestone clast on the eastern flank of the diapir. F) High-density turbidite abruptly terminating

against a block of Gaztelugatxe Limestone in HS3 (BW3).
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Matxitxako North and South Beach (Fig. 3). Cabo Matxitxako is located in

the Sollube basin, c. 4.5 km northeast and c. 5 km northwest of the Bakio

and Guernica salt structures, respectively.

Description.—CM1 is a 110-meter-thick package of mudstones, with

minor thin- to medium-bedded siliciclastic turbidites and debrites. CM2

is 60 m thick and is dominated by meter-scale debrites with subordinate

thin- to medium-bedded turbidites, hybrid beds, and mudstones (Fig.

10). Slump axes, where present, indicate a range of paleoflow directions

(forming two clusters: 80–1608 and 280–3208; Fig. 3). CM3 is 50 m

thick and contains meter-thick packages of stacked medium to thick

bedded, dewatered turbidites and slumps, meter to tens of meters thick

containing rafts of thin-bedded turbidites. Two beds of granular

sandstone (27 and 19 cm thick) with lenticular geometries are observed

at the top of CM3. CM4 is 32 m thick, is distinguished from CM3 as it is

debrite-poor and mostly comprises thick-bedded, amalgamated high-

density turbidites that stack into 3 to 6-meter packages. CM5 is 124 m

thick and consists of roughly equal proportions of 1 to 3-meters-thick

amalgamated turbidites, which are normally graded on a bed scale, and

meter-scale slumps and debrites, which occur every 2–10 m and contain

rafts of thin-bedded turbidites. CM6 has a minimum thickness of 18 m,

is observed at the northern part of South Beach, and is composed of 1 to

3 m debrites and 1 to 80 cm turbidites and mudstones (Fig. 3, 10). CM7

has a minimum thickness of 38 m, similar to CM6; however, the units are

separated by c. 500 m of missing stratigraphy, much of which is assumed

to have been removed due to Pyrenean deformation and recent landslides

(Vicente Bravo and Robles 1995), so have been separated. CM8 is 40 m

thick and consists of predominantly meter-scale, normally graded thick-

bedded turbidites with erosional bases, cross-stratification, amalgam-

ation, mud-clasts, and dewatering structures common throughout (Fig.

10).

Interpretation.—The Cabo Matxitxako succession (Fig. 10) sug-

gests a broadly basinward-shifting (i.e., progradational) system from

CM1 to CM4, followed by a slight back-step (i.e., retrogradational) or

lateral shift in CM5 to CM7, and a further basinward shift in CM8 (Fig.

12).

Debrites and slumps with clasts of thin- and medium-bedded

stratigraphy are present throughout CM2, 3, 5, 6, and 7 suggesting that

the seafloor was periodically unstable, possibly due to relatively high rates

of diapir rise and related seafloor deformation. CM1 is dominated by

background suspension fallout and dilute low-density turbidites in a lobe-

complex distal fringe setting (Fig. 12D). CM2 represents higher-energy,

more proximal lobe conditions compared to CM1, based on facies, hybrid

beds, geometry, stacking patterns, and thickness and is interpreted as

proximal lobe fringe deposition (Spychala at al. 2017). The depositional

sub-environment of CM3 is interpreted as an off-axis lobe complex, based

on facies and bed thicknesses, with small distributive channel fills,

evidenced by lenticular granular sandstones (Normark et al. 1979; Deptuck

and Sylvester 2017). CM4 is dominated by stacked, amalgamated, high-

density turbidites (Fig. 10) and is interpreted to represent deposition in the

axis of a lobe complex (Fig. 12F; Prélat et al. 2009; Spychala et al. 2017).

CM5 contains distributions of facies similar to those of CM3, so is

interpreted to represent lobe-complex off-axis deposition with some

distributive channel fills (Normark et al. 1979; Deptuck and Sylvester

2017). Debrite dominance in CM6 and CM7 suggests remobilization due

to diapir growth throughout deposition (Fig. 12F). These deposits are

interpreted to represent proximal-fringe to lobe-off-axis deposition

(Spychala et al. 2017), which is highly modulated by halokinetic debrites.

The coarse grain size, cross-stratification, thick beds, and lack of debrites

and mudstones (Figs. 6E, 10), suggests that CM8 was deposited in either a

lobe-axis or channel–lobe transition zone. This unit has previously been

interpreted as a channel–lobe transition zone (Vincente Bravo and Robles

1995) and shares characteristics similar to channel–lobe transition zones

reported elsewhere (e.g., Brooks et al. 2018). This unit shows little

evidence for active topography, suggesting that the sedimentation rate had

increased with respect to the diapir rise rate, possibly associated with uplift

of the Landes Massif (Rat 1988; Martı́n-Chivelet et al. 2002), or welding of

the salt source layer. Any remaining seafloor topography was filled by

CM8 (Fig. 12G).

Stratigraphic Correlation

The BW, GX, and CM lithostratigraphic units represent different

depositional systems despite their close proximity. Poor biostratigraphic

calibration renders stratigraphic correlations between the areas challenging

(Agirrezabala and López-Horgue 2017). Using lithostratigraphy, BW1 is

correlated to GX1–2, BW2–3 are correlated to GX3–4 and CM1–7, and

GX5 is correlated to CM8 (Figs. 8, 9, 10).

EVIDENCE FOR SEAFLOOR TOPOGRAPHY

There is widespread sedimentological evidence for seafloor topography

during deposition of the BFG, which as we discuss below reflects the

interplay between active salt growth and depositional processes controlling

the available accommodation.

Ripple cross-lamination, cross-stratification, and sole marks indicate a

regional southwestward paleoflow direction (Fig. 11). This direction is

consistent with a northward source for the BFG, supporting the Landes

Massif as a potential regional source area (Rat 1988; Robles et al. 1988;

Ferrer et al. 2008; Puelles et al. 2014). At Cabo Matxiatxako, a secondary

westward paleoflow orientation (Fig. 11A) is comparable to findings by

Robles et al. (1988), who suggest that this reflects the passage of gravity

flows that spilled across the Guernica structure into the Sollube basin.

Therefore, paleocurrent data (Fig. 11A) suggest modulation of a regional

(primarily south-trending) paleoflow by salt-induced topography (west-

trending flows off east-facing slopes) (Fig. 12). Analogously, a west–south-

westward paleoflow observed at Bakio West Bay (Fig. 3) may reflect the

passage of gravity flows that spilled from the Sollube basin, across the

Bakio structure into the Jata basin. This west–south-westward paleoflow

could alternatively represent the westward deflection of regional paleoflow

around the Bakio diapir.

Ripple lamination in opposing directions is common in individual thin-

bedded turbidites (Fig. 11B). Such features have been attributed to flow

reflection or deflection from seafloor topography (e.g., Kneller et al. 1991;

McCaffrey and Kneller 2001; Barr et al. 2004; Hodgson and Haughton

2004). Moreover, hybrid beds seen throughout the distal fringe (Figs. 5L,

M, 8, 9, 10) indicate that topography had influenced a transformation of

flow from turbulent to laminar (Fig. 14; e.g., Barker et al. 2008; Soutter et

al. 2019).

Turbidites that pinch out up depositional slope (Fig. 7C) reflect the

thinning towards topography (e.g., Ericson et al. 1952; Gorsline and

Emery 1959) as the low-density part of the turbidity current ran up the

topography farther than the high-density component (e.g., Al-Ja’aidi

2000; Bakke et al. 2013). Hence, thicker sandstones are more likely to be

confined to localized salt-withdrawal minibasins (Figs. 12, 13, 14),

whereas thinner sandstones may drape halokinetically influenced slopes

(Figs. 12, 13, 14; Straub et al. 2008; Soutter et al. 2019). Based on a bed-

scale thinning rate of 10 cm/m at Cabo Matxitxako (Figs. 3, 10), we

calculate the slope angle to be 2–38 (Fig. 7C). Due to the distance (c. 5

km) from the present-day Bakio diapir, it is unlikely that this slope is

solely related to diapir growth, but rather caused by a combination of salt

withdrawal or welding from the salt source layer at depth, and salt-

structure growth, as observed in similar-sized subsurface examples (e.g.,

Doughty-Jones et al. 2017).
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Multiple paleoflow directions, hybrid beds, and abrupt pinch-out of beds

can suggest the presence of (static) topography. However, the number of

debrites intercalated with lobes, and the tapered composite halokinetic

sequence observed at Bakio West Bay (Fig. 11D) suggest that this

topography and salt growth was active at the time of deposition.

Debrites

Description.—Debrites, slumps, and slides (the vast majority being

debrites) account for 23% of stratigraphy across all measured sections,

with an average thickness of 111 cm. Assuming that all the debrites (Table

1, Figs. 5K, 7D) are derived from diapir slopes and all turbidites are

FIG. 14.—Simplified comparison between lobes in unconfined and A–C) confined settings and D–F) progradation style in these settings. Parts A and B compare the

nomenclature of sub-environments of Spychala et al. (2017) and Soutter et al. (2019) from the Karoo and Annot basins, respectively. Confined systems are smaller and more

elongate and have more frequent hybrid beds. Part C shows how active topography would modify the model proposed by Soutter et al. (2019). One salt body has a carbonate

roof and one a siliciclastic roof purely for clarity. Part D shows compensational stacking occurring during system progradation. Part E shows how progradation may be

accelerated by parallel topography, based on flume tank experiments by Soutter et al. (2021) and Bakio West Bay. Part F shows how progradation is further accelerated as

gravity-flow deposits are funneled through dual-confinement. Both siliciclastic and carbonate failures are shown in Parts E and F to indicate diapiric influence on axial

deposition, as the depositional system shifts away from the salt structure to avoid the debrite topography. LDT, low-density turbidite; HB, hybrid bed; MDT, medium-density

turbidite; HDT, high-density turbidite.
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derived from far field, a 1:4 ratio of halokinetically to axially derived

deposition exists. While this is clearly an oversimplification, and we

provide evidence for local, diapirically derived debrites and regional,

slope-derived debrites, it does suggest that locally, extra stratigraphy may

be present in salt-confined basins compared to unconfined settings.

Therefore interpreting stacking patterns and correlating between basins

may be challenging.

Debrites on the flank of the Jata basin have an average thickness of 140

cm, compared to 119 cm and 73 cm in the axis and flank of the Sollube

basin, respectively. 31% of measured stratigraphy on the flank of the Jata

basin comprises debrites, compared to 22% and 18% in the flank and axis

of the Sollube basin, respectively. Debrite composition shows siliciclastic

dominance in the axis of the Sollube basin; debrites with carbonate clasts

or matrix become more common on the flank of the Sollube basin and are

dominant on the flank of the Jata basin (Figs. 8, 9, 10), in agreement with

models of halokinetic sequences (Giles and Rowan 2012). Limestone clasts

of similar composition in debrites on both the Jata and Sollube flanks

support the presence of a carbonate platform growing on top of the Bakio

diapir (Garcı́a-Mondéjar and Robador 1987; Poprawski et al. 2014, 2016),

indicating that these debrites are related to local diapir failures. The

proportion of carbonate clasts decreases from the Sollube basin flank to

axis (39% in Fig. 8 and , 1% in Fig. 10) due to distance from the

carbonate platform growing on top of the Bakio diapir. Isolated limestone

megaclasts (Figs. 9F, 11E, F) derived from the Gaztelugatxe Limestone

could be out-runner blocks (e.g., De Blasio et al. 2006; Soutter et al. 2018)

or fractured blocks of platform limestone that have toppled off during

diapiric growth (e.g., Alves et al. 2002, 2003; Martı́n-Martı́n et al. 2016).

Younger deposits progressively onlap these limestone clasts (Fig. 11E, F),

showing that subsequent turbidity currents later interacted with this

additional seafloor topography (e.g., Kilhams et al. 2012, 2015; Olafiranye

et al. 2013).

Interpretation.—Debrites can be sourced from either collapse on top of

the diapir or its flanks, or from failures of the shelf-edge and/or slope

(Doughty-Jones et al. 2019; Rodriguez et al. in press; Wu et al. 2020).

However, the source is difficult to decipher without a dataset covering the

coeval shelf and slope succession. The presence of more debrites in the

basal active part of the Sollube basin fill (Fig. 8, 9, 10, 13) compared to the

upper passive part of the basin fill (Fig. 10) suggests that mass failures are

more common during initial development of salt-confined depocenters

(Wu et al. 2020). The Sollube basin is more confined than the Jata basin,

and therefore can be expected to receive a larger proportion of material

derived from diapir growth. In fact, the Jata basin received more and

thicker debrites. This could suggest asymmetric growth of the Bakio diapir,

or the carbonate platform above it, creating a steeper slope on the boundary

of the Jata basin. However, the apparent difference in the number and

thickness of debrites could also be due to limitations of the outcrop, in that

the Sollube basin flank location (Gaztelugatxe Island) is more axial than

the Jata basin flank outcrop (Fig. 3). The absence of carbonate clasts in the

axis of the Sollube basin, compared to the Sollube and Jata basin flanks,

could suggest that diapirically derived mass failures did not extend into the

axis of the basin. However, the exposed minibasin stratigraphy is younger

than the flanking stratigraphy, and therefore carbonate clasts are expected

to be rarer due to a decrease in exposure and availability to be remobilized

through time.

The presence of complicated variations in thickness, clast type, and

debrite style across the study area suggests that mass flows are likely to be

both locally derived (from the salt structures) and regionally derived (from

the shelf), and therefore debrites were likely both allogenic and halokinetic

in origin (Moscardelli and Wood 2008; Doughty-Jones et al. 2019; Wu et

al. 2020). The proximity to salt structures, reduction in mass- failure

deposits away from salt structures, and the remobilized intrabasinal clasts

within them suggests that the majority of debrites in the study area are

locally derived from the Bakio diapirs. The wide variety of clasts types in

Jata basin debrites (Table 3: Fig. 9) and the association of these deposits

with channelized turbidites above could suggest that some of the Jata basin

debrites were regionally derived, and deposited as part of channel-axis

depositional elements. The absence of these possible regionally derived

debrites in the Sollube basin could be due to confinement by the offshore

part of the Bakio diapir, or different up-dip sediment routing. The

difference in thicknesses and numbers of debrites between the Jata and

Sollube basins suggests that they developed, at least partially, as separate

depocenters influenced by different controls (Figs. 8, 9, 10).

DISCUSSION

The discussion initially focuses on the Sollube basin, then compares the

Sollube and Jata basins, before comparing our observations to similar

depocenters developed in other salt-influenced basins.

Architecture of the Sollube Basin

The Sollube basin is of a similar size and geometry to previously

reported subsurface minibasins (Fig. 13; e.g., Pratson and Ryan 1994;

Booth et al. 2003; Madof et al. 2009; Doughty-Jones et al. 2017).

Therefore, this rare, exhumed example of a halokinetically influenced

deep-water succession provides an excellent exposure of fine-scale

minibasin depositional architecture, providing an analogue for subsurface

minibasins.

Distribution of Facies and Architecture

The Sollube basin is 8 km wide and confined to the east and west by the

Guernica and Bakio structures, respectively (Fig. 4; Robles et al. 1998;

Poprawski and Basile 2018). Repeated stratigraphy and facies distribution

on either side of Cabo Matxitxako, the change in bedding angle between

the LBF and UBF, and sedimentological evidence for syndepositional

topography support the presence of a broadly symmetrical basin confined

by the Bakio and Guernica structures.

Early stratigraphy in the siliciclastic fill of the Sollube basin is

dominated by thin-bedded sandstones, with localized debrites on the flanks

(Figs. 8, 10, 13). As the basin developed, thicker-bedded sandstones

representing channel fills and lobes were deposited in topographic lows

(basin axis), consistent with subsurface analogues (e.g., Booth et al. 2003;

Madof et al. 2009; Mayall et al. 2010; Doughty-Jones et al. 2017) and

numerical models (e.g., Sylvester et al. 2015; Wang et al. 2017). Towards

the flanks, the lower-density parts of the flows responsible for the thick-

bedded sandstones may run up topography, depositing thin-bedded

sandstones. Therefore, allocyclically controlled, axially derived, and often

the thickest stratigraphy is observed in the axis of the minibasin.

Halokinetically controlled (e.g., debrites) or -influenced (e.g., thickness

variations) stratigraphy occurs towards the basin margins. These

interpretations are consistent with subsurface studies (e.g., Doughty-Jones

et al. 2017; Rodriguez et al. in press; Wu et al. 2020).

Oluboyo et al. (2014) suggest that a fundamental control on the type of

confinement developed is the incidence angle between the strike of the salt

structure and the paleoflow direction. ‘‘Fill-and-spill’’ architecture is

observed in deep-water environments where topographic highs strike

perpendicular to the gravity-flow direction (i.e., at a high incidence angle)

(e.g., Piper and Normark 1983; Hay 2012; Prather et al. 2012; Soutter et al.

2019). This study documents a rare example of an exhumed halokinetically

influenced deep-water succession where paleoflow is at a low incidence

angle to structural strike (i.e., oblique-parallel). In such scenarios, spill

between basins is rare, and sedimentary systems are deflected to run

broadly parallel to salt walls in minibasins for several kilometers (Figs. 13,

14, 15; e.g., Oluboyo et al. 2014). The four-fold model of the fill of a
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FIG. 15.—Thought experiment comparing the effects of variable topography in the evolution of deep-water systems. Unconfined settings, partially confined systems, and

confined systems are compared. Unconfined settings are based on Prélat et al. (2009) and Sphycala et al. (2017). One salt wall is based on the Jata basin and flume-tank

experiments (Soutter et al. 2021). Two salt walls are based on Sollube basin. Upper image indicates schematic map section. Black line shows line of section shown in

chronostratigraphy and lithostratigraphy, and represents a fixed point for comparing extent of progradation across the models. Chronostratigraphy shows deposition during

time steps (t1–6). Lithostratigraphy shows how deposits relate to topography and previous deposits. Key is the same as Figure 14. Arrows on salt structures indicate periods of

salt rise; lack of arrows suggests relative quiescence. No scale is implied.
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confined basin (Sinclair and Tomasso 2002) is not appropriate where

paleoflow is oblique or parallel to salt structures, and there is a down-dip

exit (i.e., not confined in all directions). Our study indicates that the

dominant style of interaction between gravity flows and topography is

lateral confinement, with channels and lobes in the Sollube basin being

thickest in the axis and elongated parallel to the margins of the salt-

controlled basin. The presence of MTDs is somewhat overlooked in both

the confinement model proposed by Oluboyo et al. (2014), and the earlier

‘‘fill-and-spill’’ model (Winker 1996; Prather et al. 1998; Sinclair and

Tomasso 2002). MTDs sourced from either up-dip (i.e., extrabasinal;

detached) or from local mass failures (i.e., intrabasinal; attached) related to

growing salt structures, can generate additional syndepositional relief and

flow confinement (Fig. 14; Moscardelli and Wood 2008; Rodriguez et al.

in press).

The hierarchical scheme for classifying deep-water systems developed in

the Karoo basin (Prélat et al. 2009) is widely accepted, but must be used with

caution, or be adapted for confined systems (Prélat et al. 2010; Etienne et al.

2012; Marini et al. 2015). Prélat et al. (2010) recognized that width-to-

thickness ratios and areal extent-to-thickness ratios are different for confined

and unconfined systems, with width-to-thickness ratios of 100:1 measured in

selected subsurface confined settings, compared to 1000:1 in unconfined

settings, and areal extent-to-maximum-thickness ratios 30 times greater in

unconfined systems compared to confined systems (Prélat et al. 2010). All

examples used in Prélat et al. (2010) are from settings where paleoflow is

perpendicular (high angle) to topographic strike.

In terms of areal extent, stratigraphy in the Sollube basin (c. 8 km wide)

would be best classified as a lobe element (c. 5 km wide) using the Prélat et

al. (2009) framework. However, in terms of thickness each lithostrati-

graphic unit observed at Cabo Matxitxako (18–124 m thick, Fig. 10) would

be classified as a lobe complex (c. 50 m thick). The width:thickness ratio

of lobes in the Sollube basin is c. 160:1 (taking a midpoint thickness of 53

m), in agreement with confined examples reported by Prélat et al. (2010).

This suggests similar basic geometries for confined lobes regardless of

incidence angle between paleoflow and topographic strike. The dimensions

observed in the salt-influenced minibasins in the study area are comparable

to those of intraslope lobes complexes documented in the Karoo (6–10 km

wide, 10–15 m thick; Spychala et al. 2015), which are an order of

magnitude smaller than their basin-floor counterparts (Prélat et al. 2009).

Confined-lobe complexes are predicted to have smaller areal extents

because radial spreading is minimal due to topographic confinement (e.g.,

Marini et al. 2015; Soutter et al. 2019). The ratio of axis to fringe

deposition is likely to be increased in confined settings where flows stay

turbulent for longer, flow deceleration is limited, and development of a

wide fringe is hindered due to presence of topography (Etienne et al. 2012;

Soutter et al. 2019). The presence of thicker axial deposits due to

confinement by topography, and less space for lateral lobe switching to

occur, may make axis definition easier in a confined setting; however, this

may change through time if topography is healed and depositional systems

become less confined (Marini et al. 2015).

This study supports recent work (Oluboyo et al. 2014; Rodriguez et al.

in press) which suggests that elongate systems are common adjacent to

topography, on all scales. This is in contrast with the roughly equant

geometries predicted in unconfined systems (Prélat et al. 2009). Multi-

scale analysis suggests that all confined hierarchical elements would have

greater lengths than widths, and lesser areal extents and greater thicknesses

(lower aspect ratios) than unconfined settings when deposited adjacent to

oblique-parallel topography (Booth et al. 2003; Oluboyo et al. 2014;

Rodriguez et al. in press).

Development of Axial Systems

The overall upward thickening of beds and coarsening of grain size from

south to north at Cabo Matxitxako is associated with a transition in

depositional environment from lobe distal fringe to channel–lobe transition

zone (Figs. 10, 12). Coarsening and thickening upwards elsewhere is

widely interpreted to represent progradation (e.g., Mutti 1974; Macdonald

et al. 2011; Kane and Pontén 2012); however, this could also represent (a

component of) lateral stacking of lobes (e.g., Prélat and Hodgson 2013).

Throughout the Pyrenean, the BFG is interpreted to have been

controlled by allocyclic progradation (Robles et al. 1988; Agirrezabala

and Bodego 2005), driven by increases in sediment supply following the

uplift of the Landes Massif (Garcı́a-Mondéjar et al. 1996; Martı́n-Chivelet

et al. 2002; Puelles et al. 2014) and/or increased flow efficiency from

confinement (Hodgson et al. 2016). This regional progradation, along with

our field observations, provides compelling evidence that, on a lobe to

lobe-complex scale, the stratigraphic architecture of the study area is

controlled primarily by system progradation. Lateral switching may be

reduced due to confining topography decreasing the amount of space

available for switching to take place (e.g., Mayall et al. 2010; Oluboyo et

al. 2014).

By definition, only two lobe elements would be able to fit laterally

within the Sollube basin during LBF deposition (Prélat et al. 2009),

suggesting that due to confinement lateral stacking in our study area is

feasible only at the bed scale (Marini et al. 2015). The apparent

retrogradation observed between CM5–7 could be a result of bed to

lobe-scale lateral shifting and compensational stacking modulating an

otherwise progradational lobe complex (e.g., Gervais et al. 2006; Pickering

and Bayliss 2009; Etienne et al. 2012; Morris et al. 2014).

The lack of space for lateral stacking to occur suggests that lateral

topography reduces flow loss to overspill and deceleration, and therefore

the system remains turbulent for longer. This causes a basinward shift in

deposition effectively acting to magnify the effects of progradation (e.g.,

Kneller and McCaffrey 1999; Talling et al. 2012; Patacci et al. 2014).

This concept accounts for numerous, thick, high-density turbidites (UBF)

along the axis of the Sollube basin formed by gravity flows that were

funneled between the two structures (Figs. 13, 14C, F, 15; e.g., Scott et al.

2010; Oluboyo et al. 2014; Counts and Amos 2016; Howlett et al., in

press).

Using observations from Bakio, a range of stacking patterns may form

during progradation of a deep-water system in an unconfined, partially

confined, and dual-confined setting (Fig. 15). Unconfined fans have a

higher aspect ratio, surface area, and avulsion angle than confined systems

as the ability of the flows to spread radially was not restricted by

topography (Prélat et al. 2009; Spychala et al. 2017). Where only one

lateral confinement is present, deposits may be asymmetrical, as flows are

confined by diapir topography in one direction but are able to spread

radially away from it, as is seen in the deposits of the Jata basin (Fig. 9;

Soutter et al. 2021).

In settings with lateral confinement, deep-water systems are elongated

axially, subparallel with bounding relief (Figs. 13, 14, 15; Oluboyo et al.

2014; Soutter et al. 2021). Funneling of axial gravity flows, and therefore

bed amalgamation, is interpreted to be more enhanced where two salt

structures are present, resulting in thicker deposits but areally smaller

depositional architectures than unconfined settings (Kneller and McCaffrey

1999; Patacci et al. 2014; Soutter et al. 2021).

Diapir growth is not continuous through time, and phases of rapid

growth (e.g., Fig. 5; t2–t3, t5–t6) and quiescence (e.g., Fig. 15; t1, t4)

cause destabilization and remobilization of the diapir roof, overburden or

flank deposits (Figs. 8, 9, 10). This can drive rerouting of subsequent

systems to avoid failure topography, potentially resulting in lateral or

compensational stacking (Figs. 9, 12F, 14E, 15; Kane et al. 2012; Doughty-

Jones et al. 2017, 2019; Rodriguez et al. 2018, in press). In fully confined

settings, there is no space for rerouting and lateral MTDs could be

amalgamated with, or eroded away by, flows depositing axial turbidity

currents (Figs. 7C, 10, 12, 13, 14, 15).
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Active or Passive Topography

The geometry and number of the debrites, and thin-bedded sandstones

that pinch-out, is controlled by the presence of actively growing

topography during LBF deposition. The absence of debrites in the UBF

suggest that diapir growth ceased following uplift of the Landes Massif

(Garcı́a-Mondéjar et al. 1996; Puelles et al. 2014).

We infer that, following the cessation of diapir growth, an underfilled

synclinal basin remained due to remnant topography of the buried Bakio

and Guernica structures, which appears to have constrained UBF

deposition until it was filled (Figs. 3, 12G, 13). The LBF represents

early-stage ‘‘active’’ deposition, perhaps comparable to synkinematic

megasequences observed in the subsurface, whereas the UBF represents

late-stage ‘‘passive’’ deposition, infilling antecedent topography, compara-

ble to postkinematic megasequences observed in the subsurface (e.g.,

Pratson and Ryan 1994; Warren 1999, 2006; Jackson and Hudec 2017).

UBF deposits are less confined due to the lesser influence of salt-

influenced topography during deposition, and therefore through time may

evolve to represent semiconfined or unconfined deep-water systems, more

capable of lateral stacking (Marini et al. 2015).

Comparison of Sollube and Jata Basins

Different facies distributions on either side of the Bakio diapir varied

during BFG times according to the degree of confinement and distance

from diapir crest (Figs. 12, 13). In the BBF, clast- and matrix-supported

breccias are common in the Sollube and Jata basins, respectively

(Poprawski et al. 2016), suggesting that minibasin individualization is

long-lived. The lack of confining topography to the west of the Jata basin

may have caused flows to dilute, resulting in muddier, more-matrix-rich

breccias (e.g., Hampton 1972; Sohn et al. 2002; Baas et al. 2009).

LBF stratigraphy in the Jata basin thins towards the Bakio diapir (Fig.

11D), showing more evidence for topography than comparable strata in the

Sollube basin, supporting the idea that halokinetic deformation is greatest

closest to salt structures (Giles and Lawton 2002; Giles and Rowan 2012).

Richness in limestone clasts in LBF MTDs in the Jata basin (Fig. 9C, Table

3) could indicate asymmetric buildup and failure of the carbonate platform

above the Bakio diapir, preferentially filling the Jata basin (Rosales and

Pérez-Garcı́a 2010; Li et al. 2016). Asymmetric growth and failure of

either the carbonate platform or the diapir itself is further supported by

thicker, more prevalent debrites observed in the Jata basin compared to the

Sollube basin (discussed above: Figs. 8, 9, 10). The diverse range of clast

types in the Jata basin (Table 3; Fig. 9) could suggest different depositional

routing relative to the Sollube basin, possibly due to the presence of salt

topography causing different source areas to be tapped (e.g., Mayall et al.

2010; Oluboyo et al. 2014).

Another key difference is the architecture of thick-bedded sandstones. In

the Jata basin, individual depositional elements are often erosionally based,

concave-upwards, and thinner, and show more tractional structures (e.g.,

ripple lamination and planar lamination) than those in the Sollube basin.

Where lateral confinement occurs along one margin, sandstones could

represent sinuous low-relief channel fills that ran subparallel to topography

(e.g., Mayall et al. 2010; Oluboyo et al. 2014). These channels were able to

spread laterally and migrate because they were only partially confined

(e.g., Mayall et al. 2010; Oluboyo et al. 2014). Such systems are less

modulated by halokinetic controls than those that develop under dual-

lateral confinement (e.g., Oluboyo et al. 2014; Rodriguez et al., in press).

Subsurface observations indicate that channels migrate away from growing

structures (Mayall et al. 2010; Kane et al. 2012); however, those at Bakio

West Bay appear to step towards the diapir in 2D (Figs. 6F, 7B). This could

suggest a periodic reduction in diapir growth, due to the episodic nature of

halokinesis (Kane et al. 2012), which may be unresolvable in subsurface

data. Alternatively, the debrites underlying the thick-bedded sandstones

could form pathways that controlled sandstone deposition, and therefore

the apparent movement towards the diapir was in fact controlled by the

deep-water systems infilling debrite-related paleotopography (Armitage et

al. 2009). However, deciphering detailed interpretations of 3D sinuous

channels from 2D exposure remains challenging (Li et al. 2016).

The Jata and Sollube basins had unique tectonostratigraphic histories

throughout the deposition of the BBF and LBF due to the interplay of

halokinetic, allocyclic, and autocyclic controls. Inaccessible UBF stratig-

raphy to the west of Bakio (Fig. 11D), from UAV photographs, appears to

exhibit facies and geometries similar to UBF stratigraphy at northern Cabo

Matxitxako (Fig. 10: Vincente Bravo and Robles 1991a, 1991b, 1995)

suggesting that influence of halokinesis decreased through time. This

supports the idea that sediment accumulation rate ultimately outpaced

diapir growth rate, possibly due to the increase in sediment supply

associated with the uplift and erosion of the Landes Massif (Martı́n-

Chivelet et al. 2002; Puelles et al. 2014). Partial or complete welding of salt

bodies could also be, at least partially, responsible for the reduction of

influence of halokinesis through time (Jackson and Hudec 2017).

Comparison to Other Depositional Settings

Here, for ease of comparison with subsurface examples, we use mass-

transport deposit (MTD), instead of debrite, to describe deposits from

varied subaqueous mass flows, including a mixture of slides, slumps, and

debris flows in agreement with previous subsurface studies (e.g., Nardin et

al. 1979; Posamentier and Kola 2003; Pickering and Hiscott 2015;

Doughty-Jones et al. 2019; Wu et al. 2020).

Recognition of Halokinetically Influenced Stratigraphy in the Field

Before this study, most understanding of halokinetically-influenced

deep-water systems came from subsurface datasets (e.g., Booth et al. 2003;

Madof et al. 2009; Carruthers et al. 2013; Doughty-Jones et al. 2017).

Features that are common across several depositional settings where

halokinetic movements are observed include multi-scalar thinning and

onlap, growth faulting, pebble conglomerates, mixed siliciclastic–carbon-

ate lithologies, MTDs, variable paleocurrents, angular unconformities, and

abrupt facies variability (Dalgarno and Johnson 1968; Dyson 1999; Kernen

et al. 2012, 2018; Carruthers et al. 2013; Counts and Amos 2016; Counts

et al. 2019).

Deposition of thick-bedded sandstones along the axis of the Sollube

basin, and thinner beds and mudstones on the flanks of the Sollube and Jata

basins, is comparable to fluvial facies distribution (Banham and Mountney

2013a, 2013b, 2014; Ribes et al. 2015) where channel-fill sandstones

dominate axial settings and floodplain mudstones are observed closer to

the diapir.

Individual beds in the BBF are comparable in size (tens- to hundreds-of-

meters packages) and composition to stacked MTDs reported overlying

bounding unconformities in halokinetic sequences in the La Popa Basin

(10–120 m in thickness) associated with remobilization of diapir roof or

cap rock (Giles and Lawton 2002; Poprawski et al. 2014, 2016). Smaller

carbonate breccias with wedge-shaped geometries (meter-scale packages;

Fig. 7E) are similar in geometry and composition to ‘‘lentils’’ (1 meter to

100s of meters thick) described by McBride et al. (1974), but differ in

thickness and areal extent. Lentils, MTDs, and breccias represent talus-like

failure from diapir roof stratigraphy (Giles and Lawton 2002; Poprawski et

al. 2014, 2016).

Presence of evaporite clasts in fluvial successions (Banham and

Mountney 2013b; Ribes et al. 2015), suggest that the nearby diapir was

exposed during deposition. Such clasts are not observed in our study area,

suggesting that the Bakio and Guernica structures may have only

episodically been exposed at the seabed, if at all. This fits the interpretation

of carbonate-platform growth above the structures, preventing salt
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exposure (Garcı́a-Mondéjar 1990; Rosales and Pérez-Garcı́a 2010;

Poprawski et al. 2014, 2016).

The consistency of our observations and previously described

halokinetically influenced settings suggests that the criteria for recognizing

halokinetically influenced systems is similar regardless of depositional

environment, suggesting that halokinetic controls are dominant over

allocyclic ones. Multiple directions of ripple lamination, presence of hybrid

beds, range of MTD types, and abrupt juxtaposition of deep-water

depositional facies can be used to identify halokinetically influenced deep-

water systems in core and outcrop.

Comparison between Quickly and Slowly Deforming Basins

The gravity flows responsible for the Eocene to Oligocene Annot

Sandstone, SE France, were confined during deposition by Alpine fold-

and-thrust belt topography (Apps 1987; Sinclair 1994). When compared

with the rate of topographic deformation associated with diapir growth, the

rate of orogenic deformation is more minor.

Like the BFG, the stratigraphy of the Grès d’Annot is broadly

progradational, and rapid facies changes occur over tens of meters towards

pinch-outs (Soutter et al. 2019). Unlike Bakio, where paleoflow was

consistently at a low angle to structural trend, sub-basins in the Annot area

were eventually filled and bypassed sediment into down-dip basins

(Sinclair and Tomasso 2002; Salles et al. 2014), indicating that paleoflow

was perpendicular to at least one of the complex structural trends (Oluboyo

et al. 2014).

Debrites in the Grès d’Annot were slope-derived and infrequent

compared with our study area, which were sourced laterally from failures

of stratigraphy above salt structures that are intercalated with axially

derived deep-water deposits (Figs. 12, 13, 14, 15). This is a reflection of a

more active slope in diapiric settings.

The stratigraphy in this study is characterized by an axial deep-water

depositional system and a series of lateral systems dominated by debrites

fed from the growing salt structures. This interplay of two distinct

depositional systems is common in deep-water environments influenced by

active rift topography, such as the Gulf of Corinth, Greece (Leeder and

Gawthorpe 1987; Pechlivanidou et al. 2018; Cullen et al. 2019) and the

Gulf of Suez, Egypt (Sharp et al. 2002; Jackson et al. 2002, 2005; Leppard

and Gawthorpe 2006). Here the continually evolving footwall scarps feed

lateral MTD-rich systems coevally with axial, allocyclically controlled

depositional systems. Deposits in synrift settings are often narrow and

elongated parallel to the strike of normal-fault segments (Carr et al. 2003;

Jackson et al. 2005; Cullen et al. 2019), indicating the control on

stratigraphic architecture by footwall physiography. Analogous variability

of depositional facies occurs due to salt-structure evolution in halokineti-

cally influenced settings.

CONCLUSIONS

This study documents deep-water facies distributions, with variable

amounts of topographic confinement, adjacent to growing salt structures

from a rare exposed example. We compare observations from two

minibasins, one confined (Sollube) and one partially confined (Jata), which

are comparable in size and facies heterogeneity to subsurface minibasins in

salt provinces globally.

Stratigraphic variability and juxtaposition of architectural elements in

the Jata and Sollube basins is high and controlled by the interplay of

halokinetic, autocyclic, and allocyclic processes. The low angle between

the paleoflow and the strike direction of salt structures results in the

depositional system being focused between two salt structures in the

Sollube basin, and against one salt structure in the Jata basin, but with no

evidence of downdip flow confinement. Confinement against topography

increases the effects of allocyclic progradation. Failure of carbonate

platforms developed above the crests of the active Bakio diapir and

Guernica structure created lateral debrites in the flanking basins, and

generated local topography to further constrain axial depositional systems.

Debrites can also be sourced axially from up-dip failures on the shelf, and

the compositional differences of debrites suggests that the Jata and Sollube

basins were subject to different influences.

Indicators of active topography include hybrid beds, remobilized strata,

lateral thickness changes over short distances, reversal in ripple cross-

lamination in beds and intercalation of debrites throughout the stratigraphy.

These indicators individually are not diagnostic of salt-influenced

topography, but collectively they provide a set of features that support

interpretation of halokinetic modulation of a deep-water setting. Following

the cessation of diapir growth, topography does not heal instantly, and the

‘‘passive’’ paleotopography continues to confine subsequent depositional

systems despite diapir inactivity.

Closely related depositional systems can be highly variable depending

on their complete or partial confinement. Stacked, amalgamated

sandstones are observed between the confining barriers in the Sollube

basin, whereas more variable architectures are observed in the Jata basin,

where only partial confinement is present. These observations are due to

the modulation of a broadly progradational system by halokinetically

influenced lateral barriers and the coeval development of axial allocyclic

and lateral debrite-rich depositional systems.

Utilizing outcrop analogues combined with a good regional understand-

ing of source area and salt movement and extracting insights from

depositional analogues are advised when exploring in the salt–sediment

interface for carbon storage or geothermal or hydrocarbon reservoir targets.

SUPPLEMENTAL MATERIAL

Supplemental Figure 1 us available from SEPM’s Data Archive: https://www.

sepm.org/supplemental-materials.
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DE MATTIES, M., 2020, Salt tectonics and controls on halokinetic-sequence development

of an exposed deepwater diapir: the Bakio Diapir, Basque–Cantabrian Basin, Pyrenees:

Marine and Petroleum Geology, v. 123, 104770.

RODRIGUEZ, C.R., JACKSON, C.A-L., ROTEVATN, A., BELL, R.E., AND FRANCIS, M., 2018, Dual

tectonic-climatic controls on salt giant deposition in the Santos Basin, offshore Brazil:

Geosphere, v. 14, p. 215–242.

RODRIGUEZ, C.R., JACKSON, C.A-L., BELL, R.E., ROTEVATN, A., AND FRANCIS, M., in press,

Deep-water reservoir distribution on a salt-influenced slope, Santos Basin, offshore

Brazil: American Association of Petroleum Geologists, Bulletin, doi:10.1306/111820173

40.

ROMANS, B.W., FILDANI, A., HUBBARD, S.M., COVAULT, J.A., FOSDICK, J.C., AND GRAHAM,

S.A., 2011, Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile:

Marine and Petroleum Geology, v. 28, p. 612–628.
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