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Abstract

In this work we report on modelling the electron transport in n-Si/SiGe structures. The
electronic structure is calculated within the effective-mass complex-energy framework,
separately for perpendicular (X,) and in-plane (Xyy) valleys, the degeneracy of which is
lifted by strain, and additionally by size quantization. The transport is described via
scattering between quantized states, using the rate equations approach and tight-binding
expansion, taking the coupling with two nearest-neighbour periods. The acoustic phonon,
optical phonon, alloy and interface roughness scattering are taken in the model. The

calculated U/I dependence and gain profiles are presented for a couple of QC structures.



1. Introduction

Following the successful realization of GaAs/AlGaAs based THz quantum
cascade lasers, Si/SiGe quantum cascade structures are attracting considerable attention
as a very promising technology for the same purpose. This would offer compatibility and
even monolithic integration with the standard CMOS technology. Within the Si/SiGe
system, the p-doped structures have been explored in more detail, because of larger
discontinuity of the valence band at heterointerfaces. For THz emission, however, even
modest discontinuities would suffice, which makes n-doped structures just as interesting,
and here we report on modeling the electron transport and light emission in n-Si/SiGe
cascades. We have previously made extensive modelling of hole transport [1],
demonstrated the growth of p-Si/SiGe strain-symmetrized cascades with up to 1200
layers, and observed THz electroluminescence from them [2]. Mid-infrared luminescence
has been observed by another group [3]. In this paper we consider electron transport in n-
doped Si/SiGe cascades. This is quite different from transport in n-doped GaAs/AlGaAs
cascades, both because one of the major scattering processes — polar LO-phonon
scattering — does not exist in Si/SiGe, and because of the presence of two types of

quantized electronic states.

2. Theory and computational details

Si; xGey alloys with x <0.85 are similar to the silicon, in that the conduction band
minima appear near the X point of the Brillouin zone. Accordingly, the low-lying
conduction band quantized states in a Si/SiGe multilayer structure originate from the six

X valleys, and depend on the potential experienced by electrons in these valleys. The X



valleys are anisotropic, having different longitudinal and transverse effective mass. To
find the electronic subband structure we employ the effective mass envelope function
Schrodinger equation description. For structures grown on the conventional, [001]
oriented substrate, two X valleys with axis parallel to the growth direction (denoted as
X,) give rise to quantized subbands different from those of four X valleys whose axes are
perpendicular to the growth direction (denoted as X.y). This is because the quantization

effective masses are different in the two cases, amounting to m, =0.916m, and
m, =0.19m,in both materials, where m, is the free electron mass. Furthermore, the

different lattice constants of Si and Ge imply that layers in Si/SiGe cascade have to be
uniaxially strained, the amount of strain being set by the choice of the substrate
composition (Ge molar fraction xs), in turn chosen so to achieve strain balance. The in-
plane lattice constant of epilayer material equals that of the substrate, while the
perpendicular lattice constant changes. The strain lifts the degeneracy between the six X
valleys, and hence also influences the subband energies. The potential energy (position of
the X valley bottom) in a strained Si;.«Gey alloy layer, measured from the valence band
top of the substrate, is calculated according to [4]

A A
EX = A g (x,x_s_)—AEv’av,hyd(x,x_g)+#+Eg(x)+AE,ﬁd(x,xx)+AEX (x,x,) (1)

cond v,av uni

where X stands for either X, or X4y, A is the composition dependent spin-orbit splitting,

AE,,, =(x—x,)-(0.74-0.06-x)[eV] is the average valence band offset between
relaxed substrate and this alloy, £ g(x):1.17—0.34x+0.206x2 is the (experimental)

band gap of the alloy, AE =a,(2¢_ +¢_) is hydrostatic strain component induced

v,av,hyd

change of valence band offset, AE ,fy]d =(E,+E,/3)(2¢,, +¢&,,) the hydrostatic strain



component induced shift of X valley edge, while AE,; =22 (¢.-¢,)/3 and

uni

AEY =-Z2 (¢ —¢_)/3 are the uniaxial strain component induced shifts of X valley

uni

edge (different for the two types of X valleys). The strain components in a layer are given

where a, and a are lattice constants

by ¢ = £, = ala,—1 and ¢_ =—(2C,/C,))¢s,.,
of unstrained layer and substrate respectively. The lattice constant of an unstrained layer

with Ge mole fraction x is given by a(x)=a,, -x+ag -(1-x)-b,,, -x-(1-x).

bow

The material constants used in this calculation are a, =—-4.54(-3.1), for the

—

germanium and linear interpolation for the Si;«Gex alloys, E,6=8.6(9.4) and
=,=-6.0(-4.92), C,, =1.675(1.315), C,, =0.650(0.494), a=0.543(0.565) nm for Si

(Ge). Linear interpolation is used for the Si;«Gey alloy parameters, except for the lattice

constant where bowing was taken into account, with b, =0.00188 1/nm.

For practically realizable, strain balanced structures, with Si and SiGe layers
grown on a substrate with composition in between, the Si layers are quantum wells for
both types of electrons (valleys), with X, valley shifted below and X, valley above their
position in unstrained Si, and the opposite holds for SiGe alloy layers, implying much

shallower wells for X, than for X, electrons. Combined with the fact that m, is over 4
times larger than m, , the few lowest subbands will belong to the X, valley, and are much

more strongly bound that X,y valley subbands.

In biased quantum cascade structures the subbands are not strictly discrete
(instead, one has more or less sharp resonances in the continuum), but in most cases, e.g.
in conventional III-V based cascades, these are sharp enough that one can solve the

Schrodinger equation for discrete states, using box boundary conditions. The shallow



wells present for Xy, electrons in Si/SiGe would make such an approach inappropriate.
Therefore, we have used the complex energy method [5], which allows subband energies
to take complex values and then delivers better-behaved and normalizable resonant state
wave functions, which can be more reliably used in scattering rate calculations. The
imaginary component of energy here corresponds to the tunneling rate, and in actual
structures was usually small enough to be neglected, so only the real part of energy was
further used. Among all the states found in a multiple period structure, some are assigned
to belong to the reference (“central®) period, based on their localization properties, and
then are replicated (shifted in space and energy) to obtain states assigned to the
neighbouring periods.

Electrons in the structure change their quantum states by scattering with phonons,
on interface roughness, alloy disorder, ionized impurities, carrier-carrier scattering. In
this paper we consider the first three mechanisms, and take the small enough doping that
the last two can be neglected. Furthermore, we take that photon emission / absorption
processes do not contribute significantly to electron transport (cascade operation below
lasing threshold). With two equivalent X, and four equivalent X,y valleys, there are as
many sets of degenerate subbands. Some scattering processes cause the electrons to
change the valley they belong to (and perhaps also the subband index), and other only act
within different subbands of the same valley.

If initial and final states belong to different X valleys, the (intervalley) scattering
is caused by large wave vector phonons. Processes in which electron scatters between

two X valleys oriented at 90°, e.g. X, and X+, are f - processes, and those between two

valleys oriented at 180°, e.g. X, and X, are g - processes. It should be noted, therefore,



that two subbands of X, valley can be coupled by g-processes (e.g. if the initial state
belongs to X, and the final to X;,.). Some of these processes are "allowed" and others are
"forbidden". On the other hand, the small-wave vector acoustic phonons only cause
transitions between states belonging to the same valley, e.g. both to X, and the same is
assumed for interface roughness and alloy disorder scattering. The phonon scattering
rates are calculated according to [6], and the last two scattering rates according to [7].
The energy-dependent scattering rates are then averaged over the in-plane electron
distribution, allowing the electron temperature to differ from the lattice temperature. In
numerical calculations we use the parameter values for Si as a good approximation,
because this is the well material where most of the wave functions are localized. The
phonon scattering parameters were taken from [8], and for the interface roughness

scattering we used the values A=0.4 nm and A=16 nm.

Denoting with n, electron concentration in the quantum state i of the “central”
period, and explicitly accounting for N such states, we assume the periodicity of electron
distribution over periods, i.e. ...=n, , =n, =n,,, =... for every i=12...,N, where
n,_, and n,, , are densities on state i in the periods nearest to the "central", n, ,, and

n,,, in the second nearest neighbours and, consistent with it, we assume electrical
neutrality, z L n, = N, ,where N, is the donors doping per period. Using the shift-

invariance of scattering rates, the rate equations read

dn, o
—=n Z(wm_/ tO Ny T Oy, YOyt a)i+2N~>j) +

dt -
()

N
Z(w_/»i TO Ny TOy,, TO, 0y +w_/’+2Nai) n;
=



In the steady state one of the equations is replaced by the electrical neutrality condition.
One could add the thermal balance rate equations to find electron distribution of each
subband. In the present calculation, however, we did not use such more elaborate model,
and electron temperatures were fixed to values larger than the lattice temperature, chosen

to lie within the range found in previous calculations in p-Si/SiGe cascades [1].

3. Results and discussion

Numerical calculations were performed for two simple cascade structures: (a) Si(6
nm)/Sip65Gep3s(1 nm), and (b) Si(8 nm)/SipsGep4(1 nm), both grown on SipgsGeg s
substrate. The X, state spacing in them is in tens of meV range (precise values depending
on the bias, but approx. 27 meV and 20 meV between the lowest two states,
respectively), and there is just one X,y state localized in the wells, lying between the first
and second excited X, states. The donor doping was assumed to be 10'' cm™ per period,
the carrier temperatures were set to 150 K (a) and 100 K (b), and the lattice temperature
to 20 K. The calculated population of states and current are shown in Figs.1 and 2. There
clearly exist ranges of bias fields where inversion appears between some two subsequent
X, states (i.e. where the transition matrix element can be significant). To be sustainable
and useful, however, the operating point of the cascade should not be in the range where
the differential resistance is negative, otherwise one can expect domain formation which
would drive the cascade out of such operating point. A closer look at Figs.1 and 2 shows
that there are, albeit narrow, bias ranges where the population inversion coexisting with

stable operation appears possible.



The calculated fractional gain / absorption profiles for the two cascades biased at
suitably chosen fields is shown in Fig.3, with the linewidth (FWHM) of 10 meV was
assumed. This amounts to gain coefficients of 18.6 cm™ at photon energy of 27 meV for
structure (a), and 4.4 cm™ at 21 meV for structure (b), the former being in practically
interesting range. The gain scales linearly with the doping density, but additional
scattering mechanisms which were here neglected (carrier-carrier, and ionized impurity
scattering) would have to be included in calculation for large values of doping. Certainly,
further improvements should be expected from more complex structure of the cascade

period.

4. Conclusion

We have considered electron transport in n-Si/SiGe cascade structures, using the
rate equations approach and tight-binding expansion, taking the coupling with two
nearest-neighbour periods. The acoustic phonon, optical phonon, alloy and interface
roughness scattering are taken in the model. The calculated U/l dependence and gain
profiles are presented for a couple of QC structures. The existence of technically
significant gain, together with positive differential resistance in narrow ranges of bias

fields is predicted.
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Figure captions

Fig.1. The population of four lowest X, subbands (solid lines) and the Xy, subband (dot-
dashed line), and the current density (dashed line) calculated for Si/SiGe cascade
structure (a) described in the text.

Fig.2. Same as in Fig.1, but for the structure (b).

Fig.3. The fractional (per period) gain / absorption profile calculated for the cascade (a)
biased at 43 kV/cm (dashed line), and cascade (b) biased at 56 kV/cm (solid line). The
luminescence line FWHM was set to 10 meV.
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