
This is a repository copy of Automatic Translation of Data Parallel Programs for
Heterogeneous Parallelism Through OpenMP Offloading.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/167161/

Version: Accepted Version

Article:

Wang, F, Zhang, W, Guo, H et al. (3 more authors) (2021) Automatic Translation of Data
Parallel Programs for Heterogeneous Parallelism Through OpenMP Offloading. The
Journal of Supercomputing, 77 (5). pp. 4957-4987. ISSN 0920-8542

https://doi.org/10.1007/s11227-020-03452-2

© Springer Science+Business Media, LLC, part of Springer Nature 2020. This is an author
produced version of a journal article published in The Journal of Supercomputing.
Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Noname manuscript No.
(will be inserted by the editor)

Automatic Translation of Data Parallel Programs

for Heterogeneous Parallelism Through OpenMP

Offloading

Farui Wang 1
· Weizhe Zhang 1,�

·

Haonan Guo 1
· Meng Hao 1

· Gangzhao
Lu 1

· Zheng Wang 2

Received: date / Accepted: date

Abstract Heterogeneous multicores like GPGPUs are now commonplace in
modern computing systems. Although heterogeneous multicores offer the po-
tential for high performance, programmers are struggling to program such sys-
tems. This paper presents OAO, a compiler-based approach to automatically
translate shared-memory OpenMP data-parallel programs to run on hetero-
geneous multicores through OpenMP offloading directives. Given the large
user base of shared memory OpenMP programs, our approach allows pro-
grammers to continue using a single-source-based programming language that
they are familiar with while benefiting from the heterogeneous performance.
OAO introduces a novel runtime optimization scheme to automatically elimi-
nate unnecessary host-device communication to minimize the communication
overhead between the host and the accelerator device. We evaluate OAO by
applying it to 23 benchmarks from the PolyBench and Rodinia suites on two
distinct GPU platforms. Experimental results show that OAO achieves up to
32x speedup over the original OpenMP version, and can reduce the host-device
communication overhead by up to 99% over the hand-translated version.

Keywords Heterogeneous Computing · Source-to-source Translation ·
OpenMP Offloading · Compilation Optimization · GPUs

� Weizhe Zhang
E-mail: wzzhang@hit.edu.cn
Farui Wang
E-mail: wangfarui@hit.edu.cn
Zheng Wang
E-mail: z.wang5@leeds.ac.uk

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HL,
China
2 School of Computing, University of Leeds, Leeds, UK

2 Farui Wang 1 et al.

1 Introduction

Heterogeneous multicores, as represented by the GPUs, are now pervasive in
computing systems because of their energy-efficient high performance. Such a
potential can only be unlocked if the running software has been suitably par-
allelized to match the underlying hardware. Unfortunately, developers strug-
gle to program heterogeneous multicores due to the complexity in offloading
computation and communication management between the host and the ac-
celerator device.

Numerous programming models have been proposed to address the pro-
gramming issue of heterogeneous systems, including Compute Unified Device
Architecture (CUDA), Open Computing Language (OpenCL), Open Accel-
erators (OpenACC), and more recently - Open Multi-Processing Offloading
(OpenMP Offloading) [21–23]. These approaches enable newly developed
codes to run on heterogeneous devices. However, they offer little help in ad-
dressing the problem of porting legacy programs to heterogeneous devices
because programmers still need to painstakingly modify the existing code to
use a heterogeneous programming model.

Compiler-based source-to-source translators offer a viable solution and
roadmap for porting legacy parallel code to run on heterogeneous comput-
ing devices. Some existing work targets CUDA code generation [2,30,18,11].
However, this kind of existing work has a serious performance portability issue
as an application implemented in CUDA, by definition, is not portable to non-
NVIDIA systems. Other existing work [19,33,26,34] generates OpenCL code
that can run on a wide range of parallel hardware including GPUs, CPUs, and
FPGAs. Given that OpenCL remains as a low-level programming language
that exposes many hardware details, maintaining the generated code is often
too difficult for non-expert programmers.

The emerging OpenMP Offloading standard [21–23] offers a promising ap-
proach to port legacy OpenMP programs to heterogeneous devices using simple
language pragmas with little modification to existing code while preserving the
advantage of low maintenance costs given by the simplicity of OpenMP [20].
Compared with CUDA or OpenCL, this standard allows programmers to work
on a language that they are familiar with using a few intuitive pragmas to an-
notate their code. Compared with OpenACC, this standard is supported by
more commonly used compilers. Thus OpenMP Offloading provides existing
OpenMP programs with a simple upgrade path to heterogeneous parallelism
using pragmas. Although promising, OpenMP Offloading still requires manual
optimization of the data transmission to achieve good performance.

The DawnCC compiler [15,17] is among the first attempts to leverage
OpenMP Offloading for heterogeneous computing. This compiler translates
sequential C into OpenACC or OpenMP Offloading. However, DawnCC does
not address the communication optimization problem between the host CPU
and the heterogeneous accelerator well, because of the lack of inter-procedural
data transmission optimization, which is often responsible for the performance
bottleneck. Moreover, DawnCC often does not choose the right offloading di-

Title Suppressed Due to Excessive Length 3

rectives, leading to suboptimal performance. As a result, the code generated
by DawnCC often delivers worse performance than the original OpenMP run-
ning on a shared-memory parallel machine. This drawback discourages the
adoption of the technique on a broader scale.

This work aims to provide a better approach for leveraging OpenMP Of-
floading for heterogeneous computing. We present OpenMP Automatic Of-
floading (OAO), a source-to-source framework that automatically translates
OpenMP parallel loops to use OpenMP Offloading pragmas. Instead of per-
forming simple code translation, we go further by developing a runtime system
to optimize the data communication between the host CPU and the accelerator
automatically. By precisely modeling the consistency state and its transition of
a data buffer, our runtime eliminates redundant data transmissions, on-the-fly,
for not just simple loops but also complex data structures and nested function
calls. We show that OAO is highly effective in generating efficient OpenMP
Offloading code to run on heterogeneous GPUs. We demonstrate the benefit
of OAO by it to 23 OpenMP benchmarks from the PolyBench and Rodinia
suites. We compare OAO with DawnCC and manually-translated codes on
two distinct GPU platforms with a K40 or a 2080Ti GPU. Experimental re-
sults show that OAO achieves up to 32x speedup over the original OpenMP
version. Moreover, it can reduce the host-device communication time by up
to 99% compared with the manually-translated version. We show that OAO
can also handle benchmarks that DawnCC fails on, with significantly better
performance improvement.

This paper makes the following technical contributions:

– We propose the first source-to-source tool that directly translates legacy
OpenMP programs into OpenMP Offloading programs without manual
intervention.

– We present a novel algorithm to optimize the host-device communication
by levering the consistency states of the program. Unlike prior work, our
approach can work on complex data structures and nested function calls.

The OAO source-to-source translator framework is publicly available at
https://github.com/ruixueqingyang/OAO-Translator.

The remainder of this work is organized as follows: Section 2 introduces
the motivation and overview of the OAO system. Section 3 describes the OAO
runtime library (OAORT) and the minimum transmission algorithm. Section
4 proposes the OAO translator with algorithms to insert OAORT APIs. Sec-
tion 5 describes the experimental setup. Section 6 presents and analyzes the
experimental results. Section 7 provides the related work. Finally, Section 8
concludes the paper and discusses future work.

4 Farui Wang 1 et al.

1 #pragma omp parallel for

2 for(int i = 0; i < N; i++){

3 v3[i] += v2[i] + v1[i];

4 }

5 #pragma omp parallel for

6 for(int i = 0; i < N; i++){

7 v5[i] += v4[i] + v3[i];

8 }

(a) OpenMP CPU code snippet

1 #pragma omp target data map(tofrom: v1[:N], v2[:N], v3[:N])

2 {

3 #pragma omp target teams distribute parallel for

4 for(int i = 0; i < N; i++){

5 v3[i] += v2[i] + v1[i];

6 }

7 }

8 #pragma omp target data map(tofrom: v3[:N], v4[:N], v5[:N])

9 {

10 #pragma omp target teams distribute parallel for

11 for(int i = 0; i < N; i++){

12 v5[i] += v4[i] + v3[i];

13 }

14 }

(b) OpenMP Offloading code snippet

1 #pragma omp target enter data map(to: v1[:N], v2[:N], v3[:N])

2 #pragma omp target teams distribute parallel for

3 for(int i = 0; i < N; i++){

4 v3[i] += v2[i] + v1[i];

5 }

6 #pragma omp target enter data map(to: v4[:N], v5[:N])

7 #pragma omp target teams distribute parallel for

8 for(int i = 0; i < N; i++){

9 v5[i] += v4[i] + v3[i];

10 }

11 #pragma omp target exit data map(from: v3[:N], v5[:N]) map(delete:

v1[:N], v2[:N], v4[:N])

(c) Optimal OpenMP Offloading code snippet

Fig. 1 Example for OpenMP CPU to OpenMP Offloading translation and optimization

2 Background and Overview

2.1 OpenMP Offloading

Since version 4.0, OpenMP standard introduced new offloading constructs for
heterogeneous computing. These offloading constructs allow the program to
specify which regions of code and data to be mapped to run on an accelerator.

Figure 1 (b) gives a simple use case of OpenMP Offloading constructs.
Here, the user program starts execution on a host (e.g., CPU) device, where
offloading to an accelerator is performed when entering a target region spec-

Title Suppressed Due to Excessive Length 5

ified by the target pragma. A target region maps variables allocated on the
host memory to the device memory, e.g., the GPU global memory. The im-
plementation of target regions may include transmitting data between host
and device and launching a GPU kernel to execute the target code region.
The teams directive can be used to spawn a league of teams, each consists of
multiple OpenMP threads. It is to note that any two threads from different
teams cannot communicate in any native way, e.g., no barrier can be placed
between threads from different teams. This feature ensures the accelerator
implementation can map individual teams to run on independent execution
units.

The distribute pragma can be used to partition the loop iterations into
chunks to be allocated to teams. Note that function calls and global variable
references are allowed in target regions, but they increase the difficulties for
performance host-device communication optimization. The target data map

directive specifies the variable mapping and unmapping operations at the be-
ginning and end of the brace region following the directive. The target enter

data map and target exit data map directives define the variable mapping
and unmapping operations at the beginning and end of the region between
these two directives respectively. The to pragma indicates data transmission
from the host to the device when the variables are mapped to the device mem-
ory. The from pragma means copying data from the device to the host when
the variables are unmapped form the device memory. The tofrom pragma in-
tegrates the functions of to and from pragmas. The delete pragma means
unmapping variables form the device memory without data copy.

2.2 Motivation

As a motivation example, consider translating the example code given in Fig-
ure 1(a). Translating the two OpenMP data-parallel loops to use OpenMP
Offloading for heterogeneous computing is straightforward. A naive solution
and an optimal solution are given in Figure 1(b) and Figure 1(c), respectively.

Compared to the naive solution, inserting the appropriate data transmis-
sion directives to achieve good performance is non-trivial. For example, the
translation given in Figure 1(b) contains redundant transmissions, such as all
“from” transmissions at line 1, “to” transmission for v3 at line 8 and “from”
transmission for v4 at line 8. These redundant host-device communications
results in 1.6x slowdown compared to the version given in Figure 1(c). De-
velopers can eliminate these redundant data transmissions only if they under-
stand the following knowledge: 1) read and write operations of variables within
and between these two loops, 2) the consistency states of variables before and
after these two loops, and 3) the consistency states of variables required by
these two loops. This is complex and tedious for developers. OAO is designed
to remove redundant host-device communications by executing the right data
transmission directives at the right place automatically.

6 Farui Wang 1 et al.

Code Translator

(Section 4)

OMP SMP Code

Translation

Execution

Input

OMP

Offloading

kernel

 CPU accelerator

Runtime Library (Section 3)

Application

OMP Offloading Code

Runtime Sematices

Fig. 2 Overview of OAO

Table 1 Comparison with existing source-to-source translators for accelerators

Translator Input Output Method Data Transmission
Optimization Type

C-to-CUDA [2] C CUDA static code translator none
PPCG [30] C CUDA static code translator intra-procedural

BONES [18] C
CUDA
OpenCL

static code translator intra-procedural

OpenMPC [11] OpenMP CUDA static code translator none

Grewe et al. [19] OpenMP OpenCL
static code translator
runtime

none

DawnCC [15,17] C
OpenMP
Offloading,
OpenACC

static code translator intra-procedural

OAO (our work) OpenMP
OpenMP
Offloading

static code translator
runtime

intra-procedural
inter-procedural

2.3 Overview of Our Approach

As depicted by Figure 2, OAO consists of two components: a source-to-source
code translator and a runtime library. The code translator translates OpenMP
(or OMP in short) symmetric multiprocessing (SMP) constructs to OMP Of-
floading code when it is possible to do so. The translated code is compiled and
linked with the runtime library. During execution, the runtime automatically
determines and executes essential data transmissions without redundant data
transmissions through the minimum transmission algorithm (Algorithm 2).

Title Suppressed Due to Excessive Length 7

As shown in Table 1, compared with existing source-to-source translators,
only our OAO can translate OpenMP code to OpenMP Offloading code, whose
intra-procedural and inter-procedural data transmission are both optimized.
Another difference is that only our work and Grewe et al. [19] use both the run-
time and static code translator, while other existing work only uses the static
code translator. Grewe et al. use the runtime to determine where to run the
program (CPU or GPU). We use our runtime to optimize data transmissions.

A key innovation of our approach is using the consistency state, state tran-
sition function, and consistency state constraint to perform host-device com-
munication optimization in our runtime. We model the data transmission di-
rective and the variable reference, which may change the consistency state, as
the state transition function. Our key insight is that the consistency of shared
data in the host and device memory is guaranteed as long as the consistency
state satisfies the consistency state constraint. We propose a novel algorithm
to derive the essential state transition function, which transits the consistency
state to solve the consistency state constraint. With the algorithm in place,
our runtime can execute the right data transmission directive corresponding
to the essential state transition function and avoid redundant data transmis-
sions. When the variable is referenced, our runtime uses the corresponding
state transition function to update the consistency state maintained in run-
time. We implement the algorithm and update operation as data transmission
and consistency state update semantics, which should be inserted to OMP
Offloading programs properly. Our runtime library is detailed in Section 3.

To generate code to use OpenMP Offloading constructs, we first construct
the extended control-flow graph for each function in OMP SMP programs.
From the control-flow graph, we collect and analyze variable reference infor-
mation through compile-time static analysis techniques. The analysis is used
to insert the right runtime API functions in the right places. We describe our
code translator in Section 4.

3 Runtime Library

Algorithm 1 explains the workflow of the OAO Runtime Library (OAORT)
that aims to minimize host-accelerator data transmission while guaranteeing
data consistency. The OAORT initializes and maintains the consistency states
of variables (line 1). Then, the OAORT determines and executes the minimum
data transmission operations according to the consistency state constraints
required by the following code snippet (line 2). After the code snippet, the
OAORT updates the consistency states changed by the code snippet (line 4).
As a final step, the OAORT deletes the maintained consistency states (line
5). The initialization and deletion are introduced in Section 3.1. The data
transmission and consistency state update are introduced in Section 3.2 and
Section 3.3 separately.

8 Farui Wang 1 et al.

Algorithm 1: Runtime workflow
Input: OpenMP Offloading code with OAO Runtime API inserted

1 Initialize and maintain consistency states of variables with API functions such as
OAOSaveArrayInfo(), OAOMalloc(), and OAONewInfo()

2 Determine and execute the minimum data transmission operations for variables
with API function OAODataTrans()

3 Run the code snippet that references these variables
4 Update consistency states of variables with API functions OAOStTrans()
5 Delete consistency states maintained in OAO Runtime with API functions such as

OAODeleteArrayInfo(), OAOFree(), and OAODeleteInfo()

Table 2 All possible consistency states of a variable

State Bit2: accelerator
copy valid

Bit1: CPU copy
valid

Bit0: has accelera-
tor copy

HOST ONLY 0 1 0
HOST NEW 0 1 1
DEVICE NEW 1 0 1
SYNC 1 1 1

3.1 Tracking Consistency States

Guaranteeing data consistency is the fundamental objective of the OAORT.
We define the State to represent the consistency states of variables. The con-
sistency State is the foundation of the OAORT and minimum transmission
algorithm.

3.1.1 Consistency States

The CPU and the accelerator have two independent memory spaces. Variables
may reside in either or both of these two memory spaces. So, for a variable,
there are three situations: residing in CPU memory (HOST ONLY), residing
in accelerator memory (DEVICE ONLY), and residing in both memory. DE-
VICE ONLY is ignored because these accelerator local variables do not need
to be transmitted between the CPU and accelerator. For the third situation,
there are three cases: the CPU copy is valid (HOST NEW), the accelerator
copy is valid (DEVICE NEW), and both copies are valid (SYNC). We de-
fine the consistency State to abstract these four cases, as shown in Table 2
(Definition 1).

Definition 1 State is a 3-bit binary number. Bit0 suggests whether the allo-
cation unit has an accelerator copy (Bit0=1) or not (Bit0=0). Bit1 indicates
whether the CPU copy is valid (Bit1=1) or invalid (Bit1=0). Bit2 indicates
whether the accelerator copy is valid (Bit2=1) or invalid (Bit2=0).

When the current State and the later program’s requirement of State are
known, we can derive the minimum data transmission directive without redun-

Title Suppressed Due to Excessive Length 9

dant transmissions through Algorithm 2, which is designed in Section 3.2.3.
This is our core insight.

3.1.2 Using Allocation Units as Granularity

The OAORT tracks consistency at the granularity of allocation units [8] and
maintains a consistency State for each allocation unit. In C and C++, an allo-
cation unit is a contiguous region of memory allocated as a single unit. Mem-
ory blocks returned from malloc(), local variables, and global variables are all
examples of allocation units [8]. Our work solely focuses on data parallel pro-
grams. For this kind of program, usually, all elements of an allocation unit are
accessed if the allocation unit is referenced by a parallel region. Thus, using the
allocation units as granularity transmits little redundant data and introduces
little overhead. In turn, this helps to handle pointer aliasing and to prevent
complex fine-grained symbolic range analysis adopted by DawnCC [15].

To maintain the information of allocation units, we define MemBlock and
MemEnv in Definition 2 and 3, respectively.

Definition 2 MemBlk refers to a set of characteristics representing an al-
location unit (Equation 1). Begin is the starting memory address. Length

is the length of the allocation unit. ElemSize is the element size. State has
been defined above.

MemBlk = {Begin, Length,ElemSize, State} (1)

Definition 3 MemEnv refers to the set of all MemBlks (Equation 2).

MemEnv = {MemBlk1, · · · ,MemBlkp} (2)

When a pointer (ptr) accesses an allocation unit, OAORT searches in the
MemEnv and find the accessed allocation unitMemBlk, which satisfies Equa-
tion 3.

Begin ≤ ptr ≤ Begin+ Length− 1 (3)

The OAORT provides several API functions to track the State of allo-
cation units (Table 3). We insert OAOSaveArrayInfo function in the source
code to track global and stack memory. The OAOMalloc and OAONewInfo

functions replace malloc() and new respectively to allocate and track heap
memory. These three functions build new MemBlks in the MemEnv. We
insert OAODeleteArrayInfo at the end of the variable scope. The OAOFree

and OAODeleteInfo functions replace free() and delete respectively. These
three functions remove corresponding MemBlks from the MemEnv.

For NVIDIA GPU, we optimize the memory allocation specifically to fully
exploit bandwidth between CPU and GPU. Pageable memory shows high
bandwidth when memory size is relatively small, whereas pinned memory
shows high bandwidth when memory size is large. According to experimental
results, the threshold is set to 128 KB. When memory block is not larger than

10 Farui Wang 1 et al.

Table 3 OAO Runtime API functions

Function Description

void OAOSaveArrayInfo(void* ptr,

size t length, size t ElementSize)

saving the static array information

void OAODeleteArrayInfo(void* ptr) removing the static array information
void* OAOMalloc(size t length) saving the dynamic array information
void OAOFree(void* ptr) removing the dynamic array information
void* OAONewInfo(void* ptr, size t

ElementSize, size t ElementNum)

saving the dynamic array information

void OAODeleteInfo(void *ptr) removing the dynamic array information
void OAODataTrans(void* ptr,

STATE CONSTR Constr)

determining and performing the mini-
mum data transmission

void OAOStTrans(void *ptr,

STATE CONSTR StTrans)

transiting the consistency state

128 KB, malloc() is used inside OAOMalloc to allocate pageable memory.
Otherwise cudaMallocHost() is used to allocate pinned memory. In OAOFree,
free() and cudaFreeHost() functions are used to release corresponding mem-
ory.

3.2 Data Transmission Semantics

We define the consistency state constraint (Constr) to represent the require-
ment of State. The data transmission semantic (OAODataTrans function) au-
tomatically derives and executes the essential and minimum data transmission
directive to guarantee consistency, according to the current State maintained
in runtime and the Constr.

3.2.1 Consistency State Constraints

We represent the requirement of State with the Constr (Definition 4). Table 4
explains each bit of Constr. If any bit of State is required to be set to 1, we
set the corresponding bit of ConV ld to 1. If any bit of State is required to be
set to 0, we set the corresponding bit of ConInV ld to 0.

Definition 4 Constr refers to a pair of 3-bit binary numbers (Equation 4).
Table 4 explains the different requirements represented by various bit values of
ConV ld and ConInV ld.

Constr = {ConInV ld, ConV ld} (4)

To guarantee consistency, different Constrs should be satisfied before dif-
ferent READ, WRITE, and memory-free operations. We list specific Constrs
for these operations in Table 5.

Title Suppressed Due to Excessive Length 11

Table 4 Description of ConV ld and ConInV ld

Bit Requirement

ConV ld Bit0 require the variable to have been mapped to accelerator memory,
namely State Bit0=1, (ConV ld Bit0=1) or not require (ConV ld

Bit0=0)
ConV ld Bit1 require the CPU copy to be valid, namely State Bit1=1, (ConV ld

Bit1=1) or not require (ConV ld Bit1=0)
ConV ld Bit2 require the accelerator copy to be valid, namely State Bit2=1,

(ConV ld Bit2=1) or not require (ConV ld Bit2=0)
ConInV ld Bit0 require the variable to have been unmapped from accelerator mem-

ory, namely State Bit0=0, (ConInV ld Bit0=0) or not require
(ConInV ld Bit0=1)

ConInV ld Bit1 require the CPU copy to be invalid, namely State Bit1=0,
(ConInV ld Bit1=0) or not require (ConInV ld Bit1=1)

ConInV ld Bit2 require the accelerator copy to be invalid, namely State Bit2=0,
(ConInV ld Bit2=0) or not require (ConInV ld Bit2=1)

Table 5 Operations and required Constrs

Operation Constr

variable unused ConNo = {111, 000}
CPU READ ConSEQR = {111, 010}
accelerator READ ConOMPR = {111, 101}
CPU WRITE ConSEQW = {111, 000}
accelerator WRITE ConOMPW = {111, 001}
CPU free ConFREE = {010, 010}

3.2.2 Consistency States Transition Functions

We define the consistency state transition function (TransFunc) to formal-
ize the State transitions caused by different data transmission directives and
READ/WRITE operations (Definition 5). The formalization helps derive the
essential and minimum data transmission directive.

Definition 5 The form of TransFunc is defined by Equation 5. TransFunc

transits inState to outState. InV ld and V ld are a pair of 3-bit binary num-
bers. The operators in Equation 5 are Boolean multiplication and Boolean ad-
dition. The form of TransFunc is abbreviated as Equation 6.

outState = TransFunc (inState)

= inState · InV ld+ V ld
(5)

TransFunc = {InV ld, V ld} (6)

If any bit of the outState requires to be set to 0, then the corresponding
bit of InV ld is set to 0. If any bit of the outState requires to be set to 1, then
the corresponding bit of V ld is set to 1. For the bits without requirements, the

12 Farui Wang 1 et al.

corresponding bits of InV ld and V ld are set to 1 and 0 respectively. Thus the
form of TransFunc can transit any 3-bit binary number to any 3-bit binary
number and express any transition between States.

Each kind of data transmission directive or operation corresponds to a
TransFunc (Table 6). The transition relationships between States are shown
in Figure 3. If we can derive the essential and minimum TransFunc, we can
know the essential and minimum data transmission directive, which should
be executed to guarantee consistency. We design the derivation algorithm in
Section 3.2.3.

Table 6 State transition operations and corresponding TransFuncs

Operation TransFunc

no data transmission required TrNo = {111, 000}
#pragma omp target enter data map(alloc: ...) TrAlloc = {111, 001}
#pragma omp target enter data map(to: ...) TrEnTo = {111, 101}
#pragma omp target update to(...) TrUpTo = {111, 100}
#pragma omp target update from(...) TrFrom = {111, 010}
#pragma omp target exit data map(delete: ...) TrDelete = {010, 010}
CPU WRITE TrSEQW = {011, 010}
accelerator WRITE TrOMPW = {101, 100}
CPU or accelerator READ TrRead = {111, 000}

TrE
nTo

TrD
elete

TrD
el

et
e

TrA
llo

c

TrSEQW

TrUpTo

TrF
ro

m

TrO
M

PW

HOST_ONLY

DEVICE_NEW

TrSEQW / TrRead

TrOMPW / TrRead

TrSEQW / TrRead TrRead

TrDelete

HOST_NEW SYNC

Fig. 3 Consistency state transition relationships

3.2.3 Minimum Transmission Algorithm

Based on States, Constrs, and TransFuncs, we design the algorithm to de-
rive the essential and minimum TransFunc. The minimum TransFunc only
change the bits, which must be changed, to satisfy the Constr. This fea-

Title Suppressed Due to Excessive Length 13

ture prevents redundant data transmissions. In more detail, we define the
MinTrFunc to represent minimum TransFunc (Definition 6).

Definition 6 For the State and Constr, the MinTrFunc refers to the Trans-
Func that meets the following features. The V ld of the MinTrFunc only sets
the bits, which are 0 in State but 1 in ConV ld, to 1. The InV ld of the
MinTrFunc only sets the bits, which are 1 in State but 0 in ConInV ld,
to 0.

For example, we assume the State = HOST NEW = {011} and the
Constr = ConOMPR = {111, 101} and derive theMinTrFunc. The ConInV ld

= 111 indicates none bits of InV ld inMinTrFunc should be set to 0. Thus, we
get InV ld = 111. The Bit0 and Bit2 of ConV ld are 1 and we compare these two
bits with Bit0 and Bit2 of State. The Bit2 of State is not equal to the Bit2 of
ConV ld. Thus, we only set Bit2 of V ld to 1 and get InV ld = 100. In summary,
we get MinTrFunc = {111, 100}. The MinTrFunc = {111, 100} = TrUpTo

corresponds to #pragma omp target update to directive, according to Ta-
ble 6. We get the MinTrFunc and the minimum data transmission directive.

Algorithm 2: Minimum transmission algorithm

Input: State, Constr = {ConInV ld, ConV ld}
Output: minimum transition function MinTrFunc, minimum data transmission

directive
1

2 InV ld = (State⊕ ConInV ld) · ConInV ld

3 V ld = (State⊕ ConV ld) · ConV ld

4 MinTrFunc (State) = State · InV ld+ V ld

5 Find the minimum data transmission directive corresponding to MinTrFunc in
Table 6 (the first six lines)

According to Definition 6, we propose Algorithm 2 to derive theMinTrFunc

and minimum data transmission directive. In Algorithm 2, the ‘⊕’ operation
takes out bits, which vary in State and ConV ld. The ‘·’ operation takes out
bits, which are 1 in ConV ld. Thus, the V ld satisfies Definition 6. Similarly,
InV ld satisfies Definition 6. In summary, MinTrFunc satisfies Definition 6.
The minimum data transmission directive can be determined by looking up
Table 6 when MinTrFunc is derived.

When the data transmission semantic is called, the minimum data trans-
mission directive is determined through Algorithm 2 and executed automati-
cally. Namely, the essential data transmission, corresponding to the minimum
data transmission directive, is determined and executed automatically. With
the implementation of Algorithm 2, the OAO Runtime can only execute the
essential data transmissions and eliminate redundant transmissions. This is
summarized as Question 3 in the experimental part and will be verified by
experiments.

14 Farui Wang 1 et al.

3.3 Consistency State Update Semantics

The WRITE operations in code fragments may change consistency States.
Thus consistency state update semantics (OAOStTrans functions) are used to
update States maintained in MemEnv. The READ operations are not con-
sidered because they do not change States. According to the type of WRITE
operations, different TransFuncs are used to update States (Table 6 [lines 6
and 7]).

4 Code Translator

The OAO Translator models each function as an extended control flow graph
(CFG) called SPGraph. With the SPGraph, we analyze the Constrs and
R/W operations and insert data transmission semantics and consistency state
update semantics. We also translates parallel primitives. Using Algorithm
3 - 5 and Table 7 proposed below, the OAO Translator can translate OMP
SMP code into OMP Offloading code. This is summarized as Question 1 in
the experimental part and will be verified by experiments.

4.1 SPGraph For Code Translation

To offload data parallel code regions to the accelerator, these code regions
should be marked. To handle data transmission and guarantee data consistency
between the CPU and the accelerator, the information of variable references on
the CPU and the accelerator should be saved separately. For these motivations,
we extend the CFG to encode the information required for code translation. we
split each data parallel code region as a new node in the CFG. Then we mark
all nodes in the CFG as two types: parallel nodes for nodes of data parallel
code regions, and sequential nodes for other nodes. As a final step, we attach
variable reference information to the corresponding nodes.

The SPGraph, which extends from the CFG, is formally defined by Defi-
nition 7 - 9. It is important to note that developers should ensure that there is
no dependency among the parallel region defined in Definition 8. Each func-
tion in the source code is modeled as a SPGraph. All the information needed
to establish the SPGraph can be collected through compile-time static anal-
ysis techniques. We choose the sequential and parallel regions as basic units
of analysis for two reasons. First, as long as appropriate data transmissions
are inserted before a sequential and parallel region, the consistency within the
region can be guaranteed. Second, the update of States in MemEnv can be
delayed until just after the current sequential or parallel region, because the
updated States is useful to successive regions rather than the current region.

Definition 7 A sequential region is a code fragment that is executed se-
quentially without branch and outside #pragma omp parallel scopes. A se-
quential region corresponds to a sequential node, denoted by SEQ, in SPGraph.

Title Suppressed Due to Excessive Length 15

NodeVarRef

RefList0

……

RefListn

Ref0 Ref0

Ref1 Ref1

…………

Refn Refn

OMP0SEQ0

OMP0

OMP2
SEQ4

SEQ1

SEQ5

SEQ2OMP1 SEQ3

Fig. 4 SPGraph

Definition 8 A parallel region is a code fragment within a #pragma omp

parallel scope. A parallel region corresponds to a parallel node, denoted by
OMP , in SPGraph.

Definition 9 A SPGraph is a special control flow graph of a function (Equa-
tion 7 and Figure 4). NodeGrp, the set of all nodes, consists of SEQGrp

and OMPGrp. SEQGrp is the set of all SEQs. OMPGrp is the set of all
OMP s. CtlEdge is the set of all edges among different nodes.

SPGraph = (NodeGrp,CtlEdge)

NodeGrp = SEQGrp ∪OMPGrp

CtlEdge = {〈x, y〉 |x, y ∈ NodeGrp}

SEQGrp = {SEQ1, · · · , SEQn}

OMPGrp = {OMP1, · · · , OMPm}

(7)

The variable reference information (NodeV arRef), which is collected within
a sequential or parallel region, is attached to the corresponding SEQ or OMP

(Definition 10-12 and Figure 4).

Definition 10 NodeV arRef refers to the set of variable reference sequences
(RefList) in a node.

NodeV arRef = {RefList1, · · · , RefListn}

Definition 11 RefList refers to a sequence of variable references (Ref) of
a variable in a node.

RefList = {Ref1, · · · , Refm}

Definition 12 Ref is the type of a reference to a variable. R represents the
READ operation. W represents the WRITE operation.

Ref =

{

R; READ operation

W ; WRITE operation

16 Farui Wang 1 et al.

Algorithm 3: Insert OAORT API functions
Input: the SPGraph of a function in source code
Output: the source code of the funtion with OAORT API funcitons

1 Split each function call in SEQs as a new independent SEQ

2 Save information of all function calls in OMP s to NodeV arRefs
3 foreach variable referenced in all SEQs do

4 foreach Node ∈ NodeGrp do

5 Call Algorithm 4 to insert data transmission API functions
6

7 Call Algorithm 5 to insert consistency state update API functions

8 end

9 end

Based on the SPGraph, we propose Algorithm 3 to insert data transmis-
sion and consistency state update semantics. First, we preprocess the function
calls. Each function call in SEQs is split as a new independent special SEQ

node (line 1). Each function call in OMP s is treated as references to the ar-
guments of the function call (line 2). If an argument is not the pointer type or
reference type, then R is inserted to the proper position of the corresponding
RefList. For each argument of pointer type or reference type, if any WRITE
operation to the corresponding parameter exists in the called function, RW

is inserted to the proper position of the corresponding RefList, otherwise, R
is inserted. When function calls are treated as SEQs or variable references,
the intra-procedural and inter-procedural data transmission optimizations can
be done by inserting data transmission and consistency state update seman-
tics through Algorithms 4 and 5 in Sections 4.2 and 4.3 respectively. On the
contrary, DawnCC does not consider function calls, so it cannot optimize inter-
procedural data transmissions.

We apply Algorithm 3 to nearly all functions except OMP -called func-
tions, which are called by any OMP at least once. The OMP -called func-
tions may run on accelerators, whereas OAORT API functions can only run
on CPUs. Thus, OAORT API functions cannot be inserted into OMP -called
functions. The variable consistency of OMP -called functions will be guaran-
teed by OAORT semantics inserted before and after OMP -called function
calls.

4.2 Handling Data Transmissions

We proposed Algorithm 4 to determine Constrs and to insert data trans-
mission semantics, before the Nodes. Theoretically, if every element in an
allocation unit is written before any READ operation, we can set Constr

to ConSEQW or ConOMPW and save data transmission. However, it is
hard to determine these cases exactly through static analysis. Thus, we set
Constrs to ConSEQRs or ConOMPRs to avoid complex static analysis and
guarantee the correctness of the programs, regardless of READ and WRITE
operations. For an OMP and SEQ, which is not a function call, we set

Title Suppressed Due to Excessive Length 17

Algorithm 4: Insert data transmission semantics
Input: V ar, Node

Output: the source code with data transmission semantics
1 Perform static analysis to get the pointer ptr of V ar

2 if Node ∈ OMPGrp then

3 Insert API function OAODataTrans(ptr, ConOMPR) before the Node

4 else if Node ∈ SEQGrp ∧ Node is a function call then

5 if the callee function is an OMP -called function then

6 Insert API function OAODataTrans(ptr, ConSEQR) before the Node

7 else

8 if the corresponding argument is not pointer type or reference type then

9 Insert API function OAODataTrans(ptr, ConSEQR) the before Node

10 end

11 end

12 else

13 Insert API function OAODataTrans(ptr, ConSEQR) before the Node

14 end

Constr to ConOMPR (line 3) and ConSEQR (line 13), respectively. For
the SEQ, which is an OMP -called function call (line 6), we set the Constr to
ConSEQR. For the SEQ, which is another function call (line 9), we also set
the Constr to ConSEQR, when the corresponding argument is not the pointer
or reference type. The reason for this is that the copy of the argument should
be guaranteed to be valid before such is passed to the callee function. Then,
we insert the data transmission semantic (OAODataTrans function), with ptr

and determined Constr as arguments, before the Node.

4.3 Updating Consistency States

We design Algorithm 5 to determine TransFuncs and to insert consistency
state update semantics after the Nodes. When any element of an allocation
unit is written in a Node, we set the TransFunc to TrSEQW or TrOMPW .
READ operations do not change the consistency State of V ar. Thus, all of
them are ignored. For an OMP and SEQ, which is not a function call,we
set the TransFunc to TrOMPW (line 4) and TrSEQW (line 14) respec-
tively, if the RefList corresponding to V ar contains any WRITE operation.
For the SEQ, which is an OMP -called function call, we set the TransFunc

to TrSEQW (line 9) if the RefList contains any WRITE operation. For the
SEQ, which is another function call, the essential consistency state update
semantics are inserted inside the callee function. Thus, the insertion of state
update semantics after the SEQ is not needed. Then, we insert the consis-
tency state update semantic (OAOStTrans function), with ptr and determined
TransFunc as arguments, after the Node.

18 Farui Wang 1 et al.

Algorithm 5: Insert consistency state update semantics
Input: V ar, Node

Output: the source code with consistency state update semantics
1 Perform static analysis to get the pointer ptr of V ar

2 if Node ∈ OMPGrp then

3 if ∃W ∈ RefList corresponding to V ar then

4 Insert API function OAOStTrans(ptr, TrOMPW) after the Node

5 end

6 else if Node ∈ SEQGrp ∧ Node is a function call then

7 if the callee function is an OMP -called function then

8 if ∃W ∈ RefList corresponding to V ar then

9 Insert API function OAOStTrans(ptr, TrSEQW) after the Node

10 end

11 end

12 else

13 if ∃W ∈ RefList corresponding to V ar then

14 Insert API function OAOStTrans(ptr, TrSEQW) after the Node

15 end

16 end

Table 7 OMP parallel primitives and corresponding OMP Offloading parallel primitives

OpenMP parallel primitives OpenMP Offloading parallel primitives

#pragma omp parallel

for

#pragma omp target teams distribute parallel

for

#pragma omp parallel

loop

#pragma omp target teams distribute parallel

loop

#pragma omp parallel

simd

#pragma omp target teams distribute parallel

simd

4.4 Parallel Primitive Translation

Concerning task identification and task mapping, OMP SMP and OMP Of-
floading both support the work-sharing model well. OMP SMP also supports
the task model completely, whereas OMP Offloading only has very limited sup-
port for the task model. Thus, this work focuses on the works-haring model.

The corresponding relationships between parallel primitives of OMP SMP
and OMP Offloading are listed in Table 7. To exploit GPU, work-sharing loops
are distributed across all GPU teams with teams distribute primitive. We
translate the OMP SMP parallel primitives into the corresponding OMP Of-
floading parallel primitives according to Table 7. Then parallel code regions
can run on the accelerator. The accelerator usually has much more physical
cores and threads than CPU. So OAO-translated programs may gain perfor-
mance improvements. This is summarized as Question 2 in the experimental
part and will be verified by experiments.

Title Suppressed Due to Excessive Length 19

5 Experimental Setup

5.1 Evaluation Goals

Our experiments are designed to answer the following questions:

Question 1 Can OAO translate OMP SMP programs into OMP Offloading
programs without manual intervention?

Question 2 Can OAO-translated programs gain performance improvements?

Question 3 Can OAO optimize data transmission and eliminate redundant
transmissions?

5.2 Benchmarks

The PolyBench [25] and Rodinia [31,4] are commonly used benchmark suites
in the field of high performance computing (HPC). The PolyBench [25] col-
lects many common algorithms in fields such as linear algebra, algebra solvers,
data mining, stencils, and image processing. The Rodinia [31,4] includes some
practical applications or kernels such as breadth-first search, computational
fluid dynamics, n-body problem, LU decomposition, DNA sequencing, particle
filter, and image processing. These fields or applications require the energy-
efficient high performance of accelerators. Different types of workloads of the
PolyBench and Rodinia can comprehensively evaluate OAO-translated pro-
grams. Some related work [30,18] used the PolyBench or Rodinia in experi-
ments. The OMP SMP version of the PolyBench and Rodinia is suitable as the
input of our OAO. So we also use the PolyBench and Rodinia for evaluation.

We evaluate OAO by applying it to 23 benchmarks from the PolyBench [16]
and Rodinia [31] benchmark suites, as listed in Table 8. Moreover, we add a
new benchmark called FDTD-2D-FUNC to evaluate data transmission opti-
mizations when programs contain inter-procedural function calls. This bench-
mark is derived from FDTD-2D with each kernel replaced by a call to the
subfunction which encapsulates the kernel. The data required by the kernel
are passed as function parameters. We configured all benchmarks in the Poly-
Bench to use single precision for all experiments.

We consider the following five versions of benchmark implementations:

OMP. This version refers to the OMP SMP parallel programs from PolyBench
and Rodinia. We insert OMP SMP primitives to PolyBench manually, to gen-
erate an OMP version PolyBench. Rodinia contains the OMP version natively.
OMP version is input and baseline.

OAO. This version refers to OMP Offloading programs translated by OAO.

20 Farui Wang 1 et al.

Table 8 Benchmarks used in experiments

Suite Benchmark Description

PolyBench

2DCONV 2-D Convolution
2MM 2 Matrix Multiplications
3DCONV 3-D Convolution
3MM 3 Matrix Multiplications
ATAX Matrix Transpose and Vector Multiplication
BICG BiCG Sub Kernel of BiCGStab Linear Solver
CORR Correlation Computation
COVAR Covariance Computation
FDTD-2D 2-D Finite Different Time Domain Kernel
FDTD-2D-FUNC FDTD-2D implemented with subfunctions
GEMM Matrix-multiply
GESUMMV Scalar, Vector and Matrix Multiplication
MVT Matrix Vector Product and Transpose
SYR2K Symmetric rank-2k operations
SYRK Symmetric rank-k operations

Rodinia

bfs Breadth-First Search (BFS) algorithm
cfd euler CFD solver with redundant flux computation
cfd pre euler CFD solver with pre-computed fluxes
lavaMD N-Body problem within a large 3D space
lud LU Decomposition
nw Needleman-Wunsch method for DNA sequencing
particlefilter Particle Filter (PF)
srad v2 Speckle Reducing Anisotropic Diffusion

Manual. This version refers to OMP Offloading programs translated by hand.
The Manual version uses simple copy-in and copy-out data transmission strat-
egy for each offloading kernel. We use #pragma omp target teams distribute

parallel for directive to offload kernels. We use cudaMallocHost() to re-
place malloc(), when the memory block is larger than 128 KB.

DawnCC-native. This version refers to origin OMPOffloading programs trans-
lated by DawnCC. DawnCC [15] is the state-of-the-art translator that gen-
erates OMP Offloading programs. Thus, we use DawnCC for comparison.
DawnCC uses #pragma omp target parallel for directive to offload ker-
nels.

DawnCC-opt. This version refers to DawnCC-native version with our addi-
tional optimizations. We introduce two optimizations, which are used in Man-
ual and OAO versions, into DawnCC-opt. We replace #pragma omp target

parallel for directive with #pragma omp target teams distribute parallel

for directive. We replace malloc() with cudaMallocHost() when the memory
block is larger than 128 KB. In the comparison of the OAO and DawnCC-opt
version, data transmission optimizations of OAO and DawnCC can be evalu-
ated.

Title Suppressed Due to Excessive Length 21

Table 9 Hardware and Software Platforms

K40 system 2080Ti system

CPU
2*Intel Xeon E5-2620v3
(6cores/12threads)

2*Intel Xeon E5-2697v4
(18cores/18threads)

CPU Mem 8*16GB DDR3 8*32GB DDR4
GPU 1*K40m 1*RTX 2080Ti
GPU Mem 11GB 11GB
OS Manjaro 18.1 (Linux 4.19) Ubuntu 16.04 (Linux 4.15)
Compiler CUDA-10.1, Clang/LLVM-9.0.0,

GCC-8.3.0
CUDA-10.1, Clang/LLVM-9.0.0,
GCC-8.3.0

5.3 Hardware and Software Platforms

Table 9 lists the two CPU-GPU systems used in experiments. We use GCC
version 8.3 to compile the OMP SMP programs. We use Clang version 9.0 to
compile the OMP Offloading programs. CUDA is needed during the compila-
tion and running of the OMP Offloading programs. All compilation processes
use optimization level three (-O3).

6 Experimental Results

6.1 Performance Evaluation

We run each benchmark twenty times and use averages to build the following
figures and tables. Figures 5 and 6 show the speedups of different versions over
OMP on two CPU-GPU systems. OAO and DawnCC can translate all fifteen
benchmarks in PolyBench, whereas only OAO can translate the eight bench-
marks in Rodinia. Benchmarks, which DawnCC cannot handle, are marked
with ‘X’ in figures.

Performance of OAO Version

The OAO version gains performance improvements (1.86x to 32x) over
OMP version in more benchmarks than the three other versions, eleven and
fifteen benchmarks on K40 and 2080Ti platforms. Besides, the overheads of
OAORT are less than 0.07% of the total execution time in all twenty-three
benchmarks. The OAO version achieves high speedups in four benchmarks:
GEMM, 2MM, 3MM, and bfs. Speedups of 2MM and 3MM are over 30x.
These four benchmarks are compute-intensive applications and suitable for
offloading.

The OAO version has poor speedups in eight benchmarks. For 3DCONV,
GESUMMV, 2DCONV, nw, and lud, the time of essential data transmissions
makes up a large proportion (over 50% to over 90%) of the total execution time
of the OAO version. So there is no big chance for data transmissions optimiza-
tion in these benchmarks. For 3DCONV, SYR2K, GESUMMV, SYRK, and
srad v2, the pure execution time (excluding transmission time and OAORT

2
2

F
a
ru

i
W

a
n
g

1
et

a
l.

0.03

0.05

0.12

0.16

0.17

0.04

0.04

0.74

0.70

0.74

3.94

3.95

0.03

0.03

0.01

0.01

0.06

0.03

0.04

0.39

0.29

0.35

0.28

0.27

0.03

0.07

0.12

0.16

0.22

0.01

0.77

2.13

1.33

2.31

3.95

3.97

0.03

0.08

0.12

0.16

0.24

0.77

0.78

2.18

2.27

2.34

3.95

3.98

3D
C

O
N

V

G
E

S
U

M
M

V
S
Y

R
K

S
Y

R
2K

2D
C

O
N

V

F
D

T
D

-2D
-F

U
N

C

F
D

T
D

-2D
M

V
T

B
IC

G
A

T
A

X
C

O
R

R

C
O

V
A

R

1
/3

2
x

1
/1

6
x

1
/8

x
1

/4
x

1
/2

x
1

x
2

x
4

x
8

x
1

6
x

3
2

x
�
�
�
	
�
�
�
�
�

�
�
�
	
�
�
�
�
�

 M
an

u
al o

v
er O

M
P

 D
aw

n
C

C
-n

ativ
e o

v
er O

M
P

 D
aw

n
C

C
-o

p
t o

v
er O

M
P

 O
A

O
 o

v
er O

M
P

20.29

29.62

30.57

0.06

0.33

2.03E-04

0.45

0.24

0.07

0.09

0.61

0.26

0.28

0.28

X

X

X

X

X

X

X

X

19.86

30.68

31.78

X

X

X

X

X

X

X

X

20.84

31.08

32.28

0.33

0.35

0.38

0.49

0.74

1.24

1.67

6.02

G
E

M
M

2M
M

3M
M

srad_v2

lavaM
D

nw

particlefilter
lud

cfd_pre_euler

cfd_euler
bfs

1
/3

2
x

1
/1

6
x

1
/8

x
1
/4

x
1
/2

x
1
x

2
x

4
x

8
x

1
6
x

3
2
x

�
�
�
	
�
	
�

�
�
�
	
�
	
�

�
�

�
�
�
�
�

F
ig
.
5

S
p
eed

u
p
s
o
v
er

O
M
P

o
n
th

e
K
4
0
sy
stem

0.17

0.14

0.22

0.40

0.58

0.79

0.06

0.06

0.90

0.96

3.94

3.98

0.07

0.08

0.05

0.02

0.02

0.34

0.02

0.03

0.33

0.31

0.26

0.26

0.19

0.21

0.28

0.40

0.56

2.34

0.08

2.82

2.85

1.60

3.95

4.00

0.19

0.21

0.29

0.40

0.59

2.36

2.83

2.84

2.89

3.08

3.95

4.00

3D
C

O
N

V

G
E

S
U

M
M

V

2D
C

O
N

V
S
Y

R
K

S
Y

R
2K

M
V

T

F
D

T
D

-2D
-F

U
N

C

F
D

T
D

-2D
A

T
A

X
B

IC
G

C
O

R
R

C
O

V
A

R

1
/1

6
x

1
/8

x

1
/4

x

1
/2

x

1
x

2
x

4
x

8
x

1
6

x

�
�
�
	
�
�
�
�
�

�
�
�
	
�
�
�
�
�

 M
an

u
al o

v
er O

M
P

 D
aw

n
C

C
-n

ativ
e o

v
er O

M
P

 D
aw

n
C

C
-o

p
t o

v
er O

M
P

 O
A

O
 o

v
er O

M
P

8.94

15.94

16.95

0.06

9.31E-05

0.31

0.06

0.08

2.45

0.71

0.84

0.06

0.06

0.06

X

X

X

X

X

X

X

X

8.93

16.56

17.65

X

X

X

X

X

X

X

X

8.99

16.77

18.01

0.39

0.42

0.83

1.86

2.04

2.92

3.28

12.53

G
E

M
M

2M
M

3M
M

srad_v2
nw

lud

cfd_pre_euler

cfd_euler

lavaM
D

particlefilter
bfs

1
/1

6
x

1
/8

x

1
/4

x

1
/2

x

1
x

2
x

4
x

8
x

1
6
x

�
�
�
	
�
	
�

�
�
�
	
�
	
�

�
�

�
�
�
�
�

F
ig
.
6

S
p
eed

u
p
s
o
v
er

O
M
P

o
n
th

e
R
T
X

sy
stem

overh
ead

)
o
f
th
e
O
A
O

version
is

lo
n
ger

th
an

th
e
O
M
P

version
.
It

seem
s
th
at

th
ese

ap
p
lication

s
a
re

n
ot

su
itab

le
for

h
eterogen

eou
s
p
latform

s.
T
o
solve

th
is

p
ro
b
lem

,
a
p
rom

isin
g
ap

p
roa

ch
is

to
m
ake

th
e
tran

slator
can

p
red

ict
ap

p
li-

ca
tion

p
erform

an
ces

on
d
iff
eren

t
p
latfo

rm
s
[35,36,32,6],

an
d

au
tom

atically
d
ecid

e
w
h
eth

er
to

offl
oad

or
n
ot.

T
h
e
O
A
O

version
sh
ow

s
d
iff
eren

t
p
erform

an
ce

on
variou

s
p
latform

s
in

F
D
T
D
-2D

,
F
D
T
D
-2D

-F
U
N
C
,
lavaM

D
,
an

d
p
articlefi

lter.
P
erform

an
ce

im
-

p
rovem

en
ts

are
g
ain

ed
on

th
e
2
08
0T

i
p
latform

,
w
h
ereas

p
o
or

sp
eed

u
p
s
ap

p
ear

o
n
th
e
K
40

p
latform

.
T
h
e
reaso

n
is
th
at

th
e
m
ore

ad
van

ced
R
T
X
2080T

i
G
P
U

ca
n
su
p
p
ort

th
ese

b
en

ch
m
ark

s
b
etter.

Title Suppressed Due to Excessive Length 23

1
6
.6

3
%

4
4
.9

2
%

2
7
.9

9
%

0
.6

2
%

0
.8

6
% 1
9
7
.9

8
%

4
6
4
3
.0

7
%

4
5
8
9
.6

7
%

2
2
1
.8

7
%

2
2
2
.1

5
%

0
.1

9
%

0
.6

1
%

1
6
8
.9

1
%

1
5
9
.9

0
%

5
1
6
.0

1
%

1
8
7
7
.5

2
%

2
4
6
1
.9

3
%

5
9
4
.5

2
%

1
1
3
1
6
.9

4
%

8
2
1
3
.9

7
%

7
6
4
.4

5
%

8
7
7
.6

0
%

1
4
0
7
.7

1
%

1
4
4
1
.2

4
%

0
.7

1
%

0
.7

0
%

1
.8

5
%

0
.0

3
%

4
.9

3
%

0
.7

4
%

3
3
3
8
.8

9
%

0
.6

4
%

1
.2

2
% 9
2
.2

1
%

0
.0

9
%

0
.1

2
%

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BIC
G

CORR

COVAR

0.01%

0.1%

1%

10%

100%

1000%

10000%

100000%

���	��������	�����

 OAO over Manual

 OAO over DawnCC-native

 OAO over DawnCC-opt

0
.4

8
%

5
.2

0
%

6
.2

7
% 5
9
2
.4

1
%

4
5
5
2
7
0
.8

6
%

1
6
8
.4

5
%

2
8
9
3
.7

2
%

2
5
0
2
.3

4
%

1
9
.1

5
%

3
6
2
.5

6
%

1
3
8
9
.3

3
%

1
6
1
9
1
.5

8
%

2
9
1
9
5
.4

6
%

3
1
4
0
3
.1

0
%

X X X X X X X X

0
.6

3
%

1
.2

8
%

2
.0

6
%

X X X X X X X X

GEMM
2MM

3MM

sra
d_v2 nw lud

cfd_pre_euler

cfd_euler

lavaMD

partic
lefilt

er bfs

0.01%

0.1%

1%

10%

100%

1000%

10000%

100000%

���	�	� ���	�	���
�����

Fig. 7 OAO performance improvements over other versions on the RTX system

The performances on two platforms are generally similar. Thus, later dis-
cussions and analyses only use data on the 2080Ti system for simplicity.
Comparison With Other Versions

The OAO version gains performance improvements over three other ver-
sions in all benchmarks (Figure 7). Compared with the Manual version, OAO
version achieves large improvements (over 40%) in thirteen benchmarks, and
huge improvements (over 500%) in seven benchmarks, especially nw (455271%).
These performance improvements thanks to the data transmission optimiza-
tion in OAO, which will be analyzed later.

DawnCC cannot translate the eight benchmarks in Rodinia correctly be-
cause some syntax, such as structure and class, cannot be handled. The OAO
version outperforms the DawnCC-native version (over 159%) in all fifteen
benchmarks, which DawnCC can handle. Improvements are huge (over 500%)
in thirteen of them. Compared with the DawnCC-opt version, the OAO version
achieves slight improvements (less than 5%) in thirteen benchmarks. Signifi-
cant (3339%) and large (92%) improvements are observed in FDTD-2D-FUNC
and BICG.

Generally, the OAO version is far better than the DawnCC-native ver-
sion. However, the OAO version is similar to the DawnCC-opt version in most
PolyBench benchmarks. This phenomenon demonstrates that OAO improve-
ments over DawnCC-native are mainly caused by two extra optimizations.
The OAO improvements over DawnCC-opt are due to different transmission
optimizations in OAO and DawnCC. The time of redundant data transmis-
sions makes up a slight proportion (less than 5%) of the total execution time
of the DawnCC-opt version in most PolyBench benchmarks. Thus, most im-
provements are insignificant. For FDTD-2D-FUNC and BICG, the time of
redundant data transmissions makes up large proportions (82% and 45%) and
improvements are significant.

24 Farui Wang 1 et al.

Table 10 Number of transmissions in different versions of benchmarks

of transmissions
Name

Manual DawnCC OAO
3DCONV 4 3 3
GESUMMV 10 7 6
2DCONV 4 3 3
SYRK 8 3 3
SYR2K 6 4 4
MVT 12 7 7
ATAX 12 6 5
FDTD-2D-FUNC 27000 19500 5
FDTD-2D 27000 7 5
BICG 12 8 7
CORR 8 6 6
COVAR 12 6 4
GEMM 6 4 4
2MM 12 7 6
3MM 18 10 8
srad v2 38912 - 1033
nw 16380 - 3
lud 4092 - 2046
cfd pre euler 224002 - 12
cfd euler 128004 - 9
lavaMD 10 - 6
particlefilter 3534 - 262
bfs 216 - 7

In summary, OAO can gain performance improvements over OMP and
outperforms DawnCC, which is the state-of-the-art translator.

6.2 Analysis of Data Transmission Optimization

We analyze the number, size, and time of data transmissions to evaluate the
data transmission optimization in OAO.

Number of Transmissions

Our OAO runtime is designed to eliminate redundant data transmissions
to reduce the data communication overhead. Hence, we report the number of
data transmissions and use it to quantify how well OAO is in reducing host-
accelerator communication overhead. Table 10 shows the number of transmis-
sions in different versions of benchmarks. The DawnCC-native and DawnCC-
opt versions have the equal number of transmissions in each corresponding
benchmark, so they are expressed as DawnCC in Table 10. Benchmarks, which
DawnCC cannot handle, are marked with ‘-’ in Table 10. Comparing The Man-
ual column and OAO column, the reduction of data transmission frequency
occurred in all benchmarks. Especially, the number is reduced by one to five
orders of magnitude, in eight benchmarks (purple cells in Table 10): FDTD-
2D, FDTD-2D-FUNC, srad v2, nw, cfd pre euler, cfd euler, particlefilter, and
bfs.

Title Suppressed Due to Excessive Length 25

2
5
.0

0
%

5
0
.0

0
%

2
5
.0

0
%

6
2
.5

0
%

3
3
.3

3
%

7
5
.0

0
% 9

9
.9

8
%

9
9
.9

8
%

7
5
.0

0
%

7
5
.0

0
%

3
3
.3

3
%

6
2
.5

0
%

0
.0

0
%

0
.0

0
2
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

9
9
.9

7
%

3
3
.3

3
%

0
.0

0
3
%

5
0
.0

0
%

0
.0

0
%

2
5
.0

0
%

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BIC
G

CORR

COVAR

0%

20%

40%

60%

80%

100%
���	��������	�����

 OAO over Manual

 OAO over DawnCC

3
3

.3
3

%

5
0

.0
0

%

5
5

.5
6

%

9
6

.1
4

%

9
9

.9
8

%

5
0

.0
0

%

9
9

.9
9

%

9
9

.9
9

%

5
0

.0
0

%

9
7

.6
0

%

9
5

.7
3

%

0
.0

0
% 1
4

.2
9

%

2
0

.0
0

%

X X X X X X X X

GEMM
2MM

3MM

sra
d_v2 nw lud

cfd_pre_euler

cfd_euler

lavaMD

partic
lefilt

er bfs
0%

20%

40%

60%

80%

100%
���	�	� ���	�	���
�����

Fig. 8 Percentage of data transmission size saved by OAO compared with other versions

Compared with DawnCC column, OAO reduces the number of transmis-
sions in eight benchmarks (yellow and purple cells). For seven benchmarks
(yellow) except FDTD-2D-FUNC, OAO can eliminate more redundant inter-
procedural data transmissions than DawnCC. The FDTD-2D-FUNC bench-
mark introduces inter-procedural function calls based on the FDTD-2D bench-
mark. For the FDTD-2D-FUNC benchmark, OAO can eliminate 19495 more
redundant data transmissions than DawnCC. DawnCC can eliminate most
redundant transmissions in FDTD-2D but cannot optimize FDTD-2D-FUNC
well, which contains massive inter-procedural function calls, whereas OAO can
optimize FDTD-2D and FDTD-2D-FUNC to the same minimum number of
transmissions (5 times). These phenomena demonstrate that OAO can opti-
mize inter-procedural and intra-procedural data transmissions and outperform
DawnCC, which can only optimize intra-procedural data transmissions incom-
pletely.
Data Size and Time of Transmission

Figures 8 and 9 show the percentage of data transmission size and time
saved of OAO compared with other versions. The DawnCC-native and DawnCC-
opt versions have the equal transmission size in each corresponding benchmark,
so they are expressed as DawnCC in Figure 8.

Compared with the Manual version, OAO gains over 25% transmission
size savings and over 23% transmission time savings in all benchmarks. For
the eighteen benchmarks, these savings are around or more than 50%. For
eight benchmarks, these savings are over 95%. Significant performance im-
provements over Manual version owe to these transmission time savings

The time savings of OAO over Manual are slightly smaller than the corre-
sponding size savings of OAO over Manual. The reason is that OAO eliminates
more transmissions from the accelerator to the CPU (D2H) than transmissions
from the CPU to the accelerator (H2D). The D2H transmissions usually have

26 Farui Wang 1 et al.

2
3

.3
0

%

4
6

.7
0

%

2
3

.4
2

%

6
1
.7

2
%

3
1

.5
4

%

7
4

.6
6

% 9
9
.9

8
%

9
9
.9

8
%

7
4

.6
7

%

7
4

.6
5

%

3
1
.3

0
%

6
1
.6

4
%

7
7
.3

6
%

6
5

.1
2

%

7
6

.8
4

%

4
6
.6

8
% 3

7
.6

5
%

6
8

.9
2

% 9
9

.9
8

%

7
2

.5
4

%

7
0

.9
2
%

7
9
.8

2
%

7
7
.2

3
%

8
3
.4

1
%

-0
.1

1
%

-0
.0

3
%

0
.0

1
%

-0
.0

2
%

3
7

.2
9

%

-0
.2

1
%

9
9

.9
8

%

3
1
.3

2
%

0
.0

2
%

5
4

.3
8

%

0
.2

1
% 2
3

.3
2

%

3DCONV

GESUMMV

2DCONV
SYRK

SYR2K
MVT

FDTD-2D-FUNC

FDTD-2D
ATAX

BIC
G

CORR

COVAR

0%

20%

40%

60%

80%

100%

120%

���	��������	�����

 OAO over Manual

 OAO over DawnCC-native

 OAO over DawnCC-opt

3
1
.3

4
%

4
8
.1

3
%

5
3
.4

8
%

9
5
.0

1
%

9
9
.4

7
%

4
8
.5

6
%

9
9
.9

9
%

9
9
.9

8
%

4
8
.7

2
%

9
6
.4

2
%

9
5
.5

6
%

4
1
.4

2
%

7
3
.5

3
%

8
2
.6

8
%

X X X X X X X X-0
.0

2
%

1
3
.1

1
%

1
8
.1

4
%

X X X X X X X X

GEMM
2MM

3MM

sra
d_v2 nw lud

cfd_pre_euler

cfd_euler

lavaMD

partic
lefilt

er bfs

0%

20%

40%

60%

80%

100%

120%

���	�	� ���	�	���
�����

Fig. 9 Percentage of data transmission time saved by OAO compared with other versions
on the 2080Ti system

higher bandwidth (around 12.25 GB/s) than the H2D transmissions (around
10.55 GB/s). For a block of memory, its D2H time is usually shorter than its
H2D time. In a frequent case, its H2D is essential and remained, whereas its
D2H is redundant and eliminated. As a consequence, the percentage of data
size saved is 50%, whereas the percentage of time saved is less than 50%.

Compared with DawnCC, OAO reduces data transmission size in eight
benchmarks. This occurrence matches the transmission number reductions
shown in Table 10. The transmission size saving of the six benchmarks is
apparent, especially FDTD-2D-FUNC (over 99%), whereas the reduction is
negligible in two other benchmarks: GESUMMV and ATAX.

DawnCC-native and DawnCC-opt show different results in terms of trans-
mission time. OAO gains significant reductions (over 41%) on transmission
time over DawnCC-native in all benchmarks. For most benchmarks, except
FDTD-2D-FUNC, reductions are mainly caused by the pinned memory, which
is allocated by cudaMallocHost() function and is beneficial to make full
use of the bandwidth between the CPU and the accelerator. For FDTD-2D-
FUNC, the main reason is that optimization in OAO can eliminate nearly all
intra-procedural and inter-procedural transmissions. These significant reduc-
tions contribute to huge performance improvements (over 159%), as shown in
Figure 7.

Compared with DawnCC-opt, OAO gains obvious reductions on transmis-
sion time in the six benchmarks: FDTD-2D-FUNC, FDTD-2D, BICG, CO-
VAR, 2MM, and 3MM. Combining Figure 8 and 9, the percentage of time saved
and the percentage of the corresponding size saved can match each other in
these six benchmarks. Combining Figure 7 and 9, the six reductions have differ-
ent contributions to performance improvement, because of diverse proportions
of redundant transmission time, as we analyzed before. For FDTD-2D-FUNC

Title Suppressed Due to Excessive Length 27

and BICG, huge performance improvements (3339% and 92%) thanks to trans-
mission time reductions. For the four other benchmarks, small performance
improvements are gained by transmission time reductions.

The above experimental results prove that OAO can optimize data trans-
mission and eliminate redundant transmissions, whether they are intra-procedural
or inter-procedural transmissions. OAO can eliminate more redundant trans-
missions than DawnCC in eight benchmarks, especially inter-procedural trans-
missions, which cannot be eliminated by DawnCC.

6.3 Implementation and Feasibility

We implement the OAO system based on the Clang compiler [13] of the LLVM
compiler infrastructure [10,14] within 14000 lines of code. The OAO Translator
is derived mainly from the RecursiveASTVisitor class of Clang. We override
about 40 functions of RecursiveASTVisitor to carry out compile-time static
analysis and translate source code. The OAO Runtime, about 700 lines of code,
mainly maintains a vector of variable information and performs Algorithm 2
to execute essential data transmissions. Thus the implementation complexity
of OAO is acceptable.

OAO system can translate the OpenMP code into the OpenMP Offloading
code fully automatically. It should be noted that OAO depends on a specific
version of the Clang compiler. Developers can follow the detailed instructions
on the GitHub to compile and use OAO (https://github.com/ruixueqingyang/OAO-
Translator). Thus OAO is highly feasible to use for developers.

7 Related Work

Much work has been exerted to make heterogeneous computing accessible
to developers and researchers. Among them, the source-to-source translator
is an ideal tool. Moreover, automatic communication management is a main
challenge in translation and has been studied widely and exclusively.

7.1 Source-to-source translation for heterogeneous computing

Many translators, such as C-to-CUDA [2], PPCG [30], BONES [18], and Open-
MPC [11], generate CUDA programs for heterogeneous computing. Based on
the polyhedral model, C-to-CUDA, and PPCG can only parallelize affine code
regions in sequential C programs. BONES can parallelize sequential C pro-
grams, which are fitted by algorithmic species and skeletons prepared in ad-
vance. OpenMPC builds an abstraction of CUDA based on OpenMP and gen-
erates CUDA programs automatically. Other translators generate other kinds
of heterogeneous parallel programs. Grewe et al. [19] translate OMP SMP into
OpenCL. HTrOP [26] generates OpenCL applications from the LLVM bit-
code. CU2CL [28] and Kim et al. [9] translate CUDA into OpenCL to achieve

28 Farui Wang 1 et al.

portability. Wu et al. [33] propose NoT, a high-level programming method for
heterogeneous systems. Then the NoT application is translated into OpenCL.
OpenABLext [34] generates OpenCL from OpenABL, a domain-specific lan-
guage. DawnCC [15,17], which is based on the polyhedral model, translates
C into OMP Offloading.

Among these translators, DawnCC and our OAO generate OMP Offload-
ing programs, but DawnCC faces serious performance issues. The performance
of the DawnCC version is much lower than the OpenMP SMP version in all
PolyBench benchmarks because of inefficient data transmission optimization
and parallel directives. In FDTD-2D-FUNC, DawnCC and OAO versions dis-
play a huge difference in the number of transmissions (19500 vs. 5). Moreover,
DawnCC cannot handle common syntax, such as structure and class.

7.2 Automatic communication management for heterogeneous computing

Many studies concentrate on automatic communication management between
the CPU and the accelerator. Semi-automatic techniques [1] can manage data
transmissions through Runtime system, but require developers to insert API
functions manually.

Fully automatic methods [8,7,24] exploit compile-time static analysis tech-
niques to insert Runtime API functions automatically. Our work follows this
idea. CGCM [8] is the first fully automatic system for managing and optimizing
CPU-GPU communication. DyManD [7], based on CGCM, supports complex
data structures, through page protection mechanism and mmap function, which
may fail. CGCM and DyManD suffer from redundant transmissions. AMM [24]
eliminates redundant transmissions, but is bound with X10CUDA [27]. Sousa
et al. [29] perform data coherence analysis on OpenCL code and then insert
appropriate OpenCL function calls to minimize the number of data coherence
operations. Our work also eliminates redundant transmissions, but cannot
support multilevel pointers for the safety concern of mmap() function.

For seamless data sharing between CPU and GPU, CUDA 6.0 and later
versions support unified virtual memory (UVM) [5], where a unified memory
address space is shared across the CPUs and GPUs. Li et al. [12] improved
OpenMP GPU data management under UVM. These studies are beneficial
supplements to this work to support the complex data structure safely and
to improve performance further, if the accelerator is specified as NVIDIA
hardware. Besides UVM, Castro et al. [3] propose Heterogeneous Transac-
tional Memory (HeTM). HeTM provides programmers with the logical single
memory region, shared among the CPUs and GPUs, with support for atomic
transactions.

8 Conclusion and Future Work

This work describes a novel automatic source-to-source translator system,
called OAO, to translate OpenMP SMP programs into OpenMP Offloading

Title Suppressed Due to Excessive Length 29

programs. The OAO consists of the OAO Runtime Library and the OAO
Translator. For the OAO Runtime Library, we define the consistency State,
state transition function, and consistency state constraint to model data trans-
mission operations and variable references. Based on these, we propose the
minimum data transmission algorithm to manage and optimize data trans-
missions automatically and efficiently. For the OAO Translator, we define the
SPGraph to encode variable reference information. Based on the SPGraph,
we design some algorithms to insert runtime semantics and translate paral-
lel primitives automatically. We implement the OAO Translator through the
compile-time static analysis technology.

Experiments on PolyBench and Rodinia demonstrate that OAO system
gains performance improvements over hand-translated (up to 455271%) and
DawnCC-translated (up to 31403%) OpenMP Offloading programs. The speedup
of the OAO version is up to 32.28x over the OpenMP SMP version. The OAO
version can save data transmission time (up to over 99%) compared with
manual and DawnCC version. Moreover, OAO can handle eight benchmarks
in the Rodinia suite, in which DawnCC cannot handle any benchmark. The
OAO version gains performance improvement over the OpenMP SMP version
in five out of these eight Rodinia benchmarks (up to 12.53x).

The OAO cannot translate some benchmarks of Rodinia correctly, such
as the b+tree and heartwall. The main reason is that these benchmarks con-
tain multilevel pointers, which OAO cannot track. Another reason is that some
benchmarks contain special OpenMP directives, such as #pragma omp master.
Besides, tracking consistency at finer granularity may further improve perfor-
mance. Future work includes extending the OAO system to support more
situations and finer-grained optimization.

Acknowledgements This work was supported in part by the National Key Research and
Development Program of China (No. 2017YFB0202901), the Key-Area Research and Devel-
opment Program of Guangdong Province (No. 2019B010136001), the National Natural Sci-
ence Foundation of China (NSFC) (No. 61672186), and the Shenzhen Technology Research
and Development Fund (No. JCYJ20190806143418198). Professor Zhang is the correspond-
ing author.

References

1. Al-Saber, N., Kulkarni, M.: Semcache++: Semantics-aware caching for efficient multi-
gpu offloading. In: Proceedings of the 29th ACM on International Conference on Su-
percomputing, pp. 79–88. ACM (2015)

2. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic c-to-cuda code generation
for affine programs. In: International Conference on Compiler Construction, pp. 244–
263. Springer (2010)

3. Castro, D., Romano, P., Ilic, A., Khan, A.M.: Hetm: Transactional memory for hetero-
geneous systems. In: 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 232–244. IEEE (2019)

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Ro-
dinia: A benchmark suite for heterogeneous computing. In: 2009 IEEE international
symposium on workload characterization (IISWC), pp. 44–54. Ieee (2009)

30 Farui Wang 1 et al.

5. Corporation, N.: Cuda toolkit documentation v10.2.89. https://docs.nvidia.com/cuda.
Accessed 10 December 2019

6. Huang, Y., Li, D.: Performance modeling for optimal data placement on gpu with het-
erogeneous memory systems. In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 166–177. IEEE (2017)

7. Jablin, T.B., Jablin, J.A., Prabhu, P., Liu, F., August, D.I.: Dynamically managed data
for cpu-gpu architectures. In: Proceedings of the Tenth International Symposium on
Code Generation and Optimization, pp. 165–174. ACM (2012)

8. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.: Auto-
matic cpu-gpu communication management and optimization. In: Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and implementation,
pp. 142–151. ACM (2011)

9. Kim, Y., Kim, H.: Translating cuda to opencl for hardware generation using neural ma-
chine translation. In: 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pp. 285–286. IEEE (2019)

10. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis &
transformation. In: International Symposium on Code Generation and Optimization,
2004. CGO 2004., pp. 75–86. IEEE (2004)

11. Lee, S., Eigenmann, R.: Openmpc: Extended openmp programming and tuning for gpus.
In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–11. IEEE Computer Society (2010)

12. Li, L., Chapman, B.: Compiler assisted hybrid implicit and explicit gpu memory man-
agement under unified address space. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, p. 51. ACM (2019)

13. LLVM, A.T.: Clang: a c language family frontend for llvm. http://clang.llvm.org. Ac-
cessed 14 September 2020

14. LLVM, A.T.: The llvm compiler infrastructure. http://llvm.org. Accessed 14 September
2020

15. Mendonça, G., Guimarães, B., Alves, P., Pereira, M., Araújo, G., Pereira, F.M.Q.:
Dawncc: automatic annotation for data parallelism and offloading. ACM Transactions
on Architecture and Code Optimization (TACO) 14(2), 13 (2017)

16. Mendonça, G., Guimarães, B., Pereira, F.M.Q.: Benchmarks used to evaluate dawncc.
http://cuda.dcc.ufmg.br/dawn/benchmarks.zip. Accessed 21 December 2018

17. Mendonça, G.S.D., Guimaraes, B.C.F., Alves, P.R.O., Pereira, F.M.Q., Pereira, M.M.,
Araújo, G.: Automatic insertion of copy annotation in data-parallel programs. In: 2016
28th International Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD), pp. 34–41. IEEE (2016)

18. Nugteren, C., Corporaal, H.: Bones: An automatic skeleton-based c-to-cuda compiler
for gpus. ACM Transactions on Architecture and Code Optimization (TACO) 11(4),
35 (2015)

19. O’Boyle, M.F., Wang, Z., Grewe, D.: Portable mapping of data parallel programs to
opencl for heterogeneous systems. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pp. 1–10. IEEE Computer
Society (2013)

20. OpenMP, A.R.B.: Openmp application program interface version 3.1.
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf. Accessed 07 Novem-
ber 2019

21. OpenMP, A.R.B.: Openmp application program interface version 4.0.
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf. Accessed 07
November 2019

22. OpenMP, A.R.B.: Openmp application program interface version 4.5.
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf. Accessed 07 November
2019

23. OpenMP, A.R.B.: Openmp application program interface version 5.0.
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.
Accessed 07 November 2019

24. Pai, S., Govindarajan, R., Thazhuthaveetil, M.J.: Fast and efficient automatic memory
management for gpus using compiler-assisted runtime coherence scheme. In: Proceedings

Title Suppressed Due to Excessive Length 31

of the 21st international conference on Parallel architectures and compilation techniques,
pp. 33–42. ACM (2012)

25. Pouchet, L.N., et al.: Polybench/c the polyhedral benchmark suite.
https://web.cse.ohio-state.edu/ pouchet.2/software/polybench. Accessed 21 De-
cember 2018

26. Riebler, H., Vaz, G., Kenter, T., Plessl, C.: Transparent acceleration for heterogeneous
platforms with compilation to opencl. ACM Transactions on Architecture and Code
Optimization (TACO) 16(2), 1–26 (2019)

27. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: The x10 parallel pro-
gramming language. http://x10-lang.org. Accessed 10 December 2019

28. Sathre, P., Gardner, M., Feng, W.c.: On the portability of cpu-accelerated applications
via automated source-to-source translation. In: Proceedings of the International Con-
ference on High Performance Computing in Asia-Pacific Region, pp. 1–8 (2019)

29. Sousa, R., Pereira, M., Pereira, F.M.Q., Araujo, G.: Data-flow analysis and optimization
for data coherence in heterogeneous architectures. Journal of Parallel and Distributed
Computing 130, 126–139 (2019)

30. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gomez, J., Tenllado, C., Catthoor,
F.: Polyhedral parallel code generation for cuda. ACM Transactions on Architecture
and Code Optimization (TACO) 9(4), 54 (2013)

31. Wang, K., Che, S., Skadron, K.: Rodinia: A benchmark suit for heterogeneous comput-
ing. http://lava.cs.virginia.edu/Rodinia/download links.htm. Accessed 23 June 2019

32. Wang, X., Huang, K., Knoll, A., Qian, X.: A hybrid framework for fast and accurate
gpu performance estimation through source-level analysis and trace-based simulation.
In: 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 506–518. IEEE (2019)

33. Wu, S., Dong, X., Zhang, X., Zhu, Z.: Not: a high-level no-threading parallel program-
ming method for heterogeneous systems. The Journal of Supercomputing 75(7), 3810–
3841 (2019)

34. Xiao, J., Andelfinger, P., Cai, W., Richmond, P., Knoll, A., Eckhoff, D.: Openablext:
An automatic code generation framework for agent-based simulations on cpu-gpu-fpga
heterogeneous platforms. Concurrency and Computation: Practice and Experience p.
e5807 (2020)

35. Zhang, W., Cheng, A.M., Subhlok, J.: Dwarfcode: a performance prediction tool for
parallel applications. IEEE Transactions on Computers 65(2), 495–507 (2015)

36. Zhang, W., Hao, M., Snir, M.: Predicting hpc parallel program performance based on
llvm compiler. Cluster Computing 20(2), 1179–1192 (2017)

