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Abstract

In recent years, there has been a great effort to prove the security of quantumkey distribution (QKD)

with aminimumnumber of assumptions. Besides its intrinsic theoretical interest, this would allow for

larger tolerance against device imperfections in the actual implementations. However, even in this

device-independent scenario, one assumption seems unavoidable, that is, the presence of a protected

space devoid of any unwanted information leakage inwhich the legitimate parties can privately

generate, process and store their classical data. In this paper we relax this unrealistic and hardly feasible

assumption and introduce a general formalism to tackle the information leakage problem inmost of

existingQKD systems.More specifically, we prove the security of optical QKD systems using phase

and intensitymodulators in their transmitters, which leak the setting information in an arbitrary

manner.We apply our security proof to cases of practical interest and show key rates similar to those

obtained in a perfectly shielded environment. Ourwork constitutes a fundamental step forward in

guaranteeing implementation security of quantum communication systems.

1. Introduction

It is well-known that two spatially separated users (Alice and Bob) can secretly communicate over a public

channel if they own two identical randomkeys unknown to any third party. They can use their keys to enable

symmetric-key encryption.When the symmetric-key algorithm is the so-called ‘one-time pad’ [1], the security

of the resulting communication is independent of the computational capability of an eavesdropper (Eve) [2].

The only provably secure way known to date to distill secret randomkeys at remote locations is quantumkey

distribution(QKD) [3–6].While the theoretical security ofQKDhas been convincingly proven in recent years

[5], in practice aQKD realisation cannot typically perfectly satisfy the requirements imposed by the theory.

Therefore it is crucial that security proofs are extended to accommodate the imperfections of the realQKD

devices. Any unaccounted imperfection constitutes a so-called ‘side-channel’, which can be exploited by Eve to

compromise the security of the system [7–17].

To close the gap between theory and practice, various approaches have been proposed so far, with twomost

prominent examples being ‘device-independent QKD’ [18–21] and decoy-state ‘measurement-device-

independentQKD’ (mdiQKD) [22]. Device-independentQKDdoes not require a complete knowledge of how

QKDapparatuses operate, being its security based on the violation of a Bell inequality. However, its

experimental complexity is unsuitable for practical applications, as its ultimate formdemands that Alice and

Bob perform a loophole-free Bell test [23–25] in everyQKD session. Also, its secret key rate is very poorwith

current technology [26, 27]. Decoy-statemdiQKD, on the other hand, permits to remove any assumption of

trustfulness from themeasurement device, which is arguably theweakest part ofQKD realisations [7–14]. Under

the only additional requirement that Alice and Bob know their state preparation process [28], mdiQKDwith

decoy-states allows to bringQKD theory closer to practice [29]without frustrating the key rate [22, 30].Most
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importantly, its practical feasibility has been already experimentally demonstrated both in laboratories and in

field trials [31–38], with a key rate comparable to that of standardQKDprotocols [37].

However, it is important to notice that the security of any formofQKD, including the two solutions above,

relies on the assumption that Alice andBob’s devices do not leak any unwanted information to the outside. That

is, their apparatusesmust be inside private spaces that are well-shielded and inaccessible to Eve (see, e.g., [39]).

This assumption is very hard, if not impossible, to guarantee in practice. The behaviour of real devices is affected

by the environmental conditions and can depend on their response to external signals, unawarely triggered by a

legitimate user, ormaliciously injected into theQKD systemby Eve. This could open new side-channels, of

which the so-called Trojan-horse attack (THA) [40–42] is ameaningful example.WhilemdiQKD relievesQKD

from the burden of characterising themeasuring devices, the THAdeals with the important question of

guaranteeing a protected boundary between the transmitting devices, assignedwith the preparation of the initial

quantum states, and the outsideworld.

In a THA, Eve injects bright light pulses into the users’ devices and analyse the back-reflected light, with the

aimof extractingmore information from the signals travelling in the quantum channel. Recently, [42]

considered a feasible THA targeting the phasemodulator (PM) of aQKD transmitter. There, security was proven

under the assumption that this specific THAonly affects the PM in the transmitter and leaves the other devices

untouched. Therefore this result cannot be exported to decoy-state QKDandmdiQKD,where an additional

method tomodulate the intensity of the prepared signals is required. This is very often achieved via an intensity

modulator (IM) inserted in series with the PM.Hence it can happen that partial information about the IM is

leaked to Eve, similarly towhat happens for the PM. This problem is common to any scheme using devices like

PMand IM, such as the decoy-state BB84 protocol [43–51], bit commitment, oblivious transfer, secure

identification [52], blind quantum computing [53] aswell as device-independentQKD.

Here we introduce a general formalism to prove the security ofmost of the optical QKD systems using a PM

and an IM in their transmitters that can leak the setting information in an arbitrarymanner. As a specific

example, we address the optical implementation of the standard decoy-state BB84QKDprotocol with three

intensity settings [43–45] due to its extensive use of devices like PMand IM.However, our results can be

straightforwardly adapted to any number of settings and to all the protocolsmentioned above. Importantly, our

approach is solely based on how the users’ devices operate. For a givenmodel of PMand IM, one could readily

use our technique to calculate the resulting secret key rate of the system. This constitutes a fundamental step

forward to guaranteeing the security of quantum cryptographic schemes using a PM, an IMor other analogous

devices, in presence of information leakage.

To illustrate howour formalism applies to real QKD systems, we investigate a particular formof information

leakage, i.e., a THA that is feasible with current technology. In particular, we consider that Eve injects a probe for

each phase and intensity setting selected by the legitimate user and the back-reflected light is composed of

coherent states of limited intensity.

The paper is organised as follows. In section 2we review themain concepts of decoy-stateQKD. In section 3

we present a general formalism to prove its security in the presence of any information leakage fromboth the PM

and the IM. This formalism is then used in section 4 to study various THA that are feasible with current

technology and to evaluate their effect on the systemperformance. Finally, section 5 includes a short discussion

and section 6 concludes the paperwith a summary. The paper also contains appendices with calculations that are

needed to derive the results in themain text.

2.Decoy-stateQKD

In decoy-stateQKD, Alice preparesmixtures of Fock states with different photon number statistics, selected

independently at random for every signal that is sent to Bob. These states can be preparedwith practical light

sources such as attenuated laser diodes, heralded spontaneous parametric downconversion sources and other

practical single-photon sources. They can be formally described as:

p n n . 1
n

n
0

∣ ∣ ( )år = ñág g

=

¥

Here, p
n
g is the photon number statistics, represented by the conditional probability that Alice emits a pulsewith

n photonswhen she chooses the intensity setting γ. The ket n∣ ñdenotes an n-photon Fock state. If Alice uses a
source emitting phase-randomisedweak coherent pulses (WCP), the photon number statistics is the Poisson

distribution, p e n
n

n !g=g g- , with γ being themean photon number.

For each intensity setting γ, there are two quantities which can be directly observed in the experiment: the

gain Q N Nclick=g g g , where Nclick
g represents the number of events where Bob observes a click in his

measurement device given that Alice prepared the state rg , and N g is the number of signals sent byAlice in the
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state rg , and the quantumbit error rate E N Nerror click=g g g , where Nerror
g denotes the number of errors observed

by Bob given that Alice prepared the state rg . In the asymptotic limit of large N g both quantities can bewritten

as a function of the yieldYn and the error rate en of the n-photon signals as:

Q p Y

E
Q

p Y e

,

1
, 2

n
n n

n
n n n

0

0

( )

å

å

=

=

g g

g
g

g

=

¥

=

¥

for any value of γ. The unknown parameters in this set of linear equations areYn and en, and they can be

estimated by solving equation (2).

Indeed, whenever Alice uses an infinite number of settings γ, anyfinite set of parametersYn and en can be

estimatedwith arbitrary precision. If Alice andBob are only interested in the value of Y Y,0 1, and e1, as is the case

inQKD, it is possible to obtain a tight estimation of these three parameters with only a few different intensity

settings [54]. A fundamental implicit requirement in the decoy-state analysis is that the variablesYn and en are

independent of the intensity setting γ. That is, the analysis assumes that Eve does not have any information about

Alice’s intensity setting choice at each given time. If Eve performs a THA against Alice’s source, however, this

necessary conditionmight not be longer satisfied and the security analysis of decoy-stateQKDneeds to be

revised. This is done in the next section.

3. Trojan horse attacks against decoy-stateQKD

In this sectionwe present a general formalism to evaluate the security of decoy-state QKDagainst any

information leakage fromboth the IM,which is used to generate decoy-states, and the PMemployed to encode

the bit and the basis information. Belowwe assume that such information leakage is due to an active Evewho

launches a THAagainst the decoy-state transmitter. Note, however, that our analysis could be applied aswell to

any passive information leakage scenario.

In a THAEve injects bright light pulses into Alice’s device andmeasures the back-reflected light. This way

shemight obtain useful information about Alice’s intensity and phase choices for each generated signal. This

situation is illustrated infigure 1. As afirst consequence, the yieldsYn and the error rates enmight nowbecome

dependent on the intensity setting γ, andwewill denote them asYn
g and en

g , respectively. The goal of this section

ismainly to evaluate howmuch can these quantities differ from each other depending on the information leaked

to Eve.

3.1. THA against the IM

Herewe focus on themost widely used choice of intensity settings for the standard decoy-state BB84 protocol,

where Alice randomly selects one of three possible intensities, denoted as ,s vg g , and wg , with probability p p,s v,
and pw, respectively. However, our technique can be straightforwardly adapted to cover any number of decoy

settings.Wewill denote as , ,i
s v w{ }g g g gÎ  the intensity setting selected byAlice in the ith instance of the

protocol.

Eve’s goal is to learn the value of ig for all instances i. For this, hermost general THA can be described as

follows. Evefirst prepares a probe system Ep, whichmight be entangledwith an ancilla system E also in Eve’s
hands, and sends this system toAlicewhile she keeps E in a quantummemory. The system Ep may consist of
many different pulses, each of themused to probeAlice’s intensity setting each given time. Afterwards, Eve

Figure 1.The users Alice and Bob run aQKDprotocol with apparatuses that can have leakages (thin arrow in the figure). Any such
leaked signal could be captured by Eve and used to steal private information. Eve can even actively shine high-power electromagnetic
fields on the system (thick arrow in thefigure) to trigger the emission of side-channel signals.
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performs a jointmeasurement on all the pulses emitted byAlice together with the systems E and the back-
reflected light from Ep, which is denoted as Ep¢ .

Let us consider first the ith n-photon pulse emitted byAlice. Later onwewill generalise this case to cover all

her n-photon pulses. For this, let n, ir g denote the joint state of Alice’s ith n-photon pulse and the systems6 E and

Ep¢ . The state of Ep¢ may depend on all the intensity choicesmade byAlice, so does n, ir g . Now, Eve’s task for the ith

pulse is to behave as different as possible according toAlice’s intensity choice ig given the state n, ir g . Therefore,

we are interested in howwell can Eve distinguish the intensity setting
j
ig from

k
ig and

l
ig , with j k l, , s, v, w{ }Î

and j k l,¹ (note that here kmight be equal to l). This can be solved using the trace distance argument [55],

which says that the trace distance between probability distributions arising from anymeasurement on the states

n,
j
ir g and q q1nkl n nkl n n, , ,

k
i

l
i

kl
i( ) ≔r r s+ -g g g satisfies

dPr Pr 2 , , 3n n n n, , , ,
j
i

kl
i

j
i

kl
i∣ ( ∣ ) ( ∣ )∣ ( ) ( )å w r w s r s-

w
g g g g

ÎW

whereΩ is a set of physical events that fulfills dPr 1, , Tr 2( ) ( ) ≔ ∣ ∣w r s r så = -wÎW denotes the trace
distance between ρ and , Pr( ∣ )s w r is the conditional probability to obtain the eventω given the state ρ, and

q p p p p p pnkl k n k n l n
k k l≔ ( )+g g g , with k, lä{s, v, w}, is the conditional probability to have selected the intensity

setting kg (among only kg and lg ) given that the pulse contains n photons7.
To prove the security of the decoy-state QKD system, we need to determine Bob’s detection rates. This

means that we are interested in the set click, no click{ }W = , where ‘click’ (‘no click’) represents a detection

(no detection) outcome at Bob’s side. That is, Evemust decide which of Alice’s pulses will produce (or not

produce) a ‘click’ at Bob’s side before the quantumpart of the protocol finishes. Here, Pr click n,
j
i( ∣ )r g is the

conditional probability that Bob obtains a ‘click’ given n,
j
ir g . This probabilitymay depend on the detection

pattern observed by Bob in all the previous i 1- pulses. By combining equation (3)with the fact that

Pr click Pr no click 1( ) ( )+ = we find that

d DPr click Pr click , . 4n n n n n j k l
i

, , , , , , ,
j
i

kl
i

j
i

kl
i∣ ( ∣ ) ( ∣ )∣ ( ) ≔ ( )r s r s-g g g g

Now, in order to relate the conditional probabilities that appear in equation (4)with the corresponding

actual numbers, wefirst convert these probabilities into joint probabilities and thenwe take the sumover

i N1, 2, ,{ }Î ¼ , beingN the number of trials. In particular, let nPr click, ,
j
i( )g denote the joint probability that

Eve observes the state n,
j
ir g in the instance i andBob obtains a ‘click’. Then, from equation (4)we obtain that

n p p q
n

p p
q

n

p p
p p ND

Pr click, ,
Pr click, ,

1

Pr click, ,
, 5

i

N

j
i

j n
i

N

nkl
k
i

k n

nkl

l
i

l n

j n n j k l

1 1

, , ,

j

k

l

j

( )
( )

( )

( )
( )

å åg
g

g

- + -

´

g
g

g
g

= =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where D N D1n j k l i
N

n j k l
i

, , , 1 , , ,≔ å = . Importantly, by usingAzuma’s inequality [56] (see appendix A), each termon

the lhs of equation (5) approaches the actual numbers of the corresponding events except for a probability
exponentially small inN. That is, we have that nPr click, ,i

N
j
i

1 ( )gå = approaches the number of events, N nclick, , jg ,

withinN runswhere Alice selects the intensity setting j, she emits an n-photon state, and Bob obtains a ‘click’ in

hismeasurement device. Thismeans that

Y q Y q Y D1 , 6n nkl n nkl n n j k l, , ,
j k l∣ [ ( ) ]∣ ( )- + -

g g g

except for a probability exponentially small8 inN, where the yields Yn
j
g
are defined as

Y
N

Np p
7n

n

j n

click, ,
j j

j
≔ ( )

g g

g

and similarly for Yn
k
g and Yn

l
g . Note that in the special casewhere there is no information leakage about Alice’s

intensity choices, we have that D 0n j k l, , , = and, therefore, Y Y Y Yn n n n
j k l ≔= =
g g g , which is the key assumption in

the standard decoy-statemethod (see section 2).

The analysis for the error rates en
j
g
, with j s, v, w{ }Î , is analogous. In particular, here we consider the set

click error, no click click no error{ ( )}W =    , where ‘click error’ represents a detection outcome at

6
For example, if the emission of an n-photon pulse byAlice is independent of Eve’s systems E and Ep¢ , then P nn, i iˆ (∣ )r r= ñ Äg g , where the

operator P̂ (∣ )fñ is defined as P̂ (∣ ) ≔ ∣ ∣f f fñ ñá and irg represents the state of E and Ep¢ . This is the typical situation that one expects in
practice.
7
Note that when k=l equation (3) implies that dPr Pr 2 ,n n n n, , , ,j

i
k
i

j
i

k
i∣ ( ∣ ) ( ∣ )∣ ( )w r w r r rå -w g g g gÎW for all j, kä{s, v, w}.

8
Note that when k=l equation (6) implies that Y Y Dn n n j k, ,

j k∣ ∣ -
g g

with D N D1n j k i
N

n j k
i

, , 1 , ,≔ å = and D d ,n j k
i

n n, , , ,j
i

k
i( )r r= g g .
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Bob’s side associatedwith an error, and ‘no click  (click  no error)’ denotes a no detection outcome or a

detection one associatedwith no error. Now, taking into account that Pr click error( ) +

Pr no click click no error 1[ ( )]  = , and using a similar analysis as above, wefind that

Y e q Y e q Y e D1 , 8n n nkl n n nkl n n n j k l, , ,
j j k k l l∣ [ ( ) ]∣ ( )- + -g g g g g g

where the parameter Dn j k l, , , is equal to that given in equation
9
(6), and en

j
g
is defined as

e
N

N
9n

n

n

click error, ,

click, ,

j j

j

≔ ( )
g g

g



and similarly for en
k
g and en

l
g . Here, N nclick error, , jg represents the number of events, withinN runs, whereAlice

selects the intensity setting j, she emits an n-photon state, and Bob obtains a ‘click’ associated to an error in his

measurement device.

The formalism above is general in the sense that it can be applied to anyTHAagainst Alice’s IM.However, to

be able to evaluate equations (6)–(8) one needs to characterise the states n,
j
ir g that are accessible to Eve, and this

might be difficult in general. These states are required to calculate the coefficients Dn j k l
i
, , , and, thus, the

parameters Dn j k l, , , . In the next subsectionwe show that these parameters can in principle be estimated based
solely on the behaviour of the IM.

3.1.1. Estimation of Dn j k l
i
, , ,

In order to upper bound the value of Dn j k l
i
, , , based only on how the IMoperates, we consider the unitary operator

that describes the action of Alice’s IMwhen she selects a certain intensity setting
j
ig for an instance i.

Importantly, we assume that this operator characterises the behaviour of the IMon all the opticalmodes that it

supports. That is, in general it acts onAlice’s photonic system Ap (i.e., the signal states emitted by her laser), on

some additional ancillary system Aa also inAlice’s hands
10, and on Eve’s probe system Ep. Therefore, wewill

denote it asUA ,A ,E
j

i

p a p

ˆ
g

.

Let A ,A ,E,Ep a p
∣Yñ be the joint state that describes Alice’s andEve’s systems before the action of the IM.After

applying the IM, the state A ,A ,E,Ep a p
∣Yñ evolves according to the unitary transformation UE A ,A ,E

j

i

p a p

ˆ ˆÄ
g

 .

Importantly, in order for the decoy-statemethod towork, this unitary transformation should produce an output
signal with the system Ap¢ (whichwill be sent to Bob through the quantum channel once the bit and basis

information are also encoded) prepared in a state that is diagonal in the Fock basis. Note here that the physical
system corresponding to Ap¢ might not be the same as the one for the input system Ap. Thismeans, in particular,

that

U p n . 10
n

n nE A ,A ,E A ,A ,E,E A , A ,E,E
j
i

j

i

j
i j

i

p a p p a p p a p
ˆ ˆ ∣ ∣ ∣ ( )å fÄ Yñ = ñ ñ

g g g g
¢ Y ¢ ¢

Here, pn
j

ig
denotes the probability of emitting an n-photon pulse in the ith instance of setting jg , and

n n, A ,E,E
j
i

a p
{∣ }f ñ

g
Y ¢ ¢ forms an orthonormal basis, i.e., we have that n n n nA ,E,E , , A ,E,E

j
i

j
i

a p a p
∣f f dá ñ =

g g
¢ ¢ ¢ Y Y ¢ ¢ ¢ .Moreover, the

physical systems for Aa¢ and Ep¢ might be different from those for Aa and Ep, respectively. Also, note that in

equation (10)wehavemade the general assumption that the photonmode of the n-photon state n A
j
i

p
∣ ñg

¢ might be

dependent on the setting
j
ig .

Now,we focus on those joint states n nA , A ,E,Ej
i

j
i

p a p
∣ ∣fñ ñg g

Y ¢ ¢ that contain n photons onAlice’s photonic system

Ap¢ . Eve’s task is to behave as differently as possible according to the intensity setting.Wefind, therefore, that

Dn j k l
i
, , , can be upper bounded as

D d P n

q P n

q P n

Sup Tr ,

Tr

1 , 11

n j k l
i

n

nkl n

nkl n

, , , A A , A ,E,E

A A , A ,E,E

A , A ,E,E

j
i j

i

k
i

k
i

l
i

l
i

Ap,Aa,E,Ep a p a p

a p a p

p a p

( [ ˆ (∣ ∣ )]

[ ˆ (∣ ∣ )

( ) ˆ (∣ ∣ )]) ( )

∣ f

f

f

ñ ñ

ñ ñ

+ - ñ ñ

g g

g g

g g

Yñ ¢ ¢ Y ¢ ¢

¢ ¢ Y ¢ ¢

¢ Y ¢ ¢

9
If k=l then equation (8) implies that Y e Y e Dn n n n n j k, ,

j j k k∣ ∣ -
g g g g

.
10

The system Aa can account for the effect of the loss in Alice’s transmitter. That is, we consider that the unitary operator describing her IM
includes aswell, together with its intrinsic loss, the effect of any optical attenuator, isolator and filter used byAlice to reduce the energy of the
back-reflected light that goes to Eve.
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where the operator P̂ (∣ ) ≔ ∣ ∣f f fñ ñá . This confirms that the description of Alice’s IM is enough to guarantee

security.

Of course, the formalism above can readily accept any particular assumption on the THAperformed by Eve.

For instance, in practical situations itmay be over-pessimistic to take the supremumgiven in equation (11) over

all possible states A ,A ,E,Ep a p
∣Yñ . Instead, onemight only consider signals of the form

A ,A ,E,E A A E,Ep a p p a p
∣ ∣ ∣ ∣f j cYñ = ñ ñ ñ , where ,A Ap a

∣ ∣f jñ ñ and E,Ep
∣cñ are pure states of the different systems.

Indeed, this seems to be a natural assumption because Alice’s systems Ap and Aa are typically independent from

each other and also independent from those of Eve. In so doing, equation (11)might deliver tighter bounds

for Dn j k l
i
, , , .

In general, however, one cannot assume that Eve’s state E,Ep
∣cñ is in a tensor product form. That is, it is not

enough to just consider the system Ep that Eve sends to Alice (together with the back-reflected one) in order to
guarantee security. This is so becausewhen the supremumgiven in equation (11) is taken over all joint states

E,Ep
∣cñ it usually results in a larger trace distance than that obtainedwhen one considers product states. To

improve the systemperformance, Alicemight include additional optical elements to force E,Ep
∣cñ to be of

product form. For example, she could perform a phase-randomisation on the system Ep (see, e.g., [58, 59]). This

way all the off-diagonal elements of the state E,Ep
∣cñ in the Fock basis would vanish, and one could completely

disregard systemE.Moreover,mathematically, to remove all the off-diagonal elements leads to a significant

decrease of the trace distance and, therefore, one expects a significant improvement of the secure key rate, as is

confirmed in section 4.3.

3.2. THA against the PM

In this section, we review and extend the analysis of the THAagainst the PMcarried out in [42]. The central

observation is that the THAallows Eve to partially knowAlice’s choice of the basis. In other terms, the

information leakage is in the formof basis information leaked out to the eavesdropper. Thismight cause the

densitymatrices that describe Alice’s output states to be basis dependent. Below, we provide a formalism to prove

the security of the BB84 protocol in the presence of themost general THAagainst the PM.

Wewill assume that Alice’s choice is random, independent of the IM and of the previous preparation

instances.We define the Z basis by the orthogonal vectors 0 , 1{∣ ∣ }ñ ñ and theX basis by ,{∣ ∣ }+ñ - ñ , where

0 1 2∣ ≔ (∣ ∣ )ñ ñ  ñ .We denote as i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ ( i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ ) the joint state that describes Alice’s

system and Eve’s system for the THAgiven that Alice selected the Z (X) basis. Here, the superscript i refers to the

ith signal generated byAlice, and the system Aq refers to a virtual qubit that is stored inAlice’s lab. Examples of

the states i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ and
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ are the following

1

2
0 1 , 12i i i

Z A ,A ,A ,E,E A 0 A ,A ,E,E A 1 A ,A ,E,Eq p a p q Z p a p q Z p a p
∣ (∣ ∣ ∣ ∣ ) ( )Y ñ = ñ Y ñ + ñ Y ñ¢ ¢ ¢

1

2
. 13i i i

X A ,A ,A ,E,E A 0 A ,A ,E,E A 1 A ,A ,E,Eq p a p q X p a p q X p a p
∣ (∣ ∣ ∣ ∣ ) ( )Y ñ = + ñ Y ñ + - ñ Y ñ¢ ¢ ¢

Here, j
i

A ,A ,E,Ep a p
∣Y ñ ¢

a
(with j 0, 1{ }Î and Z, X{ }a Î ) represents the state of systems A , A , Ep a and Ep¢ for

Alice’s bit value j in herα basis.We have, therefore, that Alice’s state preparation process can be equivalently
described as follows. First, she decides which state ( i

Z A ,A ,A ,E,Eq p a p
∣Y ñ ¢ or

i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ ) she prepares. Afterwards,

shemeasures the virtual qubit Aq using the Z or theX basis, depending on the choice of the state. As long as the

state preparation is expressed this way, one can consider any possible purification of the states i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ or
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ . For instance, onemay consider

i i i
X A ,A ,A ,E,E

e

2 A 0 A ,A ,E,E A 1 A ,A ,E,Eq p a p

i

q X p a p q X p a p
∣ (∣ ∣ ∣ ∣ )Y ñ = - ñ Y ñ + + ñ Y ñ¢ ¢ ¢

n
with 0, 2[ )n pÎ being a global phase.

Note that we can consider this state because the reduced density operator for systems A , A , Ep a and Ep¢ is the
same as that of equation (13). The optimal solution is the purification thatmaximises the key generation rate.

In a security proof, it is essential to determine the phase error rate, which is the parameter needed in the

privacy amplification step of the protocol. The phase error rate is thefictitious bit error rate that Alice and Bob

would have obtained if Alice hadmeasured the system Aq with the Xbasis and Bob had used theX basis given the

preparation of i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ . Intuitively, if the states
i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ and
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ are close enough to

each other, then the phase error rate should be close to the X basis error ratewhich is obtained in the actual

experiment. Below, wemake this argumentmore rigorous by using the analysis presented in [61]. For this, we

will assume that the basis choice is done in a coherentmanner, i.e., Alice first prepares the joint system

1

2
0 1 , 14i i i

A , A ,A ,A ,E,E A Z A ,A ,A ,E,E A X A ,A ,A ,E,Ec q p a p c q p a p c q p a p
∣ (∣ ∣ ∣ ∣ ) ( )Y ñ = ñ Y ñ + ñ Y ñ¢ ¢ ¢

where the system Ac is the so-called ‘quantum coin’ [60]. Importantly, the phase error rate is related to the X

basismeasurement on the quantum coin. To derive the formula for the estimation of the phase error rate, we
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consider the followingfictitious protocol. In particular, for the ith trial of the protocol, Alice and Eve prepare
their systems in the state i

A ,A ,A ,A ,E,Ec q p a p
∣Y ñ ¢ , Alice keeps systems A , Aa q and Ac in her hands, and sends system Ap

to Bob. At the reception side, Bob receives some optical systems after Eve’s intervention, and he performs theX

basismeasurement. In addition, Alice performs theX basismeasurement on the system Aq. Then, Alice
randomly chooses between the Z or the X basis with equal probability tomeasure her quantum coin Ac. Here,

note that, from equation (14), whenAlice chooses the Z basis tomeasure the coin and the result is ‘0’ (‘1’), this is
equivalent to Alice and Eve directly preparing the state i

Z A ,A ,A ,E,Eq p a p
∣Y ñ ¢ ( i

X A ,A ,A ,E,Eq p a p
∣ )Y ñ ¢ . Next, we apply the

Bloch sphere bound [62] for probability distributions to those instances where Bob obtained a click event. In

particular, wefirst apply this bound separately to the events with the X basis error and to thosewith noXbasis

error.We obtain the following two inequalities

1 2Pr X X Error

2 Pr Z 1 X Error 1 Pr Z 1 X Error , 15

i

i i

Ac

Ac Ac

( ∣ )

( ∣ )( ( ∣ )) ( )
- = - -

= - - = -

1 2Pr X No X Error

2 Pr Z 1 No X Error 1 Pr Z 1 No X Error . 16

i

i i

Ac

Ac Ac

( ∣ )

( ∣ )( ( ∣ )) ( )
- =- -

= - - = -

Here, Pr X X Errori
Ac( ∣ )= - - is the conditional probability of observing the outcome ‘−’when performing

theXbasismeasurement on the quantum coin given that there is a X basis error; Pr Z 1 X Errori
Ac( ∣ )= - is the

conditional probability of observing the outcome ‘1’when performing the Z basismeasurement on the quantum

coin given that there is a X basis error; and the other probabilities are defined similarly. Next, wemultiply both

inequalities by the term Pr clicki( ), which is the probability that Bob obtains a ‘click’ in hismeasurement

apparatus, and after combining equations (15) and (16)we obtain [61]

Pr click 2Pr X 2 Pr X, X Error Pr Z, X Error

2 Pr X, No X Error Pr Z, No X Error , 17

i i i i

i i

Ac
( ) ( ) ( ) ( )

( ) ( ) ( )

- = - - -

+ - -

where Pr Xi
Ac

( )= - is the probability that themeasurement result on the quantum coin is ‘−’,

Pr X, X Errori( )- is the joint probability of selecting the Z basis tomeasure the quantum coin and obtaining the

result ‘1’ (which implies the preparation of the state i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ ), and observing a bit error in Alice’s and

Bob’s X basismeasurement. The probability Pr Z, X Errori( )- is thefictitious joint probability of selecting the

Z basis tomeasure the quantum coin, and obtaining the result ‘0’ (which implies the preparation of the state
i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ ), and observing a bit error in Alice’s and Bob’s X basismeasurement. Actually, this last

probability is the phase error rate. The probabilities Pr X, No X Errori( )- and Pr Z, No X Errori( )- are

defined in a similar way (see [61] for further details). Note that in order to obtain equation (17) from

equations (15) and (16)wehave used the fact that Pr X ,click Pr Xi i
Ac Ac( ) ( )= - = - , where

Pr X , clicki
Ac( )= - represents the joint probability that themeasurement result on the quantum coin is ‘−’ and

Bob obtains a ‘click’ event with hismeasurement. Importantly, the probability Pr Xi
Ac

( )= - characterises how

close are the states i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ and
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ . Specifically, by choosing an appropriate global phase for
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ , from equation (14)wehave that

Pr X
1

2
1 . 18i i i

A A ,A ,A ,E,E Z X A ,A ,A ,E,Ec q p a p q p a p
( ) ( ∣ ∣ ∣) ( )= - = - áY Y ñ¢ ¢

The term i i
A ,A ,A ,E,E Z X A ,A ,A ,E,Eq p a p q p a p

∣ ∣ ∣áY Y ñ¢ ¢ can be upper-bounded by the fidelity between the Z basis state and

theXbasis state. Thismeans that equation (17) gives us the phase error probability taking into account the

‘closeness’ between the two basis states. To relate the probabilities with the actual number of the corresponding

events, wefirst use the concavity of the square root function andwe take the sumover i N1, 2, ,{ }Î ¼ , withN

being the number of pulses sent in the fictitious protocol. In so doing, we find that

Pr click 2 Pr X

2 Pr X, X Error Pr Z, X Error

2 Pr X, No X Error Pr Z, No X Error . 19

i

N
i

i

N
i

i

N
i

i

N
i

i

N
i

i

N
i

1 1

A

1 1

1 1

c
( ) ( )

( ) ( )

( ) ( ) ( )



å å

å å

å å

- = -

- -

+ - -

= =

= =

= =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

Next, we apply Azuma’s inequality [56] (see appendix A).We obtain, therefore, that except for a probability

exponentially small inN each sumof the probability distributions approaches the actual number of the

corresponding events inN trials. That is
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N

N

N

N

N

N

N

N

N

N

1 2 2

2 , 20

X

click

X,X Error

click

Z,X Error

click

X,No X Error

click

Z,No X Error

click

Ac

( )

-

+

=- - -

- -

whereNg denotes the number of instances associated to the event g. Importantly, here N NZ,X Error click- is related

to the phase error rate, that is, the rate of choosing the Z basis and having the phase error, and N NX,X Error click- is

the observed ratio of choosing the Xbasis and having a bit error. As for NXAc=-, we have that except for a
probability exponentially small inN the following inequality is satisfied

N

N

1

2

2
1 min . 21

i

N i i

i

i i

X

1

A ,A ,A ,E,E Z X A ,A ,A ,E,E

A ,A ,A ,E,E Z X A ,A ,A ,E,E

Ac

q p a p q p a p

q p a p q p a p

∣ ∣ ∣

[ ∣ ∣ ∣] ( )





å
- áY Y ñ

- áY Y ñ

=-
=

¢ ¢

¢ ¢

This is so becausewe can directly calculate the probability Pr Xi
Ac

( )= - from equation (14). Therefore, if Alice

and Bob know theminimumoverlap between the states i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ and
i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ they can estimate

the value of the phase error rate even if Eve performs themost general THA against the PM. The estimation of

such overlap, however,might be difficult in general as onewould need to knowEve’s ancilla state. To overcome

this problem,we proceed like in the previous section andwe reformulate the formalism above based only on

how the PMoperates.

For this, note that i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ and
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ can be expressed as

U , 22i i
A ,A ,A ,E,E A ,E A ,A ,E

,
A ,A ,A ,E,Eq p a p q p a p q p a p

∣ ≔ ˆ ˆ ∣ ( )Y ñ Ä Yñz
z

¢ 

where X, Z{ }z Î , andU
i

A ,A ,E

,

p a p
ˆ z is the ith unitary11 transformation associated to the PM. It supports Alice’s

photonic system Ap and her ancilla Aa, and Eve’s ancilla E together with her probe system Ep.With this unitary

transformation, the overlap between i
Z A ,A ,A ,E,Eq p a p

∣Y ñ ¢ and
i
X A ,A ,A ,E,Eq p a p

∣Y ñ ¢ for the ith instance can be lower-

bounded as

U UInf , 23
i i

A ,A ,A ,E,E A ,A ,E
Z,

A ,A ,E
X,

A ,A ,A ,E,EAq,Ap,AaE,Ep q p a p p a p p a p q p a p
∣ ∣ ˆ ˆ ∣ ∣ ( )∣

†
áY YñYñ

which is independent of the state. Note that herewe have used the infimumbecause the unitary operator could

support amode in aHilbert space containing an arbitrary number of photons. Therefore, equation (20) can be

written as

N

N
U U

N

N

N

N

N

N

N

N

1 1 min Inf

2 2 . 24

i

i i

click
A ,A ,A ,E,E A ,A ,E

Z,
A ,A ,E
X,

A ,A ,A ,E,E

X,X Error

click

Z,X Error

click

X,No X Error

click

Z,No X Error

click

Aq,Ap,AaE,Ep q p a p p a p p a p q p a p
( ∣ ∣ ˆ ˆ ∣ ∣)

( )

∣
†



- - áY Yñ

+

Yñ

- - - -

Finally, we use

N

N

N

N

N

N

N

N

, ,

, , 25

X Error X
X,X Error

X
No X Error X

X,No X Error

X

X Error Z
Z,X Error

Z
No X Error Z

Z,No X Error

Z

≔ ≔

≔ ≔ ( )

∣ ∣

∣ ∣

d d

d d

-
-

-
-

-
-

-
-

where NZ (NX) is the number of events where Alice’s Z-basismeasurement outcome on the quantum coin is ‘0’

(‘1’). That is, Alice prepares the Z-basis (X-basis) state and Bob detects signals in the Z-basis (X-basis) in the

actual protocol (recall that the virtual protocol concentrates only on the basismatched events). Then, by taking
into account that x x1 1 2( ) - for x0 1  , we obtain the followingmodified inequality

N

N
U U

N

N

N

N

N

N

N

N

1 1 min Inf

1 1
. 26

i

i i

click
A ,A ,A ,E,E A ,A ,E

Z,
A ,A ,E
X,

A ,A ,A ,E,E

X X Error X

click

Z X Error Z

click

X X Error X

click

Z X Error Z

click

Aq,Ap,AaE,Ep q p a p p a p p a p q p a p
( ∣ ∣ ˆ ˆ ∣ ∣)

( ) ( )
( )

∣
†

∣ ∣ ∣ ∣ d d d d

- - áY Yñ

+
- -

Yñ

- - - -

Remember that Nclick represents the number of detected events by Bob in the actual protocol since the quantum

coins have beenmeasured along the Z basis, which corresponds to the case in the actual protocol. Therefore, we

have that the rhs of this equation is consistent with the results presented in [61].

11
Similar to the IM, in general, the PMand other devices,may be correlated in their operations. In this case, this unitary transformation

could depend on all the previous intensity choices that Alice has alreadymade.
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Like in the previous section, note that the formalism above can readily accept any assumption on the THA.

For example, if one considers a specific THAagainst the PMwhere Alice and Bob know the fidelity FX,Z between

the two densitymatrices describing the output states for the X andZbases, we have that

N

N
F

N

N

N

N

N

N

N

N

1 1

1 1
, 27

click
X,Z

X X Error X

click

Z X Error Z

click

X X Error X

click

Z X Error Z

click

( )

( ) ( )
( )

∣ ∣

∣ ∣

 d d

d d

- -

+
- -

- -

- -

which is essentially the result obtained in [42]. Thismeans in particular that with the estimation of the fidelity

given for an explicit THA, as the one considered in the next section, one can readily obtain the phase error rate

and therefore the secure key rate of aQKD system endowedwith a leaky PM.

Until nowwe have discussed the scenariowhere the THA against the IM and the PMacts independently on

these two devices. However, in general, the IM and the PMmight present correlationswhich could be exploited

by Eve in a joint THA.More specifically, the leaked informationmight be dependent on both the intensity

setting and the bit and basis choices. This situation is addressed in appendix B, wherewe discuss how to adapt the

formalism above to also cover this case.

4. Simulation of the key generation rate

In order to apply the theoretical description to a practical case, we treat the THA as a particular formof

information leakage, actively caused by the eavesdropper.We draw a realistic worst-case scenario following the

line of [42], where a THA targeting the PMplaced inAlice’s boxwas studied.Here, we review this argument and

employ it to any other device that is activelymodulated in the transmitting unit, in particular to the IM that is

commonly employed to run a decoy-state protocol.We assume that Eve uses a continuous-wave (CW) high-

power laser to probe aQKD transmitter. The suitability of a CW laser for the THA is due to a twofold reason.

Firstly, it is less destructive than a pulsed laser [63], so it is less easily detectable by Alice and Bob. Secondly, a CW

laser is not less efficient than a pulsed laser in probing devices that aremodulated according to a non-return-to-

zero (NRZ) logic, and assumingNRZmodulation for the transmitter’s devices is a conservative choice [42]. Also,

it is apparent that the THA is enhanced if the power of Eve’s laser is as large as possible, because thismaximises

the amount of back-reflected light for anyfixed reflectivity of the transmitting unit. Thereforewe can think that

Eve’s laser is operatedwell above threshold.

A consequence of these preliminary considerations is that it is not too restrictive in practice to consider a

THAperformedwith aCW laser operatedwell above threshold. In turn, such a laser emits light in a state that is

closely approximated by a single-mode coherent state [64].Wewill therefore assume in this section that Eve uses

high-intensity single-mode coherent states to perform the THA. Formally, wewrite the input coherent state as

ei
∣b¢ ñq¢ , where b¢ is a real number representing the amplitude of the input light and q¢ is an arbitrary phase that
can be set equal to zerowithout loss of generality. Notice that even if Eve’s laser is CW, it stillmakes sense to use

the expression ‘light pulse’ for Eve’s light, as a light pulse is temporally defined by Eve tomatch themodulation

period of the transmitter’s devices.When a coherent state of light enters theQKD transmitter, it undergoes

transformations that are linear and cannot change its photon statistics. So the light back-reflected to Evewill still

be in a coherent state, whichwe indicate as:

e . 28i
j

j∣ ( )b ñg
qg

In this case, the real numbers
j

bg and j
qg are amplitude and phase, respectively, of the light back-reflected to Eve,

which can depend on the intensity setting of the transmitter, jg . Notice though that they are assumed not to

depend on the particular instance i of the preparation.Moreover, inwriting equation (28), we assume that there
is no entanglement betweenAlice’s system Ap and Eve’s probe system Ep¢ . Thereforewe term ‘individual’ this

particular class of THA.

In the next sections, wewill simulate the secure key rate of a typical decoy-stateQKD system against the

individual THA, in three different cases of practical interest, with the aim to provide security guidelines of

immediate use inQKDexperiments. The three cases correspond to different assumptions about the state in

equation (28), whichwill be described in detail in the next sections 4.1–4.3. These cases will be also schematically

summarised infigure 5, at the end of this section.However, figure 5 could even be used as an introductory

scheme to ourmodels instead, as it conveniently displays the assumptions underlying the simulations.

To draw the simulations, themain ingredient is the characterisation of the transmitters’modulators, which,

as discussed in the previous section, leads to upper bound the trace distance between the different settings of the

modulators in the presence of leaked information, as described by equation (11) (see also appendices C andD).

In practice, this often translates into defining themodes transmitted by themodulators and their attenuation
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coefficients. Then, a specific protocol can be considered and its secure key rate estimated. In the simulations, we

will consider the following lower bound to the asymptotic secure key rate of the decoy-state BB84 protocol [3]:

K q p Y p Y h e f E Q h Emax min 1 , 29
0 0L 1 1L 1U

A E

s s s s s s s s{ [ ( )] ( ) ( )} ( ) + - -g g g g g g g g

G G

where AG and EG are the spaces of the parameters controlled byAlice and by Eve, respectively. In the simulation,

wewill use ,A s v{ }g gG = and E j
{ }qG = g , and assumewithout loss of generality that s v w g g g and

0, 0, 2 , , 2
s v w v

[ ] [ ]q q p q q p= Î Îg g g g . Here, as for wg and
j

bg , wewillfix them to particular constant values in

the simulation. In equation (29), the key is distilled only from the signal states; q is the efficiency of the protocol;
p e

0
s s=g g- and p e ;

1 s
s sg=g g- Y0L

s
g
and Y1L

s
g

(e1U
s
g

) are lower (upper) bounds for Y0
s
g
and Y1

s
g
, respectively, (e1

s
g
) is

defined in section 3; f E s( )g is the efficiency of the error correction protocol;

h x x x x xlog 1 log 12 2( ) ( ) ( ) ( )= - - - - is the binary Shannon entropy function. All the parameters used in
the simulation are listed in table 1 and the associated physicalmodel for the quantum transmission is described
in appendix E. The calculation ofK passes through the estimation of Y Y,0L 1L

s s
g g

and e1U
s
g
, which is performed by

numerical constrained optimisation as explained in appendix C.

4.1. Individual THA—Case 1

Asmentioned in section 3, Eve’s goal in a THA is tomaximise the difference between the states leaked out of the

transmitter. Because these are represented by the coherent state in equation (28), Eve’s task is simpler when the

intensity of the relevant states is larger, as thismakes the statesmore orthogonal. Therefore, the first scenariowe

consider is one inwhichwe over-estimate the intensity of the leaked states so to draw a consistent worst-case

scenario for the individual THA. Suppose that the users characterise their apparatus and find that the intensity of

the leaked signals is always upper bounded by a certain value Imax. This could be the result of an experiment

aimed at characterising theworst-case reflectivity of the transmitter as awhole, without specifically addressing

the individual devices inside the transmitting unit. Because in the estimation of the secure key rate,

equation (29), we assume that the parameters
j

qg are entirely controlled by Eve, it is conservative to set the
intensities of the states leaked out from the transmitter as follows:

I . 302 2 2 2
max

s v w
( )b b b b= = = =g g g

The detailed calculation of the trace distance terms Dn j k l, , , for the leaked states under the settings of equation (30)
is given in appendixD.1. Then, the key rate in equation (29) is numerically simulated and the result is plotted in

figure 2 as a function of the distance between the users. The colours correspond to different values of the

parameter Imax. The black solid line represents the ideal case of no information leakage.When the information

leakage intensity is lower than 10−6 photons/pulse, it is always possible to distill a secure quantumkey, even in

presence of the THA.When I 10max
6= - , the key rate distilled fromour security proof remains positive up to

distances of about 30 km. This can be comparedwith implementationwithout decoy states, where a single

unmodulated intensity is used. In this case, the so-calledGLLP security proof [60] applies, and the corresponding

key rate is depicted infigure 2 as a dashed black line.When Imax is smaller than 10−12, the key rate in presence of a

THAapproaches closely that of a perfectly shielded systemover short andmedium-range distances, whereas it

deviates from ideal over longer distances. In this latter case, a non-negligible amount of additional privacy

amplification is required to protect the system against the THA. In the same figure, we also include dashed

coloured lines to represent the secure key rate in presence of a THA that targets simultaneously the IM and the

PMenclosed in aQKD transmitter. For that, we conservatively assumed that Eve gets the same amount of

back-reflected light, Imax, from the IMand the PM separately, so tomaximise her information gain about each

modulator. As it is apparent from figure 2, the lines corresponding to this case are almost perfectly overlapping

with the lines corresponding to having only the IM attacked by the THA. This suggests that protecting the IMof

a decoy-stateQKD transmitter against the THA ismore challenging than protecting the PMalone. In fact, an

optical isolation is required for the IM that is orders ofmagnitudes larger than the one for the PM. Even so, this

difference is not larger than about 60 dB [42]. This roughly corresponds to the optical isolation displayed by an

inexpensive commercially available component like a dual-stage optical isolator.Hence this solution is well

within the feasibility range of current technology.

Table 1.Experimental parameters used in the simulation of the secure key rate. The associated
physicalmodel is explained in appendix E. The values reported in the table are commonlymet in
afibre-basedQKD setup, see e.g. [65]. The intensity parameters sg and vg are not displayed in
the table as they are optimised numerically at every distance. The parameter wg is set equal to a
constant value to reduce the parameter space of the simulation. Its effect on the key rate is
marginal.

q ed pd Bh deth α wg f E s( )g

1 0.01 5 10 6´ - 0.5 0.25 0.2 5 10 4´ - 1.2
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4.2. Individual THA—Case2
In theprevious section,weconsidered aworst-case assumption for the amount of light leakedout of theQKD

transmitter, equation (30). In thatmodel, the leaked intensitywas independent of the inner setting of the

transmitter.On the onehand, this permits to bypass the precise characterisation of theQKDsetup.On the other

hand, it neglects a fewphysical considerations that can considerably improve the key rate. For example, the fraction

of Eve’s light that is back-reflected by a component that precedes themodulators in the transmitter’s architecture

does not contribute to theTHA.A second important consideration is that, according to the initial worst-case

scenario drawn for the individualTHA, themodulators are drivenwith aNRZ logic. This entails thatmost of the

timeduring the encodingprocess themodulators’medium is non-reflective, as its refractive index is homogeneous

and constant between twoconsecutiveNRZmodulation values.Hence, theTHAhas to be executed exploitingnot

the reflectivity of the IM (orPM), but that of the interfaces coming after it in the transmitter’s architecture instead.

Specifically, theTHAwould run as follows12: Eve’s light passes through the IMafirst time; it hits an interface placed

after the IMand is reflected back from it towards the IM; it passes through the IMa second time and isfinally leaked

out of theQKDsystem intoEve’s hands.During this two-way trip through the IM,Eve’s light undergoes the same

changes as the signals preparedby the transmitter for anormalQKDsession.Therefore the leaked light is now

highly informative of the inner settings of the transmitter.

In principle, a two-way round trip through aNRZ-modulated IM entails a double attenuation of Eve’s light.

However, because attenuation plays against Eve in a THA, it is conservative to assume that Eve’s light is

attenuated only once by the IM. Tofix the ideas we can think that it passes unattenuated through the IMon the

forward path and then is attenuated on the backward path in exactly the sameway as the legitimate signals are. In

this new scenario, the settings for the amplitudes of the leaked light are:

I I I, , . 312
max

2 v

s
max

2 w

s
max

s v w
( )b b

g
g

b
g
g

= = =g g g

Hence, differently from the previous case, Alice’smodulation of the intensity directly affects now the

information leaked to the eavesdropper for any fixed value of Imax. The detailed calculation of the trace distance

terms Dn j k l, , , for the leaked states under equation (31) is given in appendixD.2.
Infigure 3, we plot the secure key rate as a function of the distance between the users, varying the parameter

Imax. The key rate has improvedwith respect to that infigure 2. For the largest intensity of the leakage in the

figure, I 10max
6= - , the key rate derived fromour security proof reaches about 60 kmdistance and is always

better than the one attainedwith theGLLP approach.Moreover, for a leakage intensity I 10max
12= - , the key

rate is nearly indistinguishable from the rate of an ideally shielded system (black solid line infigure 3) up to about

100 km, that is 70%of themaximum transmission distance.

As in the previous case, we include in thefigure the simulation of the key rate under a THA simultaneously

run against the IM and the PM (dashed coloured lines infigure 3). Again, the THA against the PMonly

marginally affects the overall key rate. Therefore the countermeasure to information leakage based on readily

Figure 2. Secure key rate versus distance in presence of a THA targeting themodulating devices of aQKD transmitter. Each colour
corresponds to a different value of the intensity of the leaked light, Imax . The depicted key rate is for theworst-case of a single value of
Imax bounding all the intensity settings in the transmitter, see equation (30) in themain text. The solid lines are for a leakage due only to
the IM,while the dashed lines, visible for Imax equal to 10 , 106 7- - and 10−8, are for the total leakage coming from IMandPM
simultaneously. For every distance, the key rate isminimised over the angles

j
qg , controlled by Eve, andmaximised over the

amplitudes sg and vg , controlled byAlice. All the parameters used in the simulation are listed in table 1.

12
Weexplicitly consider the IM in this description but the argument also applies to the PM.
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available optical isolators, discussed in the previous section 4.1, still applies here. Indeed, this solution becomes

evenmore effective in the realistic scenario described in the present section, due to the better secure key rate

shown infigure 3 in comparisonwith theworst-case key rate presented infigure 2.

4.3. Individual THA—Case3
In this section, we further improve the key rate under a THAby considering the phase randomisation of Eve’s

signal, as discussed in section 3.1.1. Phase randomisation can drastically reduce the dangerousness of the THA as

it removes any residual entanglement with the eavesdropper’s probes, andwe can expect higher keywith the

phase randomisation due to the non-existence of the off-diagonal elements. However, on the other hand, one

has to be very careful about howphase randomisation is implemented, as this could open new loopholes. For

example, if it is realised by adding a supplementarymodulator to the system, Eve could first direct the THA

against this new device to learn the phase information, and then address the PMand the IMas in the non-phase-

randomised case, thus suppressing all the benefits due to the randomisation of the phase.

However, we showed in the previous sections that the THA against the PM is less effective than the one

against the IM. Therefore, in order to improve the performance of the system against the THA, it ismore

important to randomise the phase of Eve’s light directed against the IM than the one against the PM. This offers

an alternative, possiblymore robust, way to implement phase randomisation. Specifically, we can avoid using an

additional ad-hocmodule and focus rather on theworkingmechanismof the IM,which is part already of the

transmitting unit. A common technique tomodulate intensity is via a symmetricMach–Zehnder interferometer

(MZI). The light entering theMZI isfirst split into two beams and then recombinedwith a suitable phase. This

will generate interference and therefore intensitymodulation at the output ports of theMZI. By blocking one of

the output ports, intensitymodulation is obtained from the unblocked port as a result of the destructive or

constructive interfering process. Tomodulate the relative phase between the two arms of theMZI, it is sufficient

to control the refractive index of only one of the twoMZI arms, and this is themost commonly used

configuration.However, if a ‘dual-drive’ IM is used instead, both the arms in theMZI can be independently

controlled, so to gain simultaneous control over the relative phase as well as the global phase of the signals

traversing the IM respect to an external reference phase. If the global phase in the dual-drive IM is randomised,

by encoding in each time slot a different phase value, Eve’s probing signal will be phase randomised too and its

phasewill become uninformative to Eve. In this case, the state of the leaked signals seen by Evewill not be the one

in equation (28) anymore andwill be replaced by the following one:

n
n ne . 32

n

n
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j
j
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!
∣ ∣ ( )år

b
= ñág
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We simulate the secure key rate for this situation using the detailed calculation of the trace distance terms Dn j k l, , ,

given in appendixD.3 and setting the intensities 2

j
bg as in equation (31). That is, we still consider a THAwhere

Eve’s light crosses the IMfirst and is back-reflected to Eve from an interface placed after the IM in the transmitter

architecture.

Figure 3. Secure key rate versus distance in presence of a THA targeting themodulating devices of aQKD transmitter. Each colour
corresponds to a different value of Imax. The depicted key rate is obtainedwhen the intensity of the leaked light ismodulated in the
sameway as for the standard light pulses in decoy-stateQKD, see equation (31) in themain text. The solid lines are for a leakage due
only to the IM,while the dashed lines, visible for Imax equal to 10 , 106 7- - and 10−8, correspond to the total leakage coming from the
IM and the PMof the transmitter simultaneously. For every distance, the key rate isminimised over the angles

j
qg , controlled by Eve,

andmaximised over the amplitudes sg and vg , controlled byAlice. All the parameters used in the simulation are listed in table 1.
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The result of the simulation is reported in figure 4. It is apparent that the key rate has vastly improvedwith

respect tofigures 2 and 3. Even for a leakage intensity as large as I 10max
2= - , the key rate remains positive up to

about 40 km. For an intensity smaller than I 10max
6= - , the resulting key rate is indistinguishable from the ideal

one (solid black line) over almost thewhole distance range. This shows the beneficial effect of phase

randomisation, whichwas expected from the discussion in section 3.1.1. Differently fromprevious cases, the

simultaneous information leakage from IMandPM (dashed lines in thefigure) leads now to a key rate that is

apparently lower than for a leakage due to the IMonly (solid lines in the figure). For example, when I 10max
3= -

and the leakage is due to the IMonly, the key rate remains positive formore than 85 km,while it falls below

50 km for a simultaneous leakage fromPMand IM.

Given the benefit of phase randomisation, a natural question arises if sending only an n-photon Fock state,

rather than its classicalmixture, is beneficial to Eve. In appendix F, we discuss this point, andwe show that the

benefit of employing this attack Eve obtains is negligibly small, i.e., this attack can enlarge the trace distance only

by the order of the transmission rate of Alice’s device, which is negligible given the proper installation of optical

isolators andfilters. By recalling that phase randomisation transforms any state into a classicalmixture of Fock

states, we can conclude that the results presented in this section are essentially the secure key rate with themost

general THA against IM assuming the phase randomisation.

From a practical perspective, phase randomisationmakes the IM as robust against information leakage as a

non-phase-randomised PM. This, in combinationwith the enhanced security due to the removal of any residual

entanglement with Eve aswell as that of all the off-diagonal elements, promotes phase randomisation as a

relevant countermeasure to prevent the THAand the information leakage in general from the transmitter of

decoy-stateQKDandmdiQKD.

Before concluding this section, it is useful to summarise the physicalmodels and the assumptions underlying

our simulations. This is donewith the help offigure 5.

In section 4.1, we considered the scenario depicted infigure 5(a), leading to equation (30). In this case, the

coherent state of light back-reflected by the IM carries in its phase
j

qg the information about the intensity settings

of the IM, jg . Its amplitude is themaximumallowed by any physicalmechanismused to limit Eve’s input light,

irrespective of the IM settings, thusmaking the states outputted byAlicemore distinguishable to Eve. This,

togetherwith the choice of the angles
j

qg , chosen to bemost favourable to Eve, let us draw theworst-case key rate

lines shown infigure 2.

In section 4.2, we devised amore realistic scenario, depicted infigure 5(b). Typically, Eve’s light is reflected

by an interface placed after the IM (double line in thefigure) rather than by the IM itself. During the THA, Eve’s

light can pass through the IMwhen it is fully transmissive, to be reflected by the interface and pass through the

IMagainwhen the intensity settings are on. This way, Eve’s light ismodulatedwith exactly the same settings jg
used byAlice for her own states, leading to equation (31) and figure 3.

Finally, in section 4.3, we applied phase randomisation to any light emerging fromAlice’smodule, as shown

infigure 5(c). For the intensity of the light back-reflected to Eve, we considered the same scenario as in

figure 5(b). The ideal phase randomiser shown in the figure is a powerful resource as it removes any phase

information from the output states, see equation (32), leading to better key rates, as reported infigure 4.

Figure 4. Secure key rate versus distance in presence of a THA targeting themodulating devices of aQKD transmitter. Each colour
corresponds to a different value of the leaked intensity Imax. The phase of the leaked light is randomised, see equation (32) in themain
text. The solid lines are for a leakage due only to the IMwhile the dashed lines, corresponding to amuch lower rate, are for the total
leakage due to IM and PMsimultaneously. For every distance, the key rate ismaximised over the amplitudes sg and vg . All the
parameters used in the simulation are listed in table 1.
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Themodel used to draw the lines for the PM is not explicitly described, as it is similar to the IMone and is

detailed in [42]. Although the cases described in this section do not constitute an exhaustive list, they represent

useful practical cases and can be used as guidelines for the secure implementation of real QKD systems.

5.Discussion

In this work, we have presented a general formalism to calculate the secret key rate of decoy-state QKDand

mdiQKDunder anyTHAdirected against the transmitter’smodulators. It is useful to give some insight into this

formalism, in particular the one for IM, and discuss why the THAaffects the standard theory of decoy states.

In the analysis of the decoy-statemethodwithout the THA, afictitious protocol is consideredwhere Alice

delays her decision on the intensity settings after Bob detects a pulse. That is, after the detection of the pulse,

Alice randomly decides the intensity setting ,s vg g and wg [30]. For simplicity, let us consider the discrimination
between the signal state s and thefirst decoy state v only. By using the relation

n nPr click, Pr click, 1i i
s v

( ∣ ) ( ∣ )g g+ = and the Bayes’s rule, we can rewrite equation (4) as:

n
D

n
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Pr Pr
Pr click,

Pr Pr
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where D Dmaxn i n
i

,s,v ,s,v≔ . From this equation, we see that in the case of noTHA, D 0n,s,v = and

nPr click,iPr

Pr Pr v
v

s v

( ∣ )
( )

( ) ( )
g=g

g g+
for any i and n. This entails that Alice’s assignment of the intensities in the

fictitious protocol can bemade identical and independent of the instance i over the detected instances. This

allows us to use probability inequalities, such as themultiplicative chernoff bound [30], which applies to

independent trials. However, when the THA is on the line, D 0n,s,v ¹ and the bound to the lhs of equation (33)

becomes dependent on the instance i. To solve this problem,wemake use of Azuma’s inequality [56]. Because

we are in the asymptotic scenario, the technical details related to the inequality are unnecessary andwewill not

write themhere explicitly.

Our formalismdoes not require any knowledge of Eve’smeasurement for the THAor the detailed

specification of the state used. Instead, a detailed characterisation of themodulators is needed. This is important

becausewhile the full characterisation of Alice’smodulators overmanymodes is doable at least in principle, the

characterisation of Eve’s THA is impossible even in principle. However, the full characterisation of Alice’s

modulatorsmight be challenging in practice and further research needs to be done in this direction.We remark

that our formalism is a powerful tool in this context because it can readily accept anymathematicalmodel that

describes the behaviour of themodulators.

Aswehave discussed in section 3.1.1 andpractically demonstrated in section 4.3, it is important to perform

phase randomisationof Eve’s signals to defeat theTHAexploiting entanglement and to enhance the key rate.

Figure 5.Models and states used in the simulation of individual THA targeting the IM. (a)The intensity of the back-reflected light is
independent of the intensity settings (Case 1, section 4.1). (b)The intensity of the back-reflected light depends on the intensity settings
(Case 2, section 4.2). (c)Eve’s back-reflected light is phase randomised and it is represented by the classicalmixture of Fock states
(Case 3, section 4.3).
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However, on the other hand, it is important to perform the randomisationwithout opening additional loopholes.

Also, the question remains ofwhether this solution ismore practical than theone basedona series of optical

isolators. Active phase randomisation requires precise synchronisation and a sequence of randomnumbers in the

input. Even if correctly performed, a certain level of optical isolation is always needed to shield a system from the

external environment. The total amount of required isolation clearlydepends onphase randomisation, as seen by

comparingfigures 3 and4.However, thesefigures also show that the difference in the values of Imax amounts

roughly to 60 dB,which canbe achievedwith a single entirely passive component like a dual-stage optical isolator.

Hence evenhigh isolation levels can be inexpensively achieved through a series of such isolators.

6. Conclusion

In this paper,wehavequantified the secure key rate of decoy-state-basedQKD inpresence of leaky transmitters. This

allowedus to suggest quantitative countermeasures to restore security even in thismore general scenario.A real setup

is typically leaky inpractice, due to thepresence of side channels hidden in thepreparationof the communication

signals, or due to the active interventionof an eavesdropper. The analysis of this case is thenof immediatepractical

interest.Our analysis applies to anydecoy-state system that uses an IMor aPMtodistill a quantumkey. It includes in

fact themost general attackbasedon the extra informationpossibly leaked fromsuchdevices.

We have employed our formalism to analyse particular examples of THA,where Eve exploits coherent states

of light to probe the intensity and PM in the transmitter. Our results show that it is possible to distill a key from

leaky transmitters that approach the ideal rate of a perfectly shielded system. For that, twomain solutions play a

crucial role. On one hand, optical isolation has to be guaranteed for any system through an adequate number of

attenuators and optical isolators. On the other hand, active phase randomisation can further enhance the

protection, removing any residual entanglement fromEve’s probing signals.

Given the generality of our approach and its applicability to cases of practical interest, we believe that it will

become a fundamental tool to analyse the security of real-world quantum communication systems, including

those for standardQKD,mdiQKD and the device-independent QKDwhere PMand/or IMare used.
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AppendixA. Azuma’s inequality

In this appendixwe introduce Azuma’s inequality [56]. It can be applied to a sequence of random variables
X X X, , , l0 1( ) ( ) ( )¼ that satisfies themartingale and the bounded difference conditions (BDC). In particular, a set
of randomvariables is called amartingale if and only if E X X X X X, , ,l l l1 0 1[ ∣ ]( ) ( ) ( ) ( ) ( )¼ =+ holds for any l, where

E [·] represents the expectation value. That is, the expectation value of the l 1 th( )+ random variable

conditional on all the previous random variables is equal to the lth random variable. On the other hand,
X X X, , , l0 1( ) ( ) ( )¼ satisfies the BDC if and only if there exists c 0l( ) > such that X X cl l l1∣ ∣( ) ( ) ( )-+ for any l. In

this scenario, Azuma’s inequality states that

X X lPr 2e A.1l 0
l

k
l

c l

2 2

2 1
2[∣ ∣ ] ( )( ) ( ) ( ( ) )d- >

-
å

d

=

for any 0, 1( )d Î .

Now, to derive the result that we use in themain text, we proceed as follows. In particular, let us consider that

weflip coins starting from thefirst coin in order. The coins can be correlated in an arbitrarymanner. Let yu be the

randomvariable that represents the result of the uth coin, with y 1u = when the result is head and y 0u = when

it is tail. Let P y 1 , ,u u0 1( ∣ )x x= ¼ - be the conditional probability of having head in the uth coin conditional on all

the results of the previous coins, whichwe denote as , , u0 1x x¼ - . Finally, we denote by l( )L the actual number of

heads obtained afterflipping l coins. Then, it can be shown that
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X P y 1 , , A.2l l
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u u
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is amartingale and satisfies the BDCWehave, therefore, that
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Appendix B. Joint THAwhen the IMand the PMare correlated

In this appendix, we explain briefly how to adapt our formalism to evaluate the situationwhere there are

arbitrary correlations between the IM and the PM, and Eve can exploit this fact in her THA.

In this correlated scenario, Alice andBob could first estimate the bit and basis dependent single-photon

yield, whichwe denote as Y1
, ,s A Ag x z

, for the signal setting. Here, the parameter Ax denotes Alice’s bit value and Az is

her basis choice. That is, Y1
, ,s A Ag x z

represents the conditional probability that Bob obtains a ‘click’ event given that

Alice selects the signal setting and sends him a single-photon state encoding a bit value Ax in the basis Az . To

estimate this yield, Alice can declare Bob (over the authenticated public channel) all the bit and basis information

associated to those instances where she used a decoy setting andBob obtained a ‘click’ event.With this

information, Alice and Bob can estimate Y1
, ,s A Ag x z

by using amodified version of equation (6) given by

Y q Y q Y D1 . B.1n nkl n nkl n n j k l

, , , , , ,
, , ,

,j k lA A A A A A A A∣ [ ( ) ]∣ ( )- + -g x z g x z g x z x z

Here, the parameter Dn j k l, , ,
,A Ax z is amodified version of Dn j k l, , , that refers solely to the set of choices ,A A{ }x z . Note

that thismodification is needed because now the decoy-statemethod is bit-and-basis-dependent.With a

procedure similar to the one adopted to go from equation (6) to equation (8), one can obtain the single-photon

bit error rate for the signal setting, which also depends onBob’s basis choice and on his bit value.

After obtaining the single-photon yield aswell as the associated error rate, Alice and Bob generate a secret key

from those instances where Alice emitted a single-photon pulse prepared in the Z basis and using the signal

setting, and Bob obtained a ‘click’ event when hemeasured the pulse in the Z basis. Note that all the statistics

associated to such instances are estimated through the bit-and-basis-dependent decoy-statemethod. Likewise,

one can readily obtain the single-photon yield associated to those events where Alice emits a single-photon pulse

prepared in the Xbasis and using the signal setting, and Bob obtains a ‘click’ eventwhen he uses the X basis.

Now, to generate a key, one follows the technique explained in section 3.2 except for a smallmodification.One

has to replaceU
i

A ,A ,E

,

p a p
ˆ z in equation (22)withU

i

A ,A ,E

, , ,1

p a p

sˆ z g
, which is a restricted version ofU

i

A ,A ,E

,

p a p
ˆ z that only considers

the single-photon emission part in the signal setting. That is, Alice and Bob have to characterise the behaviour of

the PMdepending on their bases choice when they select the signal setting.

With themodifications above, one can obtain the phase error rate X Error Zd - from equation (26) because the
bit-and-basis-dependent decoy-statemethod allows us to evaluate all the parameters needed to solve this

equation, all of which are now restricted only to the single-photon emission events. Then, in the asymptotic limit

of a large number of transmitted signals, we have that the secure key rate is given by

K q p Y p Y h

f E Q h E
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-

g g g g

g g g
=

-

where p i
0

, ,Zsg is the probability that Alice emits the vacuum state given that she chooses sg and the bit value i in the
Z basis. The other parameters which appear in equation (B.2) are defined in a similarmanner (see also

equation (29)). Therefore, we conclude that one can apply our formalism to analyse also the casewhere there are

arbitrary correlations between the IM and the PM, and prove security in themost general case, given that a full

description of the behaviour of these two devices is available.

AppendixC. Estimation ofY Y,0L 1L
s s
g g

and e1U
s
g

In this appendixwe show that these parameters can be estimated using linear programming. Such instances of

optimisation problems can be solved efficiently in polynomial time [66]. Although the estimationmethod

presented here is valid for any number of decoy states used byAlice, wewill assume, like in themain text, that

Alice employs three different intensity settings: ,s vg g and wg .
Our starting point is equation (6). Let us consider first the case k=l. As shown in appendixD, the

parameters Dn j k, , do not depend on the photon number n, at least for the examples considered in section 4. This
means, in particular, that this equation can be rewritten as
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Y Y D , C.1n n j k,
j k∣ ∣ ( )-

g g

or, equivalently, the yields Yn
j
g
and Yn

k
g satisfy

Y Y , C.2n n
jkj k ( )= + D

g g

with D D,jk
j k j k, ,[ ]D Î - . Since Alice uses three different intensity settings, we have the following six conditions
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By combining the first and the third one, wefind, for example, that sv vsD = -D . Similarly, we obtain
sw wsD = -D and vs ws vw wvD - D = D = -D . By using this last conditionwefind, therefore, that

Y Y Y

Y Y

,

. C.4
n n n

n n
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v s s

w s ( )

= + D = + D + D
= + D
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That is, we can express the yields Yn
v
g and Yn

w
g as a function of Yn

s
g and the parameters wsD and vwD .

Next, we consider the case k l¹ . In this scenario, equation (6) can be rewritten as

Y q Y q Y1 , C.5n nkl n nkl n
njklj k l( ) ( )= + - + D

g g g

for all n, where D D,njkl
n j k l n j k l, , , , , ,[ ]D Î - .We have, therefore, the following three conditions:
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If we substitute in these equations the value of Yn
v
g and Yn

w
g given by equation (C.4)we obtain the following three

equality constraints:
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Finally, by taking into account that D D,njkl
n j k l n j k l, , , , , ,[ ]D Î - for all n and for all j k l, , s, v, w{ }Î with

j k l¹ ¹ , we have that to satisfy equation (C.7)wemust fulfill the following conditions:
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C.1. Estimation of Y0L
s
g

Herewe present a linear program to estimate the parameter Y0L
s
g
.Wewill assume that all the quantities below

refer to events where bothAlice and Bob use the same basis (e.g., the Z basis), whichwill be considered as the key

generation basis.We start by calculating the gain associated to the different intensity settings selected byAlice in

this scenario. If we combine equations (2) and (C.4)wehave that
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That is, all the gains can bewritten as a function of the yields Yn
s
g togetherwith the additional terms wsD and vwD .

Equation (C.9) contains an infinite number of unknown parameters Yn
s
g . Next, we reduce it to afinite set. For

this, we derive a lower and upper bound for the gains Qg that only depend on afinite number, S 1cut + , of yields

Yn
s
g . In particular, since Y0 1n

s g and p 0
n

s g for all n, we have that
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for any S 0cut  . Here the parameter sGg is defined as p p1n S n n
S

n1 0
s

cut
s cut sG = å = - åg g g

= +
¥

= . By using a similar

procedure, one can obtain as well a lower and upper bound for Q v
g and Q w

g .
Based on the foregoing, we find that Y0L

s
g
can be calculated using the following linear program:
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Note that the value of the parameters Dj k, and Dn j k l, , , , with j k l, , s, v, w{ }Î , is provided in appendixD. Also,
the value of the observables Q j

g for a typical channelmodel can be found in appendix E. The linear program
above has S 3cut + unknown parameters: Y ,n

wss Dg and vwD . Its solution is directly Y0L
s
g
.

C.2. Estimation of Y1L
s
g

To calculate Y1L
s
g
, we can reuse the linear program given by equation (C.11), only substituting its linear objective

functionwith Y1
s
g
.

C.3. Estimation of e1U
s
g

To obtain e1U
s
g
, we can again reuse the linear program given by equation (C.11), onlymaking the following three

changes. First, all the parameters now refer to the X basis rather than the Z basis. For example, Q j
g nowdenotes

the gainwhenAlice selects the intensity setting jg and bothAlice and Bob use theX basis, and similarly for the

other quantities that appear in equation (C.11). Second, we substitute the parameters Q j
g with Q Ej jg g for all

j s, v, w{ }Î , andwe replace the yields Yn
s
g with other variables that wewill denote as n

swg . These variables

represent the value of Y en n
s s
g g . Third, we substitute the linear objective functionwith 1

sw- g
, where theminus sign

is because equation (C.11) is aminimisation problem andwe are interested in obtaining an upper bound for 1
swg
.

If we denote the solution to this optimisation problem as nsol, then e1U
s
g
is simply given by

e
n

Y
, C.121U

sol

1L

s

s
( )= -g

g

where, again,Y1L
s
g
nowdenotes a lower boundon the yield of the single-photonpulseswhenbothAlice andBob

employ theXbasis. The value of the observables Q j
g and E j

g for a typical channelmodel is provided in appendix E.

AppendixD. Estimation of Dn j k, , and Dn j k l, , ,

In this appendixwe calculate the parameters Dn j k, , and Dn j k l, , , for the three examples studied in section 4. These

parameters are needed to estimate a lower bound on the yields Y0
s
g
and Y1

s
g
, together with an upper bound on the

phase error rate e1
s
g
, which is done in appendix C.
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All these examples correspond to individualTHA,which implies that the states n,
j
ir g , which are accessible toEve,

donot dependon the instance i. In addition, they assume, as expected inmost practical situations, that there is no cor-

relationbetweenAlice’s system Ap andEve’s system Ep¢ . That is, P nn,
j
i

j

ˆ (∣ )r r= ñ Äg g . Thismeans, in particular, that

D d

D d q q

, ,

, 1 , D.1

n j k

n j k l nkl nkl

, ,

, , ,

j k

j k l

( )

( ( ) ) ( )

r r

r r r

=

= + -
g g

g g g

for all n. In this scenario, the parameters Dn j k, , do not depend on the photon number n andwewill denote them
as Dj k, . Next, we calculate these quantities for the different cases.

D.1. Individual THA—Case1
In this example, the states

j
rg are of the form P ei

j

jˆ (∣ )r b= ñg
qg .We have, therefore, that

D 1 e e 1 e . D.2j k,
i i 2 2 cos 1

j k k j
2

∣ ∣ ∣ ( )[ ( ) ]b b= - á ñ = -q q b q q- -g g g g

Herewe can assume, without loss of generality, that 0
s

q =g .Moreover, wewill denote I2
max≔b . This implies,

in particular, that Dw,s and Dv, w are given by

D

D

1 e ,

1 e . D.3

I

I

w,s
2 cos 1

v, w
2 cos 1

max w

max w v ( )

[ ( ) ]

[ ( ) ]

= -

= -

q

q q

-

- -

g

g g

The parameters Dn j k l, , , have the form

D P q P q P
1

2
e e 1 e . D.4n j k l nkl nkl, , ,

i i ij k l∣ ˆ (∣ ) ˆ (∣ ) ( ) ˆ (∣ )∣ ( )b b b= ñ - ñ - - ñq q qg g g

In order to calculate these quantities we use the followingClaim,which requires to obtain the eigenvalues of a

3×3matrix.

Claim. Let i i 1,2,3{∣ } { }añ = , be three normalised but not necessarily orthogonal vectors, and let il be the

eigenvalues of a 3×3matrixA defined as

A p p1 , D.5i j i j i j i j, ,1 1 ,2 2 ,3 3( ) ∣ ∣ ( ) ∣ ( )d a a d a a d a a= á ñ - á ñ - - á ñ

with p1 0  andwhere i j,d is the Kronecker delta. Then

P pP p P
1

2
1

1

2
. D.6

i

i1 2 3∣ ˆ (∣ ) ˆ (∣ ) ( ) ˆ (∣ )∣ ∣ ∣ ( )åa a a lñ - ñ - - ñ =

Proof.To calculate the trace distance of P pP p P11 2 3≔ ˆ (∣ ) ˆ (∣ ) ( ) ˆ (∣ )r a a añ - ñ - - ñ we need to determine its

eigenvalues.Moreover, from the properties of the determinant we have that V VDet Det 1( ˆ) ( ˆ)r l r l- = -- 
for any invertible linear operationV. Then, we can constructV as follows

V i i V, and , D.7i i
1∣ ∣ ∣ ¯ ∣ ( )a añ = ñ á = á-

where i i 1,2,3{∣ } { }ñ = is an orthonormal basis, and i∣ā ñ represent unnormalised vectors satisfying i j i j,¯ ∣a a dá ñ = .

With these definitions, we can useV and i∣ā ñ to relate thematrix elements ofV V1r- defined in the orthogonal
basis i i{∣ }ñ to those of ρ defined in the nonorthogonal basis i i{∣ }a ñ . In particular, we have that

i V V j P p P

p P A1 , D.8

i j i j i j

i j i j

1
1 2

3 ,

∣ ∣ ¯ ∣ ∣ ¯ ∣ ˆ (∣ )∣ ¯ ∣ ˆ (∣ )∣

( ) ¯ ∣ ˆ (∣ )∣ ( ) ( )

r a r a a a a a a a

a a a

á ñ = á ñ = á ñ ñ - á ñ ñ

- - á ñ ñ =

-

with A i j,( ) given by equation (D.5).

D.2. Individual THA—Case2
In this example, the states

j
rg are of the form P ei

j j
jˆ (∣ )r b= ñg g

qg , where the amplitudes
j

bg are given in

equation (31). That is, here we assume that the back-reflected light that goes to Eve is attenuated in a similar

manner as Alice’s signals. In this scenario, we have that

D 1 e e

1 e . D.9

j k,
i i 2

2 cos

j
j

k
k

j k j k k j
2 2

∣ ∣ ∣

( )
( )

b b= - á ñ

= -

g
q

g
q

b b b b q q- - + -

g g

g g g g g g

Again, if we assume, without loss of generality, that 0
s

q =g andwe use equation (31)wefind that the quantities

Dw,s and Dv, w are given by
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The parameters Dn j k l, , , have the form
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Like in the previous subsection, we calculate these quantities by using theClaim introduced above.

D.3. Individual THA—Case3
Here the states

j
rg are of the form given by equation (32)with the intensities 2

j
bg given by equation (31). This

corresponds to the scenario where Eve’s back-reflected light is phase-randomised and,moreover, it is attenuated

in a similarmanner as Alice’s signals. In this situation, we have that
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Thismeans, in particular, that the parameters Dw,s and Dv, w are given by
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These expressions involve an infinite number of terms.However, one can easily upper bound themwith afinite

sum. For instance, it can be shown that when I log 2max  and s v w g g g (which is always satisfied in the
simulation results shown in section 4) Dw,s and Dv, w can be upper bounded as
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for any P 1cut  . To see this, let us consider, for instance, the parameter Dw,s. From equation (D.13)we have that

Dw,s satisfies
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In the inequality conditionwe have used the fact that
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equation (D.13). The derivation of the upper bound for Dv, w is analogous.
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The parameters Dn j k l, , , are given by
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If we substitute the intensities 2
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bg with the values given in equation (31)we have, therefore, that
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Again, these equations involve an infinite number of terms.However, as above, it can be shown thatwhen

I log 2max  and s v w g g g the parameters D D,n n,s, v, w ,v,s,w and Dn,w,s,v are upper bounded by
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for any P 1cut  . To see this, the procedure is analogous to the one used to derive equation (D.14). In particular,

let us consider the quantity Dn,s, v, w. From equation (D.18)wehave that Dn,s, v, w can be upper bounded as

D
I

n
q

q
I

n

1

2
e 1 e

1 e
1

2
e . D.20

n

n

P
I

n

n
I

n

n
I

n

n P

I
n

,s, v, w

0

max
vw

1 v

s

vw
1 w

s 1

max

cut

max max v s

max w s

cut

max

!

( )
!

( )

( )

( )

 å

å

g
g

g
g

-

- - +

g g

g g

=

- -

-

= +

¥
-

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

21

New J. Phys. 18 (2016) 065008 KTamaki et al



Herewe have used the fact that

q q1 e 1 e

1, D.21
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for all n 0 and I log 2max  given that s v w g g g . Equation (D.21) holds because

e e 0I I n1
k s

max max k s ( )( ) g gg g- for all k v, w{ }Î . Finally, by replacing in equation (D.20)

I ne 2I
n P

n
1 max

max

cut
!å-

= +
¥ with I n1 2 1 en

P I n
0 max

cut max[ !]- å =
- one obtains equation (D.19). The upper bounds for

Dn,v,s,w and Dn,w,s,v can be obtained in a similarmanner.

Appendix E. Toolbox for Alice andBob, and channelmodel

In this appendixwe introduce a simplemathematicalmodel to characterise Alice’s and Bob’s devices, together

with the behaviour of a typical quantum channel. Thismodel is used to simulate the observed experimental data

Q j
g and E j

g , with j s, v, w{ }Î , which is needed to evaluate the examples considered in section 4.Here wewill

consider that Q j
g and E j

g do not depend on the basis setting, i.e., they are equal for both the Z and theXbasis.

In particular, we assume the standard decoy-state BB84 protocol with phase-encoding. In each time slot,

Alice prepares twoWCP, the signal and the reference pulse, whose joint phase is perfectly randomised. Then, she

selects at random aphasemodulation 0, 2, , 3 2{ }f p p pÎ and applies it to the signal pulse. The values 0 and

π ( 2p and 3 2p ) correspond to the Z (X) basis. In addition, Alice uses an intensitymodulator to randomly

choose the intensity , ,s v w{ }g g g gÎ of both the signal and the reference pulse following the prescriptions of the
decoy-statemethod. As a result, Alice sends Bob states of the form

P
1

2
e e d , E.1i i,

A
0

2
i

r
i

sp
∣ ˆ (∣ ∣ ) ( )( )òp

g g qY ñ = ñ ñf g
p

q q f+

where the subscript s (r) identifies the signal (reference) pulse and 0, 2[ )q pÎ is a randomphase.

On the receiving side, Bob uses aMZI to divide the incoming pulses into two possible paths. Then he applies

a phase shift 0, 2{ }f pÎ together with a one-pulse delay to one of them, and he recombines both pulses at a

50:50 beamsplitter. This beamsplitter has on its ends two single-photon detectors, whichwe denote asD0 and

D1.Whenever the relative phase between the two interfering pulses is 0 ( p ) only the detector D D0 1( ) can

produce a ‘click’, which indicates that at least one photon has been detected. In case that both detectors ‘click’

Bob uses the standard post-processing stepwhere he assigns a randomvalue to the raw bit [67]. Given that both

detectors have the same quantum efficiency and assuming for themoment that there is no side-channel in Bob’s

measurement unit, this data post-processing guarantees the so-called basis independent detection efficiency

condition. That is, Bob’s detection efficiency is the same for both BB84 bases. Each detector is described by a

positive operator valuemeasurewith two elements, Fnoclick
ˆ and Fclick

ˆ . The outcome of Fnoclick
ˆ corresponds to a

‘no click’ event, whereas the operator Fclick
ˆ gives one detection ‘click’. These operators are given by

F p P n

F F

1 1 ,

. E.2

n

n
noclick d

0
det

click noclick

ˆ ( ) ( ) ˆ (∣ )

ˆ ˆ ˆ ( )

å h= - - ñ

= -
=

¥



Here pd denotes the detector’s dark count rate and deth is its detection efficiency.
The quantum channel introduces loss that can be parametrised by the transmission efficiency channelh given

by

10 , E.3channel

d
10 ( )h = a-

whereα is the loss coefficient of the channelmeasured in dB km−1 and d is the transmission distancemeasured

in km. In addition, we assume that theQKD setup has an intrinsic error rate ed due tomisalignment and

instability of the optical system.

By using themathematicalmodels above, it can be shown that the gain Q j
g and the error rate E j

g can be

expressed as

Q p
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where sysh represents the overall loss of the system. It is given by

, E.5sys channel B det ( )h h h h=

with Bh being the internal loss of Bob’smeasurement device without considering his detectors. That is, we

assume that the total loss within Bob’s receiver is B deth h .

Appendix F. Approaching the optimal THAwith phase-randomised coherent states

In this appendixwe consider the scenariowhere Eve’s back-reflected light is phase-randomised (i.e., Case 3 in

section 4), andwe analyse an alternative strategy for Eve.More precisely, we assume that Eve sends Alice n-

photon Fock states instead of coherent states. This constitutes her optimal strategy in this situation, and below

we analyse howmuch could now the parameters Dj k, deviate from the ones obtained in appendixD.
Let us consider here the standardmodel of a beamsplitter with transmissivity

j
hg to characterise the loss

introduced byAlice’s device on Eve’s input signals. Then, if Eve injects an n-photon state n∣ ñ into Alice’s device,
the state of the back-reflected light is given by

n

k
k k1 , F.1

k

k n k

0
j j j

( ) ∣ ∣ ( )ås h h= - ñág g g
=

¥
-⎜ ⎟

⎛

⎝

⎞

⎠

The trace distance between these states and the ones given by equation (32) is

d P k B n k,
1
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j j j j

( ) ≔ ∣ ( ) ( )∣ ( )år s -g g h m h
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g is a Poisson distribution ofmean
j

h mg , B n k
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k
, 1k n k

j j j
( ) ≔ ( )h h-h g g

-
g

⎜ ⎟
⎛

⎝

⎞

⎠
is

a Binomial distribution, and
j

hg denotes Alice’s transmission rate.When compared to the notation used in

equation (32), note that 2

j j
≔b h mg g , withμ being the intensity of Eve’s input pulses. Importantly, from [68]we

have that whenever nm = (i.e., the intensity of Eve’s input pulses is the same in both scenarios) then

equation (F.2) can be upper bounded by

d , 2 . F.3
j j j

( ) ( )r s hg g g

Then, by using the triangle inequality we have that the trace distance between
j

sg and k
sg is upper bounded

by

d B n k B n k D,
1

2
, , 2 , F.4

k

j k

0

,j k j k j k
( ) ∣ ( ) ( )∣ ( ) ( )ås s h h= - + +g g h h g g

=

¥

g g

where D d ,j k,
j k

( )r r= g g is given by equation (D.12).

In the examples considered in section 4 the parameters
j

hg are typically very small (of the order of

10 1013 18–- - for a 1 GHz-clockedQKD system) for all j s, v, w{ }Î . Thismeans, in particular, that

d D, j k,j k
( )s s »g g and, therefore, the results presented in section 4 (see Case 3) are also valid for the scenario

where Eve injects n-photon Fock states intoAlice’s device.
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