
This is a repository copy of Stringent mitigation substantially reduces risk of 
unprecedented near-term warming rates.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/167306/

Version: Accepted Version

Article:

McKenna, CM orcid.org/0000-0002-9677-4582, Maycock, AC orcid.org/0000-0002-6614-
1127, Forster, PM orcid.org/0000-0002-6078-0171 et al. (2 more authors) (2021) Stringent 
mitigation substantially reduces risk of unprecedented near-term warming rates. Nature 
Climate Change, 11 (2). pp. 126-131. ISSN 1758-678X 

https://doi.org/10.1038/s41558-020-00957-9

Copyright © 2020, The Author(s), under exclusive licence to Springer Nature Limited 2021.
This is an author produced version of a paper published in Nature Climate Change. 
Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

1. Extended Data 1 

 2   3 

Figure # Figure title 
One sentence only 

Filename 

This should be 

the name the file 

is saved as when 

it is uploaded to 

our system. 

Please include 

the file extension. 

i.e.:  

Smith_ED_Fi_1.j

pg 

Figure Legend 
If you are citing a reference for the first time in 

these legends, please include all new references 

in the Online Methods References section, and 

carry on the numbering from the main 

References section of the paper.  

Extended Data 

Fig. 1 

   

Extended Data 

Fig. 2 

   

Extended Data 

Fig. 3 

   

Extended Data 

Fig. 4 

   

Extended Data 

Fig. 5 

   

Extended Data 

Fig. 6 

   

Extended Data 

Fig. 7 

   

Extended Data 

Fig. 8 

   

Extended Data 

Fig. 9 

   

Extended Data 

Fig. 10 

   

2. Supplementary Information:  4 

A. Flat Files  5 

 6 

Item Present? Filename 

This should be the 

name the file is 

saved as when it is 

A brief, numerical description of file 

contents.  
i.e.: Supplementary Figures 1-4, 

Supplementary Discussion, and 

 



2 

uploaded to our 

system, and 

should include the 

file extension. The 

extension must be 

.pdf 

Supplementary Tables 1-4. 

Supplementary 

Information 

Yes  McKenna_et_al

_supplementar

y_information.p

df  

Supplementary Figures 1-8, 

Supplementary Tables 1-3  

Reporting Summary No  

 7 

 8 

B. Additional Supplementary Files  9 

 10 

Type 

Number 
If there are multiple files of 

the same type this should 

be the numerical indicator. 

i.e. “1” for Video 1, “2” for 

Video 2, etc. 

Filename 

This should be the name 

the file is saved as when it 

is uploaded to our system, 

and should include the file 

extension. i.e.: Smith_ 

Supplementary_Video_1.m

ov 

Legend or Descriptive 

Caption  
Describe the contents of 

the file 

Choose an item.    

Choose an item.    

Choose an item.    

Choose an item.    

Choose an item.    

Choose an item.    

 11 

3. Source Data 12 

 13 

Parent Figure 

or Table 

Filename 

This should be the name the 

file is saved as when it is 

uploaded to our system, and 

should include the file 

extension. i.e.: 

Smith_SourceData_Fig1.xls, or 

Smith_ 

Unmodified_Gels_Fig1.pdf 

Data description 
e.g.: Unprocessed Western Blots and/or gels, 

Statistical Source Data, etc.   

Source Data 

Fig. 1 

  

Source Data   



3 

Fig. 2 

Source Data 

Fig. 3 

  

Source Data 

Fig. 4 

  

Source Data 

Fig. 5 

  

Source Data 

Fig. 6 

  

Source Data 

Fig. 7 

  

Source Data 

Fig. 8 

  

Source Data 

Extended Data 

Fig. 1 

  

Source Data 

Extended Data 

Fig. 2 

  

Source Data 

Extended Data 

Fig. 3 

  

Source Data 

Extended Data 

Fig. 4 

  

Source Data 

Extended Data 

Fig. 5 

  

Source Data 

Extended Data 

Fig. 6 

  

Source Data 

Extended Data 

Fig. 7 

  

Source Data 

Extended Data 

Fig. 8 

  

 

Source Data 

Extended Data 

Fig. 9 

  

Source Data 

Extended Data 

Fig. 10 

  



4 

Stringent mitigation substantially reduces risk of unprecedented    

near-term warming rates 

Christine M. McKenna1,*, Amanda C. Maycock1, Piers M. Forster1,        

Christopher J. Smith1,2, and Katarzyna B. Tokarska3 

1 School of Earth and Environment, University of Leeds, Leeds, UK 

2 International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria 

3 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland 

* Corresponding author: C.McKenna1@leeds.ac.uk 

 

 

Abstract  14 

Following the Paris Agreement, many countries are enacting targets to achieve net-zero 15 

greenhouse gas emissions. Stringent mitigation will have clear societal benefits in the second 16 

half of this century by limiting peak warming and stabilizing climate. However, the near-term 17 

benefits of mitigation are generally thought to be less clear because forced surface temperature 18 

trends can be masked by internal variability. Here we use observationally-constrained 19 

projections from the latest comprehensive climate models and a simple climate model emulator, 20 

to show that pursuing stringent mitigation consistent with holding long-term warming below 1.5 21 

°C reduces the risk of unprecedented warming rates in the next 20 years by a factor of 13 22 

compared to a no-mitigation scenario, even after accounting for internal variability. Therefore, in 23 

addition to long-term benefits, stringent mitigation offers substantial near-term benefits by 24 

offering societies and ecosystems a greater chance to adapt to and avoid the worst climate 25 

change impacts. 26 
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Main text  27 

Near-term warming rates affect how rapidly society and ecosystems must adapt to the worst 28 

impacts of climate change. Recent decades have seen high rates of global average surface 29 

warming; the maximum warming trend for 20-year segments of the observation-based record 30 

since pre-industrial times is 0.27 °C decade-1, which occurred in the last few decades with the 31 

exact timing dependent on the dataset used (Supplementary Fig. 1). It is clear that to stabilize 32 

climate in the long-term, global net-zero greenhouse gas emissions must be achieved1; 33 

however, it is less clear when the benefits of mitigation applied now will become evident2-6.  34 

Here, we investigate the effect of different levels of mitigation in future emission scenarios on 35 

surface warming rates in the next 20 years (2021-2040), a key period for policymakers at the 36 

forefront of climate change adaptation. For example, crop breeding is unlikely to keep pace with 37 

climate impacts on agriculture over this period under current rates of warming7. The next 20 38 

years is also a typical time horizon for initial planning to operation of large-scale structural 39 

responses to support climate change adaptation, such as the design and implementation of 40 

flood defences8.  41 

The general consensus is that differences in global mean surface temperature between high 42 

and low emission pathways only emerge after roughly the 2050s, with changes not being 43 

detectable beforehand2-6. The long atmospheric lifetime of CO2 means that substantial emission 44 

reductions are needed to alter the upwards trend in atmospheric concentration and effective 45 

radiative forcing9, making it difficult for society to notice the immediate benefits of mitigation 46 

efforts. While the Paris Agreement long-term targets are concerned with addressing the 47 

anthropogenic warming contribution10-11, the temperature changes society will experience in the 48 

near-term will come from a combination of a forced response to radiative forcings and internal 49 

climate variability12-13. On decadal timescales, internal variability can overwhelm the forced 50 
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climate response, even for spatially averaged quantities like global temperature4, having 51 

profound implications for the public understanding of climate change. For example, the period of 52 

relatively slow surface warming between around 1998 and 2012, which was partly associated 53 

with internal climate variability14, was widely misreported leading to doubt in the public mind 54 

about how well anthropogenic climate change is understood15. It is therefore important to 55 

communicate to what extent strong mitigation efforts will offer benefits in the near-term as well 56 

as in the long-term, and to what extent those benefits may be masked on shorter timescales by 57 

internal variability. 58 

Here, we combine two approaches (see Methods) to assess whether mitigation has detectable 59 

benefits for near-term warming rates. The first approach uses projections from the latest 60 

Coupled Model Intercomparison Project Phase 6 (CMIP6) models, driven by Shared 61 

Socioeconomic Pathway (SSP16) scenarios and constrained according to their representation of 62 

recent observed warming rates17. The second approach uses a simple climate model emulator 63 

(FaIR18), with added observation-based estimates of internal variability19, also run under SSP 64 

scenarios and, additionally, a scenario consistent with current and projected pledges as of 2019 65 

in the Nationally Determined Contributions (NDCs) under the Paris Agreement20-22. Simple 66 

climate models like FaIR are designed to emulate the behavior of more complex climate models 67 

in a computationally inexpensive way, by using simplified representations of the physical 68 

relationships between emissions, atmospheric concentrations of greenhouse gases and other 69 

climate forcers, radiative forcing, and temperature change. The combination of these two 70 

approaches is advantageous because the CMIP6 models - while comprehensive - do not 71 

necessarily accurately represent observed internal variability, and CMIP6 was not designed to 72 

fully sample the range of parameter uncertainties that affect temperature projections. Since 73 

FaIR is inexpensive to run, it can be used to more broadly sample uncertainty in temperature 74 

projections than individual complex climate models (see Methods).  75 
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We focus on strong mitigation pathways in line with the Paris Agreement 1.5 °C and 2 °C long-76 

term temperature targets (SSP1-1.9 and SSP1-2.6, respectively), and include the NDC-like 77 

scenario to consider a less ambitious and more plausible mitigation pathway23. These are 78 

compared to baseline no mitigation pathways (SSP3-7.0 and SSP5-8.5). SSP5-8.5 is a highly 79 

unlikely “worst case” no mitigation pathway since, for example, it assumes a fivefold increase in 80 

coal use by the late 21st century23. Conversely, SSP3-7.0 represents an “average” no mitigation 81 

pathway23 and, as such, focus will be placed on this as a baseline.  82 

Firstly, we ask whether over the next 20 years, mitigation – relative to a baseline of no mitigation 83 

– will reduce: (i) the risk of experiencing unprecedented warming rates (exceeding the highest 84 

warming rate observed to date), and (ii) the potential magnitude of extreme warming rates (i.e., 85 

low probability 20-year trends in the upper 5th percentile), which could lead to the failure of 86 

adaptation plans.  87 

Both the CMIP6 and FaIR simulations show a clear benefit of strong mitigation in terms of 88 

decreasing near-term warming rates (Fig. 1a). The following results are quoted from the FaIR 89 

projections accounting for internal variability, but note that the distributions of trends for the 90 

constrained CMIP6 models are in good agreement with FaIR (Fig. 1a). In the strong mitigation 91 

scenario consistent with warming of below 2.0 °C by 2100 (SSP1-2.6; blue boxes), the median 92 

warming rate is almost half that in the “worst case” no mitigation scenario (SSP5-8.5; brown 93 

boxes), and two thirds that in the “average” no mitigation scenario (SSP3-7.0; orange boxes). 94 

Under the even stronger mitigation scenario consistent with keeping long-term warming below 95 

1.5 °C (SSP1-1.9; green box), the median warming rate is almost one third of that in the “worst 96 

case” no mitigation scenario, and just over half that in the “average” no mitigation scenario. 97 

Even under less ambitious mitigation consistent with current and projected NDCs (grey box), 98 

there is still a reduction in median warming rate by around one third compared to SSP5-8.5 and 99 

one quarter compared to SSP3-7.0. The median effective radiative forcing (ERF) trend in FaIR 100 
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over this period differs by 0.63 W m-2 decade-1 between SSP1-1.9 and SSP5-8.5 101 

(Supplementary Table 1), which comes mainly from carbon dioxide (0.42 W m-2 decade-1), 102 

methane (0.15 W m-2 decade-1), tropospheric ozone (0.13 W m-2 decade-1), and other well-103 

mixed greenhouse gases (0.05 W m-2 decade-1), with a slight offset from anthropogenic aerosols 104 

(-0.16 W m-2 decade-1). The difference in near-term total ERF trend is 0.29  W m-2 decade-1 105 

between SSP1-2.6 and SSP3-7.0 (Supplementary Table 1). Over the next 20 years, the 106 

difference in median ERF trends between the strong mitigation and no mitigation SSP scenarios 107 

are therefore comparable to, or larger than, the total ERF trend over the recent past (1995-108 

2014; 0.40 W m-2 decade-1; Supplementary Table 1).    109 

Comparing the distributions of projected warming rates to the maximum trend for 20-year 110 

segments of the observation-based record since the pre-industrial (red ticks on y-axes, Fig. 1a), 111 

we find that strong mitigation has a discernible effect on the risk of experiencing stronger 112 

warming than observed in the past, even after accounting for internal variability. Under SSP1-113 

1.9 (SSP1-2.6) there is only a 4% (14%) probability of the warming rate in the next 20 years 114 

exceeding the maximum observed trend, while for SSP3-7.0 (SSP5-8.5) this increases 115 

considerably to a 54% (75%) probability. Less ambitious mitigation, in line with current and 116 

projected NDCs, results in a higher probability (21%) of unprecedented near-term warming than 117 

for SSP1-1.9 or SSP1-2.6. Pursuing rapid, stringent mitigation therefore substantially reduces 118 

the risk of experiencing unprecedented warming rates over the next 20 years, giving society and 119 

ecosystems a greater chance to adapt to and avoid the worst impacts of climate change. 120 

Indeed, for warming rates of 0.3 °C decade-1, which is close to the threshold for unprecedented 121 

warming rates, it has been estimated only 30% of all climate change impacted ecosystems can 122 

adapt and only 17% of impacted forests24.   123 

Note that very high near-term warming rates, which are substantially larger than the maximum 124 

observed historical 20-year trend, are still possible in all scenarios considered. However, a key 125 
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point for policymakers to note is that strong mitigation greatly reduces the extremity of these low 126 

probability high impact cases, reducing the risk of ecosystems declining and adaptation plans 127 

failing. Under SSP5-8.5 and SSP3-7.0, the upper 5% of trends are between 0.50-0.83 °C 128 

decade-1 and 0.43-0.79 °C decade-1 respectively, while this extreme range is 0.32-0.50 °C 129 

decade-1 for SSP1-2.6 and 0.26-0.43 °C decade-1 for SSP1-1.9 (Fig. 1a; FaIR boxes). For 130 

warming rates over 0.4 °C decade-1, evidence suggests that all ecosystems will decline as they 131 

will not be able to adapt rapidly enough25. These extremes are caused by a combination of 132 

relatively high equilibrium climate sensitivity (ECS), high transient climate response (TCR), high 133 

effective radiative forcing (ERF) trends, and high positive internal variability. Very low near-term 134 

warming rates are also possible in all scenarios considered. However, only under mitigation 135 

would it be possible, but very unlikely, to observe a cooling trend over the next 20 years. Only 136 

2% of trends show near-term cooling in SSP1-1.9, where the minimum trend is -0.13 °C decade-137 

1. Maher et al. (2020)5 found that cooling trends could be observed in the near-term even under 138 

a “worse case” emissions scenario, when using a shorter 15-year time horizon and considering 139 

trends at individual locations rather than the global average trend.  140 

We now ask what is the probability, over the next 20 years, of the warming trend being lower if a 141 

mitigation pathway is followed rather than a no mitigation pathway. This is important since 142 

internal variability could overwhelm a forced temperature signal from diverging trajectories of 143 

greenhouse gas and aerosol concentrations, masking the near-term benefits of mitigation 144 

efforts. The probability that pursuing a mitigation pathway will result in a lower near-term 145 

temperature trend by a factor α as compared to following a no mitigation pathway (P(trendmit < 146 

trendnomit – α × trendnomit)) is shown in Table 1a. Values of α are chosen to assess whether the 147 

trend is, first, lower by any amount (α = 0) and, second, lower by a sizable amount (20% and 148 

40%, α = 0.2 and α = 0.4). The probabilities for α = 0 are calculated from the distributions 149 

created by randomly sampling with replacement from each FaIR trend distribution and taking 150 
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their difference, where this is repeated n=105 times (Fig. 2a and 2b). For α = 0.2 and α = 0.4, 151 

the probabilities are calculated by shifting the same distributions by amount α × trendnomit.  152 

Comparing the 1.5 °C and 2 °C scenarios (SSP1-1.9 and SSP1-2.6) to the “average” no 153 

mitigation scenario (SSP3-7.0; Fig. 2a), there is respectively around a 90% and 80% probability 154 

(Table 1a) that the near-term temperature trend would be lower when following the strong 155 

mitigation pathway. Under less ambitious mitigation consistent with current and projected NDCs, 156 

the probability of the warming trend being lower than in the “average” no mitigation pathway is 157 

74%. Even when it is required that the trend under mitigation is at least 20% (40%) lower than 158 

under no mitigation, there is still a 83% (67%) probability of this outcome for SSP1-1.9 159 

compared to SSP3-7.0. 160 

A more stringent test, similar to that described by Marotzke (2019)4 – hereafter M19 – is to ask 161 

what is the probability that mitigation is both sufficient and necessary (Pns) for a reduction in the 162 

temperature trend over 2021-2040 relative to the trend over the recent past. To calculate Pns, 163 

the observed 20-year temperature trend for 2000-2019 (trendobs) is subtracted from each 164 

distribution of FaIR near-term trends for the mitigation and no mitigation scenarios. Since the 165 

recently observed trend differs somewhat in multiple observational datasets (Supplementary 166 

Fig. 1), a dataset is randomly chosen for each comparison with the FaIR projections. The 167 

resulting distributions (Fig. 2c) give the probability of a trend reduction compared to the recent 168 

past under mitigation (Pmit = P(trendmit < trendobs)) and no mitigation (Pnomit = P(trendnomit < 169 

trendobs)) scenarios. Pns is then calculated from Pns = Pmit - Pnomit. This is similar to the approach 170 

of M194, except that here we use the observed trend, which is known, rather than a distribution 171 

of modelled trends for the recent past. Compared to the first test conducted (Table 1a, Fig. 2a 172 

and 2b), this more stringent test gives, as expected, a lower probability of mitigation causing a 173 

reduction in the near-term temperature trend as compared to no mitigation. However, for the 174 

difference between the 1.5 °C mitigation scenario and the “average” no mitigation scenario, the 175 
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probability that mitigation is both necessary and sufficient to cause a reduction in the trend as 176 

compared to recent observations is close to a 66% probability (Table 1b). 177 

To investigate the extent to which our results depend on the period or trend length considered, 178 

we use the FaIR emulator including estimates of internal variability to calculate warming rates 179 

for temperature trends starting in 2021 and ending in different years (Fig. 3). The 66% 180 

probability range of trends for SSP3-7.0 and SSP1-1.9 become non-overlapping after around 20 181 

years (i.e., by around 2040). This is also around the time at which the SSP5-8.5 and SSP1-2.6 182 

66% probability ranges become separated. For SSP3-7.0 and SSP1-2.6 it takes until around 183 

2047 for the 66% probability distributions to no longer overlap. For periods shorter than 20 years 184 

(i.e., ending before 2040), the distributions of plausible warming trends between the scenarios 185 

are less distinguishable. The black line in Fig. 3 shows the maximum historical observed trend 186 

for different trend lengths based on the mean of the four datasets in Supplementary Fig. 1. The 187 

66% probability range of trends starting from 2021 in SSP1-1.9 always falls below the maximum 188 

observed trend for all periods considered. In contrast, the median trend for SSP3-7.0 lies above 189 

the maximum observed trend for periods longer than around 18 years from present (i.e., ending 190 

after 2038). 191 

The results presented here agree with those of Ciavarella et al. (2017)26, where it is shown that 192 

strong mitigation markedly reduces the risk of exposure to climate extremes in the near-term in 193 

an earlier generation of climate models (CMIP527) driven by Representative Concentration 194 

Pathway (RCP28) scenarios; however, their focus is on regional extremes and local warm 195 

seasons, whereas we take a global and annual mean perspective motivated by the Paris 196 

Agreement targets. Our results do differ somewhat though from the many studies that find little 197 

detectable benefit of mitigation in the near-term3-6,29-30. This may reflect that these studies use 198 

model-based rather than observation-based estimates of internal variability (Supplementary Fig. 199 

2), compare pathways with more similar radiative forcings4,6,29-30 (e.g., M194 consider RCP2.6 200 
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versus RCP4.5, and Samset et al. (2020)6 focus on idealized mitigation scenarios for individual 201 

forcers rather than the combination of forcing agents in the SSPs), or because they consider 202 

shorter time horizons4-6 (e.g., M194 analyses 15-year temperature trends; Fig. 3). 203 

In contrast to our findings for near-term temperature trends, and in agreement with the IPCC’s 204 

Fifth Assessment Report2 where a different set of models and scenarios were compared, our 205 

results show little difference between SSP scenarios for mean temperature anomalies (as 206 

opposed to trends) in the next 20 years (2021-2040) relative to a baseline of 1995-2014 (Fig. 207 

1b). This holds for both the observationally-constrained CMIP6 projections and FaIR projections 208 

with added internal variability. The median 20-year mean temperature anomalies for the 209 

different SSPs all lie within 0.62-0.71 °C for the constrained CMIP6 projections (0.55-0.70 °C for 210 

FaIR), with the range about the median being determined by internal variability, differences in 211 

climate response between models, and differences in effective radiative forcing. Differing 212 

conclusions about the detectability of differences in temperature trends and anomalies between 213 

scenarios in Fig. 1 arise because the anomalies quantify the difference in warming between the 214 

20-year periods centered on 2030 and 2005, while the trends quantify the difference in warming 215 

between the later years of 2040 and 2021, a period for which the different emissions pathways 216 

are more divergent (Supplementary Fig. 3). 217 

To conclude, we have shown that rapid mitigation of global greenhouse gas emissions 218 

substantially reduces the risk of experiencing unprecedented rates of surface warming over the 219 

next two decades, even after accounting for internal variability. This is in addition to the longer-220 

term benefits of stringent mitigation for peak warming and stabilization of climate. While it is 221 

possible that unprecedented warming rates could occur in the near-term even if society pursues 222 

a path towards net-zero emissions around mid-century, the risk of such an outcome is 223 

substantially reduced by around a factor of 13 for the most ambitious mitigation scenario  224 

(SSP1-1.9) as compared to an “average” no mitigation scenario (SSP3-7.0).  225 
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The rate of warming over the next 20 years will determine the pace at which, and extent to 226 

which, society and ecosystems will need to adapt to evolving climate hazards. Based on our 227 

results, under the strong mitigation scenario SSP1-2.6 the probability of crossing the threshold 228 

of 1.5 °C of anthropogenic warming in the next 20 years is around half that in SSP3-7.0 (42% 229 

compared to 78% probability; Supplementary Table 2). Furthermore, the lower near-term 230 

warming rates under SSP1-1.9 give an estimated 74% probability that the 1.5 °C threshold will 231 

never be crossed (Supplementary Table 2). The IPCC SR1.5 report1,31 shows that warming 232 

of1.5 °C is associated with severe and widespread impacts and risks from: extreme weather 233 

events (e.g., projections show extreme heatwaves becoming widespread in the tropics32-34; the 234 

hottest days in mid-latitudes becoming up to 3 °C warmer35-37; the coldest nights in the Arctic 235 

becoming up to 4.5 °C warmer35-37; increases in the frequency, intensity, and/or amount of 236 

heavy precipitation in several regions globally35-37); and ocean warming and acidification, which 237 

are expected to impact a range of marine organisms and ecosystems (e.g., 70-90% of warm-238 

water coral reefs are projected to disappear at a warming of 1.5 °C38). The aggregated effect of 239 

these climate impacts and risks is projected to be highest in regions where vulnerable 240 

populations live, particularly in South Asia39. The results reported here serve as further 241 

motivation for setting stringent mitigation targets to reach net-zero emissions as soon as 242 

possible on both global and individual-country levels. 243 

Lastly, it is important to communicate what can be reasonably expected from stringent 244 

mitigation in the near-term, so as to manage expectations and avoid causing doubt in the public 245 

mind about how well anthropogenic climate change is understood. In particular, while we have 246 

shown there is a high probability that stringent mitigation would result in lower near-term 247 

warming rates as compared to an “average” no mitigation scenario, there is a lower probability 248 

that stringent mitigation is necessary and sufficient to cause a slow-down in the warming rate in 249 

the near-term as compared to the recent past.  250 
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Methods  251 

The global mean surface air temperature projections used in this study come from two different 252 

approaches: the Finite amplitude Impulse Response (FaIR) simple climate model emulator18, 253 
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with added observation-based estimates of internal variability19 described below, and the latest-254 

generation comprehensive climate models from CMIP640 constrained by observations17. In the 255 

main text, the main results regarding temperature trends are quantified using the distributions 256 

from FaIR rather than CMIP6, since FaIR is computationally inexpensive and can therefore 257 

more broadly sample parameter uncertainty than the more complex models used in CMIP6. 258 

FaIR can also be used to explore a wider range of emission scenarios, including an NDC-like 259 

scenario (not available for CMIP6) and the most ambitious mitigation scenario, SSP1-1.9 (too 260 

few CMIP6 models were available at the time of writing to generate adequate statistics). Note 261 

the temperature trend distributions for the constrained CMIP6 models are very similar to FaIR, 262 

however, so both approaches are in good agreement. All trends were calculated using least-263 

squares linear regression. 264 

Finite Amplitude Impulse Response (FaIR) model  265 

FaIR was used in the IPCC SR1.5 report41 and uses values for equilibrium climate sensitivity 266 

(ECS), transient climate response (TCR), and a time-series of effective radiative forcing (ERF) 267 

to make projections of surface temperature. Here, distributions of near-term temperature 268 

projections for FaIR were calculated using 500 simulations for each SSP and the NDC-like 269 

scenario, using distributions of ECS, TCR, and ERF that reflect our latest understanding since 270 

SR1.5. 271 

The ECS can be defined as -F2x/λ, where F2x is the effective radiative forcing from a doubling of 272 

CO2 and λ is the global climate feedback parameter. To construct a distribution of ECS we use 273 

this relationship, sampling λ from a normal distribution with mean -1.34 W m-2 K-1 and standard 274 

deviation 0.28 W m-2 K-1, and F2x equal to 4.01 W m-2. This reproduces a distribution of ECS that 275 

is right-skewed (long tail which does not exclude very high ECS values) and a 5-95% range of 276 

2-5 °C with a best estimate near 3 °C (cf. ref. 42). The higher value of F2x compared to the 277 
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IPCC’s Fifth Assessment Report results from an updated spectroscopic relationship for 278 

stratospherically-adjusted CO2 radiative forcing of 3.81 W m-2 for a doubling of CO2 (ref. 43) plus 279 

tropospheric radiative adjustments that sum to 0.20 W m-2 (ref. 44), calculated using radiative 280 

kernels in ten climate models, and subtracting the land-surface warming component. The TCR 281 

is sampled to maintain a strong correlation with ECS45, with a marginal distribution of TCR of 1.7 282 

°C (1.2-2.4 °C, 5-95% range) that is broadly consistent with observational constraints17. Our 283 

sampling method allows the possibility of high ECS for modest TCR46.  284 

Emissions of greenhouse gases and short-lived climate forcers are taken from the Reduced 285 

Complexity Model Intercomparison Project dataset47, which assimilate anthropogenic and 286 

natural short-lived climate forcers48-49 and inversions of greenhouse gas concentrations 287 

observed historically as well as those projected in SSP scenarios16,50. The emissions used for 288 

the NDC-like pathway are representative of the scenarios described in the UNEP Emissions 289 

Gap Report 201921 and also of the pathways for the NDC-like projections in ref. 22. The 290 

emissions pathways used for each SSP scenario considered and the NDC-like scenario are 291 

shown in Supplementary Fig. 3. The most ambitious (strong) mitigation scenario SSP1-1.9 292 

(SSP1-2.6) is associated with a mitigation rate of -0.3 GtC year-1 (-0.2 GtC year-1) in global net 293 

CO2 emissions from 2021 to reach net-zero emissions in 2056 (2076). This is consistent with 294 

keeping anthropogenic warming below 1.5 °C (2 °C) with a probability of 74% (92%) 295 

(Supplementary Fig. 4). These pathways are therefore equivalent to the “Below-1.5 °C” and 296 

“Lower-2 °C” pathways considered in the IPCC SR1.5 report (i.e., pathways with no or limited 297 

overshoot; see Table 2.1 in ref. 51). 298 

Emissions of CO2 are converted to concentrations through a simple carbon cycle representation 299 

that is temperature and carbon-uptake dependent52. The carbon cycle parameters that govern 300 

the atmospheric lifetime of CO2 (pre-industrial airborne fraction, and sensitivity of airborne 301 

fraction to increasing global mean surface air temperature (GSAT) and total atmospheric carbon 302 
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burden) are sampled from Gaussian distributions16 that reproduce the observed CO2 303 

concentration of 407 ppm in 2018 in the ensemble median. Concentrations of non-CO2 gases 304 

are calculated from a simple one-box model based on atmospheric lifetimes from ref. 53. 305 

Greenhouse gas ERFs are calculated from concentrations from ref. 43 for CO2, CH4, and N2O, 306 

and ref. 54 for other species. To account for tropospheric rapid adjustments, CO2 forcing is 307 

increased by 5% and CH4 forcing reduced by 14%18, the latter case based on the behavior of 308 

tropospheric water vapor in climate models that include shortwave forcing of methane. Simple 309 

relationships that convert aerosol and ozone precursors to forcings are also employed55-57 as 310 

described in ref. 18. Noting that the default CMIP6 aerosol forcing may have resulted in too little 311 

warming over the later 20th century in some models47,58 with a strong warming rebound in more 312 

recent years, we repeat the analysis but substituting in the aerosol ERF time series from AR559. 313 

However, this makes little difference to future near-term warming rates (Supplementary Fig. 5). 314 

Volcanic forcing is determined from the CMIP6 stratospheric sulphate optical depth time-series 315 

(REF) converted to ERF at -18τ with an additive offset applied such that the mean volcanic ERF 316 

over the historical period is zero. Solar forcing is taken from the CMIP6 extraterrestrial solar flux 317 

dataset60 using a reference time frame of 1850-1873 as recommended for CMIP6 pre-industrial 318 

control simulations. To convert solar flux anomaly to annual ERF, it is multiplied by ¼ 319 

(geometric factor) x 0.7 (planetary co-albedo). 320 

Twelve categories of anthropogenic and natural radiative forcings are simulated using input 321 

emissions, with best estimate and uncertainties in the pre-industrial to present-day ERF taken 322 

from the IPCC’s Fifth Assessment Report53, with the exception being for aerosols for which the 323 

review of ref. 61 is used for the 5-95% distribution of aerosol forcing of -2.0 to -0.4 W m-2 based 324 

on a comprehensive assessment (this range of present-day aerosol ERF is also applied to the 325 

AR5 time series in Supplementary Fig. 5). Uncertainties are applied as a fraction of the present-326 

day forcing (see Table 3 in ref. 18). Historical (1995-2014) and projected near-term (2021-2040) 327 
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trends in the median total ERF, and its twelve components, are shown in Supplementary Table 328 

1.  329 

FaIR does not include internal climate variability and, therefore, the simulations described above 330 

only give the distribution of externally-forced temperature trends (Supplementary Fig. 6). 331 

However, near-term warming trends will be significantly affected by internal variability (e.g., ref. 332 

4). To account for this, we add an observation-based estimate of internal variability to the forced 333 

temperature trends from FaIR. To estimate internal variability from the observed record, we use 334 

the approach of a recent study19. In this approach, a two-box impulse response model (IRM) is 335 

used to calculate forced temperature changes since 1850, and this estimate is subtracted from 336 

the observational record to estimate temperature changes due to internal variability alone 337 

(Supplementary Fig. 7a and 7b). The resulting histogram of rolling trends for 20-year segments 338 

of the temperature residuals (Supplementary Fig. 7c and 7d) is then added to each of the 500 339 

simulated temperature trends in FaIR (Supplementary Fig. 6), and a boxplot is calculated (Fig. 340 

1a). Here we use HadOST as the observational dataset because its sea surface temperatures 341 

(SSTs) are less biased than other datasets (e.g., Berkeley Earth Land-Ocean and Cowtan-Way 342 

version 2 updated with HadSST3)19. However, the dataset used has little effect on the 343 

distributions of 20-year temperature trends due to internal variability (Supplementary Fig. 8a).  344 

An alternative for estimating the range of temperature trends due to internal variability is to use 345 

the CMIP6 pre-industrial control simulations. Histograms of rolling temperature trends for 20-346 

year segments of the control simulation for each of the 48 currently available CMIP6 models are 347 

shown in Supplementary Fig. 2 (see Supplementary Table 3 for a list of the models used). 348 

Before calculating these trends, any drift in each simulation was removed by subtracting the 349 

linear trend across the whole simulation. Clearly, there are noticeable differences in the 350 

magnitude of low frequency temperature variability between models, where MIROC-ES2L is an 351 

example of a “low” variability model and BCC-CSM2-MR a “high” variability model. Adding the 352 
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histogram for MIROC-ES2L to each of the 500 FaIR temperature trends gives similar 353 

distributions to using an observation-based estimate of variability (compare Supplementary Fig. 354 

8a with 8bi). The range of resulting trends is larger when using the “high” variability model BCC-355 

CSM2-MR (Supplementary Fig. 8bii), but even with this high estimate of variability strong 356 

mitigation still substantially reduces the risk of unprecedented warming. Under SSP1-1.9 357 

(SSP1-2.6), 13% (26%) of trends are above the maximum observed historical trend, while for 358 

SSP3-7.0 (SSP5-8.5) this increases to 55% (69%). 359 

Observation-based estimates of internal variability are also added to the distributions of 360 

temperature anomalies for FaIR in Fig. 1b. To do this, we first calculate the rolling mean for 20-361 

year segments of the temperature residuals in Supplementary Fig. 7b. We then calculate rolling 362 

differences in these 20-year means, where – to preserve autocorrelation – the temporal 363 

separation between each pair of 20-year means is consistent with the separation between 2021-364 

2040 and 1995-2014. The resulting histogram of differences in 20-year means of residuals is 365 

then added to the forced temperature anomalies from FaIR.  366 

Note that the residuals in Supplementary Fig. 7b do not include natural variability due to 367 

volcanic and solar forcing, since ref. 19 includes volcanic and solar forcing in the IRM 368 

simulations of historical temperatures. Estimated future solar variability is included in the ERF 369 

time-series used to make the FaIR GSAT projections, but forcing from possible future volcanic 370 

eruptions is not. It is therefore acknowledged that if, in the near-term, solar variability is different 371 

from estimated or a large volcanic eruption occurs, near-term temperature trends will be 372 

different from those reported here.  373 

Coupled Model Intercomparison Project Phase 6 (CMIP6) models 374 

We now describe the estimates of near-term warming trends derived from the CMIP6 models. It 375 

has been reported that some CMIP6 models simulate higher ECS values than previous versions 376 
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in CMIP5, with some models simulating an ECS of up to around 5.7 °C (e.g., ref. 62). Projected 377 

raw warming rates in those models may be higher than in the past62 and inconsistent with recent 378 

observed warming rates17. Additional information can be used to constrain a multi-model 379 

ensemble using so-called emergent constraints. Several studies have recently applied 380 

constraints to the CMIP6 multi-model ensemble global temperature projections using observed 381 

warming rates over the past few decades as compared to the models’ “historical” 382 

simulations17,58,63-64. Here, we use the approach of ref. 17, which applies an emergent constraint 383 

on the CMIP6 model spread based on the relationship between the surface warming rate over 384 

1981-2017 and projected future warming levels (R = 0.92 and R = 0.86 for mid- and end-of-385 

century, respectively, for SSP5-8.5). This justifies using the present-day observational trend 386 

estimates to constrain future projections. The observationally-constrained CMIP6 median 387 

warming is over 10% lower by 2050 compared to the raw CMIP6 median, and over 17% lower 388 

by 210017. Constrained CMIP6 projections were not provided for SSP1-1.9 because at the time 389 

of writing not enough models were available to apply the emergent constraint based on past 390 

warming rates. 391 

A list of the CMIP6 models used to derive the constrained temperature trends can be found in 392 

Supplementary Table 3 (see Supplementary Table S1 in ref. 17 for a more detailed list of 393 

models used in each SSP scenario). 394 

Observation-based surface temperature datasets 395 

To calculate observation-based temperature trends over the historical period we use four 396 

different datasets: HadCRUT4.6.0.0 (HadCRUT4.665); Berkeley Earth Land-Ocean (BE66); 397 

Cowtan-Way version 2 updated with HadSST3 (CWv267-70); and GISTEMP version 4 398 

(GISTEMPv471-72). 399 
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The observation-based datasets report global mean historical surface temperature anomalies, 400 

calculated using a blend of land near-surface air temperatures and SSTs (referred to here as 401 

global blended surface temperature, GBST17). Over land, HadCRUT4.6 and CWv2 use 402 

CRUTEM473; BE uses the Berkeley Earth land-surface temperature field; and GISTEMPv4 uses 403 

NOAA GHCN v474. Over ocean, HadSST is used for HadCRUT4.6, CWv2, and BE; and 404 

GISTEMPv4 uses ERSSTv575. BE, CWv2, and GISTEMPv4 are interpolated to near-full 405 

coverage, while HadCRUT4.6 is left un-interpolated and therefore has incomplete coverage. By 406 

using several datasets, we aim to ensure the results are not biased towards any one 407 

combination of land and ocean data. 408 

We report CMIP6 and FaIR model results in terms of the global mean near-surface air 409 

temperature (GSAT), since this is most relevant for future climate projections and impact 410 

assessments76. Since the observation-based GBST metric has been warming slower on 411 

average than GSAT77, we apply a scaling factor to GBST that accounts for the blending bias 412 

and converts it to a GSAT equivalent, therefore allowing a like-for-like comparison between the 413 

observations and models. We use GSAT = 1.087 x GBST for BE, CWv2, and GISTEMPv4; and 414 

GSAT = 1.19 x GBST for HadCRUT4.6. These scaling factors are based on estimates derived 415 

from the CMIP5 models for fully-blended GBST (applicable to BE, CWv2, and GISTEMPv4) and 416 

blended-masked GBST (applicable to HadCRUT4.6); see Table 1 in ref. 78, and Supplementary 417 

Fig. 1 in ref. 79. Note that the results reported in this study are, however, relatively insensitive to 418 

the exact scaling factor applied. 419 

To calculate the observation-based estimates of internal variability in 20-year temperature 420 

trends (Supplementary Fig. 7), we use the same datasets as in ref. 19: CWv2 (updated with 421 

HadSST480 here), BE, and HadOST19. HadOST combines CWv2 over land with HadISST281 422 

and OSTIA82 data over ocean, and is interpolated to near-full coverage. To convert HadOST to 423 

a GSAT equivalent, we use the scaling factor for fully-blended GBST (1.087). To account for a 424 



25 

warm bias in SSTs around 1942-1945 due to changing SST sampling methods, correction 425 

factors have been applied over these years to the observation-based datasets in Supplementary 426 

Fig. 7 as in ref. 19. 427 

 

Data availability 428 

The data that support the findings of this study are available at [https://github.com/Priestley-429 

Centre/Near_term_warming] with the identifier [https://doi.org/10.5281/zenodo.3762042]83. This 430 

repository includes the FaIR simulation data, the constrained CMIP6 projections, the 431 

observation-based data, and the observation-based estimates of internal variability (in fully 432 

processed form only). The SSP emissions datasets used in the FaIR simulations were 433 

downloaded from [https://www.rcmip.org/], and the NDCs emissions dataset was provided by 434 

Joeri Rogelj. The constrained CMIP6 projections are based on ref. 17 and used surface air 435 

temperature data downloaded from ESGF (Dec 4 2019). The raw data used to calculate the 436 

observation-based estimates of internal variability are based on ref. 19, and were provided by 437 

Karsten Haustein. Surface air temperature data for the CMIP6 pre-industrial control simulations 438 

were obtained from the JASMIN/CEDA archive (Jul 29 2020).  439 

 

Code availability 440 

The FaIR model is available from [https://doi.org/10.5281/zenodo.3588880]84. FaIR version 1.5 441 

is used for all simulations in this paper. The code used to setup the FaIR simulations, analyze 442 

data, and produce figures is available at [https://github.com/Priestley-443 

Centre/Near_term_warming] with the identifier [https://doi.org/10.5281/zenodo.3762042]83. 444 

Python/Matplotlib was used for all coding and data visualization, and for some figures the vector 445 
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graphics editor Inkscape (available at [https://inkscape.org/]) was used to combine different 446 

figure parts into one file.  447 
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Figure Legends  673 

Figure 1: Near-term (2021-2040) global mean surface air temperature trends and 674 

anomalies relative to near present day (1995-2014) baseline. a, trends in [°C decade-1]; b, 675 

anomalies in [°C]. Data are shown for pathways consistent with: current and projected 676 

Nationally Determined Contributions (NDCs, grey box); highest ambition mitigation in line with 677 

the Paris Agreement target to pursue efforts to keep warming to below 1.5 °C (SSP1-1.9, green 678 

box); strong mitigation in line with the Paris Agreement target to keep warming below 2 °C 679 

(SSP1-2.6, blue boxes); “average” no policy baseline scenario (SSP3-7.0, orange boxes); and 680 

unlikely “worst case” no mitigation scenario (SSP5-8.5, brown boxes). Lighter shading shows 681 

CMIP6 projections with a historical constraint applied, and darker shading shows FaIR 682 

projections plus an observation-based estimate of internal variability (see Methods). Boxes 683 

denote the 17-83% range (66% probability) and whiskers denote the 5-95% range (90% 684 
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probability) of projections. Maximum and minimum values are shown as crosses. The maximum 685 

trend for 20-year segments of the observation-based record is 0.27 °C decade-1 (red ticks on y-686 

axes) based on the mean of four datasets, with a range across datasets of 0.25 - 0.29 °C 687 

decade-1 (grey horizontal bar; 0.25 °C decade-1 for 2000-2019 in GISTEMPv4, 0.26 °C decade-1 688 

for 1984-2003 in CWv2 and BE, and 0.29 °C decade-1 for 1984-2003 in HadCRUT4.6; see 689 

Supplementary Fig. 1). To compare with the model simulated GSAT projections, the observation 690 

data have been converted from GBST to GSAT using a scaling factor of 1.087 for BE, CWv2, 691 

and GISTEMPv4, and 1.19 for HadCRUT4.6 (see Methods). 692 

 693 

Figure 2: The effect of mitigation versus no mitigation on near-term (2021-2040) global 694 

mean surface air temperature trend distributions from FaIR [°C decade-1]. Distributions for: 695 

a, mitigation pathways minus an “average” no mitigation pathway; b, mitigation pathways minus 696 

a “worst case” no mitigation pathway; c, mitigation and no mitigation pathways, minus the 697 

observed trend for the past 20 years (2000-2019; observational datasets used are those in 698 

Supplementary Fig. 1). Trends are calculated from FaIR projections plus an observation-based 699 

estimate of internal variability (see Methods). See the main text for details on how the 700 

distributions were calculated.  701 

 702 

Figure 3: Global mean surface air temperature trends from FaIR starting in 2021, for 703 

different end years or trend lengths [°C decade-1]. Median trends are shown by colored solid 704 

lines, and the 17-83% (66% probability) range in trends is shown by colored shading. Trends 705 

are calculated from FaIR projections plus an observation-based estimate of internal variability 706 

(see Methods). Data are shown for emissions pathways consistent with: very strong mitigation 707 

in line with limiting warming to below 1.5 °C (SSP1-1.9, green); strong mitigation in line with 708 

limiting warming to below 2 °C (SSP1-2.6, blue); “average” no policy baseline scenario (SSP3-709 

7.0, orange); and “worst case” no mitigation scenario (SSP5-8.5, brown). Black shading/line 710 
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shows the range/mean of maximum historical trends for different trend lengths from four 711 

different observation-based records (GISTEMPv4, CWv2 updated with HadSST3, 712 

HadCRUT4.6, and BE; see Supplementary Fig. 1). To compare with the model simulated GSAT 713 

projections, the observation data have been converted from GBST to GSAT using a scaling 714 

factor of 1.087 for BE, CWv2, and GISTEMPv4, and 1.19 for HadCRUT4.6 (see Methods). The 715 

gray vertical line highlights the year 2040, or a trend length of 20 years, which corresponds to 716 

the trend distributions for 2021-2040 shown in Fig. 1a. 717 

 

Tables 718 

Table 1: The probability of experiencing different near-term (2021-2040) global mean 719 

surface air temperature trends, as a result of following a mitigation pathway rather than a 720 

no mitigation pathway. a, The probability of the near-term temperature trend in a mitigation 721 

scenario (trendmit) being lower than in a no mitigation scenario (trendnomit) by a factor α 722 

(P(trendmit < trendnomit – α × trendnomit)). For α = 0, the probabilities are calculated from the 723 

distributions in Fig. 2a and 2b; for α = 0.2 and α = 0.4, they are calculated by shifting the same 724 

distributions by amount α × trendnomit. b, The probability, Pns, that mitigation is both necessary 725 

and sufficient to experience a near-term temperature trend that is smaller than the trend 726 

observed, trendobs, over the past 20 years (2000-2019). Pns is given by Pmit – Pnomit, where Pmit = 727 

P(trendmit < trendobs) and Pnomit = P(trendnomit < trendobs). Pmit and Pnomit are calculated from the 728 

distributions in Fig. 2c. Probabilities are shown for mitigation pathways consistent with current 729 

and projected Nationally Determined Contributions (NDCs), very strong mitigation in line with 730 

limiting warming to below 1.5 °C (SSP1-1.9), and strong mitigation in line with limiting warming 731 

to below 2 °C (SSP1-2.6); and no mitigation pathways consistent with an “average” no policy 732 

baseline scenario (SSP3-7.0), and a “worst case” no mitigation scenario (SSP5-8.5). 733 
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Scenario comparison a  P(trendmit < trendnomit – α × trendnomit) b  Pns = Pmit - Pnomit 

α = 0 α = 0.2 α = 0.4 Pmit Pnomit Pns 

Below 1.5 °C versus 

“average” no mitigation 
0.91 0.83 0.67 0.88 0.25 0.63 

Below 2 °C versus 

“average” no mitigation 
0.80 0.65 0.43 0.69 0.25 0.43 

NDCs versus 

“average" no mitigation 
0.74 0.56 0.32 0.57 0.25 0.32 

Below 1.5 °C versus 

“worst case” no mitigation 
0.96 0.90 0.77 0.88 0.12 0.76 

Below 2 °C versus 

“worst case” no mitigation 
0.89 0.77 0.56 0.69 0.12 0.57 

NDCs versus 

“worst case” no mitigation 
0.85 0.70 0.46 0.57 0.12 0.46 
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